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APPENDIX

A ADDITIONAL RELATED WORK

For a comprehensive overview of transfer learning, please see the surveys of Zhuang et al. and Pan &
Yang. Here, we discuss a few directly works directly relevant to our own.

Recently, Kumar et al. demonstrated that learning probing prior to fine-tuning (e.g., LP+FT) can
improve both in-distribution and out-of-distribution performance when transferring to a downstream
task given a highly expressive, pretrained model. They demonstrated that FT only modifies features
in the ID representation subspace and not in other directions, which can lead higher OOD error as
direction outside the ID subspace are necessary for OOD generalization. However, by initializing
FTwith a trained linear probe, feature distortion can be decreased since this initialization is closer
to optimal model, and thus requires less distortion in ID subspace, preserving the expressiveness of
the original model. Concurrently, Kirichenko et al. demonstrated that models are able to learn both
core features and spurious features. However, classifiers can rely upon spurious features, harming
performance on minority groups. To reduce the reliance on spurious features, they propose to retrain
the classifier on a small amount of “re-weighting” data, that allows the model to leverage the core
features instead of the spurious features.

Other modifications and heuristics have also been proposed to improve fine-tuning, including side-
tuning (Zhang et al., 2019), which tunes a small secondary network that is then combined with the
original model, using larger/smaller learning rates for the classifier, as well as regularization-based
methods (Jiang et al., 2020). We focus on the LP+FT protocol, as it is principled and achieves strong
OOD performance.

Additionally, several works have studied properties of the model that influence the effectiveness of
transfer learning (Azizpour et al., 2016; Huh et al., 2016; Kornblith et al., 2019; Lee et al., 2023a;
Evci et al., 2022; Lee et al., 2023b; Izmailov et al., 2022; Lubana et al., 2023; Rame et al., 2022),
including the robustness of pretrained features (Salman et al., 2020; Utrera et al., 2021). While
the connection between adversarial training and improved feature representations (Allen-Zhu & Li,
2021; Kaur et al., 2019) has been studied, we use virtual adversarial training during LP to learn a
better classifier that is less reliant upon simple features, and we do not use an adversarially trained
feature extractor. Finally, we note that while we are, to the best of our knowledge, the first to consider
this holistic evaluation of safety and generalization in the context of transfer learning with highly
expressive pretrained models, Hendrycks et al. have considered the trade-offs induced by different
data augmentation strategies (Yun et al., 2019; Devries & Taylor, 2017; Hendrycks et al., 2020;
Cubuk et al., 2019; 2020) on safety metrics in supervised learning. We emphasize that while our
evaluation is similar, that our work focuses on a different context and contains an additional layer of
complexity as we consider the interaction between adaptation protocols, generalization behavior and
safety performance.

B EXPERIMENTAL DETAILS

Please see the https://github.com/pujacomputes/23-ICLR-Adaptation.git for training details. In brief,
we performed grid-search to find the best parameters, which are as follows. For CIFAR-10 and
CIFAR-100, we train only the classifier for 200 epochs with LR=30 during LP. For F T, the entire
model is trained for 20 epochs with LR=1e-5. For LP+FT, the model’s classifier is initialized with
the solution found by LP, and then it is fine-tuned for 20 epochs. A grid-search was conducted to
determine the LR for LP and FT. For Domain-Net Experiments, we use 200 epochs with LR=30
during LP. For FT, the entire model is trained for 20 epochs with LR=3e-4. For LP+F T, the model’s
classifier is initialized with the solution found by LP, and then it is fine-tuned for 20 epochs, using
LR=3e-7. Furthermore, following Kumar et al., we freeze the batchnorm layers during LP+FT. A
CLIP (Radford et al., 2021) pretrained ResNet-50 is used for the DomainNet experiments, while a
MoCoV?2 (He et al., 2020) is used for all CIFAR experiments. We use augmentation functions from
timm (Wightman, 2019) and compute CKA scores using the packaged provided by torch-cka. When
using augmented protocols, the same LRs are used. Note, all results were obtained by averaging over
3 seeds. We consider model soups of sizes 5,10,20, tune € in 0.005, 0.01, 0.02 and 0.1 for UDP, and
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ain 0.001, 0.01, 0.1 for VAT. For CIFAR-MNIST results, LP is done for 100 epochs, and FT is done
for 20 epochs.

B.1 MOTIVATION FOR HARDNESS-PROMOTING VARIANTS

We selected UDP (Pagliardini et al., 2022), VAT (Miyato et al., 2017), and model-soups (Wortsman
et al., 2022) as simplicity bias mitigation strategies due to their effectiveness and ease of use. We
emphasize, however, that our findings are not specific to the choice of a given mitigation strategy and
we expect that advancements in such strategies will further improve the effectiveness of our proposed
LP+FTvariants. At present, the selected strategies are strong, representative mitigations that we have
confirmed are effective at mitigating simplicity bias in the adaptation context using the synthetic
dominoes dataset in Sec. 4.

We conceptually justify each strategy here:

» UDP is designed to help mitigate simplicity bias by learning by a large margin classifier,
opposed to a narrow margin classifier that relies upon simple features. As noted by Shah et al.
(2020), such narrow margin classifiers are sensitive to small perturbations and the simple
features supporting the decision boundary may not be discriminative under distribution
shifts. By maximizing uncertainty (instead of loss) to create adversarial perturbations, UDP
is able to learn a maximum-margin classifier that is better able to handle such shifts. Notably,
to create such a maximum-margin classifier, the model will necessarily learn more complex
features;

* We use virtual adversarial training (VAT) to help avoid reliance upon simple features, as
VAT enforces distribution smoothness so that classifiers become robust in some epsilon
neighborhood around the input. We note that we are performing this training in the hidden
representation space, so perturbations correspond may be altering high-level semantics. To
maintain strong performance under such high-level perturbations, the model should learn to
rely upon more complex features, and learn a better margin classifier;

* We use model-soups so that we may learn a set of classifiers that rely upon disjoint sets
of features. By learning a set of diverse classifiers, we are able to average classifiers that
have learned to rely upon different features, instead of becoming overly reliant upon a single
simple feature. In future work, we intend to build a theoretical framework that helps us
better justify these interventions and create new ones.

B.2 APPLYING SIMPLICITY BIAS MITIGATION STRATEGIES TO FINE-TUNING STEP.

To demonstrate that simplicity bias mitigation
strategies must be applied during the LP step of
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the synthetic dominoes dataset. We plot the

results for Randomized OOD Accuracy in Fig. Figure 6: Applying Mitigation Strategies to FT.
6. We create F'T variants of our LP mitigation strate-
gies and evaluate them on the synthetic dominoes
dataset. We see that F'T variants lose performance
with respect to LP variants, indicating that inter-
ventions must be undertaken during the LP step as
originally proposed.

Results. Here, we see that, across three differ-
ent correlation ratios, F'T variants lose perfor-
mance with respect to the LP mitigation variants.
Notably, LP+ F'T (UDP) loses up to 4% perfor-
mance with respect to LP(UDP)+ F'T. While per-
formance drops are not as large for VAT, we
nonetheless see that LP+ FT(VAT) loses performance with respect to LP(VAT)+ FT.

Our results in Fig. 6 support our conceptual argument that mitigation strategies must be undertaken
during the LP step to ensure that subsequent FT is in a direction that preserves complex features;
applying mitigation strategies during FT may be too late to avoid simplicity bias. We note that
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applying mitigation strategies during F T, in addition to LP, may further improve performance, and
we will add these variants in the final version. We did not include a F T soup variant as it would be
prohibitively expensive to train and average large soups of entire models (instead of classifiers). This
highlights the computational efficiency of implementing mitigation strategies in the LP step itself.

C ADDITIONAL RESULTS

Below, we include results corresponding to different hyperparameters (number of souped classifiers,
« for vat, and § for udp).

Generalization Robustness Calibration Anomaly Detection Rep. Similarity
Protocol D 00D ¢ C Adv. D ¢ C 0O0D. Out-of-Class D

Acc. Acc. Acc. Acc. Acc. I-RMS [-RMS [-RMS [-RMS AUROC CKA
LP | 09138 0.8190 0.6912 0.6553 0.0003 09595 0.8303 0.8142 0.8696 0.6206 1.0000
LP+ soup-5 09108 0.8348 0.7007 0.6678 0.0002 0.9748 0.8943 0.8835 0.9108 0.8463 1.0000
LP+ soup-10 0.9129 0.8359 0.6985 0.6652 0.0003 0.9669 09104 0.8956 0.9205 0.8713 1.0000
LP+ soup-20 0.9052 0.8353 0.6917 0.6588 0.0003 0.9605 0.9205 0.9037 0.9364 0.8859 1.0000
LP+ udp-0.005 09129 0.8332 0.7015 0.6702 0.0003 0.9729 0.8879 0.8817 0.9017 0.8708 1.0000
LP+ udp-0.01 0.9033 0.8356 0.6948 0.6643 0.0003 0.9689 09111 0.9023 0.9277 0.9033 1.0000
LP+ udp-0.02 0.8885 0.8281 0.6796 0.6492 0.0004 0.9655 0.9259 0.9142 0.9473 0.9217 1.0000
LP+ udp-0.1 0.8573 0.8005 0.6290 0.6064 0.0007 0.9245 0.9235 09143 0.9531 0.8570 1.0000
LP+ vat-0.001 0.9189 0.8276 0.6945 0.6606 0.0006 0.9714 0.8564 0.8442 0.8927 0.7159 1.0000
LP+ vat-0.01 0.8977 0.8251 0.6742 0.6483 0.0002 0.9265 0.9255 0.9139 0.9375 0.7200 1.0000
FT | 0.9539 0.8754 0.7434 0.7553 0.0231 09668 0.8364 0.8453 0.9232 1.0000 0.6831
LP+FT ‘ 0.9442 0.8678 0.6921 0.6790 0.0018 0.9521 0.7849 0.7721 0.8864 0.6511 0.7853
(LP+soup-5) +F'T 0.9466 0.8832 0.6997 0.6861 0.0001 0.9639 0.8197 0.8051 0.9155 0.9020 0.7603
(LP+soup-10) +FT 0.9467 0.8857 0.7022 0.6907 0.0001 0.9660 0.8307 0.8182 0.9184 0.9161 0.7671
(LP+soup-20) +F T 0.9466 0.8892 0.7031 0.6931 0.0001 0.9678 0.8390 0.8287 0.9216 0.9265 0.7806
(LP+udp-0.005) +FT | 0.9458 0.8864 0.6962 0.6893 0.0005 0.9643 0.8127 0.8110 0.9119 0.9180 0.7742
(LP+udp-0.01) +FT 0.9450 0.8869 0.7048 0.6977 0.0004 0.9642 0.8335 0.8311 0.9209 0.9419 0.7746
(LP+udp-0.02) +F'T 0.9440 0.8848 0.7028 0.6986 0.0004 0.9670 0.8472 0.8476 0.9237 0.9559 0.7764
(LP+udp-0.1) + FT | 0.9435 0.8836 0.6959 0.6952 0.0000 0.9676 0.8449 0.8525 0.9355 0.9651 0.7382
(LP+vat)+FT 0.9611 0.8900 0.7442 0.7321 0.0027 0.9294 0.8355 0.8281 0.9178 0.8276 0.7839

Table 6: CIFAR10, Hardness-Promoting Augmentations.

Generalization Robustness Calibration Anomaly Detection Rep. Similarity
Protocol D 00D ¢ C Adv. D [¢ C 0O0D. Out-of-Class D

Acc. Acc. Acc. Acc. Acc. I-RMS [-RMS [-RMS [-RMS AUROC CKA
LP | 0.9521 0.8124 0.7010 0.7378 0.2350 0.9313 0.8693 0.8802 0.9117 0.9907 1.0000
LP+ udp-0.005 09524 0.8114 0.7012 0.7379 0.2337 0.9304 0.8699 0.8806 0.9108 0.9907 1.000
LP+ udp-0.01 0.9524 0.8110 0.7017 0.7382 0.2353 0.9308 0.8691 0.8801 09118 0.9908 1.000
LP+ udp-0.02 0.9500 0.8126 0.7036 0.7387 0.2373 09343 0.8621 0.8763 0.9135 0.9913 1.000
LP+ udp-0.1 0.9459 0.8165 0.6840 0.7220 0.2339 0.9032 0.8243  0.8427 0.8990 0.9882 1.000
LP+ soup-5 0.9439 0.7996 0.6874 0.7290 0.2451 0.8806 0.7868 0.8094 0.9064 0.9897 1.0000
LP+ soup-10 0.9373  0.7904 0.6767 0.7220 0.2547 0.8496 0.7478 0.7709 0.8841 0.9887 1.0000
LP+ soup-20 0.9298 0.7841 0.6601 0.7082 0.2575 0.8056 0.7084 0.7305 0.8274 0.9867 1.0000
LP+ vat-0.001 ‘ 0.9524 0.8122 0.7010 0.7379 0.2345 0.9299 0.8682 0.8791 0.9103 0.9907 1.0000
FT | 09518 0.7168 0.7011 0.7164 0.1563 0.8873 0.9019 0.8604 0.9295 0.9794 0.7847
LP+FT | 0.9643 0.8261 0.7426 0.7671 02135 09782 09472 0.9451 0.8742 0.9924 0.9887
(LP+udp-0.005) +FT | 0.9627 0.8243 0.7434 0.7666 0.2153 09811 0.9456 0.9445 0.8736 0.9922 0.98950
(LP+udp-0.01) +FT 0.9627 0.8253 0.7436 0.7669 0.2133 0.9812 0.9454 0.9447 0.8737 0.9923 0.98957
(LP+udp-0.02) +£T | 0.9637 0.8265 0.7448 0.7681 0.2157 0.9768 0.9464 0.9467 0.8757 0.9927 0.98927
(LP+udp-0.1) +FT 0.9614 0.8249 0.7499 0.7689 0.2165 0.9808 0.9441 0.9420 0.8711 0.9912 0.9861
(LP+soup-5) + FT 0.9608 0.8163 0.7456 0.7684 0.1855 0.9760 0.9498 0.9492 0.8678 0.9936 0.98540
(LP+soup-10) + FT 0.9580 0.8114 0.7445 0.7678 0.1753 0.9838 0.9503 0.9488 0.8748 0.9938 0.98360
(LP+soup-20) + F'T 0.9594 0.8165 0.7450 0.7684 0.1782 0.9893 0.9503 0.9490 0.8609 0.9936 0.98190
(LP+vat-0.001) +FT | 0.9647 0.8247 0.7425 0.7650 0.2224 09727 09521 0.9463 0.8775 0.9925 0.9370

Table 7: Living17, Hardness-Promoting Augmentations
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Generalization Robustness Calibration Anomaly Detection  Rep. Similarity
Protocol ID OOD  Sketch-C = Real-C ~ Adv. D Sketch-C  Real-C ~ OOD. Out-of-Class ID

Acc. Acc. Acc. Acc. Acc. 1-RMS 1-RMS I-RMS 1-RMS AUROC CKA
LP 0.8913 0.8013  0.6019  0.6020 0.1768 0.9638  0.9264  0.9045 0.9014 0.8679 1.0000
LP+augmix 0.8897 0.7998  0.6336  0.6104 0.1872 0.9718  0.9230  0.9263  0.9083 0.8818 1.0000
LP+autoaug 0.8944 0.8057 0.6419  0.6257 0.1857 0.9614 0.9357 0.9309 0.9022 0.8849 1.0000
LP+randaug 0.8971 0.8090  0.6392  0.6232 0.1877 0.9559  0.9321  0.9312 0.9036 0.8875 1.0000
LP-+vat 0.8836 0.7914  0.5893  0.5963 0.1687 0.8897  0.9552  0.8905 0.9178 0.8735 1.0000
FT 0.7613 04522 05186 0.2744 04164 0.8368  0.6379  0.7234  0.5597 0.8841 0.6092
FT+augmix 0.8246 0.5233  0.5911  0.3408 0.4802 0.9308  0.8042  0.8665 0.6761 0.9255 0.5272
FT+autoaug 0.7786 0.5161 0.5561 0.3160 04313 0.9157 0.7485 0.8246  0.7324 0.9231 0.7025
FT+randaug 0.7823 0.5370  0.5610  0.3298 0.4551 0.9160 0.7970  0.8682 0.7444 0.9318 0.6477
LP+FT 0.8985 0.7990  0.6343 0.5979 0.1927 0.9566 0.8899 0.8445 0.8024 0.9022 0.9222
LP+(F T+augmix) 0.9047 0.8081  0.6673  0.5980 0.2597 0.9768  0.9200  0.9067 0.8443 0.9155 0.8811
LP+(F T+autoaug) 0.9023 0.8028 0.6571  0.5851 0.2354 0.9830  0.9249  0.8990 0.8484 0.9034 0.9096
LP+(FT+randaug) 0.9054 0.8099  0.6703 0.6152  0.2489 0.9786 0.9194 0.9044 0.8598 0.9252 0.9000
(LP+vat) +FT 0.9048 0.8009  0.6466  0.6131 0.1942 0.9686  0.8911  0.8428 0.7985 0.9204 0.9370
(LP+vat) +(FT+augmix) | 0.9032 0.8024  0.6589  0.5896 0.2525 0.9769 0.9169 0.8929 0.8384 0.9212 0.8673
(LP+vat)+(F T+autoaug) | 0.9003 0.8049  0.6600  0.5862 0.2331 0.9783  0.9178  0.9000 0.8381 0.9149 0.9244
(LP+vat)+(F T+randaug) | 0.9006 0.8060  0.6651  0.5894 0.2622 0.9762  0.9197  0.8993 0.8414 0.9238 0.8956

Table 8: DomainNet, Diversity Promoting Augmentations and Generalization Trade-offs.

Generalization Robustness Calibration Anomaly Det. Rep. Similarity
D 00D C C Adv. D (¢ C 0OD.  Out-of-Class D
Protocol
Acc. Acc. Acc. Acc. Acc. I-RMS  1-RMS 1-RMS 1-RMS AUROC CKA
LP 0.9297 0.9083 0.8532 0.7491 0.7077 0.9794 0.9006 0.9007 0.9301 0.9623 0.0668
LP+ soup-5 0.9220 09151 0.8315 0.7432 0.7050 0.9598 0.9232 0.9279 0.9623 0.9665 0.1399
LP+ soup-10 09156 09135 0.8183 0.7344 0.6985 0.9476 0.9221 0.9271 0.9732 0.9602 0.1778
LP+ soup-20 0.9069 0.9064 0.8065 0.7216 0.6885 0.9279 0.9129 09191 09714 0.9484 0.2617
LP+ udp-0.005 0.9299 0.9092 0.8533 0.7494 0.7079 0.9794 0.9009 0.9003 0.9312 0.9614 0.0822
LP+ udp-0.01 0.9298 0.9097 0.8535 0.7495 0.7083 0.9795 0.9007 0.9006 0.9316 0.9616 0.0880
LP+ udp-0.02 0.9294 09108 0.8538 0.7497 0.7088 0.9789 0.9012 0.9014 0.9335 0.9631 0.1017
LP+ udp-0.1 0.9238 0.9218 0.8377 0.7488 0.7111 0.9801 09154 0.9216 0.9517 0.9645 0.1478
LP+ vat-0.001 0.9298 0.9091 0.8533 0.7493 0.7078 0.9801 0.9014 0.9012 0.9325 0.9614 0.0784
LP+ vat-0.01 0.9295 0.9094 0.8531 0.7494 0.7080 0.9800 0.9039 0.9040 0.9342 0.9632 0.0837
LP+ vat-0.1 0.9275 09106 0.8493 0.7481 0.7087 0.9581 0.9191 0.9246 0.9589 0.9598 0.1528
FT ‘ 0.9724 0.8761 0.9218 0.8131 0.8074 0.9577 0.8429 0.8418 0.8855 0.9138 0.9317
LP+FT ‘ 0.9692 0.9387 09195 0.8106 0.7736 0.9451 0.8034 0.7743 0.9026 0.8949 0.5349
(LP+soup-5) +F'T 0.9685 0.9417 0.9210 0.8136 0.7787 0.9385 0.8079 0.7765 0.9102 0.8974 0.5315
(LP+soup-10) +FT | 0.9681 0.9411 0.9220 0.8178 0.7824 0.9382 0.8119 0.7796 0.9072 0.8933 0.5521
(LP+soup-20) +FT | 0.9677 0.9395 0.9213 0.8164 0.7837 0.9385 0.8107 0.7817 0.9070 0.8964 0.5411
(LP+udp-0.005) +F'T | 0.9677 0.9297 09142 0.8104 0.7710 0.9422 0.8024 0.7718 0.8942 0.8916 0.6428
(LP+udp-0.01) +FT | 0.9677 0.9359 0.9195 0.8098 0.7721 0.9417 0.8029 0.7732 0.9019 0.8999 0.4239
(LP+udp-0.02) +FT | 0.9687 0.9349 0.9195 0.8136 0.7724 0.9437 0.8067 0.7736  0.8994 0.8981 0.5015
(LP+udp-0.1) +FT | 0.9688 0.9423 0.9242 0.8174 0.7811 0.9408 0.8130 0.7815 0.9072 0.9064 0.4496
(LP+vat-0.00)+FT | 0.9681 0.9366 0.9180 0.8111 0.7727 0.9422 0.8033 0.7732 0.9013 0.8962 0.5904
(LP+vat-0.0)+FT | 0.9689 0.9366 0.9168 0.8121 0.7766 0.9455 0.8062 0.7791 0.9013 0.8918 0.5687
(LP+vat-0.1)+FT 0.9692 0.9402 0.9207 0.8127 0.7743 0.9420 0.8068 0.7734  0.9083 0.8978 0.4398

Table 9: CIFAR10 with Resnet101/SimCLR Pretrained Model. We see that with a larger model,
and different pretraining method, our proposed variants still have some benefits. We note that the
baseline performance is also improved as a result of a more larger pretrained model.
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