
A Detailed Proofs567

Proposition 1. FA(E) = FC(E).568

Proof. This result is a consequence of minimal-hitting set duality between AXp’s and CXp’s, proved569

elsewhere [36].570

Proposition 2. If a classifier and instance exhibits issue I5, then they also exhibit issue I2.571

Proof. Given a classifier with classification function κ and an instance (v, c), it is plain that the set572

of features F represents a WAXp. Furthermore, since the classification function is assumed not to573

be constant, then there must exist some AXp that is not the empty set. Thus, such AXp contains574

at least one relevant feature, say irel ∈ F . Moreover, if I5 holds, then there exists an irrelevant575

iirr ∈ F \ {irel} with the largest absolute Shapley value. Therefore, it is the case that for feature irel,576

its absolute Shapley value is smaller than that of irrelevant feature iirr. As a result, the function also577

exhibits issue I2.578

Proposition 3. For any n ≥ 3, there exist boolean functions defined on n variables, and at least one579

instance, which exhibit an issue I1, i.e. there exists an irrelevant feature i ∈ F , such that Sv(i) ̸= 0.580

Proof. Consider two classifiers M1 and M2 implementing non-constant boolean functions κ1 and581

κ2, respectively. These functions are defined on the set of features F ′ = {1, . . . ,m}, and such that582

κ1 |= κ2 but κ1 ̸= κ2. Consider the set of features F = F ′ ∪ {n}, we construct a new classifier M583

by combining M1 and M2. The classifier M is characterized by the boolean function defined as584

follows:585

κ(x1, . . . , xm, xn) :=

{
κ1(x1, . . . , xm) if xn = 0

κ2(x1, . . . , xm) if xn = 1
(9)

Choose a m-dimensional point v1..m such that κ1(v1..m) = κ2(v1..m) = 0, and extend v1..m with586

vn = 1. Then for the n-dimensional point v1..n = (v1..m, 1), we have κ(v1..n) = 0.587

To simplify the notation, we will use x′ to denote an arbitrary n-dimensional point x1..n. Additionally,588

we will use y to denote an arbitrary m-dimensional point x1..m. For any subset S ⊆ F ′, we have:589

ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n) (10)

=

 1

2|(F ′∪{n})\(S∪{n})|

∑
x′∈Υ(S∪{n};v1..n)

κ(x′)

−

 1

2|(F ′∪{n})\S|

∑
x′∈Υ(S;v1..n)

κ(x′)


=

 1

2|F ′\S|

∑
y∈Υ(S;v1..m)

κ2(y)

− 1

2|F ′\S|+1

 ∑
x′∈Υ(S;(v1..m,1))

κ(x′) +
∑

x′∈Υ(S;(v1..m,0))

κ(x′)


=

1

2|F ′\S|

 ∑
y∈Υ(S;v1..m)

κ2(y)−
1

2
×

∑
y∈Υ(S;v1..m)

κ2(y)−
1

2
×

∑
y∈Υ(S;v1..m)

κ1(y)


=

1

2
× 1

2|F ′\S|

 ∑
y∈Υ(S;v1..m)

κ2(y)−
∑

y∈Υ(S;v1..m)

κ1(y)


Given that κ1 |= κ2 but κ1 ̸= κ2, it follows that for any points y ∈ Υ(S;v1..m), if κ1(y) = 1 then590

κ2(y) = 1. In other words, if κ2(y) = 0 then κ1(y) = 0. Moreover, there are cases where the591

following inequality holds:
∑

y∈Υ(S;v1..m) κ2(y)−
∑

y∈Υ(S;v1..m) κ1(y) > 0. Hence, Sv(n) ̸= 0.592

To prove that the feature n is irrelevant, we assume the contrary, i.e., that n is relevant, and X is593

an AXp of M for the point v1..n such that n ∈ X . This means we fix the variable xn to the value594

vn, and, based on the definition of AXp, we only select the points that M2 predicts as 0. Since595

κ2(y) = 0 implies that κ1(y) = 0, removing feature n from X means that X \ n will not include596

any points predicted as 1 by either M1 or M2. Thus, X \ n remains an AXp of M for the point597

v1..n, leading to a contradiction. Thus, feature n is irrelevant.598

Proposition 4. For any odd n ≥ 3, there exist boolean functions defined on n variables, and at least599

one instance, which exhibits an I3 issue, i.e. for which there exists a relevant feature i ∈ F , such that600

Sv(i) = 0.601

Proof. Given a classifier M1 implementing a non-constant boolean function κ1 defined on the set of602

features F1 = {1, . . . ,m}. We can replace each xi of κ1 with a new variable xm+i to obtain a new603
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function κ2, defined on a new set of features F2 = {m+1, . . . , 2m}. Importantly, κ2 is independent604

of κ1 as F1 and F2 are disjoint. Let F = F1 ∪ F2 ∪ {n}, we build a new classifier M characterized605

by the boolean function defined as follows:606

κ(x1, . . . , xm, xm+1, . . . , x2m, xn) :=

{
κ1(x1, . . . , xm) if xn = 0

κ2(xm+1, . . . , x2m) if xn = 1
(11)

Choose m-dimensional points v1..m and vm+1..2m such that vi = vm+i for any 1 ≤ i ≤ m, and607

κ1(v1..m) = κ2(vm+1..2m) = 1. Let v1..n = (v1..m,vm+1..2m, 1) be a n-dimensional point such608

that κ(v1..n) = 1. Moreover, let F ′ = F1 ∪ F2.609

To simplify the notations, we will use u to denote v1..m and w to denote vm+1..2m, furthermore,610

we will use x′ to denote an arbitrary n-dimensional point x1..n, and y to denote an arbitrary m-611

dimensional point x1..m, and z to denote an arbitrary m-dimensional point xm+1..2m. For any subset612

S ⊆ F ′, let {S1,S2} be a partition of S such that S1 ⊆ F1 ∧ S2 ⊆ F2, then:613

ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n) (12)

=

 1

2|(F ′∪{n})\(S∪{n})|

∑
x′∈Υ(S∪{n};v1..n)

κ(x′)

−

 1

2|(F ′∪{n})\S|

∑
x′∈Υ(S;v1..n)

κ(x′)


=

1

2|F ′\S|

 ∑
x′∈Υ(S;(u,w,1))

κ(x′)− 1

2
×

∑
x′∈Υ(S;(u,w,1))

κ(x′)− 1

2
×

∑
x′∈Υ(S;(u,w,0))

κ(x′)


=

1

2
× 1

2|F ′\S|

 ∑
x′∈Υ(S;(u,w,1))

κ(x′)−
∑

x′∈Υ(S;(u,w,0))

κ(x′)


=

1

2
× 1

2|F ′\S|

2|F1\S1| ×
∑

z∈Υ(S2;w)

κ2(z)− 2|F2\S2| ×
∑

y∈Υ(S1;u)

κ1(y)


For any {S1,S2}, we can construct a unique new partition {S ′

1,S ′
2} by replacing any i ∈ S1 with614

m+ i and any m+ i ∈ S2 with i. Let S ′ = S ′
1 ∪ S ′

2, then we have:615

ϕ(S ′ ∪ {n};M,v1..n)− ϕ(S ′;M,v1..n) (13)

=
1

2
× 1

2|F ′\S′|

2|F1\S′
2| ×

∑
z∈Υ(S′

1;w)

κ2(z)− 2|F2\S′
1|

∑
y∈Υ(S′

2;u)

κ1(y)


Besides, we have:616

2|F1\S1| ×
∑

z∈Υ(S2;z)

κ2(z) = 2|F2\S′
1|

∑
y∈Υ(S′

2;u)

κ1(y)

and617

2|F2\S2| ×
∑

y∈Υ(S1;u)

κ1(y) = 2|F1\S′
2| ×

∑
z∈Υ(S′

1;w)

κ2(z)

which means:618

ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n) = −(ϕ(S ′ ∪ {n};M,v1..n)− ϕ(S ′;M,v1..n))

note that |S|!(|F|−|S|−1)!
|F|! = |S′|!(|F|−|S′|−1)!

|F|! . Hence, for any subset S, there is a unique subset S ′619

that can cancel its effect, from which we can derive that Sv(n) = 0. However, n is a relevant feature.620

To find an AXp containing n, we remove all features in F1, and keep only feature n along with all621

features in F2. This makes feature n critical to the change in the prediction of M. Next, we compute622

an AXp X of M2 under the point vm+1..2m. Finally, X ∪ {n} is an AXp of the classifier M for the623

point v1..n.624

Proposition 5. For any even n ≥ 4, there exist boolean functions defined on n variables, and at least625

one instance, for which there exists an irrelevant feature i1 ∈ F , such that Sv(i1) ̸= 0, and a relevant626

feature i2 ∈ F \ {i1}, such that Sv(i2) = 0.627
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Proof. Given a classifier M1 implementing a non-constant boolean function κ1 defined on the set628

of features F1 = {1, . . . ,m}, we can construct a new classifier M characterized by the boolean629

function defined as follows:630

κ(x1..m,xm+1..2m, xn−1, xn) :=


κ1(x1..m) ∧ κ2(xm+1..2m) if xn−1 = 0

κ1(x1..m) if xn−1 = 1 ∧ xn = 0

κ2(xm+1..2m) if xn−1 = 1 ∧ xn = 1
(14)

where function κ2 is obtained by replacing every xi of κ1 with a new variable xm+i. κ2 is defined on631

a new set of features F2 = {m+ 1, . . . , 2m} and is independent of κ1. Moreover, M is defined on632

the feature set F = F1 ∪ F2 ∪ {n− 1, n}. Note that κ1 ∧ κ2 |= (¬xn ∧ κ1) ∨ (xn ∧ κ2), this can633

be proved using the consensus theorem 5.634

Choose m-dimensional points v1..m and vm+1..2m such that vi = vm+i for any 1 ≤ i ≤ m, and635

κ1(v1..m) = κ2(vm+1..2m) = 0. Let v1..n = (v1..m,vm+1..2m, 1, 1) be a n-dimensional point such636

that κ(v1..n) = 0. Moreover, let F ′ = F1 ∪ F2.637

To simplify the notations, we will use u to denote v1..m and w to denote vm+1..2m, furthermore,638

we will use x′ to denote an arbitrary n-dimensional point x1..n, and y to denote an arbitrary m-639

dimensional point x1..m, and z to denote an arbitrary m-dimensional point xm+1..2m.640

According to the proof of Proposition 3, Sv(n − 1) ̸= 0 but feature n − 1 is irrelevant. Next, we641

show that Sv(n) = 0 but the feature n is relevant. For any subset S ⊆ F ′, let {S1,S2} be a partition642

of S such that S1 ⊆ F1 ∧ S2 ⊆ F2.643

1. Consider any subset S ∪ {n− 1}, then:644

ϕ(S ∪ {n− 1, n};M,v1..n)− ϕ(S ∪ {n− 1};M,v1..n) (15)

=

 1

2|F ′\S|

∑
x′∈Υ(S∪{n−1,n};v1..n)

κ(x′)

−

 1

2|F ′\S|+1

∑
x′∈Υ(S∪{n−1};v1..n)

κ(x′)


=

1

2
× 1

2|F ′\S|

 ∑
x′∈Υ(S∪{n−1,n};(u,w,1,1))

κ(x′)−
∑

x′∈Υ(S∪{n−1};(u,w,1,0))

κ(x′)


=

1

2
× 1

2|F ′\S|

2|F1\S1| ×
∑

z∈Υ(S2;w)

κ2(z)− 2|F2\S2| ×
∑

y∈Υ(S1;u)

κ1(y)



According to the proof of Proposition 4, there is a unique subset S ′ such that |S| = |S ′| and645

ϕ(S ∪ {n− 1, n};M,v1..n)− ϕ(S ∪ {n− 1};M,v1..n) = −(ϕ(S ′ ∪ {n− 1, n};M,v1..n)−646

ϕ(S ′ ∪ {n− 1};M,v1..n)).647

5The consensus theorem is the identity (x∧ y)∨ (¬x∧ z) = (x∧ y)∨ (¬x∧ z)∨ (y ∧ z), see [18] Chapter
3
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2. Consider any subset S ⊆ F ′, then:648

ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n) (16)

=

 1

2|F ′\S|+1

∑
x′∈Υ(S∪{n};v1..n)

κ(x′)

−

 1

2|F ′\S|+2

∑
x′∈Υ(S;v1..n)

κ(x′)


=

1

2|F ′\S|+1

 ∑
x′∈Υ(S∪{n};(u,w,1,1))

κ(x′) +
∑

x′∈Υ(S∪{n};(u,w,0,1))

κ(x′)


− 1

2|F ′\S|+2

 ∑
x′∈Υ(S;(u,w,1,1))

κ(x′) +
∑

x′∈Υ(S;(u,w,0,1))

κ(x′)


− 1

2|F ′\S|+2

 ∑
x′∈Υ(S;(u,w,1,0))

κ(x′) +
∑

x′∈Υ(S;(u,w,0,0))

κ(x′)


=

1

4
× 1

2|F ′\S|

2|F1\S1| ×
∑

z∈Υ(S2;w)

κ2(z)− 2|F2\S2| ×
∑

y∈Υ(S1;u)

κ1(y)


Likewise, we can find a unique subset S ′ to cancel the effect of ϕ(S ∪ {n};M,v1..n) −649

ϕ(S;M,v1..n).650

Therefore, Sv(n) = 0. To prove that the feature n is relevant, we compute an AXp containing the651

feature n. First, we free all features in F1 and the feature n− 1, while keeping all features in F2 and652

the feature n. This makes feature n critical to the change in the prediction of M. Next, we compute653

an AXp X of M2 under the point vm+1..2m. Finally, we can conclude that X ∪ {n} is an AXp of654

M under the point v1..n.655

Proposition 6. For any n ≥ 4, there exists boolean functions defined on n variables, and at least656

one instance, for which there exists an irrelevant feature i ∈ F = {1, . . . , n}, such that |Sv(i)| =657

max{|Sv(j)| | j ∈ F}.658

Proof. Given a classifier M1 implementing a non-constant boolean function κ1 defined on the set of659

variables F ′ = {1, . . . ,m} where m ≥ 3, and satisfies the following conditions:660

1. κ1 predicts a specific point v1..m as 0. Furthermore, for any point x1..m such that661

dH(x1..m,v1..m) = 1, where dH(·) denotes the Hamming distance, we have κ1(x1..m) = 1.662

2. κ1 predicts all the other points as 0.663

For example, κ1 can be the function
∑m

i=1 ¬x1 = 1, which predicts the point 11..m as 0 and all points664

around this point with a Hamming distance of 1 as 1. Based on κ1, we can build a new classifier M665

characterized by the boolean function defined as follows:666

κ(x1, . . . , xm, xn) :=

{
0 if xn = 0
κ1(x1, . . . , xm) if xn = 1 (17)

Select the m-dimensional point v1..m from our Hamming ball such that κ1(v1..m) = 0 (note that667

only one such point exists), and extend v1..m with vn = 1. Then for the n-dimensional point668

v1..n = (v1..m, 1), we have κ(v1..n) = 0. Applying the same reasoning presented in the proof of669

Proposition 3, we can deduce that feature n is irrelevant.670

For simplicity, we will use x′ to denote an arbitrary n-dimensional point x1..n, and y to denote an671

arbitrary m-dimensional point x1..m. More importantly, for κ1 and any subset S ⊆ F ′, we have:672

∑
y∈Υ(S;v1..m)

κ1(y) = m− |S|
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1. For the feature n and an arbitrary subset S ⊆ F ′, we have:673

ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n) (18)

=
1

2|(F ′∪{n})\(S∪{n})|

∑
x′∈Υ(S∪{n};v1..n)

κ(x′)− 1

2|(F ′∪{n})\S|

∑
x′∈Υ(S;v1..n)

κ(x′)

=
1

2|F ′\S|

∑
x′∈Υ(S∪{n};v1..n)

κ(x′)− 1

2|F ′\S|+1

∑
x′∈Υ(S;v1..n)

κ(x′)

=
1

2
× 1

2|F ′\S|

∑
y∈Υ(S;v1..m)

κ1(y)

=
1

2
ϕ(S;M1,v1..m)

=
1

2
× m− |S|

2m−|S|

This means Sv(n) > 0. Besides, the unique minimal value of ϕ(S ∪ {n};M,v1..n) −674

ϕ(S;M,v1..n) is 0 when S = F ′.675

2. For a feature j ̸= n, consider an arbitrary subset S ⊆ F ′ \ {j} and the feature n, we have:676

ϕ(S ∪ {j, n};M,v1..n)− ϕ(S ∪ {n};M,v1..n) (19)

=
1

2|(F ′∪{n})\(S∪{j,n})|

∑
x′∈Υ(S∪{j,n};v1..n)

κ(x′)− 1

2|(F ′∪{n})\(S∪{n})|

∑
x′∈Υ(S∪{n};v1..n)

κ(x′)

=
1

2|F ′\(S∪{j})|

∑
y∈Υ(S∪{j};v1..m)

κ1(y)−
1

2|F ′\S|

∑
y∈Υ(S;v1..m)

κ1(y)

= ϕ(S ∪ {j};M1,v1..m)− ϕ(S;M1,v1..m)

=
m− |S| − 1

2m−|S|−1
− m− |S|

2m−|S|

=
m− |S| − 2

2m−|S|

In this case, ϕ(S ∪ {j, n};M,v1..n)− ϕ(S ∪ {n};M,v1..n) = − 1
2 if |S| = m− 1, which is its677

unique minimal value. ϕ(S ∪ {j, n};M,v1..n)−ϕ(S ∪ {n};M,v1..n) = 0 if |S| = m− 2, and678

ϕ(S ∪ {j, n};M,v1..n)− ϕ(S ∪ {n};M,v1..n) > 0 if |S| < m− 2.679

3. Moreover, for a feature j ̸= n, consider an arbitrary subset S ⊆ F ′ \ {j} and without the feature680

n, we have:681

ϕ(S ∪ {j};M,v1..n)− ϕ(S;M,v1..n) (20)

=
1

2|(F ′∪{n})\(S∪{j})|

∑
x′∈Υ(S∪{j};v1..n)

κ(x′)− 1

2|(F ′∪{n})\S|

∑
x′∈Υ(S;v1..n)

κ(x′)

=
1

2|F ′\(S∪{j})|+1

∑
y∈Υ(S∪{j};v1..m)

κ1(y)−
1

2|F ′\S|+1

∑
y∈Υ(S;v1..m)

κ1(y)

=
1

2
(ϕ(S ∪ {j};M1,v1..m)− ϕ(S;M1,v1..m))

=
1

2
× m− |S| − 2

2m−|S|

In this case, ϕ(S ∪ {j};M,v1..n) − ϕ(S;M,v1..n) = − 1
4 if |S| = m − 1, which is its682

unique minimal value. ϕ(S ∪ {j};M,v1..n) − ϕ(S;M,v1..n) = 0 if |S| = m − 2, and683

ϕ(S ∪ {j};M,v1..n)− ϕ(S;M,v1..n) > 0 if |S| < m− 2.684

Next, we prove |Sv(n)| > |Sv(j)| by showing Sv(n) + Sv(j) > 0 and Sv(n) − Sv(j) > 0. Note685

that Sv(n) > 0. Additionally, ϕ(S ∪ {j, n};M,v1..n) − ϕ(S ∪ {n};M,v1..n) < 0 and ϕ(S ∪686

{j};M,v1..n)− ϕ(S;M,v1..n) < 0 only when |S| = m− 1.687
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1. For Sv(n):688

Sv(n) =
∑

S⊆F\{n}

|S|!(m− |S|)!
(m+ 1)!

× (ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n)) (21)

=
∑

S⊆F\{n}

|S|!(m− |S|)!
(m+ 1)!

× 1

2
ϕ(S;M1,v1..m)

=
1

2
× 1

m+ 1
×

∑
S⊆F\{n}

|S|!(m− |S|)!
m!

ϕ(S;M1,v1..m)

=
1

2
× 1

m+ 1
×

∑
S⊆F\{n}

|S|!(m− |S|)!
m!

× m− |S|
2m−|S|

=
1

2
× 1

m+ 1
×

∑
0≤|S|≤m

|S|!(m− |S|)!
m!

× m!

|S|!(m− |S|)!
× m− |S|

2m−|S|

=
1

2
× 1

m+ 1
×

∑
0≤|S|≤m

m− |S|
2m−|S| =

1

2
× 1

m+ 1
×

m∑
k=1

k

2k

=
1

2
× 1

m+ 1
× 2m+1 −m− 2

2m
=

1

m+ 1
× 2m+1 −m− 2

2m+1

2. For a feature j ̸= n, consider the subset S = F ′ \ {j} where |S| = m− 1 and the feature n:689

|S ∪ {n}|!(m− |S ∪ {n}|)!
(m+ 1)!

× m− |S| − 2

2m−|S| (22)

=
m!(m−m)!

(m+ 1)!
× m− (m− 1)− 2

2m−(m−1)

= −1

2
× 1

m+ 1

3. For a feature j ̸= n, consider the subset S = F ′ \ {j} where |S| = m− 1 and without the feature690

n:691

|S|!(m− |S|)!
(m+ 1)!

× 1

2
× m− |S| − 2

2m−|S| (23)

=
1

2
× (m− 1)!(m− (m− 1))!

(m+ 1)!
× m− (m− 1)− 2

2m−(m−1)

= −1

4
× 1

m(m+ 1)

We consider the sum of these three values:692

1

m+ 1
× 2m+1 −m− 2

2m+1
− 1

2
× 1

m+ 1
− 1

4
× 1

m(m+ 1)
(24)

=
1

m+ 1
×
(
(2m+1 −m− 2)m

m2m+1
− m2m

m2m+1
− 2m−1

m2m+1

)
=

1

m(m+ 1)2m+1
×

(
(m− 1

2
)2m −m2 − 2m

)
Since m ≥ 3, the sum of these three values is always greater than 0. Thus, we can conclude that693

Sv(n) + Sv(j) > 0.694

To show Sv(n)− Sv(j) > 0, we focus on all subsets S ⊆ F ′ where |S| < m− 2. This is because, as695

previously stated, ϕ(S ∪{j, n};M,v1..n)−ϕ(S ∪{n};M,v1..n) ≤ 0 and ϕ(S ∪{j};M,v1..n)−696

ϕ(S;M,v1..n) ≤ 0 if |S| ≥ m− 2.697

Moreover, for all subsets S ⊆ F ′ where |S| = k where 0 < k ≤ m− 3, we compute the following698

three quantities:699

Q1 :=
∑

S⊆F ′,|S|=k

ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n)
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700

Q2 :=
∑

S⊆F ′\{j},|S|=k−1

ϕ(S ∪ {j, n};M,v1..n)− ϕ(S ∪ {n};M,v1..n)

701

Q3 :=
∑

S⊆F ′\{j},|S|=k

ϕ(S ∪ {j};M,v1..n)− ϕ(S;M,v1..n)

and show that Q1 −Q2 −Q3 > 0. Note that Q1, Q2 and Q3 share the same coefficient k!(n−k−1)!
n! .702

1. For the feature n, we pick all possible subsets S ⊆ F ′ where |S| = k, which implies |S ∪ {n}| =703

k + 1, then:704

Q1 =

(
m

|S|

)
× 1

2
× m− |S|

2m−|S| =

(
m

k

)
× 1

2
× m− k

2m−k

2. For a feature j ̸= n and consider the feature n, we pick all possible subsets S ⊆ F ′ where705

|S| = k − 1, which implies |S ∪ {j, n}| = k + 1, then:706

Q2 =

(
m− 1

|S|

)
×m− |S| − 2

2m−|S| =

(
m− 1

k − 1

)
×m− (k − 1)− 2

2m−(k−1)
=

(
m− 1

k − 1

)
×1

2
×m− k − 1

2m−k

3. For a feature j ̸= n, without considering the feature n, we pick all possible subsets S ⊆ F ′ where707

|S| = k, which implies |S ∪ {j}| = k + 1, then:708

Q3 =

(
m− 1

|S|

)
× 1

2
× m− |S| − 2

2m−|S| =

(
m− 1

k

)
× 1

2
× m− k − 2

2m−k

Then we compute Q1 −Q2 −Q3:709 (
m

k

)
× 1

2
× m− k

2m−k
−
(
m− 1

k − 1

)
× 1

2
× m− k − 1

2m−k
−

(
m− 1

k

)
× 1

2
× m− k − 2

2m−k
(25)

=
1

2
× 1

2m−k

[(
m

k

)
(m− k)−

(
m− 1

k − 1

)
(m− k − 1)−

(
m− 1

k

)
(m− k − 2)

]
=

1

2
× 1

2m−k

[(
m

k

)
(m− k)−

(
m− 1

k − 1

)
(m− k)−

(
m− 1

k

)
(m− k) +

(
m− 1

k − 1

)
+ 2

(
m− 1

k

)]
=

1

2
× 1

2m−k

[(
m− 1

k − 1

)
+ 2

(
m− 1

k

)]
This means that Sv(n)− Sv(j) > 0. Hence, we can conclude that |Sv(n)| > |Sv(j)|.710

Proposition 7. For any n ≥ 4, there exist boolean functions defined on n variables, and at least one711

instance, for which there exists an irrelevant feature i1 ∈ F , and a relevant feature i2 ∈ F \ {i1},712

such that |Sv(i1)| > |Sv(i2)|.713

Proof. Consider three classifiers M1, M2 and M3 implementing non-constant boolean functions714

κ1, κ2 and κ3, respectively. Actually it is possible for κ1 to be the constant function 0. All of them715

are defined on the set of features F ′ = {1, . . . ,m} where m ≥ 2. More importantly, κ1, κ2 and κ3716

satisfy the following conditions:717

1. κ2 is a function predicting exactly one point v1..m to 1, for example, κ2 can be
∧

1≤i≤m ¬xi.718

2. For the point v1..m where κ2 predicts 1, we have κ3(v1..m) = 0. This implies κ2 ∧ κ3 |= ⊥, that719

is, the conjunction of κ2 and κ3 is logically inconsistent.720

3. For any point x1..m such that dH(x1..m,v1..m) = 1, where dH(·) denotes the Hamming distance,721

we have κ3(x1..m) = 1.722

4. κ1 ∧ κ2 |= ⊥ and κ1 ∧ κ3 |= ⊥, indicating that the conjunction of κ1 and κ2 as well as the723

conjunction of κ1 and κ3 both equal to the constant function 0.724

5. κ1 ∨ κ2 ̸= 1 and κ1 ∨ κ3 ̸= 1, indicating that neither the disjunction of κ1 and κ2 nor the725

disjunction of κ1 and κ3 equals the constant function 1.726

Let F = F ′ ∪ {n − 1, n}, we can build a new classifier M from M1, M2 and M3. M is727

characterized by the boolean function defined as follows:728

κ(x1..m, xn−1, xn) :=


κ1(x1..m) if xn−1 = 0

κ1(x1..m) ∨ κ2(x1..m) if xn−1 = 1 ∧ xn = 0

κ1(x1..m) ∨ κ3(x1..m) if xn−1 = 1 ∧ xn = 1

(26)
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Besides, we can derive that (¬xn ∧ (κ1 ∨ κ2)) ∨ (xn ∧ (κ1 ∨ κ3)) = κ1 ∨ (¬xn ∧ κ2) ∨ (xn ∧ κ3).729

So we have κ1 |= κ1 ∨ (¬xn ∧ κ2) ∨ (xn ∧ κ3). Choose the m-dimensional point v1..m such730

that κ1(v1..m) = κ3(v1..m) = 0 but κ2(v1..m) = 1. Extend v1..m with vn−1 = vn = 1, let731

v1..n = (v1..m, 1, 1) be the n-dimensional point, it follows that κ(v1..n) = 0. Based on the proof of732

Proposition 3, feature n− 1 is irrelevant. To prove that feature n is relevant, we assume the contrary,733

i.e., that n is irrelevant. In this case, we pick the point v′ = (v1..m, 1, 0) from the feature space734

where κ2(v1..m) = 1. Clearly, for this point we have κ(v′) = 1, leading to a contradiction. Thus,735

feature n is relevant.736

In the following, we prove that |Sv(n− 1)| > |Sv(n)| by showing that Sv(n− 1)− Sv(n) > 0 and737

Sv(n−1)+Sv(n) > 0. To simplify the notations, we will use x′ to denote an arbitrary n-dimensional738

point x1..n, and y to denote an arbitrary m-dimensional point x1..m. For any subset S ⊆ F ′, we now739

focus on feature n− 1.740

1. For the feature n− 1, consider an arbitrary subset S ⊆ F ′ and without the feature n, then:741

ϕ(S ∪ {n− 1};M,v1..n)− ϕ(S;M,v1..n) (27)

=

 1

2|F ′\S|+1

∑
x′∈Υ(S∪{n−1};v1..n)

κ(x′)

−

 1

2|F ′\S|+2

∑
x′∈Υ(S;v1..n)

κ(x′)


=

1

2|F ′\S|+1

 ∑
y∈Υ(S;v1..m)

(κ1(y) ∨ κ3(y)) +
∑

y∈Υ(S;v1..m)

(κ1(y) ∨ κ2(y))


− 1

2|F ′\S|+2

 ∑
y∈Υ(S;v1..m)

(κ1(y) ∨ κ3(y)) +
∑

y∈Υ(S;v1..m)

(κ1(y) ∨ κ2(y))


− 1

2|F ′\S|+2

 ∑
y∈Υ(S;v1..m)

κ1(y) +
∑

y∈Υ(S;v1..m)

κ1(y)


=

1

2|F ′\S|+2

 ∑
y∈Υ(S;v1..m)

(κ1(y) ∨ κ3(y)) +
∑

y∈Υ(S;v1..m)

(κ1(y) ∨ κ2(y))


− 1

2|F ′\S|+2

 ∑
y∈Υ(S;v1..m)

κ1(y) +
∑

y∈Υ(S;v1..m)

κ1(y)


=

1

2|F ′\S|+2

 ∑
y∈Υ(S;v1..m)

κ3(y) +
∑

y∈Υ(S;v1..m)

κ2(y)


2. For the feature n− 1, consider an arbitrary subset S ∪ {n}, then:742

ϕ(S ∪ {n− 1, n};M,v1..n)− ϕ(S ∪ {n};M,v1..n) (28)

=

 1

2|F ′\S|

∑
x′∈Υ(S∪{n−1,n};v1..n)

κ(x′)

−

 1

2|F ′\S|+1

∑
x′∈Υ(S∪{n};v1..n)

κ(x′)


=

1

2|F ′\S|+1

 ∑
y∈Υ(S;v1..m)

(κ1(y) ∨ κ3(y))−
∑

y∈Υ(S;v1..m)

κ1(y)


=

1

2|F ′\S|+1

 ∑
y∈Υ(S;v1..m)

κ3(y)


Thus, we can conclude that Sv(n− 1) > 0. For any subset S ⊆ F ′, we now focus on the feature n.743
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1. For the feature n, consider an arbitrary subset S ⊆ F ′ and without the feature n− 1, then:744

ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n) (29)

=

 1

2|F ′\S|+1

∑
x′∈Υ(S∪{n};v1..n)

κ(x′)

−

 1

2|F ′\S|+2

∑
x′∈Υ(S;v1..n)

κ(x′)


=

1

2|F ′\S|+1

 ∑
y∈Υ(S;v1..m)

(κ1(y) ∨ κ3(y)) +
∑

y∈Υ(S;v1..m)

κ1(y)


− 1

2|F ′\S|+2

 ∑
y∈Υ(S;v1..m)

(κ1(y) ∨ κ3(y)) +
∑

y∈Υ(S;v1..m)

κ1(y)


− 1

2|F ′\S|+2

 ∑
y∈Υ(S;v1..m)

(κ1(y) ∨ κ2(y)) +
∑

y∈Υ(S;v1..m)

κ1(y)


=

1

2|F ′\S|+2

 ∑
y∈Υ(S;v1..m)

(κ1(y) ∨ κ3(y))−
∑

y∈Υ(S;v1..m)

(κ1(y) ∨ κ2(y))


=

1

2|F ′\S|+2

 ∑
y∈Υ(S;v1..m)

κ3(y)−
∑

y∈Υ(S;v1..m)

κ2(y)



2. For the feature n, consider an arbitrary subset S ∪ {n− 1}, then:745

ϕ(S ∪ {n− 1, n};M,v1..n)− ϕ(S ∪ {n− 1};M,v1..n) (30)

=

 1

2|F ′\S|

∑
x′∈Υ(S∪{n−1,n};v1..n)

κ(x′)

−

 1

2|F ′\S|+1

∑
x′∈Υ(S∪{n−1};v1..n)

κ(x′)


=

1

2|F ′\S|+1

 ∑
y∈Υ(S;v1..m)

(κ1(y) ∨ κ3(y))−
∑

y∈Υ(S;v1..m)

(κ1(y) ∨ κ2(y))


=

1

2|F ′\S|+1

 ∑
y∈Υ(S;v1..m)

κ3(y)−
∑

y∈Υ(S;v1..m)

κ2(y)



Note that ϕ(S∪{n};M,v1..n)−ϕ(S;M,v1..n) < 0 and ϕ(S∪{n−1, n};M,v1..n)−ϕ(S∪{n−746

1};M,v1..n) < 0 if and only if S = F ′. For any other proper subset S ⊂ F ′, ϕ(S∪{n};M,v1..n)−747

ϕ(S;M,v1..n) ≥ 0 and ϕ(S ∪ {n− 1, n};M,v1..n)− ϕ(S ∪ {n− 1};M,v1..n) ≥ 0.748

Moreover, for a fixed set S ⊆ F ′, we have (ϕ(S ∪ {n− 1};M,v1..n)− ϕ(S;M,v1..n)) > (ϕ(S ∪749

{n};M,v1..n)− ϕ(S;M,v1..n)), and (ϕ(S ∪ {n− 1, n};M,v1..n)− ϕ(S ∪ {n};M,v1..n)) >750

(ϕ(S ∪ {n− 1, n};M,v1..n)− ϕ(S ∪ {n− 1};M,v1..n)). Therefore, Sv(n− 1) > Sv(n).751
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In the following, we prove that Sv(n − 1) + Sv(n) > 0 by focusing on all subsets S ⊆ F where752

m− 2 ≤ |S| ≤ m+ 1. For the feature n− 1, we have:753 ∑
S⊆F\{n−1}

m−2≤|S|≤m+1

|S|!(m+ 2− |S| − 1)!

(m+ 2)!
× (ϕ(S ∪ {n− 1};M,v1..n)− ϕ(S;M,v1..n)) (31)

=
∑

|S|=m+1,n∈S

(m+ 1)!(m+ 1− (m+ 1))!

(m+ 2)!
× 1

2m−m+1
× 0

+
∑

|S|=m,n∈S

m!(m+ 1−m)!

(m+ 2)!
× 1

2m−(m−1)+1
× 1

+
∑

|S|=m,n̸∈S

m!(m+ 1−m)!

(m+ 2)!
× 1

2m−m+2
× (0 + 1)

+
∑

|S|=m−1,n∈S

(m− 1)!(m+ 1− (m− 1))!

(m+ 2)!
× 1

2m−(m−2)+1
× 2

+
∑

|S|=m−1,n̸∈S

(m− 1)!(m+ 1− (m− 1))!

(m+ 2)!
× 1

2m−(m−1)+2
× (1 + 1)

+
∑

|S|=m−2,n̸∈S

(m− 2)!(m+ 1− (m− 2))!

(m+ 2)!
× 1

2m−(m−2)+2
× (2 + 1)

=
8m+ 13

16(m+ 2)(m+ 1)

For the feature n, we have:754 ∑
S⊆F\{n}

m−2≤|S|≤m+1

|S|!(m+ 2− |S| − 1)!

(m+ 2)!
× (ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n)) (32)

=
∑

|S|=m+1,n−1∈S

(m+ 1)!(m+ 1− (m+ 1))!

(m+ 2)!
× 1

2m−m+1
× (0− 1)

+
∑

|S|=m,n−1∈S

m!(m+ 1−m)!

(m+ 2)!
× 1

2m−(m−1)+1
× (1− 1)

+
∑

|S|=m,n−1̸∈S

m!(m+ 1−m)!

(m+ 2)!
× 1

2m−m+2
× (0− 1)

+
∑

|S|=m−1,n−1∈S

(m− 1)!(m+ 1− (m− 1))!

(m+ 2)!
× 1

2m−(m−2)+1
× (2− 1)

+
∑

|S|=m−1,n−1̸∈S

(m− 1)!(m+ 1− (m− 1))!

(m+ 2)!
× 1

2m−(m−1)+2
× (1− 1)

+
∑

|S|=m−2,n−1̸∈S

(m− 2)!(m+ 1− (m− 2))!

(m+ 2)!
× 1

2m−(m−2)+2
× (2− 1)

=
−6m− 11

16(m+ 2)(m+ 1)

Their summation is m+1
8(m+2)(m+1) , since m ≥ 2, Sv(n− 1) + Sv(n) > 0. Thus, it can be concluded755

that for the irrelevant feature n− 1 and the relevant feature n, |Sv(n− 1)| > |Sv(n)|.756

Corollary 1. For any n ≥ 7, there exist boolean functions defined on n variables, and at least one757

instance, for which there exists an irrelevant feature i1 ∈ F , and a relevant feature i2 ∈ F \ {i1},758

such that Sv(i1) > Sv(i2) > 0.759
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Proof. We utilize the function constructed in Proposition 7, which is given by:760

κ(x1..m, xn−1, xn) :=


κ1(x1..m) if xn−1 = 0

κ1(x1..m) ∨ κ2(x1..m) if xn−1 = 1 ∧ xn = 0

κ1(x1..m) ∨ κ3(x1..m) if xn−1 = 1 ∧ xn = 1

(33)

However, we choose a different function κ3 that satisfies the following condition: for any point x1..m761

such that dH(x1..m,v1..m) ≤ 2, where dH(·) represents the Hamming distance, κ3(x1..m) = 1,762

According to the proof of Proposition 7, it can be derived that Sv(n− 1) > 0 and Sv(n− 1) > Sv(n).763

In the following, we prove that Sv(n) > 0 by focusing on all subsets S ⊆ F \ {n} where m− 4 ≤764

|S| ≤ m+ 1, and show that the sum of their values is greater than 0, which implies that Sv(n) > 0765

when considering all possible subsets S.766 ∑
S⊆F\{n}

m−4≤|S|≤m+1

|S|!(m+ 2− |S| − 1)!

(m+ 2)!
× (ϕ(S ∪ {n};M,v1..n)− ϕ(S;M,v1..n)) (34)

=
∑

|S|=m+1,n−1∈S

(m+ 1)!(m+ 1− (m+ 1))!

(m+ 2)!
× 1

2m−m+1
× (0− 1)

+
∑

|S|=m,n−1∈S

m!(m+ 1−m)!

(m+ 2)!
× 1

2m−(m−1)+1
× (1− 1)

+
∑

|S|=m,n−1̸∈S

m!(m+ 1−m)!

(m+ 2)!
× 1

2m−m+2
× (0− 1)

+
∑

|S|=m−1,n−1∈S

(m− 1)!(m+ 1− (m− 1))!

(m+ 2)!
× 1

2m−(m−2)+1
× (

(
2

1

)
+

(
2

2

)
− 1)

+
∑

|S|=m−1,n−1̸∈S

(m− 1)!(m+ 1− (m− 1))!

(m+ 2)!
× 1

2m−(m−1)+2
× (1− 1)

+
∑

|S|=m−2,n−1∈S

(m− 2)!(m+ 1− (m− 2))!

(m+ 2)!
× 1

2m−(m−3)+1
× (

(
3

1

)
+

(
3

2

)
− 1)

+
∑

|S|=m−2,n−1̸∈S

(m− 2)!(m+ 1− (m− 2))!

(m+ 2)!
× 1

2m−(m−2)+2
× (

(
2

1

)
+

(
2

2

)
− 1)

+
∑

|S|=m−3,n−1∈S

(m− 3)!(m+ 1− (m− 3))!

(m+ 2)!
× 1

2m−(m−4)+1
× (

(
4

1

)
+

(
4

2

)
− 1)

+
∑

|S|=m−3,n−1̸∈S

(m− 3)!(m+ 1− (m− 3))!

(m+ 2)!
× 1

2m−(m−3)+2
× (

(
3

1

)
+

(
3

2

)
− 1)

=
11m− 47

32(m+ 2)(m+ 1)

Since m ≥ 5, for all subsets S ⊆ F \ {n} where m− 4 ≤ |S| ≤ m+ 1, their summation is greater767

than 0. This implies that Sv(n) > 0. Thus, it can be concluded that for the irrelevant feature n− 1768

and the relevant feature n, we have Sv(n− 1) > Sv(n) > 0.769

Proposition 8. For Propositions 3 to 5,and Proposition 7 the following are lower bounds on the770

numbers issues exhibiting the respective issues:771

1. For Proposition 3, a lower bound on the number of functions exhibiting I1 is 22
(n−1) − n− 3.772

2. For Proposition 4, a lower bound on the number of functions exhibiting I3 is 22
(n − 1)/2 − 2.773

3. For Proposition 5, a lower bound on the number of functions exhibiting I4 is 22
(n − 2)/2 − 2.774

4. For Proposition 7, a lower bound on the number of functions exhibiting I2 is 22
n−2−(n−2)−1 − 1.775

Sketch. For Proposition 3, there exist 22
(n−1) − n− 3 distinct non-constant functions κ2. For each776

such function κ2, κ1 can be defined by changing the prediction of some points predicted as 1 by κ2777

to 0. It is evident that κ1 |= κ2 but κ1 ̸= κ2.778
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For Propositions 4 and 5, there exist 22
(n − 1)/2 − 2 distinct non-constant functions κ1. We can then779

define κ2 by renaming each variable xi of κ1 with a new variable xm+i.780

For Proposition 7, the functions κ2 and κ3 are assumed to be fixed, while the flexibility lies in781

the choice of κ1 (κ1 can be 0 but cannot be 1). As κ2 covers 1 point and κ3 covers n − 2 points,782

the remaining points in the feature space can be used to define the function κ1. Thus, there are783

22
n−2−(n−2)−1 − 1 possible functions for κ1.784
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