
Appendix for Rethinking Variational Inference for Probabilistic
Programs with Stochastic Support

Tim Reichelt1 Luke Ong1,2 Tom Rainforth1

1 University of Oxford
2 Nanyang Technological University, Singapore

{tim.reichelt,lo}@cs.ox.ac.uk rainforth@stats.ox.ac.uk

A KL Divergence Derivation

A.1 Breaking Down the Global ELBO

The global ELBO is given by

Lpϕ, λq “ Eqpx;ϕ,λq

„

log
γpxq

qpx;ϕ, λq

ȷ

, (16)

“

ż

X
qpx;ϕ, λq log

γpxq

qpx;ϕ, λq
dx, (17)

using the fact that the subsets Xk provide a partition of X we can write the integral as

“

K
ÿ

k“1

ż

Xk

qpx;ϕ, λq log
γpxq

qpx;ϕ, λq
dx, (18)

using the factorization of qpx;ϕ, λq and the fact that for x P Xk the program density satisfies
γpxq “ γkpxq we get

“

K
ÿ

k“1

ż

Xk

qkpx;ϕkqqpk;λq log
γkpxq

qkpx;ϕkqqpk;λq
dx (19)

then using the fact that qpk;λq does not depend on x we have

“

K
ÿ

k“1

qpk;λq

ż

Xk

qkpx;ϕkq log
γkpxq

qkpx;ϕkq
dx ´ log qpk;λq, (20)

which we can write concisely as

“ Eqpk;λq rLkpϕkq ´ log qpk;λqs , (21)

where

Lkpϕkq :“ Eqkpx;ϕkq

„

log
γkpxq

qkpx;ϕkq

ȷ

.

A.2 Optimal Setting of qpk;λq

Proposition 1. Let L “ tL1, . . . ,LKu be the set of local ELBOs, defined as per (7), where L is
countable but potentially not finite. If 0 ă

řK
k“1 exppLkq ă 8, then the optimal corresponding

qpk;λq in terms of the global ELBO (6) is given by

qpk;λq “ exppLkq
L

ÿK

ℓ“1
exppLℓq. (8)

Proof. By the assumption that 0 ă
řK

k“1 exppLkq ă 8, we have that exppLkq{
řK

k“1 exppLkq forms a
valid probability mass function over k P t1, . . . ,Ku. We can therefore rewrite (7) as

Lpϕ, λq “ Eqpk;λq

«

log
exppLkq

řK
k“1 exppLkq

´ log qpk;λq

ff

` log
K
ÿ

k“1

exppLkq (22)

“ ´KL

˜

qpk;λq ∥ exppLkq
řK

k“1 exppLkq

¸

` log
K
ÿ

k“1

exppLkq (23)

Now as second term in the above is constant in qpk;λq and a KL divergence is minimized when
the two distributions are the same, we can immediately conclude the desired result that the optimal
qpk;λq is

qpk;λq “
exppLkq

řK
ℓ“1 exppLℓq

. (24)

Additionally, from (23) it follows that for the optimal setting of the mixture distribution qpk;λq the
global ELBO is given by

Lpϕ, λ˚q “ log
K
ÿ

k“1

exppLkq.

B Details on Resource Allocation

B.1 Background on Successive Halving

Successive Halving (SH) divides a total budget of T iterations into L “ rlog2pKqs ` 1 phases and
starts by optimizing each of K candidates, in our case the SLPs, for tT {pKLqu iterations. It then
ranks each of the candidates in terms of their performance, in our case the values of exppLkq, before
eliminating the bottom half. This process then repeats, with each of the remaining candidates run
for 2ℓ´1T {pKLq iterations at the ℓ-th phase. This results in an exponential distribution of resources
allocated to the different candidates, with more resources allocated to those that are more promising
after intermediate evaluation.

Adapting it to our setting of treating the problem as a top-m identification is done by simply using
L “ rlog2pKq ´ log2pmqs ` 1 phases instead of L “ rlog2pKqs ` 1.

B.2 Online Resource Allocation

Here, we present an online version of Algo. 1, where the term ‘online’ refers to the fact that the
algorithm considers more and more SLPs as the computational budget increases. The online variant
of the algorithm is useful if a user is unsure about the total iteration budget that they want to spend on
the input program. This user might want to run SDVI with an initial iteration budget T1 and after
having observed the results, they might decide that they want to keep further optimizing the guide
parameters. We therefore need to adapt Algo. 1 so that it can be ‘restarted’ after it has terminated. A
naive approach to this would be to simply run Algo. 1 again but re-use the qk’s for the SLPs that have
already been discovered and only initialize the qk from scratch for SLPs which have not been seen
before. However, this scheme is limited as it disproportionately favours SLPs which were discovered
in the previous run. This is because for those SLPs the local ELBOs will already be relatively large
compared to the newly added SLPs. As a consequence, SH will not assign significant computational
budget to the SLPs that were added after the algorithm was restarted.

To safeguard against this behaviour we instead propose an online version of SDVI in Algo. 2 which is
using a modified ‘reward’ for SH. Instead of ranking the different SLPs according to Lkpϕkptkqq we
instead propose the objective exppαLkpϕkptkqqq{tk where 0 ă α ď 1. The reward is scaled by the
reciprocal of tk because we are no longer aiming to select the SLPs with the highest Lkpϕkptkqq but
instead aim to choose the SLPs which have been ‘underselected’ compared to other SLPs, assuming
we should have selected them in proportion to exppαLkpϕkptkqqq. The scaling by the scalar α is a

18

further mechanism to encourage more exploration, with setting α “ 0 equivalent to uniform sampling
in the limit of repeated SH runs. Since this adapted objective takes into account the computational
budget that was spent on each SLP, it is a more suitable objective when running SH repeatedly.

Algorithm 2 Online SDVI

Require: Target program γ, iteration budget per SH run T , minimum no. of SH candidates m,
parameter controlling α ą 0 exploration

1: Extract SLPs tγkuKk“1 from γ and set C “ t1, . . . ,Ku

2: Formulate guide qk for each SLP and initialize parameters ϕk

3: tk “ 0 for all k P C
4: while Stopping criteria not satisfied do
5: C1 Ð C
6: Phases in successive halving L “ rlog2p|C|q ´ log2pmqs ` 1
7: for l “ 1, . . . , L do
8: Number of iterations nl “ t T

L|C1|
u

9: for k P C1 do
10: Perform nl optimization iterations of ϕk targeting Lsurr,kpϕkq

11: Estimate Lsurr,kpϕkq using Monte Carlo estimate of Eq. (11)
12: tk “ tk ` nl

13: end for
14: Remove minpt|C1|{2u, |C1| ´ mq SLPs from C1 with the lowest exppαLsurr,kpϕkqq{tk
15: end for
16: Extract new SLPs from γ and add them to C, set tk1 “ 0 for each new SLP with index k1

17: end while
18: Truncate qk outside of SLP support, Xk, using Eq. (13)
19: Estimate each Lkpϕkq using Monte Carlo estimate of Eq. (7)
20: Calculate qpk;λq according to Eq. (8) and return qpx;ϕ, λq as per Eq. (4)

C Details for Training Local Guides

C.1 Density Estimation of the Prior

Before we can define the KL divergence we first have to carefully define global and local prior
distributions We first define what we informally call the global ‘prior’ distribution of the program as
the product of all the terms added to the program density by the sample statements

πpriorpx1:nx
q :“

nx
ź

i“1

fai
pxi|ηiq. (25)

However, here we are using the term prior only informally, since (25) is not a prior in the conventional
Bayesian sense since the ηi can be functions of the observed data y. Note that here nx in (25) is again
a random variable since the raw random draws x1:nx

of the program do not necessarily have fixed
length. Then similarly we define local ‘prior’ distributions

πprior,kpx1:nk
q :“

Irx1:nk
P Xks

śnk

i“1 fAkrispxi|ηiq

Zprior,k
“

Irx1:nk
P Xksπpriorpx1:nk

q

Zprior,k
, , (26)

where

Zprior,k :“

ż

X
Irx P Xksπpriorpxqdx. (27)

Note that for our purposes we will never actually have to estimate Zprior,k, we only defined it to
ensure that πprior,k is a normalized density. This allows us to define the forward KL divergence
which we would like to optimize with respect to ϕk

KLpπprior,kpxq ∥ q̃kpx;ϕkqq “ Eπprior,kpxq

„

log
πprior,kpxq

q̃kpx;ϕkq

ȷ

(28)

19

which we can rewrite as

“ Eπprior,kpxq rlog πprior,kpxqs ´ Eπprior,kpxq rlog q̃kpx;ϕkqs . (29)

The first term is a constant with respect to ϕk and therefore does not affect the optimization

9 Eπprior,kpxq r´ log q̃kpx;ϕkqs , (30)

then by the definition of πprior,kpxq in Eq. (26) this is equivalent to

“ ´
1

Zprior,k
Eπpriorpxq rIrx P Xks log q̃kpx;ϕkqs . (31)

Finally, Zprior,k is a constant with respect to ϕk and can be dropped

9 Eπpriorpxq r´Irx P Xks log q̃kpx;ϕkqs . (32)

We can estimate the gradients of the objective in Eq. (32) using a Monte Carlo estimator

∇ϕk
Eπpriorpxq r´Irx P Xks log q̃kpx; k, ϕkqs «

1

N

N
ÿ

j“1

Irxpjq P Xks∇ϕk
log q̃kpxpjq; k, ϕkq (33)

where xpjq are raw random draws generated by executing the input program forward. These gradient
estimates can then be used in a stochastic gradient descent optimization procedure. In our experiments,
we generate a fixed set of N samples and re-use the same set of samples for the entire optimization
process. Other approaches are also possible such as periodically collecting a new set of samples and
using local MCMC moves to collect samples instead of repeatedly sampling from the prior.

C.2 Exploiting Program Structure: Discrete Branching Optimization

In practice, many user-defined programs have structural properties which can be exploited to construct
a valid local guide directly and deterministically (without resorting to the stochastic mechanism
described in Sec. 4.5). Specifically, consider the class of programs whose program paths are
determined by variables sampled from discrete distributions. For these programs, we can assume that
for each SLP (kth, say) there is an (ordered) set of indices Ibranch Ă t1, . . . , nku “ I and a set of
constants rk,1, . . . , rk,|Ibranch| P Z such that the local unnormalized densities are expressible as

γkpx1:nk
q “ γpx1:nk

q

|Ibranch|
ź

l“1

I
“

xIbranchrls “ rk,l
‰

where Ibranchrjs means the jth element in Ibranch. It follows that we can construct densities for the
kth SLP on a subset of variables in x1:nk

by eliminating all the variables given by indices Ibranch
(by instantiating them to constants). This is effectively equivalent to replacing the sample statements
corresponding to the variables which influence the control flow with observe statements which
induces a new program density that has the form

γ̃kpx1:n1
k
q “

n1
k

ź

i“1

fAkrI1risspxi|ηiq

|Ibranch|
ź

l“1

fAkrIbranchrlssprk,l | ηlq

ny
ź

j“1

gbj pyj | ϕjq (34)

where I 1 :“ r1, . . . , nks zIbranch, and n1
k :“ |I 1|. Furthermore, if all the remaining r.v. are continuous

distributions with support in R (i.e. supppfAkrisq “ R for i P I 1) then γ̃kpx1:n1
k
q itself has support in

Rn1
k . It is then straightforward to construct a guide qk with support in Rn1

k using existing methods,
and we can get gradient estimates using the reparameterization gradient estimator (assuming there
are no more discontinuities in γ̃k).

To realize the discrete branching optimization in our Pyro implementation we allow users to annotate
the sample statements which influence the branching. While it is in principle possible to automatically
identify programs with discrete branching using program analysis, formalizing and implementing
such a program analysis tool to work with arbitrary Pyro program would be a significant contribu-
tion in itself which is out of scope for this paper as we are focused on the statistical evaluation of
SDVI. Specifically, the relevant sample statements within a Pyro program can be annotated as fol-
lows: pyro.sample("x", dist.Poisson(7), infer={"branching": True}). Our implementation
of SDVI is then able to use these annotations to create the density γ̃k in (34).

20

D Additional Details for Experiments

For all experiments that rely on optimization we use the Adam optimizer [70]. The experiments were
executed on an internal cluster which uses a range of different computer architectures.

D.1 Model From Figure 1

Listing 1: Pyro Code for Figure 1.
import pyro
import pyro.distributions as dist

def model ():
x = pyro.sample("x", dist.Normal(0, 1))
if x < 0:

z1 = pyro.sample("z1", dist.Normal(-3, 1))
else:

z1 = pyro.sample("z2", dist.Normal(3, 1))

x = pyro.sample("x", dist.Normal(z1, 2), obs=torch.tensor (2.0))

guide = pyro.infer.autoguide.AutoNormalMessenger(model)
optim = pyro.optim.Adam({"lr": 0.01})
svi = pyro.infer.SVI(

model , guide , optim , loss=pyro.infer.Trace_ELBO ()
)

for j in range (2000):
svi.step()

The full Pyro code for the model in Fig. 1, including automatically generating and training the guide
is given in Listing 1. The code for BBVI and SDVI is provided in the code supplementary. For
Pyro’s AutoGuide and BBVI we run the optimization for 2000 iterations with a learning rate of 0.01.
Similarly, for SDVI we have a total iteration budget of T “ 2000 and use a learning rate of 0.01; we
set the minimum number of SH candidates to m “ 2

D.2 Program with Normal Distributions

For SDVI, we use 103 samples from the prior to discover SLPs. To train the local guides to place
support within the SLP boundaries we collect 102 samples per SLP and optimize the objective in
Equation (12) for 103 iterations. We run Algorithm 1 with a total budget of T “ 105 with 5 particles
for the ELBO and to estimate the final SLP weights we use 103 samples per SLP. We use a learning
rate of 0.01.

For Pyro AutoGuide, we run the optimization for 105 steps with 1 ELBO particle. For BBVI, we run
the optimization for 104 steps with 10 ELBO particles. For both we use a learning rate of 0.01.

D.3 Infinite Gaussian Mixture Model

For SDVI, we use 103 samples from the prior to discover SLPs, run Algorithm 1 with a total budget
of T “ 2 ˚ 104 with 10 particles for the ELBO and to estimate the final SLP weights we use 102

samples per SLP. We use a learning rate of 0.1.

For BBVI, we run for 2 ˚ 104 iterations using 10 particles for the ELBO and a learning rate of 0.1. In
the guide, we use a categorical distribution for number of components K over the range K P r1, 25s.
We ran initial experiments with instead using a Poisson distribution paramterized by the rate but we
found this leads to an explosion in the number of components in the guide which resulted in the
program running out of memory. For each µk the variational approximation is a diagonal Normal
distribution parameterized by the mean and the diagonal entries in the covariance matrix.

For DCC, we run for 200 iterations, at each iteration we run 10 independent RMH chains generating
10 samples and to get a marginal likelihood estimate we use PI-MAIS [66] which places a proposal

21

distribution (in our case a Gaussian) on the outputs of the RMH chains and samples from this proposal
M times; we set M “ 10.

D.4 Inferring Gaussian Process Kernels

D.4.1 Model Details

Our probabilistic context-free grammar for the kernel structure has the production rules

K Ñ SE | RQ | PER | LIN | K ˆ K | K ` K. (35)

with the production probabilities r0.2, 0.2, 0.2, 0.2, 0.1, 0.1s. On each base kernel hyperparameter
we place an InverseGammapα “ 2, β “ 1q prior. For each base kernel the specific hyperparameters
we wish to do inference over are:2

• Squared Exponential (SE): Lengthscale

• Rational Quadratic (RQ): Lengthscale, Scale Mixture

• Periodic (PER): Lengthscale, Period

• Linear (LIN): Bias

Assuming we have N observations with inputs x P RN and outputs y P RN our model can then be
written as

K „ PCFGpq, σ „ HalfNormalp0, 1q, y „ N p0,Kpxq ` σ2Iq (36)

where PCFGpq samples a kernel (and its hyperparameters) from the probabilistic context-free grammar
and Kpxq is the N ˆ N covariance matrix computed from kernel K.

D.4.2 Algorithm Configurations

For SDVI, we use 103 samples from the prior to discover SLPs, run Algorithm 1 with a total budget
of T “ 106 with 1 particles for the ELBO and to estimate the final SLP weights we use 102 samples
per SLP. We use a learning rate of 0.005.

For BBVI, we run for 105 iterations using 10 particles for the ELBO and a learning rate of 0.005. The
guide uses a log-normal distribution for the kernel hyperparameters and the observation noise, and
for the discrete variables which influence the kernel structure we use categorical distributions. For
DCC, we run for 103 iterations and otherwise use the exact same hyperparameters as in the Gaussian
Mixture Model experiment.

E Additional Experimental Results

E.1 Program with Normal Distributions

103 104 105

Computational Cost

10−4

10−1

S
qu

ar
ed

E
rr

or

DCC

Pyro AutoGuide

BBVI

SDVI

Figure 4: Squared error for the model in § 6.1 with
DCC baseline. Conventions as in Fig. 2a.

For completeness we include here the results for
DCC on the model from Sec. 6.1. DCC does not
have the same fundamental limitations as the
BBVI baselines therefore is competitive with
SDVI and provides a similar squared error for
the SLP weights. In fact, it is quite impressive
that SDVI is able to match the performance of
DCC because DCC leverages marginal likeli-
hood estimators which asymptotically converge
to the true marginal likelihood whereas SDVI
calculates the weights based on the ELBO. This
is therefore a further indicator that for this model SDVI is able to provide good posterior approxima-
tions for each SLP.

2We use the same naming conventions as the Pyro Docs at https://docs.pyro.ai/en/stable/contrib.
gp.html#module-pyro.contrib.gp.kernels.

22

https://docs.pyro.ai/en/stable/contrib.gp.html##module-pyro.contrib.gp.kernels
https://docs.pyro.ai/en/stable/contrib.gp.html##module-pyro.contrib.gp.kernels

F Difficulties of Parameter Learning for Models with Stochastic Support

In static support settings, one often uses variational bounds not only as a mechanism for inference,
but also for training model parameters themselves [24, 41]. Using our notation from Sec. 2.2, this
setting corresponds to having model parameters, θ, that we wish to optimize alongside the variational
parameters, ϕ, such that the unnormalized density can be written as γpx; θq, with corresponding
normalization constant Zpθq. The ELBO then depends on both the variational and model parameters
Lpϕ, θq :“ Eqpx;ϕq rlog γpx;θq{qpx;ϕqs. Provided Zpθq is differentiable with respect to θ, both ϕ and θ
can then, at least in principle, be simultaneously optimized using stochastic gradient ascent.

However, similar as to the case of pure inference, naively extending this scheme to models with
stochastic support is non-trivial and quickly runs into both conceptual and practical problems.

Parameters, θk, that are inherently local to only a single SLP can be dealt with straightforwardly: as
∇θkLℓ “ 0 @ℓ ‰ k for such parameters, we can simply ignore parameters not associated with the
SLP we are updating, that is we only take a gradient step for tϕk, θku on Line 5 of Algo. 1.

Problems start to occur, though, in the more common scenario where parameters are shared between
SLPs, in the sense that they influence more than one γk. Consider, for example, the GP model from
Sec. 6.3 and assume that instead of doing inference over the observation noise, σ, we instead wish to
treat this as a learnable parameter instead. Here σ could be seen as a ‘global’ model parameter as it
appears in every SLP, so could be viewed as shared between them.

This now creates an issue in ‘balancing’ updates from different SLPs; the need to learn a shared θ
breaks the separability between inference problems for individual SLPs. Consequently, we can no
longer directly treat how often we update each SLPs as just a resource allocation problem: making
more updates on a given SLP now increases the influence that SLP has on the θ which are learned.
This problem is unlikely to be insurmountable—one could maintain a running estimate of qpk;λq

during training and then use this to either directly control the resource allocation or scale the updates
of θ depending on how often the corresponding SLP has been used—but it does represent a notable
complication that would require its own careful consideration.

Beyond this specific practical challenge, there is also a more fundamental and general issue for
parameter learning under stochastic support: should shared parameters be treated globally when we
are learning them? Going back to the example of the observation noise, σ, in our GP example, it will
actually be quite inappropriate here to learn a single global value for σ, as the optimal observation
noise will be different depending on the kernel structure. Thus, though the variable is shared between
SLPs in the program itself, it would be advantageous to learn separate values for it for each SLP,
regardless of the inference approach we take.

The natural solution to this issue would be to perform parameter learning separately for each SLP,
e.g. learning a separate σk for each SLP in the GP example above. However, this raises a variety of
issues in its own, not least the fact that the inference algorithm will now start to influence the model
itself: SDVI and BBVI will learn fundamentally different models. There may also be settings where
it is important for a parameter to be truly global and thus shared across the SLPs, e.g. because such
sharing is an explicit prior assumption we wish to make.

Further problems occur when we consider that it is also feasible for learnable parameters to influence
the control flow of the program, or even the set of possible SLPs. For example, a learnable parameter
could impact the maximum possible recursion depth of a recursive program. This will create
challenging interactions between SLPs: updates of one will influence the desirable behavior for the
variational approximation of another. In turn, this can substantially complicate the resource allocation
process and even the SLP discovery process itself.

Together, these aforementioned issues demonstrate that parameter learning for models with stochastic
support is a complex issue, requiring specialist consideration beyond the scope of the current paper.

G Issues with Directly Training qk

A natural question one might ask with the SDVI method is why do we not directly train qk to (7) by
treating it as an implicit variational approximation defined by q̃k? Namely, we can express (7) in

23

terms of q̃k as follows

Lkpϕkq “ log Z̃kpϕkq `
1

Z̃kpϕkq
Eq̃kpx;ϕkq

„

I rx P Xks log
γkpxq

q̃kpx;ϕkq

ȷ

, (37)

which, in principle, could be directly optimized with respect to ϕk.

There are unfortunately two reasons that make this impractical. Firstly, though Z̃kpϕkq can easily
be estimated using Monte Carlo, we actually cannot generate conventional unbiased estimates of
log Z̃kpϕkq and 1{Z̃kpϕkq (or their gradients) because mapping the Monte Carlo estimator induces a
bias. Second, this objective applies no pressure to learn a q̃k with a high acceptance rate, i.e. which
actually concentrates on SLP k, such that it can easily learn a variational approximation that is very
difficult to draw truncated samples from at test time.

By contrast, using our surrogate objective in (11) allows us to produce unbiased gradient estimates.
Because of the mode seeking behaviour of variational inference, it also naturally forces us to learn
a variational approximation with a high acceptance rate, provided we use a suitably low value of c.
If desired, one can even take c Ñ 0 during training to learn an approximation which only produces
samples from the target SLP without requiring any rejection. Figure 5 shows that empirically we
learn a q̃k with a very high acceptance rates for the problem in Section 6.1.

Note that the surrogate and true ELBOs are exactly equal for any variational approximation that is
confined to the SLP (as these have Z̃kpϕkq “ 1). This does not always necessarily mean that they
have the same optima in ϕk for restricted variational families, even in the limit c Ñ 0. However, such
differences originate from the fact that the trunctation can itself actually generalize the variational
family (e.g. if q̃k is Gaussian, then qk will be a truncated Gaussians). As such, any hypothetical gains
from targeting (7) directly will always be offset against drops in the acceptance rate of the rejection
sampler.

References
[70] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[66] L. Martino, V. Elvira, D. Luengo, and J. Corander. Layered adaptive importance sampling.
Statistics and Computing, 27(3), May 2017.

24

0.00
0.25
0.50
0.75
1.00

S
L

P
0

0.00
0.25
0.50
0.75
1.00

S
L

P
1

0.00
0.25
0.50
0.75
1.00

S
L

P
2

0.00
0.25
0.50
0.75
1.00

S
L

P
3

0.00
0.25
0.50
0.75
1.00

S
L

P
4

0.00
0.25
0.50
0.75
1.00

S
L

P
5

0.00
0.25
0.50
0.75
1.00

S
L

P
6

0.00
0.25
0.50
0.75
1.00

S
L

P
7

0.00
0.25
0.50
0.75
1.00

S
L

P
8

0 2000 4000 6000 8000 10000
Number of Iterations

0.00
0.25
0.50
0.75
1.00

S
L

P
9

Figure 5: Acceptance rates for evaluating the local ELBOs in each SLP for the model from Sec. 6.1.
Each plot represents a separate SLP; the plot with “SLP i” corresponds to the SLP with z “ i
in Eq. (15). We can see that for all SLPs the acceptance rate approaches 1 with more iterations,
confirming the mode seeking behaviour that arises when maximizing the surrogate ELBO in Eq. (11).

25

