
Supplement407

This supplement contains supporting material for the paper Stein Π-Importance Sampling. The408

mathematical background on Stein kernels is contained in Appendix A. The proof of Theorem 1409

is contained in Appendix B. For implementation of Stein Π-Importance Sampling without the aid410

of automatic differentiation, various explicit derivatives are required; the relevant calculations can411

be found in Appendix C. The empirical protocols and additional empirical results are presented in412

Appendix D.413

A Mathematical Background414

This appendix contains mathematical background on reproducing kernels and Stein kernels, as used415

in the main text. Appendix A.1 introduces matrix-valued reproducing kernels, while Appendix A.2416

specialises to Stein kernels by application of a Stein operator to a matrix-valued kernel. A selection417

of useful Stein kernels are presented in Appendix A.3.418

A.1 Matrix-Valued Reproducing Kernels419

A matrix-valued kernel is a function K : Rd × Rd → Rd×d, that is both420

1. symmetric; K(x, y) = K(y, x) for all x, y ∈ Rd, and421

2. positive semi-definite;
∑n

i=1

∑n
j=1⟨ci,K(xi, xj)cj⟩ ≥ 0 for all x1, . . . , xn ∈ Rd and422

c1, . . . , cn ∈ Rd.423

Let Kx = K(·, x). For vector-valued functions g, g′ : Rd → Rd, defined by g =
∑n

i=1 Kxi
ci and424

g′ =
∑m

j=1 Kx′
j
c′i, define an inner product425

⟨g, g′⟩H(K) =

n∑
i=1

m∑
j=1

⟨ci,K(xi, x
′
j)c

′
j⟩. (9)

There is a unique Hilbert space of such vector-valued functions associated to K, denoted H(K); see426

Proposition 2.1 of Carmeli et al. (2006). This space is characterised as427

H(K) = span{Kxc : x, c ∈ Rd}
where here the closure is taken with respect to the inner product in (9). It can be shown that H(K) is428

in fact a reproducing kernel Hilbert space (RKHS) which satisfies the reproducing property429

⟨g,Kxc⟩H(K) = ⟨g(x), c⟩

for all g ∈ H(K) and x, c ∈ Rd. Matrix-valued kernels are the natural starting point for construction430

of KSDs, as described next.431

A.2 Stein Kernels432

A general construction for Stein kernels is to first identify a matrix-valued RKHS H(K) and an433

operator SP : H(K) → L1(P ) for which
∫
Sph dP = 0 for all h ∈ H(K). Such an operator will434

be called a Stein operator. The collection {Sph : h ∈ H(K)} inherits the structure of an RKHS,435

whose reproducing kernel436

kP (x, y) = ⟨SPKx, SPKy⟩H(K) (10)

is a Stein kernel, meaning that µP = 0 where µP is the kernel mean embedding from (1); see Barp437

et al. (2022b). Explicit calculations for the Stein kernels considered in this work can be found in438

Appendix C.439

For univariate distributions, Barbour (1988) proposed to obtain Stein operators from infinitessimal440

generators of P -invariant continuous-time Markov processes; see also Barbour (1990); Gotze (1991).441
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The approach was extended to multivariate distributions in Gorham and Mackey (2015). The starting442

point is the P -invariant Itô diffusion443

dXt =
1

2

1

p(Xt)
∇ · [p(Xt)M(Xt)]dt+M(Xt)

1/2dWt, (11)

where p is the density of P , assumed to be positive, M : Rd → Rd×d is a symmetric matrix called444

the diffusion matrix, and Wt is a standard Wiener process (Kent, 1978; Roberts and Stramer, 2002).445

Here the notation [∇ ·A]i = ∇ · (A⊤
i,·) indicates the divergence operator applied to each row of the446

matrix A(x) ∈ Rd×d. The infinitessimal generator is447

(APu)(x) =
1

2

1

p(x)
∇ · [p(x)M(x)∇u(x)].

Substituting h(x) for 1
2∇u(x), we obtain a Stein operator448

(SPh)(x) =
1

p(x)
∇ · [p(x)M(x)h(x)] (12)

called the diffusion Stein operator (Gorham et al., 2019). This is indeed a Stein operator, since449

under mild integrability conditions on K, the divergence theorem gives that
∫
Sph dP = 0 for all450

h ∈ H(K); for full details and a proof see Barp et al. (2022b).451

A.3 Selecting a Stein Kernel452

There are several choices for a Stein kernel, and which we should use depends on what form of453

convergence we hope to control (Gorham and Mackey, 2017; Gorham et al., 2019; Hodgkinson et al.,454

2020; Barp et al., 2022b; Kanagawa et al., 2022). Appendix A.3.1 describes the Langevin–Stein455

kernel for weak convergence control, Appendix A.3.2 describes the KGM–Stein kernels for additional456

control over moments, and Appendix A.3.3 presents the Riemann–Stein kernel, whose convergence457

properties have to-date been less well-studied.458

All of the kernels that we consider have length scale parameters that need to be specified, and some
also have location parameters to be specified. As a reasonably automatic default we define

x⋆ ∈ argmax p(x), Σ−1 = −∇2 log p(x⋆)

as a location and a matrix of characteristic length scales for P that will be used throughout. These459

values can typically be obtained using gradient-based optimisation, which is usually cheaper to460

perform compared to full approximation of P . It is assumed that ∇2 log p(x⋆) is positive definite in461

the sequel.462

A.3.1 Weak Convergence Control with Langevin–Stein Kernels463

The first kernel we consider, which we called the Langevin–Stein kernel in the main text, was464

introduced by Gorham and Mackey (2017). This Stein kernel was developed for the purpose of465

controlling the weak convergence of a sequence (Qn)n∈N ⊂ P(Rd) to P . Recall that a sequence466

(Qn)n∈N is said to converge weakly (or in distribution) to P if
∫
fdQn →

∫
fdP for all continuous467

bounded functions f : Rd → R. This convergence is denoted Qn
d→ P in shorthand.468

The problem considered in Gorham and Mackey (2017) was how to select a combination of matrix-
valued kernel K (and, implicitly, a diffusion matrix M ) such that the Stein kernel kP in (10) generates
a KSD DP (Q) in (4) for which DP (Qn) → 0 implies Qn

d→ P . Their solution was to combine the
inverse multi-quadric kernel with an identity diffusion matrix;

K(x, y) = (1 + ∥x− y∥2Σ)−βI, M(x) = I

for β ∈ (0, 1). Provided that P has a density p for which ∇ log p(x) is Lipschitz, and that P is469

distantly dissipative (see Definition 4 of Gorham and Mackey, 2017), the associated KSD enjoys470

weak convergence control. Technically, the results in Gorham and Mackey (2017) apply only when471

Σ = I , but Theorem 4 in Chen et al. (2019) demonstrated that they hold also for any positive definite472

Σ. Following the recommendation of several previous authors, including Chen et al. (2018, 2019);473

Riabiz et al. (2022), we take β = 1
2 throughout.474
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A.3.2 Moment Convergence Control with KGM–Stein Kernels475

Despite its many elegant properties, weak convergence can be insufficient for applications where we476

are interested in integrals
∫
f dP for which the integrand f : Rd → R is unbounded. In particular,477

this is the case for moments of the form f(x) = xα1
1 . . . xαd

d , 0 ̸= α ∈ Nd
0. In such situations, we478

may seek also the stronger property of moment convergence control. The development of KSDs for479

moment convergence control was recently considered by Kanagawa et al. (2022), and we refered to480

their construction as the KGM–Stein kernels in the main text. (For convenience, we have adopted the481

initials of the authors in naming the KGM–Stein kernel.)482

A sequence (Qn)n∈N ⊂ P(Rd) is said to converge to P in the sth order moment if
∫
∥x∥sdQn(x) →∫

∥x∥sdP (x). To establish convergence of moments, we need an additional condition on top of weak
convergence control: uniform integrability control. A sequence of measures (Qn)n∈N is said to have
uniformly integrable sth moments if for any ε > 0, we can take r > 0 such that

sup
n∈N

∫
∥x∥>r

∥x∥s dQn(x) < ε.

This condition essentially states that the tail decay of the measures is well-controlled (so that it has a483

convergent moment). The KSD convergence DP (Qn) → 0 implies uniform integrability if for any484

ε > 0, we can take rε > 0 and fε ∈ H(K) such that485

SP fε(x) ≥ ∥x∥s1{∥x∥ > rε} − ε, (13)

i.e., the Stein-modified RKHS can approximate the (norm-weighted) indicator function arbitrarily well.
Such a function fε can be explicitly constructed (while not guaranteed to be a member of the RKHS).
Specifically, the choice fε = (1 − ιε)g satisfies (13) under an appropriate dissipativity condition,
where ιε is a differentiable indicator function vanishing outside a ball, and g(x) = −x/

√
1 + ∥x∥2.

This motivated Kanagawa et al. (2022) to introduce the sth order KGM–Stein kernel, which is based
on the matrix-valued kernel and diffusion matrix

K(x, y) = [ϕ(∥x− y∥Σ) + κlin(x, y)] I, M(x) = (1 + ∥x− x⋆∥2Σ)
s−1
2 I,

where (x, y) 7→ ϕ(∥x− y∥Σ) is a C1
0 universal kernel (see Barp et al., 2022b, Theorem 4.8). For486

comparability of our results, we take ϕ to be the inverse multi-quadric ϕ(r) = (1 + r2)−1/2, and487

κlin(x, y) =
1 + (x− x⋆)

⊤Σ−1(y − x⋆)√
1 + ∥x− x⋆∥2Σ

√
1 + ∥y − x⋆∥2Σ

.

Here the normalised linear kernel κlin ensures g ∈ H(K), while the C1
0 universal kernel ϕ allows488

approximation of SP ιεg; see Kanagawa et al. (2022).489

A.3.3 Exploiting Geometry with Riemann–Langevin–Stein Kernels490

For academic interest only, here we describe the Riemann–Stein kernel that featured in Figure 2 of
the main text. This Stein kernel is motivated by the analysis of Gorham et al. (2019), who argued that
the use of rapidly mixing Itô diffusions in Stein operators can lead to sharper convergence control.
The Riemann–Stein kernel is based on the class of so-called Riemannian diffusions considered
in Girolami and Calderhead (2011), who proposed to take the diffusion matrix M in (11) to be
M = (Iprior + IFisher)

−1, the inverse of the Fisher information matrix, IFisher, regularised using the
Hessian of the negative log-prior, Iprior. For the two-dimensional illustration in Section 3.2, this leads
to the diffusion matrix

M(x) =

(
I +

n∑
i=1

[∇fi(x)][∇fi(x)]
⊤
)−1

,

where we recall that yi = fi(x) + ϵi, where the ϵi are independent with ϵi ∼ N (0, 1), and the prior491

is x ∼ N (0, 1). For the presented experiment we paired the above diffusion matrix with the inverse492

multi-quadric kernel K(x, y) = (1 + ∥x− y∥2Σ)−β for β = 1
2 . The Riemann–Stein kernel extends493

naturally to distributions P defined on Riemannian manifolds X ; see Barp et al. (2022a) and Example494

1 of Hodgkinson et al. (2020).495

Unfortunately, the Riemann–Stein kernel is prohibitively expensive in most real applications, since496

each evaluation of M requires a full scan through the size-n dataset. The computational complexity497
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of Stein Π-Thinning with the Riemann–Stein kernel is therefore O(m2n2), which is unfavourable498

compared to the O(m2n) complexity in the case where the Stein kernel is not data-dependent. Fur-499

thermore, the convergence control properties of the Riemann–Stein kernel have yet to be established.500

For these reasons we included the Riemann–Stein kernel for illustration only; further groundwork501

will be required before the Riemann-Stein kernel can be practically used.502

B Proof of Theorem 1503

This appendix is devoted to the proof of Theorem 1. The proof is based on the recent work of Durmus504

and Moulines (2022), on the geometric convergence of MALA, and on the analysis of sparse (greedy)505

approximation of kernel discrepancies performed in Riabiz et al. (2022); these existing results are506

recalled in Appendix B.1. An additional technical result on preconditioned MALA is contained in507

Appendix B.2. The proof of Theorem 1 itself is contained in Appendix B.3.508

B.1 Auxiliary Results509

To precisely describe the results on which our analysis is based, we first need to introduce some
notation and terminology. Let V : X → [1,∞) and, for a function f : X → R and a measure µ on
X , let

∥f∥V := sup
x∈X

|f(x)|
V (x)

, ∥µ∥V := sup
∥f∥V ≤1

∣∣∣∣∫
X
fdµ

∣∣∣∣ .
Recall that a Q-invariant Markov chain (xi)i∈N ⊂ X with nth step transition kernel Qn is V -uniformly510

ergodic (see Theorem 16.0.1 of Meyn and Tweedie, 2012) if and only if ∃R ∈ [0,∞), ρ ∈ (0, 1)511

such that512

∥Qn(x, ·)−Q∥V ≤ RρnV (x) (14)

for all initial states x ∈ X and all n ∈ N.513

Although MALA (Algorithm 1) is classical (Roberts and Stramer, 2002), until recently explicit514

sufficient conditions for ergodicity of MALA had not been obtained. The first result we will need515

is due Durmus and Moulines (2022), who presented the first explicit conditions for V -uniform516

convergence of MALA. It applies only to standard MALA, meaning that the preconditioning matrix517

M appearing in Algorithm 1 is the identity matrix. The extension of this result to preconditioned518

MALA will be handled in Appendix B.2.519

Theorem 2. Let Q ∈ P(Rd) admit a density, q, such that520

(DM1) there exists x0 with ∇ log q(x0) = 0521

(DM2) q is twice continuously differentiable with supx∈Rd ∥∇2 log q(x− x0)∥ < ∞522

(DM3) there exists b > 0 and B ≥ 0 such that −∇2 log q(x− x0) ⪰ bI for all ∥x− x0∥ ≥ B.523

Then there exists ϵ0 > 0 such that for all step sizes ϵ ∈ (0, ϵ0), standard Q-invariant MALA (i.e.524

with M = I) is V -uniformly ergodic for V (x) = exp
(

b
16∥x− x0∥2

)
.525

Proof. This is Theorem 1 of Durmus and Moulines (2022).526

The next result that we will need establishes consistency of the greedy algorithm applied to samples527

from a Markov chain that is Q-invariant.528

Theorem 3. Let P,Q ∈ P(X ) with P ≪ Q. Let kP : X × X → R be a Stein kernel and let529

DP : X × X → [0,∞] denote the associated KSD. Consider a Q-invariant, time-homogeneous530

Markov chain (xi)i∈N ⊂ X such that531

(R+1) (xi)i∈N is V -uniformly ergodic, such that V (x) ≥ dP
dQ (x)

√
kP (x)532

(R+2) supi∈N E
[
dP
dQ (xi)

√
kP (xi)V (xi)

]
< ∞533
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(R+3) there exists γ > 0 such that supi∈N E
[
exp

{
γmax

(
1, dP

dQ (xi)
2
)
kP (xi)

}]
< ∞.534

Let Pn,m be the result of running the greedy algorithm in (5). If m ≤ n and log(n) = O(mγ/2) for535

some γ < 1, then DP (Pn,m) → 0 almost surely as m,n → ∞.536

Proof. This is Theorem 3 of Riabiz et al. (2022).537

B.2 Preconditioned MALA538

In addition to the auxiliary results in Appendix B.1, which concern standard MALA (i.e. with539

M = I), we require an elementary fact about MALA, namely that preconditioned MALA is540

equivalent to standard MALA under a linear transformation of the state variable. Recall that the541

M -preconditioned MALA algorithm is a Metropolis–Hastings algorithm whose proposal is the542

Euler–Maruyama discretisation of the Itô diffusion (11).543

Proposition 1. Let M(x) ≡ M for a symmetric positive definite and position-independent matrix544

M ∈ Rd×d. Let Q ∈ P(Rd) admit a probability density function (PDF) q for which the Q-invariant545

diffusion (Xt)t≥0, given by setting p = q in (11), is well-defined. Then under the change of variables546

Yt := M1/2Xt,547

dYt =
1

2
(∇ log q̃)(Yt)dt+ dWt, (15)

where q̃(x) ∝ q(M−1/2x) for all x ∈ Rd.548

Proof. From the chain rule,549

(∇ log q̃)(y) = ∇y log q(M
−1/2y) = M−1/2(∇ log q)(M−1/2y),

and thus, substituting Yt = M1/2Xt, (15) is equal to550

dXt = M−1/2

[
1

2
M−1/2(∇ log q)(M−1/2M1/2Xt) + dWt

]
=

1

2
M−1(∇ log q)(Xt) +M−1/2dWt,

which is identical to (11) in the case where M(x) = M is constant.551

Let Q and Q̃ be the distributions referred to in Proposition 1, whose PDFs are respectively q(x)552

and q̃(x) ∝ q(M−1/2x). Proposition 1 then implies that the M -preconditioned MALA algorithm553

applied to Q (i.e. Algorithm 1 for Π = Q) is equivalent to the standard MALA algorithm (i.e.554

M = I) applied to Q̃. This fact allows us to generalise the result of Theorem 2 as follows:555

Corollary 1. Consider a symmetric positive definite matrix M ∈ Rd×d. Assume that conditions556

(DM1-3) in Theorem 2 are satisfied. Then there exists ϵ′0 > 0 and b′ > 0 such that for all step557

sizes ϵ ∈ (0, ϵ′0), the M -preconditioned Q-invariant MALA is V -uniformly ergodic for V (x) =558

exp
(

b′

16∥x− x0∥2
)

.559

Proof. From Theorem 2 and Proposition 1, the result follows if we can establish (DM1-3) for Q̃, since560

M -preconditioned MALA is equivalent to standard MALA applied to Q̃. For a matrix A ∈ Rd×d,561

let λmin(A) and λmax(A) respectively denote the minimum and maximum eigenvalues of A. For562

(DM1) we set y0 = M1/2x0 and observe that563

(∇ log q̃)(y0) = M−1/2(∇ log q)(x0) = 0.

For (DM2) we have that564

sup
y∈Rd

∥∇2(log q̃)(y − y0)∥ = sup
y∈Rd

∥M−1/2(∇2 log q)(M−1/2(y − y0))M
−1/2∥

≤ λmin(M)−1 sup
x∈Rd

∥(∇2 log q)(x− x0)∥ < ∞.
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For (DM3) we have that565

−(∇2 log q̃)(y − y0) = −M−1/2(∇2 log q)(M−1/2(y − y0))M
−1/2

= −M−1/2(∇2 log q)(x− x0)M
−1/2 ⪰ M1/2(bI)M1/2 = bM−1 ⪰ b′I

where b′ = bλmax(M)−1, which holds for all ∥x−x0∥ ≥ B, and in particular for all ∥y− y0∥ ≥ B′566

where B′ = Bλmax(M)1/2. Thus (DM1-3) are established for Q̃.567

Remark 1. The choice M = Σ−1, which sets the preconditioner matrix M equal to the inverse of568

the length scale matrix Σ used in the specification of the kernel K (c.f. Appendix A.3), leads to the569

elegant interpretation that Stein Π-Importance Sampling applied to M -preconditioned MALA is570

equivalent to the Stein Π-Importance Sampling applied to standard MALA (i.e. with M = I) for the571

whitened target P̃ with PDF p̃(x) ∝ p(M−1/2x). For our experiments, however, the preconditioner572

matrix M was learned during a warm-up phase of MALA, since in general the curvature of P573

(captured by Σ) and the curvature of Π (captured by M−1) may be different.574

B.3 Proof of Theorem 1575

The route to establishing Theorem 1 has three parts. First, we establish (DM1-3) of Theorem 2 with576

Q = Π, to deduce from Corollary 1 that Π-invariant M -preconditioned MALA is V -uniformly577

ergodic. This in turn enables us to establish conditions (R+1-3) of Theorem 3, again for Q = Π,578

from which the strong consistency DP (Pn,m)
a.s.→ 0 of SΠT-MALA is established. Finally, we note579

that 0 ≤ DP (P
⋆
n) ≤ DP (Pn,m), since the support of Pn,m is contained in the support of P ⋆

n , and580

the latter is optimally weighted, whence also the strong consistency of SΠIS-MALA.581

Establish (DM1-3) First we establish (DM1-3) for Q = Π. Fix x0 ∈ Rd. For (DM2), first recall582

that the range of kP is [C2
1 ,∞) where C1 > 0, from Assumption 1. Since log(·) has bounded second583

derivatives on [C2
1 ,∞), there is a constant C > 0 such that584

∀x ∈ Rd, ∥∇2 log kP (x)∥ ≤ C∥∇2kP (x)∥.
Thus, using compactness of the set {x : ∥x− x0∥ ≤ B2},585

sup
x∈Rd

∥∇2 log kP (x)∥ ≤ Cmax

(
sup

∥x−x0∥≤B2

∥∇2kP (x)∥︸ ︷︷ ︸
<∞ by (A3)

, sup
∥x−x0∥≥B2

∥∇2kP (x)∥︸ ︷︷ ︸
<b2∥I∥ by (A4)

)
< ∞. (16)

Now, π is twice differentiable as it is the product of twice differentiable functions p and k
1/2
P from

(A1) and (A3), and moreover

sup
x∈Rd

∥∇2 log π(x− x0)∥ ≤ sup
x∈Rd

∥∇2 log p(x)∥︸ ︷︷ ︸
<∞ by (A1)

+
1

2
sup
x∈Rd

∥∇2 log kP (x)∥︸ ︷︷ ︸
<∞ by (16)

< ∞,

so (DM2) is satisfied. For (DM3), first note from the chain and product rules that for all ∥x∥ ≥ B2586

∇2 log kP (x− x0) =
∇2kP (x− x0)

kP (x− x0)︸ ︷︷ ︸
⪯(b2/C2

1 )I by (A4)

− [∇kP (x− x0)][∇kP (x− x0)]
⊤

kP (x− x0)2︸ ︷︷ ︸
⪰0

⪯ b2
C2

1

I. (17)

Thus, for all ∥x− x0∥ ≥ B := ∥x0∥+max(B1, B2),587

−∇2 log π(x− x0) = −∇2 log p(x− x0)︸ ︷︷ ︸
⪰b1I by (A2)

−1

2
∇2 log kP (x− x0)︸ ︷︷ ︸

⪯(b2/C2
1 )I by (17)

⪰
(
b1 −

b2
2C2

1

)
︸ ︷︷ ︸

=:b>0

I (18)

as required. The same argument establishes (DM1); from (18) we have lim∥x∥→∞ π(x) = 0, and588

since π is a continuously differentiable density there must exist an x0 at which π is locally minimised.589

Thus we have established (DM1-3) for Q = Π and we may conclude from Corollary 1 that there590

is an ϵ′0 > 0 and b′ > 0 such that, for all ϵ ∈ (0, ϵ′0), the Π-invariant M -preconditioned MALA591

chain (xi)i∈N is V -uniformly ergodic for V (x) = C2 exp
(

b′

16∥x− x0∥2
)

(since if a Markov chain592

is V -uniformly ergodic, then it is also CV -uniformly ergodic).593
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Establish (R+1-3) The aim is now to establish conditions (R+1-3) of Theorem 3 for Q = Π. By594

construction dP/dΠ = C2/
√
kP (x) < C2/C1 < ∞, where C1 and C2 were defined in Assump-595

tion 1, so that P ≪ Π. It has already been established that (xi)i∈N is V -uniformly ergodic, and596

further597

V (x) = C2 exp

(
b′

16
∥x− x0∥2

)
≥ C2 =

dP

dΠ
(x)
√

kP (x)

for all x, which establishes (R+1). Let R and ρ denote constants for which the V -uniform ergodicity598

property (14) is satisfied. From V -uniform ergodicity, the integral
∫
V dΠ exists and599 ∣∣∣∣E [dPdΠ(xi)

√
kP (xi)V (xi)

]
− C2

∫
V dΠ

∣∣∣∣ = C2

∣∣∣∣E[V (xi)]−
∫

V dΠ

∣∣∣∣
≤ C2RρnV (x0) → 0

which establishes (R+2). Fix γ > 0. By construction dP/dΠ ≤ C2/C1, and thus600

exp

{
γmax

(
1,

dP

dΠ
(x)2

)
kP (x)

}
< exp {γ̃kP (x)}

where γ̃ = max(1, C2/C1)γ. Since we have assumed that kP is continuous with, from (A4),601

b3 := lim sup
∥x∥→∞

kP (x)

∥x∥2 < ∞,

we may take γ such that γ̃b3 < b′/16, so that ∥x 7→ exp{γ̃kP (x)}∥V < ∞ and in particular602 ∣∣∣∣E [exp{γ̃kP (xi)}]−
∫

exp{γ̃kP (x)} dΠ(x)

∣∣∣∣ ≤ ∥x 7→ exp{γ̃kP (x)}∥V ×RρnV (x0) → 0

which establishes (R+3). Thus we have established (R+1-3) for Q = Π, so from Theorem 3603

we have strong consistency of SΠT-MALA (i.e. DP (Pn,m)
a.s.→ 0) provided that m ≤ n with604

log(n) = O(mγ/2) for some γ < 1. The latter condition is equivalent to m = Ω((log n)δ) for some605

δ > 2, which we used for the statement. Since 0 ≤ DP (P
⋆
n) ≤ DP (Pn,m), the strong consistency of606

SΠIS-MALA is also established.607

C Explicit Calculation of Stein Kernels608

This appendix contains explicit calculations for the Langevin–Stein and KGM–Stein kernels kP ,609

which are sufficient to implement Stein Π-Importance Sampling and Stein Π-Thinning. These610

calculations can also be performed using automatic differentiation, but comparison to the analytic611

expressions is an important step in validation of computer code.612

To proceed, we observe that the diffusion Stein operator SP in (12) applied to a matrix-valued kernel613

K is equivalent to the Langevin–Stein operator applied to the kernel C(x, y) = M(x)K(x, y)M(y)⊤.614

In the case of the Langevin–Stein and KGM–Stein kernels we have K(x, y) = κ(x, y)I for some615

κ(x, y) and M(x) = (1+∥x−x⋆∥2Σ)(s−1)/2I for some s ∈ {0, 1, 2, . . . }. Thus C(x, y) = c(x, y)I616

where617

c(x, y) := (1 + ∥x− x⋆∥2Σ)(s−1)/2(1 + ∥y − x⋆∥2Σ)(s−1)/2κ(x, y)

and618

kP (x, y) = ∇x · ∇yc(x, y) + [∇xc(x, y)] · [∇y log p(y)] + [∇yc(x, y)] · [∇x log p(x)]

+ c(x, y)[∇x log p(x)] · [∇y log p(y)],
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following the calculations in Oates et al. (2017). To evaluate the terms in this formula we start by619

differentiating c(x, y), to obtain620

∇xc(x, y) = (1 + ∥x− x⋆∥2Σ)(s−1)/2(1 + ∥y − x⋆∥2Σ)(s−1)/2

×
[
(s− 1)κ(x, y)Σ−1(x− x⋆)

1 + ∥x− x⋆∥2Σ
+∇xκ(x, y)

]
∇yc(x, y) = (1 + ∥x− x⋆∥2Σ)(s−1)/2(1 + ∥y − x⋆∥2Σ)(s−1)/2

×
[
(s− 1)κ(x, y)Σ−1(y − x⋆)

1 + ∥y − x⋆∥2Σ
+∇yκ(x, y)

]
∇x · ∇yc(x, y) = (1 + ∥x− x⋆∥2Σ)(s−1)/2(1 + ∥y − x⋆∥2Σ)(s−1)/2

×
[
(s− 1)2κ(x, y)(x− x⋆)

⊤Σ−2(y − x⋆)

(1 + ∥x− x⋆∥2Σ)(1 + ∥y − x⋆∥2Σ)
+

(s− 1)(y − x⋆)
⊤Σ−1∇xκ(x, y)

(1 + ∥y − x⋆∥2Σ)

+
(s− 1)(x− x⋆)

⊤Σ−1∇yκ(x, y)

(1 + ∥x− x⋆∥2Σ)
+∇x · ∇yκ(x, y)

]
.

These expressions involve gradients of κ(x, y), and explicit formulae for these are presented for the621

choice of κ(x, y) corresponding to the Langevin–Stein kernel in Appendix C.1, and to the KGM–Stein622

kernel in Appendix C.2.623

To implement Stein Π-Thinning we require access to both kP (x) and ∇kP (x), the latter for use in the624

proposal distribution and acceptance probability in MALA. These quantities will now be calculated.625

In what follows we assume that κ(x, y) is continuously differentiable, so that partial derivatives with626

respect to x and y can be interchanged. Then627

c0(x) := c(x, x)

= (1 + ∥x− x⋆∥2Σ)s−1κ(x, x)

c1(x) := ∇xc(x, y)|y→x

= (1 + ∥x− x⋆∥2Σ)s−1

[
(s− 1)κ(x, x)Σ−1(x− x⋆)

(1 + ∥x− x⋆∥2Σ)
+ ∇xκ(x, y)|y→x

]
c2(x) := ∇x · ∇yc(x, y)|y→x

= (1 + ∥x− x⋆∥2Σ)s−1

[
(s− 1)2κ(x, x)(x− x⋆)

⊤Σ−2(x− x⋆)

(1 + ∥x− x⋆∥2Σ)2

+
2(s− 1)(x− x⋆)

⊤Σ−1 ∇xκ(x, y)|y→x

(1 + ∥x− x⋆∥2Σ)
+ ∇x · ∇yκ(x, y)|y→x

]

so that628

kP (x) := kP (x, x) = c2(x) + 2c1(x) · ∇x log p(x) + c0(x)∥∇x log p(x)∥2. (19)

Let [∇xc1(x)]i,j = ∂xi [c1(x)]j and [∇2
x log p(x)]i,j = ∂xi∂xj log p(x). Now we can differentiate629

(19) to get630

∇xkP (x) = ∇xc2(x) + 2[∇xc1(x)][∇x log p(x)] + 2[∇2
x log p(x)]c1(x)

+ [∇xc0(x)]∥∇x log p(x)∥2 + 2c0(x)[∇2
x log p(x)][∇x log p(x)]. (20)

In what follows we also derive explicit formulae for c0(x), c1(x) and c2(x), and hence for ∇xc0(x),631

∇xc1(x) and ∇xc2(x), for the case of the Langevin–Stein kernel in Appendix C.1, and the KGM–632

Stein kernel in Appendix C.2.633
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C.1 Explicit Formulae for the Langevin–Stein Kernel634

The Langevin–Stein kernel from Appendix A.3.1 corresponds to the choice s = 1 and κ(x, y) the635

inverse multi-quadric kernel, so that636

κ(x, y) = (1 + ∥x− y∥2Σ)−β

∇xκ(x, y) = −2β(1 + ∥x− y∥2Σ)−β−1Σ−1(x− y)

∇yκ(x, y) = 2β(1 + ∥x− y∥2Σ)−β−1Σ−1(x− y)

∇x · ∇yκ(x, y) = −4β(β + 1)(1 + ∥x− y∥2Σ)−β−2(x− y)⊤Σ−2(x− y)

+ 2βtr(Σ−1)(1 + ∥x− y∥2Σ)−β−1.

Evaluating on the diagonal:637

κ(x, x) = 1

∇xκ(x, y)|y→x = ∇yκ(x, y)|y→x = 0

∇x · ∇yκ(x, y)|y→x = 2βtr(Σ−1),

so that c0(x) = 1, c1(x) = 0, c2(x) = 2βtr(Σ−1). Differentiating these formulae, ∇xc0(x) = 0,638

∇xc1(x) = 0, ∇xc2(x) = 0.639

C.2 Explicit Formulae for the KGM–Stein Kernel640

The KGM kernel of order s from Appendix A.3.2 corresponds to the choice641

κ(x, y) = (1 + ∥x− y∥2Σ)−β +
1 + (x− x⋆)

⊤Σ−1(y − x⋆)

(1 + ∥x− x⋆∥2Σ)s/2(1 + ∥y − x⋆∥2Σ)s/2
,

for which we have642

∇xκ(x, y) = −2β(1 + ∥x− y∥2Σ)−β−1Σ−1(x− y)

+
Σ−1(y − x⋆)− s[1 + (x− x⋆)

⊤Σ−1(y − x⋆)]Σ
−1(x− x⋆)(1 + ∥x− x⋆∥2Σ)−1

(1 + ∥x− x⋆∥2Σ)s/2(1 + ∥y − x⋆∥2Σ)s/2
∇yκ(x, y) = 2β(1 + ∥x− y∥2Σ)−β−1Σ−1(x− y)

+
Σ−1(x− x⋆)− s[1 + (x− x⋆)

⊤Σ−1(y − x⋆)]Σ
−1(y − x⋆)(1 + ∥y − x⋆∥2Σ)−1

(1 + ∥x− x⋆∥2Σ)s/2(1 + ∥y − x⋆∥2Σ)s/2
∇x · ∇yκ(x, y) = −4β(β + 1)(1 + ∥x− y∥2Σ)−β−2(x− y)⊤Σ−2(x− y) + 2βtr(Σ−1)(1 + ∥x− y∥2Σ)−β−1

+


tr(Σ−1)− s(1 + ∥x− x⋆∥2Σ)−1(x− x⋆)

⊤Σ−2(x− x⋆)
−s(1 + ∥y − x⋆∥2Σ)−1(y − x⋆)

⊤Σ−2(y − x⋆)
+s2[1 + (x− x⋆)

⊤Σ−1(y − x⋆)](1 + ∥x− x⋆∥2Σ)−1(1 + ∥y − x⋆∥2Σ)−1

×(x− x⋆)
⊤Σ−2(y − x⋆)


(1 + ∥x− x⋆∥2Σ)s/2(1 + ∥y − x⋆∥2Σ)s/2

.

Evaluating on the diagonal:643

κ(x, x) = 1 + (1 + ∥x− x⋆∥2Σ)−s+1

∇xκ(x, y)|y→x = ∇yκ(x, y)|y→x = −(s− 1)Σ−1(x− x⋆)(1 + ∥x− x⋆∥2Σ)−s

∇x · ∇yκ(x, y)|y→x = 2βtr(Σ−1) + tr(Σ−1)(1 + ∥x− x⋆∥2Σ)−s

+ s(s− 2)(1 + ∥x− x⋆∥2Σ)−s−1(x− x⋆)
⊤Σ−2(x− x⋆)

so that644

c0(x) = 1 + (1 + ∥x− x⋆∥2Σ)s−1

c1(x) = (s− 1)(1 + ∥x− x⋆∥2Σ)s−2Σ−1(x− x⋆)

c2(x) =
[(s− 1)2(1 + ∥x− x⋆∥2Σ)s−1 − 1](x− x⋆)

⊤Σ−2(x− x⋆)

(1 + ∥x− x⋆∥2Σ)2
+

tr(Σ−1)[1 + 2β(1 + ∥x− x⋆∥2Σ)s]
(1 + ∥x− x⋆∥2Σ)

.
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Differentiating these formulae:645

∇xc0(x) = 2(s− 1)(1 + ∥x− x⋆∥2Σ)s−2Σ−1(x− x⋆)

∇xc1(x) = 2(s− 1)(s− 2)(1 + ∥x− x⋆∥2Σ)s−3[Σ−1(x− x⋆)][Σ
−1(x− x⋆)]

⊤

+ (s− 1)(1 + ∥x− x⋆∥2Σ)s−2Σ−1

∇xc2(x) = 2(s− 1)2(s− 3)(1 + ∥x− x⋆∥2Σ)s−4[(x− x⋆)
⊤Σ−2(x− x⋆)]Σ

−1(x− x⋆)

+ 2(s− 1)2(1 + ∥x− x⋆∥2Σ)s−3Σ−2(x− x⋆)

+ 4βtr(Σ−1)(s− 1)(1 + ∥x− x⋆∥2Σ)s−2Σ−1(x− x⋆)

− 2(1 + ∥x− x⋆∥2Σ)−2[Σ−2(x− x⋆) + tr(Σ−1)Σ−1(x− x⋆)]

+ 4(1 + ∥x− x⋆∥2Σ)−3[(x− x⋆)
⊤Σ−2(x− x⋆)]Σ

−1(x− x⋆).

These complete the analytic calculations necessary to compute the Stein kernel kP and its gradient.646

D Empirical Assessment647

This appendix contains full details of the empirical protocols that were employed and the additional648

empirical results described in the main text. Appendix D.1 discusses the effect of dimension on649

our proposed Π. Additional illuatrative results from Section 3.2 are contained in Appendix D.2.650

The full details for how MALA was implemented are contained in Appendix D.3. An additional651

illustration using a generalised auto-regressive moving average (GARCH) model is presented in652

Appendix D.4. The full results for SΠIS-MALA are contained in Appendix D.5, and in Appendix D.6653

the convergence of the sparse approximation provided by SΠT-MALA to the optimal weighted654

approximation is investigated. Finally, the performance of KSDs is quantified using the 1-Wasserstein655

divergence in Appendix D.7.656

D.1 The Effect of Dimension on Π657

The improvement of Stein Π-Importance Sampling over the default Stein importance sampling658

algorithm (i.e. Π = P ) can be expected to reduce as the dimension d of the target P is increased. To659

see this, consider the Langevin–Stein kernel660

kP (x) = c1 + c2∥∇ log p(x)∥2Σ (21)

for some c1, c2 > 0; see Appendix C. Taking P = N (0, Id×d), for which the length scale matrix Σ661

appearing in Appendix A.3 is Σ = Id×d, we obtain662

kP (x) = c1 + c2∥x∥2.

However, the sampling distribution Π defined in (8) depends on kP only up to an unspecified663

normalisation constant; we may therefore equally consider the asymptotic behaviour of k̃P (x) :=664

kP (x)/d. Let X ∼ P . Then E[k̃P (X)] = c2 is a d-independent constant, and665 ∥∥∥k̃P − E[k̃P (X)]
∥∥∥2
L2(P )

=

∫ [
kP (x)− (c1 + c2d)

d

]2
dP (x) =

2c22
d

→ 0

as d → ∞. This shows that k̃P converges to a constant function in L2(P ), and thus for “typical”666

values of x in the effective support of P ,667

π(x) ∝ p(x)

√
k̃P (x)

≈∝ p(x),

so that Π ≈ P in the d → ∞ limit. This intuition is borne out in simulations involving both the668

Langevin–Stein kernel (as just discussed) and also the KGM3–Stein kernel. Indeed, Figure S1 shows669

that as the dimension d is increased, the marginal distributions of Π become increasingly similar to670

those of P .671
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Figure S1: The effect of dimension on Π: Here P was taken to be the standard Gaussian distribution
N (0, Id×d) in Rd and the proposed distribution Π was computed. The marginal distribution of the
first component of Π is plotted for d ∈ {1, 2, 10}, for both (a) the Langevin–Stein kernel and (b) the
KGM3–Stein kernel.

Figure S2: Assessing the performance of the sampling distributions Π shown in Figure 2. The mean
kernel Stein discrepancy (KSD) for computation performed using the Langevin–Stein kernel (purple),
the KGM3–Stein kernel (blue), and the Riemann–Stein kernel (red); in each case, KSD was computed
using the same Stein kernel used to construct Π. Solid lines indicate the baseline case of sampling
from P , while dashed lines indicate the proposed approach of sampling from Π. (The experiment
was repeated 10 times and standard error bars are plotted.)

D.2 2D Illustration from the Main Text672

Section 3.2 of the main text contained a 2-dimensional illustration of Stein Π-Importance Sampling673

and presented the distributions Π corresponding to different choices of Stein kernel. Here, in674

Figure S2, we present the mean KSDs for Stein Π-Importance Sampling performed using the675

Langevin–Stein kernel (purple), the KGM3–Stein kernel (blue), and the Riemann–Stein kernel (red),676

corresponding to the sampling distributions Π displayed in Figure 2 of the main text.677

For this experiment, exact sampling from both P and Π was performed using a fine grid on which all678

probabilities were calculated and appropriately normalised. Results are in broad agreement with the679

1-dimensional illustration contained in the main text, in the sense that in all cases Stein Π-Importance680

Sampling provides a significant improvement over the default Stein importance sampling method681

with Π equal to P .682
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Algorithm 4 Adaptive MALA
Require: x0,0 (initial state), ϵ0 (initial step size), M0 (initial preconditioner matrix), {ni}h−1

i=0 (epoch lengths),
{αi}h−1

i=1 (learning schedule), h (number of epochs), kP (Stein kernel)
1: {x0,1 . . . , x0,n0} ← MALA(x0,0, ϵ0,M0, n0, kP )
2: for i = 1, . . . , h− 1 do
3: xi,0 ← xi−1,ni−1

4: ρi−1 ← 1
ni−1

∑ni−1

j=1 1xi−1,j ̸=xi−1,j−1 ▷ Average acceptance rate for chain i

5: ϵi ← ϵi−1 exp(ρi−1 − 0.57) ▷ Update step size
6: Mi ← αiMi + (1− αi)cov({xi−1,1 . . . , xi−1,ni−1}) ▷ Update preconditioner matrix
7: {xi,1 . . . , xi,ni} ← MALA(xi,0, ϵi,Mi, ni, kP )
8: end for

D.3 Implementation of MALA683

For implementation of MALA in Algorithm 4 we are required to specify a step size ϵ and a684

preconditioner matrix M . In general, suitable values for both of these parameters will be problem-685

dependent. Standard practice is to perform some form of manual or automated tuning to arrive at686

parameter values for which the average acceptance rate is close to 0.57, motivated by the asymptotic687

analysis of Roberts and Rosenthal (1998). Adaptive MCMC algorithms, which seek to optimise the688

parameters of MCMC algorithms such as MALA during the warm-up period, provide an appealing689

solution, and was the approach taken in this work.690

The adaptive MALA algorithm which we used is contained in Algorithm 4, where we have let691

MALA(x, ϵ,M, n, kP ) denote the output from the preconditioned MALA with initial state x, step692

size ϵ, preconditioner matrix M , and chain length n, described in Algorithm 1. In Algorithm 4, we693

use cov(·) to denote the sample covariance matrix. The algorithm monitors the average acceptance694

rate and increases or decreases it according to whether it is below or above, respectively, the695

0.57 target. For the preconditioner matrix, the sample covariance matrix of samples obtained696

from the penultimate tuning run of MALA is used. For all experiments that we report using697

MALA, we set ϵ0 = 1, M0 = Id, h = 10, and α1 = · · · = α9 = 0.3. The warm-up epoch698

lengths were n0 = · · · = n8 = 1, 000 and the final epoch length was n9 = 105. The samples699

{xh−1,1, . . . , xh−1,ni−1
} from the final epoch are returned, and constituted output from MALA for700

our experimental assessment.701

To sample from P instead of Π, we used Algorithm 4 we formally set kP (x) = 1 for all x ∈ Rd,702

which recovers Π = P as the target.703

D.4 Illustration on a GARCH Model704

This appendix contains an additional illustrative experiment, concerning a GARCH model that is a705

particular instance of a model from the PosteriorDB database discussed in Section 4. The purpose706

of this illustration is to facilitate an empirical investigation in a slightly higher dimension (d = 4) and707

to explore the effect of changing the order s of the KGM–Stein kernel defined in Appendix A.3.2.708

First we describe the GARCH model that was used. These models are widely-used in econometrics to709

describe time series data {yt}nt=1 in settings where the volatility process is assumed to be time-varying710

(but stationary). In particular, we consider the GARCH(1,1) model711

yt = ϕ1 + at,

at = σtϵt, ϵt ∼ N (0, 1),

σ2
t = ϕ2 + ϕ3a

2
t−1 + ϕ4σ

2
t−1,

where ϕ2 > 0, ϕ3 > 0, ϕ4 > 0, and ϕ3+ϕ4 < 1 are the model parameters, constrained to a subset of712

R4. For ease of sampling, a change of variables τ : (ϕ1, ϕ2, ϕ3, ϕ4) 7→ θ is performed in such a way713

that the parameter θ ∈ R4 is unconstrained. Assuming an improper flat prior on θ, the log-posterior714

density for θ is given up to an additive constant by715

log p(θ | y1, . . . , yn) +C
=

n∑
t=1

[
−1

2
log
(
σ2
t

)
− y2t

2σ2
t

]
+ log |Jτ−1(θ)|,

where |Jτ−1(θ)| is the Jacobian determinant of τ−1.716
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Figure S3: Illustrating the shape of Π based on the KGMs–Stein kernel for a GARCH(1,1) model,
controlling convergence of moments up to order s ∈ {2, 3, 4}. The marginal density functions of
each distribution were approximated using one-million samples obtained using MCMC.

For this illustration, real data were provided within the model description of PosteriorDB, for717

which the estimated maximum a posteriori parameter is ϕ̂ = (5.04, 1.36, 0.53, 0.31). The marginal718

distributions of Π corresponding to the KGM–Stein kernels of orders s ∈ {2, 3, 4} are compared719

to the marginals of P in Figure S3. It can be seen that higher orders s correspond to greater over-720

dispersion of Π; this makes intuitive sense since larger s corresponds to a more stringent KSD721

(controlling the convergence of moments up to order s) which places greater emphasis on how the722

tails of P are approximated. Further, for the final skewed marginal of P , we note that the distribution723

Π exaggerates the skew, placing more of its mass in the tail of the direction which is positively724

skewed. Further discussion of skewed targets is contained in Appendix D.8.725

D.5 Stein Π-Importance Sampling for PosteriorDB726

To introduce objectivity into our assessment, we exploited the PosteriorDB benchmark (Magnusson727

et al., 2022). This ongoing project is an attempt toward standardised benchmarking, consisting728

of a collection of posteriors to be numerically approximated. The test problems in PosteriorDB729

are defined in the Stan probabilistic programming language, and so BridgeStan (Roualdes et al.,730

2023) was used to directly access posterior densities and their gradients as required. The ambition731

of PosteriorDB is to provide an extensive set of benchmark tasks; at the time we conducted our732

research, PosteriorDB was at Version 0.4.0 and contained 149 models, of which 47 came equipped733

with a gold-standard sample of size n = 103, generated from a long run of Hamiltonian Monte Carlo734

(the No-U-Turn sampler in Stan). Of these 47 models, a subset of 40 were found to be compatible735

with BridgeStan, which was at Version 1.0.2 at the time this research was performed. The version736

of Stan that we used was Stanc3 Version 2.31.0 (Unix). Thus we used a total of 40 test problems737

for our empirical assessment.738

For each test problem, a total of 10 replicate experiments were performed and standard errors were739

computed. A sampling method was defined as being significantly better for approximation of a given740

target, compared to all other methods considered, if had lower mean KSD and the standard error bar741

did not overlap with the standard error bar of any other method. Table 1 in the main text summarises742

the performance of SΠIS-MALA, fixing the number of samples to be n = 3× 103. In this appendix,743

full empirical results are provided.744
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For sampling from MALA, we used the adaptive algorithm described in Appendix D.3 with a745

final epoch of length nmax = 105. Then, whenever a set of n ≪ nmax consecutive samples from746

MALA are required for our experimental assessment, these were obtained by selecting at random a747

consecutive sequence of length n from the total chain of length 105. This ensures that the performance748

of unprocessed MALA that we report is not negatively affected by burn-in, in so far as is practical to749

control.750

Full results are presented in Figure S4. These results broadly support the interpretation that SΠIS-751

MALA usually outperforms SIS-MALA, or otherwise both methods provide a similar level of752

performance, for the sufficiently large sample sizes n considered. The sample size threshold at which753

SΠIS-MALA outperforms SIS-MALA appears to be dimension-dependent. A notable exception is754

panel 29 of Figure S4, a d = 10 dimensional task for which SΠIS-MALA provided a substantially755

worse approximation in KSD for the range of values of n considered.756

Figure S4: Benchmarking on PosteriorDB. Here we compared raw output from MALA (dotted
lines) with the post-processed output provided by the default Stein importance sampling method of
Liu and Lee (2017) (SIS-MALA; solid lines) and the proposed Stein Π-Importance Sampling method
(SΠIS-MALA; dashed lines). The Langevin (purple) and KGM3–Stein kernels (blue) were used for
SIS-MALA and SΠIS-MALA and the associated KSDs are reported as the number n of iterations
of MALA is varied. Ten replicates were computed and standard errors were plotted. The name of each
model is shown in the title of the corresponding panel, and the dimension d of the parameter vector is
given in parentheses. [Langevin–Stein kernel: MALA, SIS-MALA, SΠIS-
MALA. KGM3–Stein kernel: MALA, SIS-MALA, SΠIS-MALA.]
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D.6 Stein Π-Thinning for PosteriorDB777

The results presented in the main text concerned n = 3×103 samples from MALA, which is near the778

limit at which the optimal weights w⋆ can be computed in a few seconds on a laptop PC. For larger779

values of n, sparse approximation methods are likely to required. In the main text we presented Stein780

Π-Thinning, which employs a greedy optimisation perspective to obtain a sparse approximation to the781

optimal weights at cost O(m2n), where m are the number of greedy iterations performed. Explicit782

and verifiable conditions for the strong consistency of the resulting SΠT-MALA algorithm were783

established in Section 3.3. The purpose of this appendix is to empirically explore the convergence of784

SΠT-MALA using the PosteriorDB test bed.785
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In the experiments we report the number of MALA samples was fixed to n = 103 and the number786

of greedy iterations was varied from m = 1 to m = 103. The results, in Figure S5, indicate that787

for most models in PosteriorDB the minimum value of KSD is approximately reached when m is788

anywhere from n
10 to n

2 , representing a modest but practically significant reduction in computational789

cost compared to SΠIS-MALA. This agrees with the qualitative findings reported in the original790

Stein thinning paper of Riabiz et al. (2022).791

Figure S5: Benchmarking on PosteriorDB. Here we investigate the convergence of the sparse
approximation provided by the proposed Stein Π-Thinning method (SΠT-MALA). The Langevin
(purple) and KGM3–Stein kernels (blue) were used for SΠT-MALA and the associated KSDs are
reported as the number m of iterations of Stein thinning is varied. Ten replicates were computed
and standard errors were plotted. The name of each model is shown in the title of the corresponding
panel, and the dimension d of the parameter vector is given in parentheses. [Langevin–Stein
kernel: SΠT-MALA. KGM3–Stein kernel: SΠT-MALA.]
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D.7 Performance of Stein Discrepancies812

The properties of Stein discrepancies was out of scope for this work. Nonetheless, there is much813

interest in better understanding the properties of KSDs, and in this appendix the performance of814

SΠIS-MALA in terms of 1-Wasserstein divergence is reported. This was made possible since815

PosteriorDB supplies a set of posterior samples obtained from a long run of Hamiltonian Monte816

Carlo (the No-U-Turn sampler in Stan) which we treat as a gold standard.817

Full results are presented in S6. Broadly speaking, for most models the minimisation of KSD seems818

to be associated with minimisation of 1-Wasserstein distance, however there are some models for819

39



which minimisation of KSD is loosely, if at all, related to minimisation of 1-Wasserstein divergence.820

In these cases, we attribute this performance to the blindness to mixing proportions phenomena,821

described in Wenliang and Kanagawa (2021); Koehler et al. (2022); Liu et al. (2023). Convergence822

in 1-Wasserstein is equivalent to weak convergence plus convergence of the first moment, so the823

KGM–Stein kernels of order s ≥ 1 control convergence in 1-Wasserstein. In Section 2.3 we proved824

that SΠIS-MALA is strongly consistent in KSD for the KGM–Stein kernel in the case s = 1, so we825

can expect strong consistency in 1-Wasserstein divergence for SΠIS-MALA in this case as well. It826

is interesting to observe that better 1-Wasserstein quantisations tend to be provided by SΠIS-MALA827

compared to SIS-MALA when either the Langevin–Stein or KGM–Stein kernel are used.828

The development of improved Stein discrepancies is an active area of research, and we emphasise829

that the methodology developed in this work can be applied to any KSDs, including potentially KSDs830

with better or more direct control over standard notions of convergence (such as 1-Wasserstein) that831

in the future may be developed.832

Figure S6: Performance of Stein discrepancies on PosteriorDB. Here we compared raw output
from MALA (dotted lines) with the post-processed output provided by the default Stein importance
sampling method of Liu and Lee (2017) (SIS-MALA; solid lines) and the proposed Stein Π-
Importance Sampling method (SΠIS-MALA; dashed lines). The Langevin (purple) and KGM3–
Stein kernels (blue) were used for SIS-MALA and SΠIS-MALA, and the 1-Wasserstein divergence
is reported as the number n of iterations of MALA is varied. Ten replicates were computed and
standard errors were plotted. The name of each model is shown in the title of the corresponding
panel, and the dimension d of the parameter vector is given in parentheses. [Legend: Raw
MALA. Langevin–Stein kernel: SIS-MALA, SΠIS-MALA. KGM3–Stein kernel:

SIS-MALA, SΠIS-MALA.]
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D.8 Investigation for a Skewed Target853

This final appendix contrasts the 1-Wasserstein optimal sampling distribution Π1 (c.f. Section 2.1),854

with the choice of Π that we recommended in (8). In particular, we focus on the KGM3–Stein kernel855

under a heavily skewed P , for which Π1 and Π can be markedly different.856

For this investigation a bivariate skew-normal target was constructed, where the density is given857

by p(x1, x2) = 4ϕ(x1)Φ(6x1)ϕ(x2)Φ(−3x2), with ϕ and Φ respectively denoting the density and858

distribution functions of a standard Gaussian. The density p of P , together with the marginal densities859

of Π1 and Π, are plotted in Figure S7. It can be seen that, while both Π1 and Π are over-dispersed860
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Figure S7: Comparing the proposed distribution Π (KGM3; based on the KGM3–Stein kernel) to
Π1 (1Wass.; the optimal choice for 1-Wasserstein quantisation from Section 2.1) for a bivariate
skew-normal target (d = 2). The marginal density functions of each distribution were approximated
using 106 samples from MCMC.
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Figure S8: Comparing the performance of using the proposed distribution Π (KGM3; based on
the KGM3–Stein kernel) to Π1 (1Wass.; the optimal choice for 1-Wasserstein quantisation from
Section 2.1) for a bivariate skew-normal target (d = 2). The mean kernel Stein discrepancy (KSD) for
Stein Π-Importance Sampling was estimated; in each case, the KSD based on the KGM3–Stein kernel
was computed. Solid lines indicate the baseline case of sampling from P , while dashed lines indicate
sampling from Π. (The experiment was repeated 10 times and standard error bars are plotted.)

with respect to P , our recommended Π assigns proportionally more mass to the tail that is positively861

skewed.862

The performance of Stein Π-Importance Sampling based on Π1 and Π is compared in Figure S8.863

Though both choices lead to an improvement relative to Stein importance sampling algorithm with864

Π = P , the use of Π leads to a significant further reduction (on average) in KSD compared to865

Π1. Based on our investigations, this finding seems general; the use of Π1 does not realise the full866

potential of Stein Π-Imporance sampling when the target is skewed.867
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