Under review as a conference paper at ICLR 2022

A MORE DETAILS AND REASONS ABOUT OUR SETTING

A.1 THREAT MODEL

We adopt a unified setting which is also used by Graph Robustness Benchmark (Zheng et al., 2021),
that is evasion, inductive, and black-box. We give the reasons below.

Evasion. The attack only happens at test time, which means that defenders are able to obtain the
original clean graph G, for training, while testing on a perturbed graph G’. We adopt evasion
attacks for two reasons. Firstly, the unnoticeability constraints in previous works, ranging from
degree distributions (Ziigner et al., 2018) to statistical features (Wu et al., 2019), can not reflect how
much the graph is changed indeed, as they are weakly correlated to the information required for
node classification #. Secondly, it is well-known that neural networks have universal approximation
power (Hornik et al., 1989), thus can easily overfit the training set (Goodfellow et al., 2016), or even
memorize the labels appeared during training (Zhang et al., 2017). As a generalization from deep
learning models to graphs, GNNs tend to exhibit similar properties, which is shown empirically in
our experiments (See Appendix A.2 for details). Even trained on a highly poisoned graph, GNNs
may still converge to 100% training accuracy, for which defenders are unable to tell whether it is
perturbed hence unlikely to make any effective defenses. Thus, before a better solution appears, the
evasion setting might be more appropriate.

Inductive. The training of GNNs is performed in an inductive manner, that is, fy is trained on
training nodes with their labels and inter-connections while testing with the whole graph. We argue
that it is inappropriate to conduct evasion attacks for GNNs learned in a transductive manner, which
enables the GNN to access all of the nodes and edges (not all the labels) during training. If new nodes
or connections are added after training, it will violate the transductive setting. Besides, inductive
learning often happens in many applications, as the networks usually grow larger over time.

Black-box. The adversary has no information about the target model, but the adversary may obtain
the graph and training labels to train a surrogate model for generating perturbed graph G'.

Combining all of the above, conducting effective attacks raises special challenges to adversaries,
since defenders can adopt the information extracted from training graph G, to learn more robust
hidden representations (Zhu et al., 2019), or learn to drop noisy edges (Wu et al., 2019; Zhang &
Zitnik, 2020; Jin et al., 2020), or even perform adversarial training (Jin & Zhang, 2021; Feng et al.,
2021) which is known as one of the strongest defense mechanisms in the domain of images (Good-
fellow et al., 2015; Madry et al., 2018).

A.2 MEMORIZATION EFFECTS OF GRAPH NEURAL NETWORKS

1.0 1.0 1.0
0.8 0.8 0.8
> > >
8 i 8 8
= 06 —— trainacc © S s
8 test acc 8 06 3
Q [} Q
< o4 < <04
0.4
—— train acc —— train acc
0.2 test acc 0.2 test acc
0.2
0 200 400 600 800 1000 0 200 400 600 800 1000 00 02 04 06 08 1.0
Training Epochs Training Epochs Corruption Rate
(a) Original labels (b) Random labels (c) Partial random labels

Figure 5: Training curve of GCN on Cora with random labels

We conduct experiments with GCN (Kipf & Welling, 2017) on Cora (Yang et al., 2016). The ar-
chitecture we select is a 2-Layer GCN with 16 hidden units, optimized using Adam (Kingma &
Ba, 2015) with a learning rate of 0.01 and a L, weight decay of 5 x 10~ for the first layer. We
train 1000 epochs and report the training accuracy and test accuracy according to the best validation

“Given the same degree distribution, we can shuffle to generate multiple graphs with similar degree distri-
bution but completely different semantic meanings.

14

Under review as a conference paper at ICLR 2022

accuracy. We randomly sample certain percent of nodes from the whole graph and reset their labels.
It can be seen from Fig. 5 (b) and (c) that even with all random labels, the training accuracy can
reach to nearly 100%, which serves as a strong evidence for the existence of memorization effects in
GNN:ss. In other words, even a GNN is trained on a heavily poisoned graph (changes dramatically in
the sense of semantic), it can still achieve good training accuracy while the defender has no way to
explicitly find it or do anything about it. That is against to the original setting and purpose of adver-
sarial attacks (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018). Thus, it urges the
community for a proper solution to the ill-defined unnoticeability in current graph adversarial learn-
ing. Till the appearance of silver bullet, evasion attack can serve as a better solution than poisoning
attack.

B MORE DEAILS ABOUT GIA AND GMA COMPARISON

B.1 IMPLEMENTATION OF GRAPH MODIFICATION ATTACK

Following Metattack (Ziigner & Giinnemann, 2019), we implement Graph Modification Attack by
taking A as a hyper-parameter. Nevertheless, since we are conducting evasion attack, we do not
have meta-gradients but the gradient of A with respect to Ly, or V 4L,«. Each step, we take the
maximum entry in V 4 L,«, denoted with max(V 4 L.«), and change the corresponding edge, if it is
not contained in the training graph. Then we perform the perturbation as follows:

(a) If max(VaLux) < 0 and the corresponding entry in A is 0, i.e., the edge does not exist before,
we will add the edge.

(b) If max(V 4 Lyk) > 0 and the corresponding entry in A is 1, i.e., the edge exists before, we will
remove the edge.

If the selected entry can not satisfy neither of the above conditions, we will take the left maximum
entry to perform the above procedure until we find one that satisfy the conditions. Here we exclude
perturbations on node features given limited budgets, since Wu et al. (2019) observed the edge
perturbations produce more harm than node perturbations. Besides, as shown in the proof, the
damage brought by perturbations on node features is at most the damage brought by a corresponding
injection to the targets in GIA, hence when given the same budgets to compare GMA and GIA, we
can exclude the perturbations on nodes without loss of generality.

B.2 IMPLEMENTATION OF GRAPH INJECTION ATTACK WITH M,

GIA with M5 is implemented based on the GMA above. For each edge appears in the perturbed
graph produced by GMA but does not exist in the original graph, in GIA, we will inject a node to
connect with the corresponding nodes of the edge. After injecting all of the nodes, then we use
PGD (Madry et al., 2018) to optimize the features of the injected nodes.

C MORE HOMOPHILY DISTRIBUTIONS

C.1 EDGE-CENTRIC HOMOPHILY

In addition to node-centric homophily (Def. 6), we can also define edge-centric homophily as:

Definition C.1 (Edge-Centric Homophily). The homophily for an edge (u,v) can be defined as.
he = sim(X,, Xy), (12)

where sim(-) is also a distance metric, e.g., cosine similarity.

With the definition above, we can probe the natural edge-centric homophily distribution of real-
world benchmarks, as shown in Fig. 6. It turns out that the edge-centric homophily distributes
follows a guassian prior. However, it seems we can not utilize edge-centric homophily to instantiate
the homophily unnoticeability for several reasons. On the one hand, edge similarity does not con-
sider the degrees of the neighbors which is misaligned with the popular aggregation scheme of GNN.
On the other hand, edge-centric and node-centric homophily basically perform similar functionality

15

Under review as a conference paper at ICLR 2022

to retain the homophily, but if considering the future extension to high-order neighbor relationships,
edge similarity might be harder to extend than node-centric homophily. Thus, we utilize the node-
centric homophily for most of our discussions.

1.75 5
2.5
1.50
.
>‘2.0 >‘1-Z5 >
= = 23
015 @« 1.00 1)
C c
[0.75 oI
QLo o
0.50
0.5 025 1
0.0 0.00
0.0 0.2 0.4 0.6 0.8 1.0 -1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 0.2 0.4 0.6 0.8 1.0
Homophily Homophily Homophily
(a) Cora (b) Computers (c) Arxiv
Figure 6: Edge-Centric homophily distributions
3.0
2.0 7
25
6
220 3‘1.5 >s
o i @,
c 15 C 1o c
o} o} @,
[a R (a) [a]
0.5 2
0.5 1
0.0 0.0 0
0.0 0.2 0.4 0.6 0.8 1.0 -0.75 —=0.50 =0.25 0.00 0.25 0.50 0.75 1.00 0.2 0.4 0.6 0.8 1.0
Homophily Homophily Homophily
(a) Cora (b) Computers (c) Arxiv
Figure 7: Homophily distributions before attack
3.0 orig 20 orig ; orig
gia gia gia
2.5 hao hao 6 hao
3‘2.0 3‘1'5 3’5
2 2 24
] 15 o 1.0] N
O, fa [a)
05 2
05 N
0.0 0.0 0
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Homophily Homophily Homophily
(a) Cora (b) Computers (c) Arxiv

Figure 8: Homophily distributions after attack

C.2 MORE HOMOPHILY DISTRIBUTIONS CHANGES

We provide more homophily distribution results of the benchmarks we used in the experiments for
Cora, Computers and Arxiv, shown as in Fig. 7 and Fig. 8, respectively. GIA is implemented with
TDGIA (Zou et al., 2021). Note that the budgets for TDGIA here is different from that in the
previous sections, which utilized the budgets resulting in the maximum harm when compared with
GMA. Similarly, GIA without HAO would severely break the original homophily distribution hence
making GIA can be easily defended by homophily defenders. While incorporated with HAO, GIA
would retain the original homophily during attack.

16

Under review as a conference paper at ICLR 2022

D PROOFS AND DISCUSSIONS OF THEOREMS

D.1 PROOF FOR THEOREM 1

Theorem 1. Given moderate perturbation budgets N for GIA and Ngya for GMA, that is,
let Aoy < Deun < V| < |E|, for a fixed linearized GNN fy trained on G, assume that
G has no isolated nodes, and both GIA and GMA adversaries follow the optimal strategy, then,
VAGMA >0, ElAGIA < AGMA; such that:

Catk(fe (géHA)) - ﬁatk(fe (géiMA)) <0,
where G4 and Ggy,, are the perturbed graphs generated by GIA and GMA, respectively.

Proof. The proof sketch is to show that,

(a) There exists a mapping, that when given the same budget, i.e., Agia = Agma < |V| < |E|,
for each perturbation generated by GMA intended to attack node u by perturbing edge (u,v),
or node attributes of some node v that connects to u, we can always map it to a corresponding
injection attack, that injects node x,, to attack u, and lead to the same effects to the prediction.

(b) When the number of perturbation budget increases, the optimal objective values achieved of
GIA is monotonically non-increasing with respect to Agra, that is

ﬁ;]ftffl (fe (g(/BIA)) < Ez]ftk(fQ(géIA))v

where L£E, (fo(Gf1a)) is the optimal value achieved under the perturbation budget of k, which
is obvious.

Once we prove both (a) and (b), the Lau(fo(Ga)) Will approach to £, (fo(Géya)) from the below
as Agia approaches to Agma, hence proving Theorem 1. Furthermore, for the flexibility of the
constraints on X,,, we may adopt the gradient information of X, with respect to Lok (fo(Gga)) to
further optimize X, and make more damages. Hence, we have Lo (fo(G5ia)) < LE (Fo(Ghma))-

Next, we will prove (a) above. Following Wu et al. (2019), in GMA, adding new connections
between nodes from different classes produces the most benefit to the adversarial objective. Hence,
given the limited perturbation budget, we give our primary focus to the action of connecting nodes
from different classes and will prove (a) also holds for the remaining two actions, i.e., edge deletion
and node attribute perturbation.

We prove (a) by induction on the number of linearized layers. First of all, we will show prove (a)
holds for 1-layer and 2-layer linearized GNN as a motivating example. The model is as fo = A2X©
with H = AXO and Z = fy.

Plural Mapping M. Here we define the mapping M for edge addition. For each edge perturba-
tion pair (u,v) generated by GMA, we can insert a new node w to connect u and v. The influence
of adversaries can be identified as follows, as © is fixed, we may exclude it for simplicity:

In layer (1):

¢ Clean graph:

1
Hi= Y X (13)
teN ())U{i} didy

* GMA:

1 1
X+ X,, iefu)
teN%):u{i} dy(d; +1) ' dy(d; + 1)
iefy U9

i = > L x4 L X
/ t us
reN@u Vad(di+1) dy(d; +1)

H; i ¢ {u, v}

17

Under review as a conference paper at ICLR 2022

* GIA:

ie{u,v}

1 1
Xt + Xuws
tGN(zi):U{i} dy(di + 1) 3(di +1)

H! =S H, u ¢ {u,v,w} (15
1(! X, + ! X, + 1X) i € {w}
—(—F—— — Xy + — , 7 w
V3V, +17" Vd, +1 Vv3TY

where d; refers to the degree of node ¢ with self-loops added for simplicity. Thus, in layer (1), to
make the influence from GMA and GIA on node u equal, the following constraint has to be satisfied:

1 1
X = X, (16)
3(dy +1) (dy +1)(dy + 1)
which is trivially held by setting
3
X, = LXU. (17)
dy +1

Normally, GMA does not consider isolated nodes (Ziigner et al., 2018; Ziigner & Giinnemann, 2019)
hence we have d, > 2 and X,, € Dx. Note that we can even change X,, to make more affects to
node v with gradient information, then we may generate a more powerful perturbation in this way.
Then, we go deeper to layer 2. In layer (2):

¢ Clean graph:

1
Zi= ¥ (18)
teN (i)u{i} \/7
* GMA:
H,; H! H)
3 i1t ; u € {u}
vt Vit 1) dit (do +1)(di +1)
H, H] H
+ —t 4 “ ; u € {v}
z-) 2, VAT a1 T na
Z o u € N(u) UN(v)
teN (i) de(d; +1)
Ly otherwise
(19)
* GIA:
> n e o)
teN () dy(di + 1) d +1 3(di +1) v 7
Z!' =< H,, i ¢ {u,v,w} (20)
1 1 1 H" Lo ;
(e » +—=H (ASE
\/§(\/du e RV s RV) twl

18

Under review as a conference paper at ICLR 2022

Similarly, to make Z!, = Z!/, we have to satisfy the following constraint:

L PR S ! ,

u + Hw - Hz + Hva
dy +1 3(dy, +1) dy +1 (dy +1)(dy + 1)

V3 1 4 1 1 1
— X, + Xw+— — X, ——X,
dy+1 teN%):u{u} Vi t \/g(du+1 du+1)

V3 Z X, 3X,

dy +1 ﬁ+\/dy+1+
teN (u)u{u} Q1)
\/g Xt Xu
d +1(2 Vdi(d, +1 * V(d, +1)(d 1)>’
v teN (v)U{v} t(dy +1) u Tt vt
4 1 1 1
\/ﬁ(vduﬂ Vd, +1)
3X, V3 X Xu
(> -),

+ +
Vd, 1 Vd, +1 reN @oo} Vdi(dy +1) /(dy +1)(dy + 1)

then we let X, = 2 (RHS — \}(\/;X + \/WX)) to get the solution of X, that makes the

same perturbation. Similarly, we can infer X, € Dx. The following proof also applies to layer 2.

Next, we will prove that, for a linearized GNN with k layers (k > 1), i.e., H®) = A*X©, once
3X, such that the predictions for node w is the same to that perturbed by GMA, i.e., H&k_l) =

Eﬁkil), then 3X,, such that Hka) = Eq(lk). Here we use H to denote the prediction of GNN attacked
by GMA and E for that of GIA. Note that, once the theorem holds, as we have already proven the
existence for such X, it naturally generalizes to an arbitrary number of layers.

To be more specific, when H,Sk_l) = quk_l), we need to show that, 3X,,, s.t.,

HE) = H*Y 4 L goen 1 (kD)
]e%%)\/d T1./d; dy+1" Vdo t1vVd, 11 0
EEES 1 pevy 1 opeen 1 pe (22)

e ﬁm R S
HE = B
Here we make a simplification to re-write Eq. 22 by defining the influence score.

Definition D.1 (Influence Score). The influence score from node v to u after k neighbor aggrega-

tions with a fixed GNN following Eq. 1, is the weight for X, contributing to H&k)

HY = M 1Y X, (23)
JEN (u)U{u}

which can be calculated recursively through:

= > (L) + 1k, (24)
JEN (w)u{u}
As O is fixed here, we can simply regard I¥, = Aﬁu Compared to the predictions after k-th

propagation onto the clean graph, in GMA, H&k) is additionally influenced by node v, while in GIA,

Hff) is additionally influenced by node v and node w. Without loss of generality, we may absorb
the influence from neighbors of node v into that of node v. Hence we can rewrite Eq. 22 as the

19

Under review as a conference paper at ICLR 2022

following:
AHP = Ik a Xy,
AEW = IEn Xy + I, X, (25)
AH® = AER)
where i (1) (1)
I, = Z laia,; - Lgia,, + lo1Au., “ LGia,,, -
JEN (w)ufu}
Then we can further simplify it as,
(Iéman, — Téian,) Xo = Iia,, Xu- (26)

To show the existence of X, that solves the above equation, it suffices to show I%; A,, 7 0and
X € Dx. Note that 93X, s.t.,
k—1 k—1 k—1
(I((.}MA”)“ - I((}IA))Xv = I((}IA,“,),XW' 27

uv

Since AF > 0,Vk > 0, so we have Igf;j) > 0. Moreover,

w

n (k-1 _
Iiljw = Z (Au] ’ Agw)) + 11(1,11611 1)5
JEN (w)u{u}

then it is obvious that the I* > 0. Moreover, with the definition of I* = A it is obvious that

uw uv uv?
Ing_ulg > I((‘,’fvl_Alu) for v with a degree not less than 1 (i.e., v is not an isolated node). Hence, we have

(Uenns, = Tein))/ TGin, < 1and X, € Dy.

Now we have proved (a) holds for linearized GNN. For the remaining actions of GMA, we can also
use similar mappings to prove (a). For an edge deletion of (u, v), one may rewrite Eq. 22 for the left
nodes other than v. Given a new mapping M that injects one node w to node u, we may also write
the equation involving I, and derive the same conclusions similarly. Intuitively, for edge deletion,
considering the classification probability, removing an edge is equivalent to enlarge the predicted
classification probability for other classes, hence it fictionalizes likewise the edge addition and we
can use a similar proof for this action. Besides, M can also apply to the perturbation of features to
node u that we inject one node w to make the same effect. Thus, we complete the whole proof. [

Theorem 1 for other GNNs. We can extend Theorem 1 to other GNNs such as GCN, GraphSage,
etc. Recall the theorem 1 in Xu et al. (2018):

Lemma 1. Given a k-layer GNN following the neighbor aggregation scheme via Eq. 1, assume that
all paths in the computation graph of the model are activated with the same probability of success
p. Then the influence distribution I, for any node x € V' is equivalent, in expectation, to the k-step
random walk distribution on G starting at node x.

To apply Lemma 1, we observe that the definition of I*, is analogous to random walk starting from
node u. Thus, one may replace the definition of I*, here to the influence score defined by Xu et al.
(2018), conduct a similar proof above with random walk score and obtain the same conclusions,
given the mapping M, for each edge addition (u,v), 3X,,, such that

E(Ly(fo(Gain))) = E(Lyx(fo(Gain)))- (28)
Though the original theorem only proves Lemma 1 for GCN and GraphSage, it is obvious one can
easily extend the proof in Xu et al. (2018) for aggregation scheme as Eq. 1.

Cases for Less GIA Budget. We can reduce GIA budgets in two ways.

(a) For GMA that performs both node feature perturbation and edge addition, considering a edge
perturbation (u, v), M essentially also applies for node feature perturbations on « or v without
additional budgets.

(b) It is very likely that with the mapping above, GIA will produce many similar nodes. Hence,
with one post-processing step to merge similar nodes together and re-optimize them again, GIA
tends to require less budgets to make the same or more harm than GMA. That is also reflected
in our experiments as shown in Fig. 1b.

20

Under review as a conference paper at ICLR 2022

D.2 M5 FOR MORE GMA OPERATIONS

Here we explain how our theoretical results also apply to the remaining actions, i.e., edge deletion
and node feature perturbation, of GMA with My (Def. 3.2). In the proof for Theorem 1, we have
proved the existence of mappings for edge removal and node feature perturbation. Once the injected
node features are set to have the same influence to the predictions on the targets, they can be further
optimized for amplifying the damage, thus all of our theoretical results can be derived similarly like
that for edge addition operation.

D.3 PROOF FOR THEOREM 2

Theorem 2. Given conditions in Theorem 1, consider a GIA attack, which (i) is mapped by M
(Def. 3.2) from a GMA attack that only performs edge addition perturbations, and (ii) uses a lin-
earized GNN trained with at least one node from each class in G as the surrogate model, and (iii)
optimizes the malicious node features with PGD. Assume that G has no isolated node, and has node
features as X,, = %eyu — ﬁl € RY, where Yy, is the label of node uwand ey, € R? is a one-hot
vector with the Y, -th entry being 1 and others being 0. Let the minimum similarityxfog(any pair of

nodes connected in G be sg = min, y)cp sim(Xy, Xy) with sim(X,, X,) = e Fora
AR

homophily defender gy that prunes edges (u,v) if sim(X,, X,) < sg, we have:
Lar(90(M2(Gema))) — Lan(96(G6ma)) = 0.

Proof. We prove Theorem 2 by firstly show the following lemma.

Lemma 2. Given conditions in Theorem 2, as the optimization on X,, with respect to L,y by PGD
approaches, we have:

sim(Xy, Xop) Y < sim(X, X)),

where t is the number of optimization steps.

We prove Lemma 2 in the follow-up section, i.e., Appendix D.4. With Lemma 2, known that GIA
is mapped from GMA with M5, X, will be optimized to have the same effects as GMA at first and
continue being optimized to a more harmful state, hence for the unit perturbation case as Fig. 2a, we
know:

sim(Xy, Xy) < sim(X,, X,), (29)

as the optimization on X, approaches. Furthermore, it follows:
GIA GMA
ROIA < pGMA (30)

where hS™ and hSMA denote the homophily of node u after GIA and GMA attack, respectively.
Now if we go back to the homophily defender gy, for any threshold specified to prune the edge
(u,v), as Lemma 2 and Eq. 29 indicates, direct malicious edges in GIA are more likely to be pruned
by go. Let 7614 and 7gma denote the corresponding similarity between (u, w) in GIA and (u,v) in
GMA, we have several possibilities compared with sg = min, ,)e g sim(Xy, X,):

(a) 7614 < Toma < sg: all the malicious edges will be pruned, Theorem 2 holds;
(b) T61a < sg < ToMma: all the GIA edges will be pruned, Theorem 2 holds;

(c) sg < 7614 < Toma: this is unlikely to happen, otherwise 7gia can be optimized to even worse
case, Theorem 2 holds;

Thus, we complete our proof. O

Interestingly, we can also set a specific threshold 7, for homophily defender s.t., 7, — sg < € > 0,
where some of the original edges will be pruned, too. However, some of previous works indicate
promoting the smoothness or slightly dropping some edges will bring better performance (Rong
et al., 2020; Yang et al., 2021a; Zhao et al., 2021; Yang et al., 2021b). The similar discussion can
also be applied to this case and obtain the same conclusions.

21

Under review as a conference paper at ICLR 2022

D.4 PROOF FOR LEMMA 2
Proof. To begin with, without loss of generality, we may assume the number of classes is 2 and

Y. = 0, which can be similarly extended to the case of multi-class. With the feature assignment in
the premise, let the label of node w is Y,,, we have:

[1a _1]T7 Yu = 07
X, = ; (31)
-1,1)7, Y, =1

After setting it to having the same influence as that in GMA following Eq. 26, we have:

Iva,, — 1%
X, — Uoma,, —L6m.,)

= v- (32)
I(]“iIAuw
Then, let £,, denote the training loss Ly, on node u, we can calculate the gradient of X, :
oL, oL, oHY oL,
== L . = & . IGIA““, . @. (33)
0Xu ol 0Xu omP
With Cross-Entropy loss, we further have:
0L,
— =1 17, (34)
0H,,
Then, we can induce the update step of optimizing X,, with respect to Ly = — Lirain by PGD:
XU = XO 4 esign(IE,, - [-1,1]7 - 0), (35)

where ¢ is the number of update steps. As the model is trained on at least nodes with indicator
features following Eq. 31 from each class, without loss of generality, here we may assume © > 0,
the optimal © would converge to © > 0. Thus,

Sign(IélA =1, 1]T 10) = Sign(IélAW =1, 1]T)~

uw

Let us look into the change of cosine similarity between node » and node v as:
Asim(X,, X)) = (X, - XU — X, - X)), (36)

where o > 0 is the normalized factor. To determine the sign of Asim(X,,, X,,), we may compare

X, - XD with X, - X, Here we expand X, - X¥™V. Let Xu0, Xo1 to denote the first and
second element in X,, respectively, we have:

X - Xy +esign(IE, - [-1,1]7) X,
t+1
1l - 2542

Xu : Xz(jJrl) =

9

’2 37
Xy Xy + 6()(ul - XuO)

1 Xully VX2 + X21 + €2 + 26(X1 — Xuo)

)

where we omit the sign of 15 A, for I A, = 0 according to the definition. Recall that we let
Y, = 0, hence we have (X,1 — X,0) < 0. Besides, following Eq. 26, we have sign(X,1 —
Xwo) = sign(X,1 — Xy0). As GMA tend to connect nodes from different classes, we further have

sign(Xy1 — Xwo) > 0. Comparing to X, - Xf,f), we know in Eq. 37, the numerator decreases and
the denominator increases, as € > 0, so the overall scale decreases. In other words, we have:

Asim(X,,, X,) = a(X, - XD — x,, - xM) <0, (38)

which means that the cosine similarity between node u and node v decreases as the optimization of
X, with respect to L, processes. Thus, we complete our proof for Lemma 2. O

22

Under review as a conference paper at ICLR 2022

D.5 PROOF FOR THEOREM 3

Theorem 3. Given conditions as Theorem 2, when \ > 0, we have m(Hg, Hg;) < m(Hg, Hg:),

hence:
Laic(90(Grao)) — Lan(96(G61a)) < 0,
where G, is generated by GIA with HAO, and G(,, is generated by GIA without HAO.

Proof. Similar with the proof for Theorem 2, we begin with binary classification, without loss of
generality. With the feature assignment in the premise, let the label of node « is Y,,, we have:

[1,-17, v, =0,
L1, V=1
Let £,, denote the training loss L., on node u, we look into the gradient of X, with respect to L,,:

oL, oL, OHY oL,
e = DH X = DH0 TG, - ©. (40)
With Cross-Entropy loss, we further have:
oL,
oH"
Together with HAO, we can infer the update step of optimizing X, with respect to
Ealk - *Etrain +)\C(g, g/) by PGD:
Xy = X0 + esign((I§ia,,,, - -1, 17 + AL, -1)7) - ©), (42)
where ¢ is the number of update steps. Similarly, without loss of generality, we may assume © > 0.
As the optimization approaches, given A > 0, GIA with HAO will early stop to some stage that
(I&a,. - =1, 107 + A[1, —1]7) = 0, hence similar to the proof of Theorem 2, it follows:
hG™ < RAO, (43)
where hS™ and K40 denote the homophily of node u after GIA and GIA with HAO attack, respec-
tively. Likewise, we can infer that:
Lax(96(Girao)) — Lar(90(G61a)) < 0.
Thus, we complete our proof. O

(39)

=[-1,1". 41)

D.6 CERTIFIED ROBUSTNESS OF HOMOPHILY DEFENDER

Here we prove the certified robustness of homophily for a concrete GIA case. We prove via the
decision margin as follows:

Definition D.2 (Decision Margin). Given a k-layer GNN, let H, [(f)C] denote the corresponding entry

in H&k) for the class c, the decision margin on node u with class label Y,, can be denoted by:
—g® g*

= — max .
S X2 ST e MY S 20

A Multi-Layer Perceptron (MLP) can be taken as a 0-layer GNN which the definition also applies.
Then, we specify the certified robustness as follows:

Proposition D.1 (Certified Robustness of Homophily Defender). Consider a direct GIA attack uses
a linearized GNN trained with at least one node from each class in G, that targets at node u by
injecting a node w connecting to u, let node features x,, = %onehot(Yu) — ﬁl, the homophily
of u be T, the decision margin of a MLP on u be vy, the minimum similarity for any pair of nodes
connected in the original graph be sg = min, ,)ep sim(Xy, X,), homophily defender go can

defend such attacks, if—a\/ﬁﬁ + B7) < sg, and gy prunes edges (u,v) s.t.,

sim(X,. X,) € 0 [(7 4 57),

where a, B > 0 are corresponding normalization factors.

23

Under review as a conference paper at ICLR 2022

Intuitively, effective attacks on a node with higher degrees, homophily or decision margin require a
lower similarity between node w and u hence more destruction to the homophily of node u. GIA
without any constraints tends to optimize sim(X,,, X,,) to a even lower value. Thus, it becomes
easier to find a suitable condition for gy, with which it can painlessly prune all vicious edges while
keeping all original edges.

Proof. Analogous to the proof for Lemma 2, without loss of generality, we begin with binary clas-
sification, normalized indicator features and Y,, = O as follows:

X [17_1]Ta Y, = 07 (44)
o [715 I]Ta)/u =1.
The decision margin based on k-th layer representation can be denoted by

m=H" max H® (45)
el " e g8y Pl

follows the Definition D.2. In our binary classification case, we have

v = HO O

[,0] [w,1]’ (46)

where H(9) is the output of a 0-layer GNN, or MLP (Multi-Layer Perceptron). A k-layer GNN can
be regarded as generating new hidden representation for node u by aggregating its neighbors, hence,
we may induce the decision margin for a k-layer GNN at node u as

k k
m=Hyy =y = (> LuXilo =1 Y TuXl) + I8, 7
JEN (u) JEN (u)

where we can replace the influence from neighbors with homophily of node u. Observe that h,,

essentially indicates how much neighbors of node u contribute to H [(:)0]’ for example, in binary

case, let ¢ > 0 be the corresponding normalization factor,
JEN (u) JEN ()

which means,

1
Z Iu]X 1] =][Z IUJX [0]][])

JEN (u) JEN (u)
replaced with X, = [1,—1]T,
(k) (k)
m = Hy o = Hpy
Z Luj Xjlio Z Luj X+
N(u N u
JEN (uv) JEN (u) (48)
([> LyXip [X 1Y LyX]oXulo)) + I8y
JEN (u) JEN (u)
Hence, we have:
k k
m = H[(%)()] - H[(u?l] = Chy + LSIZ)%
where ¢ > 0 is the factor of h,,. With node w injected, the margin can be rewritten as:
m = du — i+ I (X 01 — Xru1)- (49)
d + 1 [wv] [w7]

24

Under review as a conference paper at ICLR 2022

To perturb the prediction of node u, we make m < 0, hence, we have

dy
m' ——m 4+ I (X0 — Xpwy) <0

dy +1 ’
I()([wl]_ wO \(m (50)
(Xw1) = Xwo)) 2 \/: (Cha + I5))-

Observe that sim(X.,, Xy) = (X[w,0) — X[w,l]) and h, = 7, hence, we can write Eq. 50 in a clean

form as
dy
s 50) %o (740

where «, 3 are corresponding normalization factors whose signs are determined by signs of I¥
and 1% respectively. In other words, GIA has to optimize X, satisfying the above requirement
to make the attack effective, however, given the premise that all sg = min, ,)ep sim(Xy, X,) >

—ay/ d,d:-l (T + B7), a defense model gy will directly prune all of the vicious edges satisfying the
above requirement and make the attack ineffective, which is exactly what we want to prove. O

E MORE IMPLEMENTATIONS OF HOMOPHILY DEFENDER

There are many ways to design homophily defenders, inheriting the spirit of recovering the origi-
nal homophily. In addition to edge pruning, one could leverage variational inference to learn the
homophily distribution or the similarity distribution among neighbors. Then we use adversarial
training to train the model to denoise. Similarly, learning to promote the smoothness of the graph
can also be leveraged to build homophily defenders (Zhao et al., 2021; Yang et al., 2021a;b). Be-
sides, outlier detection can also be adopted to remove or reduce the aggregation weights of malicious
edges or nodes. In the following two subsections, we will present two variants that perform better
than GNNGuard (Zhang & Zitnik, 2020).

E.1 DETAILS OF EFFICIENT GNNGUARD

The originally released GNNGuard requires O(n?) computation for node-node similarity, making it
prohibitive to run on large graphs. To this end, we implement an efficient alternative of GNNGuard
adopting a similar message passing scheme, let 7 be the threshold to prune an edge:

HP =oWy,- Y am1FY), (52)
JEN (w)u{u}
where .
vy = softmax(I ,
! ZUEN(U)U{U} Fuv
and
sim(HF Y, HE D) > 7} sim(a Y g Y) by
. _ _ _ — — , U I
i = > ey Hsim(HS Y HEY) > 7y sim(HS D D)
uj 1 '
u=j.

> ey Hsim(HS Y HETY) > 7 41

Essentially, it only requires O(FE) complexity. We will present the performance of Efficient GNN-
Guard (EGNNGuard) in table 3.

E.2 DETAILS OF ROBUST GRAPH ATTENTION NETWORK (RGAT)

We introduce another implementation of Robust Graph Attention Network (RGAT). We adopt the
same spirit of GCNGuard (Zhang & Zitnik, 2020), that eliminates unlike neighbors during message

25

Under review as a conference paper at ICLR 2022

passing based on neighbor similarity. Specifically, we change the standard GAT (Velickovi¢ et al.,
2018) attention mechanism as

1{sim(x;,x;) > 7}
Pken(iugiy Hsim(zs, zp) > 7}
Additionally, we also adopt the idea of RobustGCN (Zhu et al., 2019) that stabilize the hidden
representations between layers, so we add Layer Normalization (Ba et al., 2016) among layers of

RGAT. Empirical experiments show that RGAT is a more robust model with or without GIA attacks.
For more details, we refer readers to Table 3.

@5 =

E.3 PERFORMANCE OF HOMOPHILY DEFENDERS

Table 3: Performance of homophily defenders used in experiments

Model Natural Accuracy Test Robustness Running Time
GNNGuard 83.58 64.96 1.76 x 1073
EGNNGuard 84.45 64.27 5.39 x 107°
RGAT 85.75 66.57 6.03 x 107°
GCN 84.99 36.62 5.87 x 107°

We test the performance of different homophily defenders on Cora. Natural Accuracy refers to the
test accuracy on clean graph. Test Robustness refers to their averaged performance against all the
attacks. Running time refers to their averaged running time for one training epoch. We repeat the
evaluation 10 times to obtain the average accuracy. We can see that EGNNGuard has competitive
performance with GNNGuard while 20x faster. RGAT performs slightly better and 10x faster.
Hence, for large graphs and adversarial training of GNNGuard, we will use EGNNGuard instead.

F MORE DETAILS ABOUT ALGORITHMS USED
Here we provide detailed descriptions of algorithms mentioned in Section. 4.2.
F.1 DETAILS OF METAGIA AND AGIA

F.1.1 INDUCTION OF META GRADIENTS FOR METAGIA

With the bi-level optimization formulation of GIA, similar to meta-attack, we can infer the meta-
gradients as follows:

VZL::@ = VAmk»Catk(fe* (Aatk; X:tk))a X:ﬂ(= OPtkaﬁatk(fe* (Aatka Xalk))' (53)
Consider the opt process, we have
X = X = aV oo L for (Aas X3)). (54)

With that, we can derive the meta-gradient for A,:
Vrgem = vAatk["’a[k(fa* (Aatk7 X;k))

atk
= Vi Lac(for (Auscs X33)) - [V Jor (Auses X)) + V0 for (A X)) - Vau X,
(55)
where
x 1) v,

atk < atk

Va

WX - ava, v x (0 Lat(for (Au X)) (56)
Note that X sfk) depends on A, according to Eq. 54, so the derivative w.r.t. A, need to be traced
back. Finally, the update schema for A, is as follows:

A(t+1) _ A(t) _ vaeta (57)

atk atk A (i)
atl

Directly computing the meta gradients is expensive, following Metattack, we adopt approximations
like MAML (Finn et al., 2017) for efficiency consideration. We refer readers to the paper of Metat-
tack for the detailed algorithms by replacing the corresponding variables with those above.

26

Under review as a conference paper at ICLR 2022

F.2 DETAILS OF AGIA

For optimizing weights of edge entries in Ay, we can use either Adam (Kingma & Ba, 2015),
PGD (Madry et al., 2018) or other optimization methods leveraging gradients. For simplicity, we
use PGD to illustrate the algorithm description of AGIA as follows:

Algorithm 1: AGIA: Adaptive Graph Injection Attack with Gradient

Input: A graph G = (A, X), a trained GNN model fp-, number of injected nodes ¢, degree
budget b, outer attack epochs eqyr, inner attack epochs for node features and adjacency
matrix eﬁfner, eiﬁner, learning rate 7, weight for sparsity penalty 5, weight for homophily
penalty A ;

Output: Perturbed graph G’ = (A’, X');

Random initialize injection parameters (A, Xak);

Yoig + fo-(A,X); /» Obtain original predictions on clean graph =/

for epoch < 0 to eyyer do

Random initialize X ,;

for epoch « 0 to e, do

A+ A H Aalk7X, — X || Xk ;
KXok Chp()(Xatk -n- vak ('C;}lltk)))

ZTmin,Tmax

for epoch + 0 to e do

mner

A= A A, X' X || X s
Aue + Clipgg 1y (Ause — 1 Va, (L)) 5

k
L Aatk «— ”1':1 arg maxtop b(Aatk[i,:]) 5

Here, £, refers to the objective of GIA with HAO for the optimization of X,. For the optimization
of A, we empirically find the A4 would degenerate the performance, which we hypothesize that
is because of the noises as A, is a discrete variable. Hence, we set A4 = 0 in our experiments.
Additionally, we introduce a sparsity regularization term for the optimization of A,:

1
Lot = Lanc+ Brms D b= lAuc, [(58)
at

u€ Vak

Besides, we empirically observe that Adam performs better than PGD. Hence, we would use Adam
for AGIA in our experiments, and leave other methods for future work. Adopting Adam addition-
ally brings the benefits to utilize momentum and history information to accelerate the optimization
escape from the local optimum, which PGD fails to achieve.

F.3 DETAILS OF SEQGIA

Since gradient methods require huge computation overhead, we propose a novel divide-and-conquer
strategy to iteratively select some of the most vulnerable targets with Eq. 11 to attack. Note that it is
different from traditional sequential injection methods which still connect the targets in full batch.

27

Under review as a conference paper at ICLR 2022

For simplicity, we also illustrate the algorithm with PGD, and one may switch to other optimizer
such as Adam to optimize A,x. The detailed algorithm is as follows:

Algorithm 2: SeqGIA: Sequential Adaptive Graph Injection Attack

Input: A graph G = (A, X), a trained GNN model fp-, number of injected nodes k, degree
budget b, outer attack epochs ey, inner attack epochs for node features and adjacency

matrix e ed _learning rate 7, weight for sparsity penalty /3, weight for homophily

penalty il,n Zreqlllnélrelrtial step for vicious nodes ~,u, sequential step for target nodes 7. ;
Output: Perturbed graph G’ = (A’, X');
1 Initialize injection parameters (A, Xaw);
2 Yoig < fo-(A,X); /+ Obtain original predictions on clean graph =/
3 while Not Injecting All Nodes do

4| a4 Yakox [Vaels me < e x [Vel 5

5 Ranking and selecting n. targets with Eq. 11;

s | Random initialize A" € Rrexma, X (0 ¢ Rrawxd

7 for epoch < 0 to e,y do

8 for epoch + 0 to e, do

, A = A A [AR X7 X X | X5
0 X i (R =0V e (L)
11 for epoch < 0 to e}, do

12 A A A || A X X || X || X,
13 Az(ilcl?r) — Clip(0,1)(A§f1?r) -n- VAf‘fk"f) (ﬁzﬁ‘k)) ;

W AT I argmaxg (ARG
5 Agge=Aak || Ai;?r); KXae=Xat || X;ES(UT);

Actually, one may also inject few nodes via heuristic based algorithms first, then inject the left nodes
with gradients sequentially. Assume that « nodes are injected by heuristic, we may further optimize
the complexity from

1
O(» (‘ch| IOg |V:3| + eOUter(eiﬁner|‘/;|’yC|‘/altk| + ei)rfner“/;llkm))NVu)
to 1
O(a,}/ . (“/C| log |Vv6|+“/dtk|b + ei)xfner|‘/;1[k|d)NVc+
atl
1
(1 - a) . (“/C| log |%|+60Ulel‘(eijgner|vc"yc‘V;ltkl + ei)n(ner“/;llk‘d))NVc)

atl

in Table 7.

28

Under review as a conference paper at ICLR 2022

G MORE DETAILS ABOUT THE EXPERIMENTS

G.1 STATISTICS AND BUDGETS OF DATASETS
Here we provide statistics of datasets used in the experiments as Sec. 5.1. The label homophily
utilizes the previous homophily definition (Zhu et al., 2020), while the avg. homophily utilizes the
node-centric homophily based on node similarity.

Table 4: Statistics of datasets

Datasets Nodes Edges Classes Avg. Degree Label Homophily Avg. Homophily
Cora 2680 5148 7 3.84 0.81 0.59
Citeseer 3191 4172 6 2.61 0.74 0.90
Computers 13,752 245,861 10 35.76 0.77 0.31
Arxiv 169,343 1,166,243 40 13.77 0.65 0.86
Aminer 659,574 2,878,577 18 8.73 0.65 0.38
Reddit 232,965 11,606,919 41 99.65 0.78 0.31

Following previous works (Zou et al., 2021; Zheng et al., 2021), we heuristically specify the budgets
for each dataset acoording the the number of target nodes and average degrees.

Table 5: Budgets for non-targeted attacks on different datasets

Datasets Nodes Degree Node Per.(%) Edge Per.(%)

Cora 60 20 2.24% 23.31%
Citeseer 90 10 2.82% 21.57%
Computers 300 150 2.18% 18.30%
Arxiv 1500 100 0.71% 10.29%

For targeted attack, as we select 800 nodes as targets, where 200 of highest classification margin, 200
of lowest classification margin and 400 randomly following previous works (Ziigner et al., 2018).
We also reduce the budgets accordingly.

Table 6: Budgets of targeted attacks on different datasets

Datasets Nodes Degree Node Per.(%) Edge Per.(%)

Computers 100 150 0.73% 6.1%
Arxiv 120 100 0.07% 1.03%
Aminer 150 50 0.02% 0.26%
Reddit 300 100 0.13% 0.26%

G.2 COMPLEXITY OF ALGORITHMS

Here we provide complexity analysis of GIA algorithms used in the experiments as Sec. 5.1. As
defined in previous sections, €;\ .. is the number of epochs optimized for node features, b is the
number of maximum degree of vicious nodes, d is the number of feature dimension, Ny, is the
number of k-hop neighbors of the victim nodes for perform one forwarding of a k-layer GNN, eqyer
is the number of epochs for optimizing A, 7. is the ratio of target nodes to attack in one batch,

Yatk 18 the ratio of vicious nodes to inject in one batch.

G.3 DETAILS OF BASELINES
Here we provide the categories of defense models used in the experiments as Sec. 5.1. We categorize

all models into Vanilla, Robust and Extreme Robust (Combo). Basically, popular GNNs are belong
to vanilla category, robust GNNs are belong to robust categorty, and a robust trick will enhance the

29

Under review as a conference paper at ICLR 2022

Table 7: Complexity of various attacks

Type Algorithm Time Complexity Space Complexity
MetaGIA O(|Vak |[b(| Ve | Vauk | Jog (| Ve Vi |) + €55exd (| Vaek| + Nv2.))) O(|Vel V| + €%perd(|Va| + Nv..))
Gradient AGIA 0<60\"3l'(81ﬁncr“/€“‘/a‘k‘ + (eiﬁnsr + en}rfnsr)d(N\/l + Vi) O(|Vel[Va| + eﬁ\(ncrd(“/aik‘ +MNv,))
AGIA-SeqGIA Ocouer([Vel 10g(|Vel) + efpner Vel Vell Vi + (Efpner + €mer) AN, + [Va]))) O (el Ve ak Vil + €iner(| V| + Nv.))
PGD O(|Vak|b + €55 d(|Vak| + Nv,.)) O(|Vak|b + €58 erd(|Var| + Nv,.))
o TDGIA O((1Ve!10g Vel + Vil + e[Vi + Nv,)) O(Valb + e[V + Nv,))
ATDGIA O(Vel 10g Vel + [Vaslb + (| Vaa| + Ny,)) O(Valb + €l Va| + Nv,))

robust level by one to the next Category. Consistenly to the observation in GRB (Zheng et al., 2021),
we find adding Layer Normalization (Ba et al., 2016) before or between convulotion layers can
enhance the model robustness. We use LN to denote adding layer norm before the first convulotion
layer and LNi to denote adding layer norm between convulotion layers.

Table 8: Defense model categories

Model Category | Model Category | Model Category | Model Category
GCN Vanilla GCN+LN Robust GCN+LNi Robust GCN+FLAG Robust
GCN+LN+LNi Combo GCN+FLAG+LN Combo GCN+FLAG+LNi Combo GCN+FLAG+LN+LNi Combo
Sage Vanilla Sage+LN Robust Sage+LNi Robust Sage+FLAG Robust
Sage+LN+LNi Combo | Sage+FLAG+LN Combo | Sage+FLAG+LNi Combo | Sage+FLAG+LN+LNi Combo
GAT Vanilla | GAT+LN Robust GAT+LNi Robust GAT+FLAG Robust
GAT+LN+LNi Combo GAT+FLAG+LN Combo GAT+FLAG+LNi Combo GAT+FLAG+LN+LNi Combo
Guard Robust Guard+LN Combo | Guard+LNi Combo | EGuard+FLAG Combo
Guard+LN+LNi Combo EGuard+FLAG+LN Combo EGuard+FLAG+LNi Combo EGuard+FLAG+LN+LNi Combo
RGAT Robust RGAT+LN Combo RGAT+FLAG Combo RGAT+FLAG+LN Combo
RobustGCN Robust RobustGCN+FLAG Combo

G.4 DETAILS OF EVALUATION AND MODEL SETTINGS

G.4.1 MODEL SETTING

By default, all GNNs used in our experiments have 3 layers, a hidden dimension of 64 for Cora,
Citeseer, and Computers, a hidden dimension of 128 for the rest medium to large scale graphs.
We also adopt dropout (Srivastava et al., 2014) with dropout rate of 0.5 between each layer. The
optimizer we used is Adam (Kingma & Ba, 2015) with a learning rate of 0.01. By default, we set
total training epochs as 400 and employ the early stop of 100 epochs according to the validation
accuracy. For the set of threshold in homophily defenders, we use PGD (Madry et al., 2018) to find
the threshold which performs well on both the clean data and perturbed data. By default, we set
the threshold as 0.1, while for Computers and Reddit, we use 0.15 for Guard and EGuard, and for
Citeseer and Arxiv we use 0.2 for RGAT.

For adversarial training with FLAG (Kong et al., 2020), we set the step size be 1 x 107!, and train
100 steps for Cora, 50 steps for Citeseer, 10 steps for the rest datasets. We empirically observe
that FLAG can enhance both the natural accuracy and robustness of GNNs. We refer readers to the
results for more details in Sec. H.2 and Sec. H.3.

G.4.2 EVALUATION SETTING

For final model selection, we select the final model with best validation accuracy. For data splits, we
follow the split methods in GRB (Zheng et al., 2021) which splits the datasets according to the node
degrees. For non-targeted attack, following previous works (Zou et al., 2021; Zheng et al., 2021),
we select all test nodes as targets. While for targeted attacks, we follow previous works (Ziigner
et al., 2018) to select 200 nodes with highest classification margin and lowest classification margin

30

Under review as a conference paper at ICLR 2022

of the surrogate model. Then we randomly select 400 nodes as targets. In other words, there are 800
target nodes in total for targeted attack. Note for targeted attack, the natural accuracy on the target
nodes might be different from normal test accuracy. We also follow previous works to specify the
attack budgets as Table. 5 for non-targeted attack and Table. 6 for targeted attack.

During evaluation, we firstly use the surrogate model to generate the perturbed graph then let the
target models which has trained on the clean graph to test on the perturbed graph. We repeat the
evaluation for 10 times on Cora, Citeseer, Computers, and Arxiv, and 5 times for Aminer and Reddit
since model performs more stably on large graphs. Then we report mean test accuracy of the target
models on the target nodes due to the space limit.

G.4.3 ATTACKS SETTING

By default, we use PGD (Madry et al., 2018) to generate malicious node features. The learning step
is 0.01 and the default training epoch is 500. We also employ the early stop of 100 epochs according
to the accuracy of the surrogate model on the target nodes. As Table. 7 shows, MetaGIA requires
huge amount of time originally. To scale up, we use a batch update which updates the injected edges
by a step size of b, i.e., the maximum degree of injected nodes, and limit the overall update epochs
by |Vak|/6, where we empirically observe this setting performs best in Cora and stick it onto other
datasets.

For the setting of A for HAO, we search the parameters within 1 to 8 by a step size of 0.5 such
that the setting of A will not degenerate the performance of the attacks on surrogate model. Besides
heuristic approaches, we additionally use a hinge loss to stabilize the gradient information from
L and C(G,G"), where the former can be too large that blurs the optimization direction of the
latter. Take Cross Entropy with log _softmax as an example, we adopt the following to constrict the
magnitude of L:

(k)
exp(H;, "y 1)
Lak[u) = (—H[(f,)yu]) 1 —[ik]) 7}
i exp(H,) (59)
exp(H")
(k) [u,1]

+ log Zexp Hw] >7})),

zj exp(H\,)

exp(H[u Yu])

xp(H], ;)

correspondlng threshold for hinge loss that we set as 1 x 1078,

where 1{ > 7} can be taken as the predicted probability for Y,, = w and 7 is the

For the hyper-parameter setting of our proposed strategies in Sec. 4.2, we find directly adopting A
in PGD for Ax and setting A4 = 0 performs empirically better. Hence we stick to the setting for
A4 and \x. For the weight of sparsity regularization term in AGIA, we directly adopt 1/b. For the
hyper-parameters in heuristic methods, we directly follow TDGIA (Zou et al., 2021). For SeqGIA,
we set Yy be min(0.2, | |V2|/2b]) and v, = min(| V|, Yax|Vax|b) by default.

G.5 SOFTWARE AND HARDWARE

We implement our methods with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019). We ran our experiments on Linux Servers with 40 cores Intel(R) Xeon(R) Silver
4114 CPU @ 2.20GHz, 256 GB Memory, and Ubuntu 18.04 LTS installed. One has 4 NVIDIA RTX

2080Ti graphics cards with CUDA 10.2 and the other has 2 NVIDIA RTX 2080Ti and 2 NVIDIA
RTX 3090Ti graphics cards with CUDA 11.3.

H DETAILED RESULTS OF ATTACK PERFORMANCE

H.1 FULL RESULTS OF AVERAGED ATTACK PERFORMANCE

In this section, we provide full results of averaged attack performance across all defense models, as
a supplementary for Table 3b.

31

Under review as a conference paper at ICLR 2022

Table 9: Full Averaged performance across all defense models

Model Cora' Citeseer ComputersJr Arxiv' Arxiv? Computersi Aminer* Reddit?
Clean 84.74 74.10 92.25 70.44 70.44 91.68 62.39 95.51
PGD 61.09 54.08 61.75 54.23 36.70 62.41 26.13 62.72
+HAO 56.63 48.12 59.16 45.05 28.48 59.09 22.15 56.99
MetaGIA 60.56 53.72 61.75 53.69 28.78 62.08 32.78 60.14
+HAO 58.51 47.44 60.29 48.48 24.61 58.63 29.91 54.14
AGIA 60.10 54.55 60.66 48.86 32.68 61.98 31.06 59.96
+HAO 53.79 48.30 58.71 48.86 29.52 58.37 26.51 56.36
TDGIA 66.86 52.45 66.79 49.73 31.68 62.47 32.37 57.97
+HAO 65.22 46.61 65.46 49.54 22.04 59.67 22.32 54.32
ATDGIA 61.14 49.46 65.07 46.53 32.08 64.66 24.72 61.25
+HAO 58.13 43.41 63.31 44.40 29.24 59.27 17.62 56.90
The lower is better. TN on-targeted attack. jFTargeted attack.
Table 10: Detailed results of non-targeted attacks on Cora (1)
EGuard+LNi+FLAG+LN EGuard+FLAG+LN EGuard+LNi+FLAG Guard+LNi+LN RGAT+FLAG+LN ‘GCN+LNi+FLAG+LN RobustGCN+FLAG RGAT+LN Guard+LN EGuard+FLAG
Clean 83.48 84.17 85.9 79.56 87.29 86.37 86.21 8520 8172 85.56
PGD 82.53 83.94 85.74 79.74 76.78 71.10 69.57 79.56 8l.44 85.35
+HAO 77.99 73.04 66.25 74.21 68.09 71.06 70.3 67.92 68.12 53.99
MetaGIA 82.68 83.96 85.86 79.51 75.18 69.72 69.4 78.04 8159 85.48
+HAO 69.49 65.92 66.83 63.02 66.38 71.86 76.8 57.75 55.35 56.77
AGIA 82.75 83.69 85.78 79.56 75.77 69.25 69.10 79.10 81.43 85.34
+HAO 75.25 69.10 61.00 70.12 65.48 69.86 71.08 6276 60.96 48.54
TDGIA 83.13 83.65 85.72 79.13 82.37 79.31 76.11 822 8137 85.39
+HAO 77.93 73.58 75.47 73.67 75.18 79.45 78.63 69.58 64.66 65.31
ATDIGA 82.57 83.54 85.39 79.38 78.76 76.09 73.08 79.8 8147 84.88
+HAO 74.43 71.88 71.21 66.97 72.51 76.87 76.17 60.61 62.38 63.53
AVG 79.29 77.86 77.74 74.99 74.89 74.63 74.22 7296 72.77 72.74

H.2 DETAILED RESULTS OF NON-TARGETED ATTACKS

In this section, we present the detailed non-targeted attack results of the methods and datasets used
in our experiments for Table 1. For simplicity, we only give the results of top 20 robust models
according to the averaged test accuracy against all attacks.

H.3 DETAILED RESULTS OF TARGETED ATTACKS

In this section, we present the detailed targeted attack results of the methods and datasets used in our
experiments for Table 2. For simiplicity, we only give the results of top 20 robust models according
to the averaged test accuracy against all attacks.

32

Under review as a conference paper at ICLR 2022

Table 11: Detailed results of non-targeted attacks on Cora (2)

RGAT+FLAG Guard+LNi RobustGCN GCN+FLAG+LN GCN+LNi+FLAG RGAT GAT+LNi+FLAG+LN Sage+LNi+FLAG+LN Guard GCN+LNi+LN
Clean 8721 8318 8463 85.86 86.36 85.74 86.55 84.95 83.61 8447
PGD 7693 8311 6320 62.55 60.68 79.28 61.29 61.84 83.08 5846
+HAO 6235 53.68 62.60 63.60 61.69 52.60 62.81 62.34 44.02 58.78
MetaGIA 75.14 83.08 63.53 59.18 60.36 77.97 57.88 61.01 83.61 58.10
+HAO 6153 5731 69.83 67.00 66.64 49.25 65.82 65.69 4541 61.94
AGIA 76.04 83.08 62.67 61.26 59.09 78.95 57.84 58.61 8344 57.05
+HAO 5717 4912 61.59 62.65 59.25 47.24 59.80 59.56 39.87 55.62
TDGIA 8202 8304 TL34 71.35 7347 8LT9 71.52 70.30 8344 70.69
+HAO 7052 67.04 73.38 73.52 75.00 56.95 71.96 71.56 50.79 7290
ATDIGA ~ 79.06 8285 66.96 69.61 65.89 79.91 65.57 63.81 83.07 6295
+HAO 6450 5513 70.30 72.46 7094 4218 69.26 67.59 4046 6553
AVG 7204 7097 6818 68.09 67.22 6653 66.39 66.11 65.53 64.23
Table 12: Detailed results of non-targeted attacks on Citeseer (1)
RGAT+LN RGAT+FLAG+LN EGuard+LNi+FLAG+LN Guard+LNi+LN RGAT EGuard+FLAG+LN RGAT+FLAG EGuard+LNi+FLAG EGuard+FLAG GCN+LNi+FLAG+LN
Clean 74.82 75.72 75.44 74.25 74.85 73.64 75.56 74.75 73.57 75.67
PGD 71.00 71.32 75.19 74.21 69.33 73.55 69.84 74.83 73.57 57.97
+HAO 71.00 70.82 66.07 73.04 69.05 61.55 65.78 50.01 47.54 58.77
MetaGIA 70.32 70.21 75.15 74.21 68.42 73.55 68.90 74.83 73.57 56.36
+HAO 70.37 69.77 64.00 71.25 68.04 59.94 63.10 49.70 46.95 57.17
AGIA 71.45 70.51 75.29 74.21 70.31 73.60 69.40 74.83 73.61 56.50
+HAO 71.80 70.70 64.54 70.58 70.24 59.32 62.31 50.33 46.77 58.02
TDGIA 72.29 73.81 75.26 74.21 70.99 73.55 73.34 74.85 73.57 63.01
+HAO T72.51 70.18 68.04 56.69 60.91 65.70 53.99 56.73 52.86 66.52
ATDIGA 72.23 72.82 75.12 74.21 70.61 73.55 72.37 74.82 73.54 61.55
+HAO 71.22 69.63 65.82 52.97 61.08 64.51 53.76 52.94 51.20 64.04
AVG 71.73 7141 70.90 69.98 68.53 68.41 66.21 64.42 62.43 61.42
Table 13: Detailed results of non-targeted attacks on Citeseer (2)
Guard+LN Guard+LNi RobustGCN+FLAG Guard GCN+LNi+FLAG Sage+LNi+FLAG+LN GAT+LNi+FLAG+LN RobustGCN GCN+LNi+LN Sage+LNi+FLAG
Clean 73.97 74.41 75.87 74.78 75.45 73.89 75.60 75.46 74.65 73.70
PGD 7407 7428 53.81 TAT0 4756 46.82 45.00 3977 40.69 40.11
+HAO 48.48 38.91 51.10 33.83 49.19 46.93 44.06 39.72 40.79 40.88
MetaGIA ~ 74.07 74.28 53.11 74.70 47.14 46.13 44.76 39.84 40.87 40.13
+HAO 4532 3898 50.85 33.95 49.03 16.42 44.08 39.79 41.02 40.90
AGIA 74.07 74.29 53.12 74.72 47.30 46.29 44.07 40.16 41.76 40.73
+HAO 43.47 41.04 50.88 36.51 49.61 47.28 45.66 41.53 42.32 42.82
TDGIA 74.07 74.28 55.01 74.76 49.47 47.06 41.08 37.94 40.68 36.21
+HAO 36.83 36.50 60.37 26.45 57.45 49.82 49.74 47.44 43.85 40.83
ATDIGA 74.07 74.21 54.95 74.72 45.09 41.89 36.24 34.65 32.10 31.17
+HAO 30.21 28.74 55.40 21.70 52.22 45.66 45.19 40.35 35.05 38.81
AVG 58.97 57.27 55.86 54.62 51.77 48.93 46.86 43.33 43.07 42.39

33

Under review as a conference paper at ICLR 2022

Table 14: Detailed results of non-targeted attacks on Computers (1)

EGuard+LNi+FLAG+LN Guard+LNi+LN EGuard+FLAG+LN Guard+LN RGAT+FLAG+LN RGAT+FLAG EGuard+LNi+FLAG Guard+LNi RGAT+LN RGAT

Clean 91.04 90.88 91.40 91.23 93.21 93.32 92.16 91.95 9320 93.17

PGD 90.94 90.87 91.41 91.24 81.59 80.19 88.24 87.93 79.68 79.05

+HAO 87.83 87.59 80.41 75.94 81.80 82.26 64.18 62.69 79.29 79.33

MetaGIA 90.94 90.87 91.41 91.24 81.58 80.18 88.23 8791 79.68 79.06

+HAO 90.25 90.21 90.11 88.32 81.64 81.72 78.11 7658 7920 T8.96

AGIA 90.98 90.90 91.40 91.22 78.09 76.59 88.25 87.86 76.62 7556

+HAO 86.02 85.77 75.97 71.49 77.55 78.17 63.96 6274 7523 7514

TDGIA 90.97 90.91 91.40 91.24 77.07 75.40 90.26 89.94 7594 TA.66

+HAO 90.42 90.34 90.35 89.00 77.12 76.61 74.58 7422 T5T1 TATT

ATDIGA 90.97 90.90 91.41 91.24 82.42 81.77 89.24 88.84 81.29 80.76

+HAO 84.60 83.93 74.38 69.33 82.97 83.50 69.92 6850 80.92 80.86

AVG 89.54 89.38 87.24 85.59 81.37 80.88 80.65 7992 7971 79.21

Table 15: Detailed results of non-targeted attacks on Computers (2)

GAT+FLAG+LN EGuard+FLAG Guard RobustGCN+FLAG GAT+LNi+FLAG+LN RobustGCN Sage+LNi+FLAG+LN GAT+LNi+FLAG GCN+LNi+FLAG+LN GAT+LNi+LN
Clean 92.17 91.68 91.55 92.46 92.40 92.24 91.71 92.45 93.22 92.05
PGD 82.31 85.82 84.91 73.27 77.91 67.14 63.83 67.61 54.96 52.20
+HAO 69.83 55.62 54.31 72.73 65.08 68.80 62.55 54.93 63.28 69.19
MetaGIA 82.31 85.81 84.91 73.28 77.91 67.14 63.83 67.62 54.96 52.21
+HAO 77.39 69.73 67.90 70.42 69.52 64.76 62.45 58.24 59.31 63.69
AGIA 79.60 86.08 85.21 71.95 75.01 66.01 60.72 64.25 52.34 50.69
+HAO 63.02 56.48 55.35 72.18 61.22 68.84 60.68 53.95 62.78 67.54
TDGIA 80.42 88.64 88.32 72.23 75.27 69.45 63.87 68.58 64.96 58.98
+HAO 79.19 69.75 68.76 71.39 70.84 69.11 63.72 63.45 66.56 65.81
ATDIGA 82.42 87.11 86.03 76.96 79.13 71.92 68.42 71.15 66.01 53.34
+HAO 60.74 61.46 58.81 76.79 64.38 74.26 68.33 57.90 72.34 73.82
AVG 77.22 76.20 75.10 74.88 73.52 70.88 66.37 65.47 64.61 63.59

Table 16: Detailed results of non-targeted attacks on Arxiv (1)

Guard+LNi+LN RGAT+LN RGAT+FLAG+LN EGuard+LNi+FLAG+LN EGuard+FLAG+LN Guard+LN RobustGCN+FLAG RobustGCN GCN+LNi+FLAG+LN Guard+LNi

71.15 70.95 70.84 69.50 69.46 69.76 67.85 67.50 71.40 70.99

PGD 71.11 66.57 66.61 69.28 69.24 69.62 60.60 60.81 55.99 70.26
68.68 66.68 66.60 61.05 61.02 58.92 62.99 62.89 60.02 47.84

MetaGIA 71.09 67.87 67.67 69.23 69.22 69.59 64.10 64.10 63.58 70.40
69.97 66.81 66.52 66.14 66.13 65.70 63.2 63.30 64.13 58.58

AGIA 70.97 65.22 64.46 68.23 68.17 68.57 59.26 59.23 57.26 64.60
63.57 57.02 56.60 58.27 58.20 57.73 60.77 60.72 61.50 58.08

TDIGA 71.02 67.54 67.28 68.37 68.33 68.72 63.70 63.56 61.01 65.63
64.31 61.61 60.99 59.73 59.74 58.33 63.08 63.30 62.81 53.04

ATDGIA 71.01 68.49 68.45 68.18 68.14 68.49 64.95 64.88 63.95 66.39
69.92 68.67 68.58 66.34 66.35 65.47 65.56 65.62 65.83 55.42

AVG 69.34 66.13 65.87273 65.85 65.82 65.54 63.28 63.26 62.50 61.93

34

Under review as a conference paper at ICLR 2022

Table 17: Detailed results of non-targeted attacks on Arxiv (2)

RGAT+FLAG ~ GCN+LNi+LN RGAT GCN+FLAG+LN ~ GAT+FLAG+LN EGuard+LNi+FLAG ~ GCN+LN EGuard+FLAG ~ GCN+LNi+FLAG GAT+LNi+FLAG+LN
70.63 7138 7077 70.00 70.28 69.37 7042 69.34 7131 71.00
PGD 66.49 5146 66.26 5421 57.44 68.04 5197 68.03 48.00 57.65
57.18 5840 5538 5551 59.16 37.02 5245 36.80 52.75 53.97
MetaGIA ~ 67.42 6288 67.68 5854 61.92 68.48 5704 6840 55.73 61.56
58.21 6335 57.05 59.65 51.65 50.32 5739 50.23 57.72 54.63
AGIA 63.75 5712 6449 4955 45.96 59.35 4854 59.25 54.55 49.14
5031 6129 49.36 5825 49.71 49.24 5724 49.20 58.10 48.78
TDIGA 6674 5891 66.95 5547 56.30 62.18 5239 62.10 48.86 52.58
47.88 6190 4559 59.20 49.44 45.08 5642 4491 54.68 47.80
ATDGIA 6797 6221 68.07 5861 63.36 62.73 55.26 62.67 54.19 58.50
60.82 6182 5932 62.69 57.51 16.94 59.50 4683 57.90 56.58
AVG 61.58 6152 60.99 5833 56.61 56.25 5624 56.16 55.80 55.65
Table 18: Detailed results of targeted attacks on Computers (1)
EGuard+LNi+FLAG+LN Guard+LNi+LN EGuard+FLAG+LN Guard+LN Guard+LNi EGuard+LNi+FLAG ~ RobustGCN+FLAG =~ RGAT+FLAG RGAT+FLAG+LN EGuard+FLAG
Clean 90.96 90.76 91.56 9111 9112 91.29 91.85 92.83 92.78 90.75
PGD 90.96 90.76 91.56 9111 89.38 80.54 72.36 72.17 74.28 88.36
+HAO 85.81 85.75 79.51 I 6501 64.15 72,58 74.40 74.08 56.50
MetaGIA 90.96 90.76 91.56 91.11 88.93 89.10 73.81 70.58 72.24 88.10
+HAO 85.83 85.69 78.46 72.61 65.62 65.53 73.50 72.10 72.00 56.12
AGIA 91.00 90.82 91.58 91.06 89.11 89.33 72.96 68.85 69.64 88.00
+HAO 85.72 85.71 79.50 74.28 64.71 63.90 73.12 72.61 72.22 56.18
TDGIA 90.96 90.76 91.56 91.11 89.15 89.36 72.06 72.42 72.58 87.75
+HAO 77.15 75.64 65.21 62.97 69.78 70.43 73.08 74.33 74.00 64.31
ATDIGA 90.96 90.76 91.56 91.11 88.99 89.22 75.15 75.68 73.32 88.43
+HAO 78.35 77.67 62.87 59.65 63.75 63.15 74.06 75.78 74.14 56.51
AVG 87.15 86.83 83.18 80.89 78.69 78.64 74.96 74.70 74.66 74.64
Table 19: Detailed results of targeted attacks on Computers (2)
Guard RobustGCN RGAT RGAT+LN GAT+FLAG+LN GAT+LNi+FLAG+LN GAT+LNi+FLAG GCN+LNi+FLAG+LN GAT+LNi+LN GCN+LNi+FLAG
Clean 9050 92.07 92.68 92.76 91.07 91.90 91.92 92.25 91.56 92.35
PGD 88.13 7040 7185 7265 77.69 75.25 72.57 63.08 58.46 60.79
+HAO 5496 70.76 7178 7140 71.03 66.01 62.46 66.01 70.49 64.17
MetaGIA 87.67 7L78 7044 7133 74.93 73.12 70.89 62.54 57.40 60.71
+HAO 5500 7161 70.21 70.35 69.56 64.82 62.58 64.81 67.57 63.04
AGIA 8757 7092 6836 6858 73.00 71.03 68.50 61.08 56.62 59.26
+HAO 54.80 7158 69.96 69.99 68.44 64.81 61.00 64.68 69.39 62.28
TDGIA 8721 69.86 7154 71.28 74.24 72.86 70.60 62.74 57.54 60.35
+HAO 61.62 7162 7139 7192 54.19 60.51 66.69 66.79 66.74 63.97
ATDIGA 87.85 7333 7439 7219 73.36 75.24 74.06 65.14 56.22 62.67
+HAO 5493 7253 7200 7149 62.03 63.19 62.14 68.50 73.15 66.06
AVG 7367 7331 7315 73.09 71.78 70.79 69.40 67.06 65.92 65.06

35

Under review as a conference paper at ICLR 2022

Table 20: Detailed results of targeted attacks on Arxiv (1)

Guard+LNi+LN EGuard+LNi+FLAG+LN Guard+LNi

EGuard+FLAG+LN EGuard+LNi+FLAG ~ Guard+LN EGuard+FLAG Guard

RobustGCN+FLAG ~ RGAT

71.34 71.22 71.22 69.59 70.59 69.78 68.88 69.41 67.28 67.03
PGD 71.31 71.16 71.16 69.47 70.47 69.69 68.69 69.19 39.91 39.13
69.38 65.69 33.78 47.41 29.12 38.00 14.31 13.94 36.12 36.06
MetaGIA 71.03 71.22 70.53 69.59 70.59 69.78 68.84 69.28 42.56 41.81
42.56 48.06 33.94 31.84 34.94 26.75 20.34 18.28 38.66 38.44
AGIA 71.06 70.94 70.19 69.25 67.72 69.38 64.38 63.66 39.94 39.47
38.56 37.22 35.06 24.63 35.31 22.09 16.19 14.09 42.53 42.56
TDIGA 71.00 71.16 69.78 68.97 68.22 69.41 66.09 66.12 41.25 41.31
38.72 34.19 38.78 23.41 33.94 20.78 17.66 16.06 38.38 38.28
ATDGIA 71.06 70.88 70.56 69.19 69.03 69.56 66.09 66.19 44.06 43.75
68.97 61.03 37.88 41.69 33.69 34.25 19.16 17.28 39.03 38.84
AVG 62.27 61.16 54.81 53.19 53.06 50.86 44.60 43.95 42.70 4243

Table 21: Detailed results of targeted attacks on Arxiv (2)

RobustGCN RGAT+LN RGAT+FLAG+LN GCN+LNi+FLAG RGAT+FLAG GCN+LNi+LN GCN+LNi

GCN+LNi+FLAG+LN GAT+LN GAT+FLAG+LN

67.69 72.06 71.41 71.34 71.16 71.97 71.59 T1.75 69.94 69.94
PGD 38.66 40.31 38.06 32.19 37.78 29.09 29.97 29.72 36.34 38.84
37.22 37.06 34.28 32.75 23.69 28.91 29.56 29.28 28.88 3047
MetaGIA 35.00 42.56 41.28 30.28 41.03 28.91 28.59 28.50 16.00 14.84
33.22 34.09 32.53 30.03 27.81 27.50 27.97 27.47 19.44 21.50
AGIA 41.06 42.12 42.06 32.53 39.75 33.09 32.56 31.84 23.84 21.12
41.97 23.84 23.66 35.19 23.03 34.03 3447 34.25 16.97 14.94
TDIGA 44.28 43.84 43.91 36.31 42.12 36.34 35.12 36.16 27.38 24.50
40.81 32.38 31.50 39.47 28.31 38.50 38.62 37.91 27.56 29.28
ATDGIA 43.12 44.34 44.22 34.47 41.91 33.53 33.44 33.28 31.06 24.19
37.97 39.00 37.84 33.84 30.19 30.53 30.47 30.59 30.28 33.69
AVG 41.91 41.05 40.07 37.13 36.98 35.67 35.67 35.52 29.79 29.39
Table 22: Detailed results of targeted attacks on Aminer (1)

EGuard+LNi+FLAG ~ EGuard+LNi+FLAG+LN Guard+LNi Guard+LNi+LN EGuard+FLAG ~ Guard ~ RGAT+FLAG Guard+LN EGuard+FLAG+LN RGAT

59.03 58.06 60.72 60.85 57.06 57.25 61.75 58.50 58.81 62.78

PGD 55.25 48.47 56.31 49.40 53.03 53.16 41.84 49.72 48.31 40.72
39.06 39.47 37.03 39.40 35.16 34.62 33.53 29.69 29.97 31.75

MetaGIA 52.09 50.66 52.35 49.81 49.03 48.97 46.19 48.34 47.59 45.81
42.09 45.16 40.26 43.42 37.00 37.09 41.47 36.88 36.62 41.12

AGIA 54.06 48.00 54.82 48.17 51.28 51.34 48.72 48.78 47.59 48.25
26.44 29.94 23.25 28.08 19.84 18.97 26.50 23.19 24.06 25.78

TDIGA 52.75 46.72 53.68 46.92 50.75 50.87 42.50 47.66 46.28 40.81
24.31 28.91 18.54 26.07 16.12 15.06 24.00 19.69 20.66 22.5

ATDGIA 53.44 51.00 53.69 49.32 50.34 50.50 45.44 49.97 49.59 45.25
38.19 42.66 35.93 41.07 33.72 33.72 36.72 31.91 31.69 35.94

AVG 45.16 44.46 44.23 43.86 41.21 41.05 40.79 40.39 40.11 40.06

Table 23: Detailed results of targeted attacks on Aminer (2)

RGAT+FLAG+LN ~ GCN+LNi#+FLAG+LN ~ RGAT+LN Sage+LNi+FLAG+LN ~ GCN+LNi+FLAG ~ GON+LNi+LN Sage+LNi+LN GAT+LNi+LN GAT+LN+FLAG+LN Sage+LNi+FLAG
62.66 64.41 63.78 65.56 63.91 66.88 65.44 66.97 65.78 64.34
PGD 31.97 28.03 29.75 26.22 26.81 22.65 23.78 17.00 16.66 22.03
29.06 28.16 27.06 26.44 26.81 23.17 23.88 17.58 16.53 22.06
MetaGIA 41.38 41.12 40.78 37.56 36.72 38.17 36.56 38.40 37.31 31.25
39.62 42.16 38.03 37.38 36.03 37.89 36.03 37.60 37.31 31.12
AGIA 38.34 34.62 37.47 31.94 33.97 31.21 31.31 29.96 29.62 29.50
28.19 29.03 27.06 27.19 28.00 27.14 26.31 22.00 21.09 25.25
TDIGA 30.47 28.44 28.25 24.41 24.97 20.85 22.19 15.39 15.16 20.56
27.12 27.53 24.97 24.56 24.84 22.19 22.22 15.75 14.03 20.16
ATDGIA 39.28 36.62 38.03 33.38 32.09 32.44 32.47 34.83 35.12 27.62
32.66 37.72 31.50 31.87 31.78 32.00 30.72 33.97 33.06 26.12
AVG 36.43 36.17 35.15 33.32 33.27 32.24 31.90 29.95 29.24 29.09

36

Under review as a conference paper at ICLR 2022

Table 24: Detailed results of targeted attacks on Reddit (1)

Guard+LNi+LN

RobustGCN RobustGCN+FLAG

Guard+LNi

Guard+LN

EGuard+LNi+FLAG+LN

EGuard+FLAG+LN

Sage+LNi+FLAG+LN

Guard

EGuard+FLAG

94.47 95.08 95.30 94.42 94.61 94.61 94.60 97.10 94.05 94.08
PGD 92.91 84.81 83.84 93.03 92.69 92.69 92.53 76.25 92.44 92.72
80.03 86.12 84.94 75.53 68.53 69.31 69.34 75.25 56.44 58.03
MetaGIA 93.53 88.25 87.22 93.28 93.38 93.66 93.59 80.72 92.40 92.88
77.47 90.06 90.44 69.91 65.28 68.00 68.34 83.62 46.75 48.59
AGIA 93.62 86.09 87.84 92.84 93.16 92.78 92.69 81.59 92.19 91.31
88.66 85.06 87.84 85.34 83.09 77.06 77.31 72.19 78.16 67.06
TDIGA 93.03 90.19 89.91 92.25 92.59 92.91 92.53 80.94 91.25 91.59
86.03 89.06 88.91 80.38 78.69 81.56 81.25 79.78 64.09 66.62
ATDGIA 93.34 87.34 84.91 92.38 92.69 93.97 93.81 76.53 91.62 93.00
90.78 88.84 88.38 87.94 88.06 79.44 79.25 78.66 80.69 63.22
AVG 89.44 88.26 88.14 87.03 85.71 85.09 85.02 80.24 80.01 78.10
Table 25: Detailed results of targeted attacks on Reddit (2)
EGuard+LNi+FLAG Sage+LNi+LN GAT+LNi+FLAG+LN Sage+FLAG+LN Sage+LN GAT+LNi+LN GAT+FLAG+LN GAT+LN Sage+LNi+FLAG GCN+LNi+FLAG+LN
94.07 97.10 95.19 97.13 97.11 95.37 94.49 94.77 97.09 95.84
PGD 92.69 74.94 75.91 67.47 63.75 70.38 73.53 78.12 57.16 71.28
58.12 73.91 79.59 67.72 64.72 72.91 78.16 76.47 56.62 70.91
MetaGIA 92.84 78.63 68.16 84.03 82.53 67.28 59.91 62.94 65.69 62.13
48.69 80.56 78.84 80.06 76.59 75.22 74.34 66.12 69.59 59.66
AGIA 91.31 69.50 59.53 62.66 57.19 51.75 43.22 50.28 67.88 59.28
66.97 58.47 74.19 51.16 49.19 51.12 72.91 46.19 55.75 52.53
TDIGA 91.59 78.09 73.12 74.00 68.62 70.34 64.81 73.00 65.28 58.84
66.41 77.22 73.91 75.72 71.75 69.72 64.75 67.97 65.44 58.09
ATDGIA 93.03 73.31 64.25 68.44 63.59 64.53 53.66 57.91 65.12 62.34
63.34 73.78 72.53 69.62 65.00 65.22 62.97 65.50 63.66 57.97
AVG 78.10 75.96 74.11 72.55 69.09 68.53 67.52 67.21 66.30 64.44

37

