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ABSTRACT

The success of autoregressive transformer models with discrete tokens has in-
spired quantization-based approaches for continuous modalities, though these of-
ten limit reconstruction quality. We therefore introduce SALAD, a per-token
latent diffusion model for zero-shot text-to-speech, that operates on continuous
representations. SALAD builds upon the recently proposed expressive diffusion
head for image generation, and extends it to generate variable-length outputs. Our
approach utilizes semantic tokens for providing contextual information and de-
termining the stopping condition. We suggest three continuous variants for our
method, extending popular discrete speech synthesis techniques. Additionally, we
implement discrete baselines for each variant and conduct a comparative analysis
of discrete versus continuous speech modeling techniques. Our results demon-
strate that both continuous and discrete approaches are highly competent, and that
SALAD achieves a superior intelligibility score while obtaining speech quality
and speaker similarity on par with the ground-truth audio.

1 INTRODUCTION

Autoregressive (AR) modeling is often correlated with discrete representations, probably due to
the remarkable success of Large Language Models (LLMs), which operate on a discrete modality.
(Vaswani et al., 2017; Radford et al., 2019). Inspired by the success of LLMs, continuous modalities,
such as audio and images, are quantized to be modeled discretely. In image generation, quantization
is often achieved by discrete autoencoders (Van Den Oord et al., 2017), which are later optimized
with adversarial losses to improve fidelity (Esser et al., 2021). Works that focus on audio generation
usually employ Residual Vector Quantization (RVQ) (Zeghidour et al., 2021), a process that itera-
tively refines the approximation by quantizing the residual. The resulting discrete codes are used for
discrete AR modeling (Esser et al., 2021; Wang et al., 2023; Copet et al., 2024).

Discrete modeling over continuous domains requires quantization, which degrades the reconstruc-
tion quality and upper-bounds the fidelity. Using multiple RVQ quantizers enhances the fidelity, but
the fine RVQ codes might quantize noise, which can be detrimental for discrete modeling methods.
Discrete autoencoders may also suffer from low codebook utilization (Mentzer et al., 2023), and
multimodal models that work on discrete representation suffer from stability issues (Team, 2024).
We therefore suspect that quantizing inherently continuous modalities may be sub-optimal, and fo-
cus on continuous alternatives instead.

Predicting continuous distributions with regression losses such as L1 or L2, induce a unimodal
distribution, an unrealistic assumption for most generative tasks. We hypothesize that multimodal
distributions, which enable multiple local maxima, can represent more complex patterns and is cru-
cial for generative one-to-many tasks. Recent works in image generation have explored approaches
to modeling continuous distributions. GIVT (Tschannen et al., 2023) represents the continuous dis-
tribution using a Gaussian Mixture Model, while AR-Diffusion (Li et al., 2024) suggests a per-token
diffusion head to model the continuous frame distributions.

We suggest SALAD (Speech synthesis with Autoregressive LAtent Diffusion), a per-token latent
diffusion model for zero-shot speech synthesis over continuous representations, inspired by the per-
token diffusion head suggested by Li et al. (2024). We enable the generation of variable length
outputs, addressing a challenge that is absent in image generation methods, where the number of
tokens to generate is fixed. We utilize semantic tokens (Kharitonov et al., 2023; Borsos et al., 2023a)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Continuous vs. discrete modeling

– quantized embeddings of a self-supervised model – for contextual information and to define the
generation-stopping condition. SALAD does not rely on text-audio alignment, which makes it
easier to leverage large data sources, and can synthesize audio based on a target speaker using a
three-second speaker prompt. We propose three variants for SALAD:

1. T2A (Text2Acoustic): predicts acoustic features directly from text, using semantic tokens
as an auxilary task.

2. S2A-AR (Semantic2Acoustic Autoregressive): predicts acoustic features from semantic to-
kens by next-token prediction.

3. S2A-NAR (Semantic2Acoustic Non-Autoregressive): predicts acoustic features from se-
mantic tokens using a MaskGIT (Chang et al., 2022) schedule.

For each of our continuous variants, we train a comparable model that operates on discrete repre-
sentations, replacing the diffusion head with RVQ discrete prediction heads (Figure 1). Our discrete
T2A model is the first to predict semantic and acoustic tokens in parallel directly from text. Our
SoundStorm discrete baseline employs the random unmasking method, which we demonstrate to
outperform the confidence-based unmasking. We evaluate all models on speech quality, intelligi-
bility, and speaker similarity. The results suggest that SALAD’s T2A model achieves the highest
intelligibility score, while having speech quality and similarity scores on-par with the ground-truth
audio, as measured in subjective listening tests 1. Our contributions can be summarized as follows:

• Propose SALAD, a zero-shot speech synthesis system that uses per-token latent diffusion.

• Extend popular discrete speech synthesis methods to continuous representations.

• Suggest a discrete text-to-acoustic model and improve SoundStorm’s unmasking method.

• Compare discrete and continuous modeling techniques in a controlled environment.

2 RELATED WORK

Zero-Shot TTS Inspired by the success of in-context learning, there has been great interest in
text-to-speech (TTS) systems that can generalize to unseen speakers during inference. This task is
commonly known as zero-shot TTS, and provides many benefits due to its flexibility and increased
quality (Wang et al., 2023). Zero-shot TTS systems, including SALAD, typically formulate the
problem as a language modeling task, containing text and audio tokens. Such methods make use of
a speaker prompt – a short recording from the target speaker – and synthesize the text according to
the prompt (Le et al., 2024; Shen et al., 2023; Łajszczak et al., 2024; Peng et al., 2024).

Semantic Tokens Quantized embeddings of self-supervised audio models (Hsu et al., 2021;
Baevski et al., 2020; Chung et al., 2021), commonly known as semantic tokens, have been shown
to capture phonetic and prosodic information, and show benefits when modeling long-range depen-
dencies in various speech processing tasks. These tokens became popular as intermediate represen-

1Samples are available at https://s3.us-south.objectstorage.softlayer.net/
zk-wav-data/Webpages/ICLR2025PerTokenLatentDiffusion/index.html
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tations for speech synthesis (Kharitonov et al., 2023; Huang et al., 2023; Borsos et al., 2023a), un-
conditional audio generation (Borsos et al., 2023b), and for text-audio multimodal tasks (Rubenstein
et al., 2023). SALAD predicts semantic tokens as an auxilary task to obtain contextual information
and determine the stopping condition.

RVQ codes prediction Various audio generation methods have designed unique ways to predict
the RVQ codes matrix, each with their advantages and limitations. AudioLM (Borsos et al., 2023b)
flattens the codes matrix into a long sequence, which greatly increases the token count in transformer
models. Most followup works avoid flattening and embed all RVQ residual layers into a single token.
Vall-E (Wang et al., 2023) generates the initial coarse code vector with an AR model and then uses an
non-autoregressive (NAR) model to predict the rest of the codebooks. AudioGen (Kreuk et al., 2022)
uses a single AR model to predict all codes of each timestep in parallel. MusicGen (Copet et al.,
2024) extends AudioGen by introducing a delay pattern, ensuring each code is predicted based on its
coarser RVQ layers, leading to a better approximate factorization. SoundStorm (Borsos et al., 2023a)
employs the fast NAR decoding algorithm by MaskGIT (Chang et al., 2022) to generate acoustic
tokens based on semantic tokens. NaturalSpeech3 (Ju et al., 2024) trains a factorized codec, which
disentangles speech characteristics into discrete factors and predicts each factor using a MaskGIT
procedure. As opposed to all above methods, SALAD directly predicts a continuous latent space,
thus avoiding the need to predict multiple residuals codes.

Continuous models When learning a continuous distribution, recent works typically use diffu-
sion models, which were developed to sample from complex continuous probability distributions,
inspired by non-equilibrium thermodynamics (Ho et al., 2020). Several works attempt to synthe-
size speech using a diffusion process, which has the challenge of generating variable length out-
puts (Kong et al., 2020; Chen et al., 2020; Popov et al., 2021). For that end, most diffusion-based
works rely on a duration predictor that predicts the audio length in advance, which might be in-
ferior to determining the length on-the-fly during synthesis (Shen et al., 2023; Le et al., 2024).
MELLE (Meng et al., 2024) predicts Mel spectrograms autoregressively using a Gaussian sampling
module, and parameterizes the next frame using a Gaussian distribution, which restricts it to learn
only unimodal distributions. MELLE relies on an additional binary classifier that indicates when to
stop, which is a highly imbalanced classification problem. In contrast, SALAD operates on VAE la-
tent tokens, which allows sampling diverse inputs while training, and uses a diffusion head, capable
of modeling multimodal distributions. SALAD relies on semantic-tokens to determine the stopping
condition, a more balanced representation which also provides contextual information.

3 METHOD

3.1 BACKGROUND

Definitions We denote the raw audio sequence as a = (a1, ..., am) where ai ∈ [−1, 1] with
sampling rate fS . The text is y = (y1, .., yk) where yi ∈ A, and A is the text vocabulary. We obtain
compressed audio representations using a variational autoencoder (VAE), trained with adversarial
losses to obtain high-fidelity reconstructions. The VAE’s encoder E predicts a sequence of means
and variances of normal distribution: (µ1, ..., µn), (σ

2
1 , ..., σ

2
n) = E(a) where σi, µi ∈ Rd and d is

the VAE bottleneck dimension. The VAE downsamples the sequence with a stride r. We sample
xi ∼ N (µi, σ

2
i ) and denote x = (x1, .., xn) as the continuous acoustic tokens. The VAE’s decoder

D is used for reconstruction â1, ..., âm = D(x1, .., xn). We also extract semantic tokens and denote
them by w = (w1, .., wm), which have the same downsampling stride as the VAE. Our goal is to
predict the audio based on the desired text and the speaker prompt. Denoting the speaker prompt
latent features as s = s1, ..., sp, our training objective can be formulated by: p(x|y, s).

Diffusion Process A diffusion process starts from a continuous signal, and gradually destroys it
using a forward noise process. Our method performs latent diffusion, and attempts to predict the
VAE latent vectors x1, ..., xn. Given noising coefficients β0, ..., βT and some continuous vector x,
we define x0 = x and ϵ ∼ N (0, I); the Markov structure is xt =

√
1− βtx

t−1 +
√
βtϵ. This

iterative denoising process can be simplified. By defining αt = 1 − βt and ᾱt =
∏t

i=1 αi, we get
that xt =

√
ᾱtx +

√
1− ᾱtϵ. The diffusion process is often defined such that ᾱT → 0 and xT

distributes closely to the standard normal distribution. Diffusion models ϵθ are trained to perform
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(a) Training (b) Inference

Figure 2: The per-token diffusion head

the reverse diffusion process, which denoises the corrupted signal by predicting the added noise.
Their denoising loss is defined as L(x) = Eϵ,t

[
∥ϵ− ϵθ(t, x

t)∥2
]
. Most diffusion models operate on

a sequence x1, .., xn and attempt to denoise all tokens in parallel using ϵθ(t, x
t
1, ..., x

t
n).

Per-Token Diffusion Head Li et al. (2024) proposed an MLP diffusion head for image generation.
Unlike standard diffusion models, the diffusion head denoises each token independently, which gives
additional flexibility when defining the conditioning information (e.g., predicting on previously pre-
dicted tokens). We rely on a transformer model Θ that extracts contextual per-token conditioning
vectors z1, .., zn based on the input features and optional context vectors that we denote by C

z = z1, ..., zn = Θ(C, x1, ..., xn)

The diffusion head (noise estimator) ϵθ takes a contextual conditioning vector z and attempts to
model the continuous distribution p(x|z). Given a target token x, we follow a similar diffusion
process but condition the prediction on z. The loss is

L(x, z) = Eϵ,t

[
∥ϵ− ϵθ(x

t, t, z)∥2
]

(1)

During training, we sample t ∼ [T ], ϵ ∼ N (0, I) for each token x, obtain the noisy targets xt, and
minimize L(x, z) (Figure 2a). This denoising network is trained jointly with the transformer Θ, and
the gradient with respect to z is propagated to the transformer. We can sample K different values
of t, ϵ for a given context vector and target z, x, with the additional complexity of just the MLP
head rather than the entire model. During inference, we sample a continuous vector by sampling a
Gaussian vector xT ∼ N (0, I) and reversing the diffusion process (see Figure 2b):

xt−1 =
1

√
αt

(
xt − βt√

1− ᾱt
ϵθ(x

t, t, z)

)
+

√
βtϵ (2)

3.2 SALAD: SPEECH SYNTHESIS USING AUTOREGRESSIVE LATENT DIFFUSION

SALAD performs zero-shot text to speech, which can synthesize speech based on a given text and a
speaker prompt. It does so by predicting the continuous VAE latents x with the per-token diffusion
head. Our approach utilizes semantic tokens w as an auxiliary representation that provides contex-
tual information and determines the stopping condition. We provide two variants for SALAD:

• Semantic to Acoustic (S2A) - predicts acoustic features based on semantic tokens, and
relies on an external text-to-semantic model to produce the semantic tokens (Figure 3).

• Text to Acoustic (T2A) - predicts acoustic features and semantic features directly from text,
relying on the stopping condition of the semantic tokens (Figure 4).

3.2.1 SEMANTIC TO ACOUSTIC (S2A)

Following Kharitonov et al. (2023), we divide synthesis into two tasks: text-to-semantic (T2S) and
semantic-to-acoustic (S2A), each tackled by a different model. The T2S model predicts the discrete
semantic tokens based on the text and speaker autoregressively using a causal transformer:

p(w1, .., wn|t, s) =
n∏

i=1

p(wi|t, s, w1, .., wi−1)
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Figure 3: Synthesis using Semantic-to-Acoustic models

Figure 4: Synthesis using Text-to-Acoustic models

Importantly, the T2S model determines the synthesized audio length. Then, our S2A model predicts
the acoustic tokens based on the semantic tokens, using an additional transformer model with the dif-
fusion head to model the continuous distributions. We provide two variants of semantic-to-acoustic
models, AR and NAR, following the literature on discrete acoustic token modeling.

Autoregressive S2A In our AR semantic-to-acoustic model, our training objective is
p(x1, ..., xn|w, s) =

∏n
i=1 p(xi|w, s, x1, .., xi−1). We input the latent frames, the semantic to-

kens, and speaker prompt into a causal transformer and obtain the contextual condition vectors
z1, .., zn = Θ(w, s, x1, ..., xn). The frame xi is predicted given zi−1 and our loss is:

L(x, z) =
n∑

i=1

Eϵi,ti

[
∥ϵi − ϵθ(x

t
i, ti, zi−1)∥2

]
During inference, the T2S model generates semantic tokens ŵ. Then, the S2A model generates
the continuous latent vectors based on the predicted semantic tokens, by computing the contextual
embedding zi, and uses diffusion head inference to sample the next continuous frame xi+1.

Non-Autoregressive S2A MaskGIT (Chang et al., 2022) trains a bidirectional transformer on a
discrete masked language modeling objective. During inference, it unmasks tokens over K infer-
ence steps, where each step is based on the previously predicted tokens. Soundstorm extended this
procedure to predict the RVQ codes based on semantic tokens, by applying the MaskGIT proce-
dure for each RVQ layer. We extend the MaskGIT procedure to predict continuous acoustic tokens
based on semantic tokens, using the diffusion head defined in Section 3.1. Given a schedule function
γ(r) : [0, 1] → [0, 1] and a sequence x1, .., xn, we sample r ∈ U [0, 1] and mask out γ(r) ·n acoustic
tokens. Define the random masking indicators m = (m1, ...,mn) where mi ∈ {0, 1}, we replace
masked acoustic tokens with a fixed learnable embedding q and define ri = mi · q + (1−mi) · xi.
As in SoundStorm, a semantic token wi and masked acoustic tokens ri are embedded into a single
transformer token, and speaker prompt tokens are left unmasked and appended as context. The re-
sulting sequence is fed into a bidirectional transformer, and the resulting contextual vectors z1, .., zn
are used to predict the masked acoustic tokens using the diffusion head. The loss function is the
denoising of the masked acoustic tokens

L(x, z,m) =

n∑
i=1

Eϵ,t

[
mi · ∥ϵ− ϵθ(x

t
i, t, zi)∥2

]
During inference, MaskGIT chooses the tokens with the highest confidence. In a continuous dif-
fusion model, measuring the confidence is not trivial, so we opt to select the tokens to unmask at
random. We first check the influence of confidence-based selection in MaskGIT inference in Sec-
tion A.2, and conclude that random unmasking is surprisingly superior to the confidence-based un-
masking, which validates our design choice. Specifically, given a sequence of n tokens, K maskGIT
steps, in every step k ∈ [K] we unmask n

(
γ
(

k
K

)
− γ

(
k−1
K

))
additional tokens selected at random,

by applying the per-token diffusion head.
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3.2.2 TEXT-TO-ACOUSTIC (T2A)

Decoupling TTS into T2S and S2A requires training two models of similar size, and applying two
steps of inference, which greatly increases the compute requirements and latency. Therefore, we
suggest an end-to-end text-to-acoustic model (T2A) which predicts the acoustic features directly
from the text and the speaker prompt. The T2A model predicts the semantic and acoustic features
in parallel, where the semantic token prediction is an auxiliary task that allows conditioning on
contextual information and provides a stopping condition. We add an additional prediction MLP
to predict the discrete semantic tokens. We adopt the delay pattern suggested by (Copet et al.,
2024) such that every acoustic token xi can be predicted based on the semantic token wi. Define
ri = (wi, xi−1), we extract contextual features from our transformer backbone, based on the text
and speaker prompt zi = Θ(t, s, r1, ...ri), which is used to predict wi+1 using the cross-entropy
loss Ls and xi using the diffusion loss La. We weigh the two losses to L = αLa + (1− α)Ls. We
halt the generation after the semantic prediction head samples an EOS token. We note that the audio
duration is predicted on the-fly based on the model’s predictions, unlike most diffusion-based TTS
models, where the audio duration is predetermined.

3.3 DISCRETE BASELINES

All SALAD models use common discrete architectures and only replace the input projection and
prediction head, so we can implement a discrete variant for each method proposed in Section 3.2.
The discrete methods use an RVQ-GAN quantizer, which yields a sequence of discrete codes
(q1, ..., qQ) for each frame. These codes are predicted from the contextual embedding z by MLP
prediction heads, one for each codebook. The S2A-AR discrete model predicts all codes in parallel,
using the delay pattern proposed in MusicGen (Copet et al., 2024). The S2A-NAR discrete model
implements SoundStorm (Borsos et al., 2023a), which applies Q MaskGIT procedures, one for each
codebook. Unlike the vanilla SoundStorm implementation, we replace the confidence-based un-
masking with random unmasking, as we have found it to be superior. Given K MaskGIT steps,
SoundStorm requires QK passes through the transformer, as it employs a MaskGIT procedure per
RVQ layer, unlike SALAD-NAR, which requires K transformer passes. The T2A discrete model
predicts semantic and acoustic tokens in parallel from text, using the delay pattern described above.
We use the MusicGen parallel prediction method, treating the semantic tokens as the coarsest codes.
In our listening test, we compare to the external XTTS (Casanova et al., 2024), a commercial SOTA
zero-shot TTS model.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We train all models on the English subset of multi-lingual LibriSpeech (MLS) (Pratap
et al., 2020), which contains 10M examples of 10-20 seconds, resulting in 45K hours. To avoid
over-exposure of a few speakers, we limit the maximal number of utterances per speaker to 10K,
resulting in 5.2M examples. We evaluate all models on LibriSpeech test-clean (Panayotov et al.,
2015), which consists of 2620 utterances by 40 speakers. All speakers in the test set are excluded
from the training set. We filter the dataset to utterances with lengths of 8-25 seconds, and then limit
to at most 15 samples per speaker, resulting in 564 utterances for evaluation.

Tokenization To derive acoustic tokens, we train continuous β-VAE-GAN, with a varying bot-
tleneck dimension d ∈ {8, 16, 24, 32}, and set the KL-divergence regularization to β = 5 · 10−5,
as done in Tschannen et al. (2023). We also train discrete RVQ-GAN models with q ∈ {4, 8, 12}
codebooks, each with 1024 entries. In addition, we apply quantizer dropout (Zeghidour et al., 2021)
with p = 0.5. All compression models are trained on MLS-English, DAPS, LibriTTS, LibriTTS-
R and LJ-Speech, which balance between high and mid quality recordings (Shechtman & Dekel,
2024). The all-training hyperparameters follow the original recipe proposed by Kumar et al. (2024).
We extract semantic tokens by quantizing the embeddings of the 11th layer of W2V-BERT (Barrault
et al., 2023) using minibatch K-means with 1024 centroids. We further compress the semantic to-
kens using a BPE tokenizer with a vocabulary of 16384 tokens. This is done to shorten the sequence
and balance the tokens’ distribution (Dekel & Fernandez, 2024). We note that only the T2S model
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leverages the BPE-compressed semantic tokens, as well as the the S2A-AR models, as other models
embed semantic and acoustic features into a shared token space. We also train a text BPE tokenizer
on the transcripts of our training set, with a vocabulary of 16384 tokens.

Architecture We use a transformer backbone with d = 1024, dff = 4096, 24 layers, 16 heads,
sinusoidal positional embedding, GeLU activation, and a dropout rate of 0.1, resulting in models
with roughly 350M parameters. VAE embeddings are projected using a linear layer, while RVQ
tokens are embedded using Q lookup tables, which are summed into a single embedding. We use
Classifier-Free Guidance (Ho & Salimans, 2022) and randomly omit the speaker prompt with p =
0.1 during training. In the MaskGIT NAR experiments, we use the cosine masking schedule, and
apply a total of 64 inference steps, where the SoundStorm model with 4 codebooks performs 16
inference steps per layer. RVQ codes are predicted using a Q MLP heads with four hidden layers.
We sample from discrete distributions using Top k = 10 sampling, with a temperature of τ = 1, a
repetition penalty of 1.05, and a CFG scale of α = 3.

We use a diffusion process with T = 1000 steps, where betas are logarithmicly spaced between
β0 = 2e − 4 and βT = 0.03. Our per-token diffusion head is an MLP network with 12 residual
layers, that predicts the noise ϵ given the transformer embedding vector z, the noisy input xt, and the
diffusion step t. Each residual block consists of layer normalization, linear layer, SiLU activation,
and dropout with p = 0.1. During inference, we apply 20 diffusion steps for sampling, with a default
noise scale of 1. We use the AdamW optimizer, with lrmax = 3e − 4 and lrmin = 3e − 5, weight
decay 0.1, and a clip gradient norm of 1, and train with FP16 mixed precision. We linearly warm
up the learning rate from lrmin across 32K iterations to lrmax and decay the learning rate back to
lrmin over 300K steps using a cosine schedule. Each global batch size has approximately 150K
acoustic tokens (200 samples). Each model was trained with 8 A100 80GB GPUs.

Metrics We measure Audio Quality using UTMOS (Saeki et al., 2022) which produces a qual-
ity score in the range of 1-5 (higher is better). Intelligibility is measured by the character error
rate (CER) in percentages (%) between the ground-truth text and the Whisper transcripts (Radford
et al., 2023) of the synthesized audio. Speaker Similarity is measured by the cosine similarity to the
prompt, comparing the embedding of WavLM-TDNN (Chen et al., 2022), a popular speaker veri-
fication model. This metric was also reported in Vall-E and subsequent studies (Wang et al., 2023;
Chen et al., 2024). The similarity score predicted is in the range of [−1, 1], where a larger value
indicates a higher similarity.

For the subjective Listening Tests, we selected one random utterance for every speaker in Lib-
riSpeech test-clean (20 female and 20 male speakers), resulting in 40 utterances for evaluation.
The selected utterances were confined to have at most 200 characters to enable the comparison
with XTTS xttsv2 (Casanova et al., 2024) (xttsv2 demo limitation). For each sample, we selected a
three-second-long speaker prompt from another random utterance of the same speaker. Each system
synthesizes the desired utterance based on the same text and speaker prompt. All experiments were
conducted on the Amazon Mechanical Turk (AMT) crowd-sourcing platform with votes collected
from 39-58 subjects qualified as masters (Sodré & Brasileiro, 2017).

In the first Listening Test we assess speech quality and naturalness by the standard 5-point scale
Mean Opinion Score (MOS) (Ribeiro et al., 2011). 25 distinct subjects assessed each utterance. We
report the average scores and the 95% confidence interval. In the second Listening Test we asses the
Speaker Similarity by a 4-level pairwise similarity test, as in (Wester et al., 2016; Kons et al., 2018),
where subjects were presented with (utterance, prompt) pairs and asked to rank speaker similarity
of each pair on a 4-level categorical scale (definitely different speakers, probably different speakers,
probably the same speaker, definitely the same speaker). Each utterance was assessed by 20 distinct
subjects on average. We report the mean similarity score and the 95% confidence interval while
attaching 1-4 numerical values to the above categories, as in (Kons et al., 2018).

4.2 RESULTS

Objective Evaluation We evaluate all models on zero-shot TTS. Given a text and a three-second
speaker prompt, which is taken randomly from another utterance of the same speaker, the model
attempts to synthesize the audio with the identity and prosody similar to the prompt. All models
use the same random prompt for each sample. We compare two variants of models that perform Se-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Task Modeling Representation UTMOS ↑ STT CER (%) ↓ Similarity ↑
Ground Truth – – 4.121 0.528 0.736

Text to Acoustic AR Continuous 4.280 0.739 0.539
Text to Acoustic AR Discrete 4.270 2.298 0.600
Semantic to Acoustic AR Continuous 4.27 2.198 0.588
Semantic to Acoustic AR Discrete 4.348 1.231 0.549

Semantic to Acoustic NAR Continuous 4.277 1.393 0.558
Semantic to Acoustic NAR Discrete 4.351 1.846 0.602

Table 1: Objective evaluation of LibriSpeech test-clean

(a) MOS Listening Test (1-5 scale) (b) Speaker Similarity Listening Test (1-4 scale)

Figure 5: Subjective listening results

mantic to Acoustic (S2A), and another variant that performs Text to Acoustic (T2A) directly. When
using S2A models, we first run the Text to Semantic (T2S) model and use the predicted semantic
tokens, as in Figure 3. The discrete models rely on a 4 codebook model, while the continuous make
use of a d = 8 VAE embedding. Table 1 shows that the continuous models are competitive with their
discrete benchmarks. The continuous T2A model presents the highest intelligibility score, making
it the most reliable model when having to synthesize an exact text. However, the speaker similarity
scores of the discrete T2A and S2A-NAR model are higher. We note that in cases of accented speech
or low quality recordings, when the speaker similarity increases, the intelligibility and audio quality
often decreases. We did not report objective scores for XTTS due to the sample limit in their demo.

Subjective Evaluation We conduct the two subjective listening tests, described above, to compare
the following systems: (1) Ground Truth audio (2) XTTSv2 (Casanova et al., 2024) (3) T2A Contin-
uous (4) T2A Discrete (5) S2A NAR Continuous (6) S2A NAR Discrete. Figure 5a reports the mean
opinion score (MOS) results, suggesting that the difference between the ground-truth audio (GT) to
both T2A continuous model and the NAR discrete model is statistically insignificant (p > 0.01).
Figure 5b presents the speaker similarity average score with 95% confidence intervals, suggesting
similar or better speaker similarity scores for all the systems but XTTSv2. More precise analysis with
two-sided Wilkinson rank-sum test (Wilcoxon, 1945) reveals that both the T2A continuous and the
NAR discrete models do not differ (p >> 0.01) from the GT in terms of speaker similarity, while
the T2A discrete model is marginally better than the GT (p = 0.0105). The NAR continuous model,
however, is marginally worse than the GT (p = 0.0111).

4.3 ABLATION STUDY

Inference Hyperparameters We now turn to investigate the influence of inference hyperparam-
eters on synthesized speech. We used the T2A model to investigate classifier-free guidance (CFG),
noise scale and the number diffusion steps, and the S2A-NAR model for the MaskGIT inference
experiment. In every experiment, we fix all values to the default inference values following those
described in Section 4, and change only a single hyperparameter. The CFG linear extrapolation
coefficient increases the speaker similarity, but degrades the automatic quality metric, as seen in
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(a) CFG scale (b) Noise scale

(c) Diffusion steps (d) MaskGIT steps

Figure 6: Inference hyperparameters influence

(a) VQ/VAE reconstruction (b) Codewise Noise sensitivity (c) Codewise cross entropy loss

Figure 7: High-fidelity RVQ codes

Figure 6a. Next, we scale the noise level added in each diffusion step by scaling the βtϵ term in
Equation 2, and see improvements in similarity but degradation in the UTMOS quality score (Fig-
ure 6b). We also examine the number of diffusion steps, which improve similarity until reaching 20
diffusion steps, and also degrade UTMOS (Figure 6c). The number of MaskGIT in the NAR model
shows consistent improvement in both the speaker similarity and UTMOS (Figure 6d).

High-Fidelity Modeling When increasing the number of RVQ codebooks or the VAE embedding
dimension, the reconstruction quality increases, but language modeling can be difficult (Shen et al.,
2023). Figure 7a shows the reconstruction quality measured by PESQ (Rix et al., 2001), for dif-
ferent numbers of RVQ codebooks and VAE embedding dimensions. One concern regarding RVQ
modeling is that the fine codes quantize noise, leading to a high gradient contribution of random
classification problems. We measure the noise sensitivity per codebook by adding Gaussian noise
into raw samples, compressing them with the RVQ model, and checking the ratio of change per
codebook. Results in Figure 7b suggest that fine codebooks are indeed more sensitive to noise.
In Figure 7c, we calculate per-codebook validation cross-entropy loss in the discrete 12-codebook
T2A-AR model, suggesting the model struggles to reduce uncertainty in finer codebooks. This phe-
nomenon occurs despite the delay-pattern described in Section 3, where the finer RVQ levels are
conditioned on coarser layers of the same frame. Finally, we compare the generation quality with
less-compressed representations. The results in Table 2 show that when increasing the fidelity, the
intelligibility drop of the high-fidelity discrete T2A is greater comparing to the continuous model.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

UTMOS ↑ Intelligibility ↓ Similarity ↑
T2A HiFi Continuous d = 32 4.271 1.157 0.545

T2A HiFi Discrete Q = 12 4.203 5.461 0.597

Table 2: Discrete vs continuous models with high-fidelity representations

UTMOS ↑ Intelligibility ↓ Similarity ↑
VAE Sample 4.280 0.739 0.539
VAE NoSample 3.468 1.891 0.613

Table 3: Influence of VAE sampling during training

VAE sampling VAE models allow the sampling of diverse inputs, unlike the discrete codebooks
or Mel spectrograms. This ability may improve the robustness of the model, and better account
for the mismatch between training and inference (during inference, the model predictions are based
on its previous noisy predictions). To check the influence of VAE sampling, we compare two T2A
models - one samples from the VAE distribution x = µ + ϵ · σ and the other always takes the
mean x = µ. The results in Table 3 show a large gap in UTMOS and intelligibility indicating that
sampling improves synthesized samples. We listened to audio samples from the VAE-NoSample
model, and noticed a gradual addition of speaker-inconsistency artifacts throughout the synthesis.
We suspect that the addition of VAE-sampling noise during training made it more robust to the
mismatch between training and inference. We also hypothesize that high similarity result of VAE-
NoSample is caused by the artifacts described above.

5 DISCUSSION

Compressing complex signals such as audio and images often introduces a tradeoff between per-
ception and generation. For tasks involving perception or understanding, compression can lead to
information loss, resulting in degraded performance. However, for generation, compression has
proven to be highly effective, as the generative model has to learn a lower-dimensional distribu-
tion. Multimodal models typically aspire to work with symmetric representations, in which the
input and output representations are identical, as commonly done in language models. Develop-
ing generative methods that can operate upon less-compressed representations would alleviate the
perception-generation models, and improve multimodal models that operate on symmetric repre-
sentations. While RVQ is a powerful compression mechanism, capable of providing high-fidelity
representations, it may lead to noise quantization. Working with continuous representations can be
more robust to noise, as continuous models scale the noise according to its magnitude.

Limitations The diffusion head inference process is slower than the RVQ prediction heads, as it
requires an iterative process for the token sampling. Moreover, it does not allow to measure likeli-
hood or confidence, which can be useful for decoding algorithms such as beam search or confidence
based unmasking. Optimal balancing of the discrete and continuous losses in the continuous T2A
model is not easy to obtain. During training, the gradients of the discrete semantic loss increase,
while the gradients of the continuous diffusion loss decrease.

Future work Follow-up works can extend our work and develop multimodal models that operate
on symmetric representations, and are capable of perception and generation. They can also derive a
generation stopping condition that does not rely on any discrete representation. Additionally, future
works can implement diverse inference strategies that adapt the number of diffusion steps per token
(e.g. more diffusion steps in the first tokens), or develop a quality metric for a diffusion process, to
allow decoding algorithms such as beam-search to be used during inference.
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(a) GIVT GMM entropy drops to 0. (b) SoundStorm unmasking methods

Figure 8: Additional results

A ADDITIONAL RESULTS

A.1 GIVT

We also attempted to use GIVT (Tschannen et al., 2023) as an alternative approach for continuous
audio generation. GIVT models the next token distribution as a Gaussian mixture model (GMM).
We trained a GIVT model to a mixture of 16 Gaussians, which predicts the next continuous acoustic
frame. We focused on the ability to produce multi-mode distributions. Figure 8a plots the entropy of
mixture coefficients in the GMM, which drops quickly to zero during training. This might suggest
that the ability to produce multimodal probability distributions is not being leveraged frequently.

A.2 MASKGIT INFERENCE

In S2A-NAR-Cont, the MaskGIT selection of tokens to unmask is done at random, instead of being
based on confidence scores. To check the influence of the unmasking approach, we provide three
unmasking criteria for our SoundStorm model: highest confidence, random, and lowest confidence.
The test was based on GT semantic tokens (to avoid dependency on semantic token prediction),
with the default hyperparameters described in Section 4. We first sampled each token using top-
k sampling, and defined the token score to be the softmax probability of the sampled token. We
then unmasked tokens based on the score, its inverse, or at random. The results in Figure 8b suggest
that random selection in SoundStorm yields improved performance over confidence-based selection.
This resembles the results seen when using greedy sampling, which leads to a sub-optimal result.
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