
Efficient LLM Scheduling by Learning to Rank

Yichao Fu1 Siqi Zhu2 Runlong Su1 Aurick Qiao3 Ion Stoica4 Hao Zhang1∗
1UCSD 2Tsinghua University 3Snowflake 4 UC Berkeley

Abstract

In Large Language Model (LLM) inference, the output length of an LLM request is
typically regarded as not known a priori. Consequently, most LLM serving systems
employ a simple First-come-first-serve (FCFS) scheduling strategy, leading to
Head-Of-Line (HOL) blocking and reduced throughput and service quality. In
this paper, we reexamine this assumption – we show that, although predicting the
exact generation length of each request is infeasible, it is possible to predict the
relative ranks of output lengths in a batch of requests, using learning to rank. The
ranking information offers valuable guidance for scheduling requests. Building
on this insight, we develop a novel scheduler for LLM inference and serving that can
approximate the shortest-job-first (SJF) schedule better than existing approaches.
We integrate this scheduler with the state-of-the-art LLM serving system and show
significant performance improvement in several important applications: 2.8x lower
latency in chatbot serving and 6.5x higher throughput in synthetic data generation.
Our code is available at https://github.com/hao-ai-lab/vllm-ltr.git.

1 Introduction

Large language models (LLMs) are increasingly becoming the backbone of many today’s Internet
services and applications that serve millions of users [1]. Due to the surge in demand, efficient
scheduling for LLM serving is crucial to ensure high-quality service amidst numerous concurrent users
competing for computing resources. For popular interactive applications such as chatbots, this means
minimizing the latency that each user perceives while maximizing the overall system throughput to
accommodate as many users as possible.

Under high load, LLM services that implement a first-come-first-serve (FCFS) scheduling strategy
inevitably face significant Head-Of-Line (HOL) blocking, as many requests must wait for others to
execute. Figure 1 illustrates a typical example of how a long request can block shorter ones in FCFS
scheduling, leading to significant HOL blocking. In such scenarios, it is well-established that the
shortest-job-first (SJF) and shortest-remaining-time-first (SRTF) scheduling algorithms minimize
the average latency experienced across all requests. However, SJF/SRTF are seldom implemented in
LLM services because they require requests to be ordered by their remaining generation lengths, which
is traditionally assumed to be difficult or impossible to know ahead of time in existing systems [2, 3].

In this paper, we contend that, although accurately knowing the generation length of requests may
be difficult, it is actually not needed. Rather, just knowing the relative ordering between request
lengths is sufficient for SJF/SRTF scheduling. To this end, we propose to use the Kendall rank
correlation coefficient (Kendall’s Tau) [4] to measure the similarity between a predicted schedule and
the SJF/SRTF schedule based on groundtruth generation lengths (i.e. oracle). We demonstrate that
schedules with higher similarities (measured by Kendal’s Tau) to the oracle generally translate to lower
latencies in real-world performance (Figure. 2).

Based on this insight, we propose to optimize the request scheduling in LLM serving via learning
to rank. We show that a small auxiliary model (e.g., OPT-125M [5]) can be trained to accurately rank

∗Hao Zhang is the corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/hao-ai-lab/vllm-ltr.git

Severe HOL Blocking

Alleviate HOL Blocking by Scheduling

Time

R0

R0

R1

R1

R2

R2

Requests: R0 10 tokens | R1 2 tokens | R2 1 token System throughput: 1 token/s

FCFS:

SRTF:

Latency: R0
10

10
= 1s/token | R1

10+2

2
= 6s/token | R2

10+2+1

1
= 13s/token

Latency: R0
10+2+1

10
= 1.3s /token | R1

1+2

2
= 1.5s/token | R2

1

1
= 1s/token

Time

R0

R0

R1 R2

Requests: R0 10 tokens | R1 2 tokens | R2 1 token System throughput: 1 token/s

FCFS:

SRTF:

Latency: R0 1s/tok | R1 6s/tok | R2 13s/tok

Latency: R0 1.3s /tok | R1 1.5s/tok | R2 1s/tokR2 R1 R0

Figure 1: A long request can block short requests and introduce severe HOL blocking and high latency.
We assume there is no prefill time, and the system takes 1 second to generate 1 token. With a First-come-
first-serve (FCFS) schedule, the long request R0, which arrives first and takes 10 seconds to generate 10
tokens, will block subsequent shorter requests R1 and R2 for 10 seconds. Hence the latencies of R0, R1,
and R2 are 10/10=1,(10+2)/2=6,(10+2+1)/1=13 s / token, respectively, perceived by users,
with an average latency of (1+6+13)/3=6.67 s / token. By contrast, prioritizing shortest requests
yields an average latency of (1.3+1.5+1)/3=1.27 s / token – a 5.3× reduction in average latency.

LLM requests by their generation lengths, prior to execution, at virtually no cost. For both offline
batch generation and online latency-sensitive tasks, by scheduling requests on-the-fly based on the
predicted rankings, we can approximate the SRTF/SJF schedule, hence reduce average latency and
improve throughput, respectively.

Compared to existing work which attempts to directly predict the generation lengths of LLM
responses [6, 7], we show that our learning-to-rank approach is both more robust in approximating
SRTF/SJF, hence translating to lower latency and higher throughput, but also simpler, which can be
easily integrated into production serving systems (i.e., 500 LoC in vLLM).

Our contributions are summarized as follows:

• We show that knowing the relative orderings of generation lengths provides valuable guidance
for optimizing the scheduling of LLM serving.

• We apply Kendall’s Tau as an effective measure of the similarity between an LLM schedule
and the ideal SJF/SRTF schedule, and show a higher similiary indicated by Kendall’s Tau
usually translates to lower latency and high throughput in practice.

• We employ learning-to-rank [8] to optimize the schedule and show that our method is simple
and enables on-the-fly scheduling at a per-iteration basis with negligible overhead.

• Our method, when integrated with state-of-the-art serving system, significantly improves
the performance on important LLM serving tasks, reducing the p90 latency of chatbot serving
by 2.8× and increasing the throughput of batch synthetic data generation by 6.5×.

2 Related Work

LLM Serving Systems. Orca [3] introduces iteration-level scheduling and vLLM [2] applies
PagedAttention, which are two key techniques for LLM serving. However, they both apply the FCFS
schedule and are prone to severe HOL blocking. Scheduling for LLM serving is a relatively less
explored topic. Although many LLM serving optimizations [9, 10, 11, 12, 13] have been developed
recently, all these works typically assume the output length of an LLM request cannot be known before
execution. FastServe [14] applies skip-join MLFQ in LLM serving. It sets up the priority of requests
according to their generated length so far. Andes [15] introduces a novel quality of experience (QoE)
metric for online text services, which measures human satisfaction during the whole token delivery.
It employs an online preemptive scheduling method that determines which requests to execute based
on scheduling objectives (e.g., average QoE) for the upcoming timeframe. Our method differs from
these by predicting generation length rankings to achieve lower latency.

Scheduling in General. Scheduling is critical in computer systems. First-come-first-serve (FCFS)
schedules requests according to their arrival time. Shortest-job-first (SJF) and its preemptive variant,
shortest-remaining-time-first (SRTF), prioritize jobs with the shortest time to finish, which provably
yield the lowest average latency, but may suffer from starvation problems. We discuss how to prevent
starvation in §4.3. Multi-level-feedback-queue (MLFQ) maintains multiple priority queues to balance
fairness and latency, but introduces substantial complexity in batch and interactive LLM workloads.
Our work addresses this complexity by leveraging a simpler, prediction-based scheduling strategy.

2

FCFS OURS SRTF
0.0

0.1

0.2

0.3

0.4

0.5

No
rm

 W
ai

tin
g

Ti
m

e
(s

/to
ke

n)
0.5X

0.2X

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Kendall's Tau

0.4

0.6

0.8

1.0

1.2

La
te

nc
y

(s
/to

ke
n)

(b)
Figure 2: (a): HOL blocking was evaluated by comparing FCFS and SRTF scheduling policies across 1K
requests. (b): Analysis revealed that higher Kendall’s Tau correlation coefficients were associated with
reduced latency. This finding was validated using the ShareGPT dataset with the Llama-3-8B model.

LLM Generation Length Prediction. Closest to our work are several recent works that predict
the (exact) generation length of LLMs in order to enhance resource utilization (e.g., memory).
Perception Only (PO) [7] methods let LLMs output the generation length via prompting. S3 [6],
TetriServe [11] and DynamoLLM [16] use a predictor model (i.e, DistilBert [17] and OPT [5]) to
predict generation length. These methods formulate the length prediction as a classification problem,
whose success hinges on high predictive accuracy. Magnus [18] utilizes a language-agnostic BERT
sentence embedding, a compression component, and a random forest regressor to predict generation
length. Other concurrent works [19, 20] both propose a regression-based method for length prediction,
fine-tuning a BERT model on the Lmsys-Chat-1M dataset with an L1 regression loss to predict the
exact generation length. They tested models ranging from 300M to 3B and applied various batching
policies, including no batching, dynamic batching, and continuous batching, significantly improving
latency and throughput under these settings. Additionally, it supports multi-round LLM conversations.
In contrast, our proposed method is built on vLLM with paged attention and uses ranking loss to
optimize the predictor model. We designed a preemptive scheduling method with starvation prevention
to optimize the end-to-end performance of real-world LLM serving systems.

3 Background

In this section, we introduce several background concepts in learning to rank, which are essential for
understanding our methodology.

Kendall Rank Correlation Coefficient. Kendall’s Tau coefficient [4], specifically the Tau-b variant
we use, measures the correlation between two rankings. Its value ranges from −1 to 1, where 1
indicates perfect agreement between two rankings, −1 indicates complete disagreement (reversed
rankings), and 0 indicates no correlation. The formulation of Kendall’s Tau is given as follows:

τ=
Nc−Nd√

(N0−N1)(N0−N2)
, (1)

where Nc and Nd are the number of concordant and discordant pairs, respectively, in the two rankings.
N0=n(n−1)/2, where n is the total number of items. N1 and N2 consider tied values in each ranking:
N1=

∑
iti(ti−1)/2 and N2=

∑
juj(uj−1)/2, where ti is the number of tied values in the ith group

of ties for the first ranking and uj is the number of tied values in the jth group of ties for the second
ranking [4]. It’s important to note that tied pairs are considered neither concordant nor discordant
in this calculation.

Learning to Rank. Learning to rank [8] is a machine learning approach applied to supervised
ranking data. It is widely used in recommendation systems [21], search engine [8] and other
research areas [22, 23]. Learning to rank typically takes one of three forms: pointwise, pairwise, and
listwise. Pointwise turns the ranking problem into regression [24], classification [25, 26] or ordinal
regression [27]. Pairwise [28, 29, 30, 31, 32, 33] method learns the relative ranking for each pair of
items. Listwise [34, 35, 36, 37, 38] learns the ranking of lists of samples in a dataset.

3

ListMLE. ListMLE [37] is a listwise ranking loss used in this paper. It minimizes the likelihood
function defined ϕ(g(x),y)=−logP (y |x;g), where

P (y |x;g)=
n∏

i=1

exp
(
g
(
xy(i)

))∑n
k=iexp

(
g
(
xy(k)

)) (2)

Here, P (y | x;g) represents the probability of the permutation y given the input x and the scoring
function g. xy(i) denotes the element in x that corresponds to the i-th position in the permutation
y. The idea is to maximize the likelihood of the correct ranking y by using the scoring function g to
predict the ranking of the input x. The loss function ϕ(g(x),y) minimizes the negative log-likelihood
of this probability, encouraging the model to predict a ranking close to the true ranking. ListMLE’s
focus on list ranking aligns with Kendall’s Tau, which measures the correlation between two rankings.
This ensures that minimizing the loss can help improve Kendall’s Tau.

In the following section, we will introduce how we apply these learning to rank concepts to LLM
scheduling, building upon the foundation laid here.

4 Method

4.1 Problem Formulation

For a given batch of requests, we define the ground truth generation length as l, where li is the
generation length of the i-th request in the batch. From this length list, we can obtain a ranking list
r, where ri is the rank of li within the whole batch l.

Our goal is to approximate true SJF/SRTF scheduling using these rankings to alleviate HOL blocking
(Fig. 2 a) and obtain a relatively low latency in LLM serving. Different from the previous methods
which target to predict the real generation length l, we make predictions on the ranking list r. The
prediction of the ranking list is defined as p (generated by a predictor P). We compute the ranking
metric Kendall’s Tau [4] to measure the correlation between p and r. A Kendall’s Tau of 1 means the
prediction p perfectly aligns with the ground truth r, hence we can use it to achieve perfect SJF/SRTF
execution order. Conversely, A Kendall’s Tau of 0 suggests no correlation between p and r. An
example is FCFS: the execution order (i.e., by arrival time) is not correlated with the generation length.

A higher Kendall’s Tau reflects a more accurate rank prediction against the oracle (i.e., SJF/SRTF),
which empirically translates into higher end-to-end performance, as evidenced in Fig. 2 b. Hence, our
goal is to optimize the predictor model P to generate predictions with a larger Kendall’s Tau, which are
more correlated to the ground truth. However, Kendall’s tau is inherently non-continuous and difficult
to optimize directly. To overcome this, we apply a listwise ranking loss ListMLE to optimize the
predictor P . ListMLE considers the entire list of items simultaneously and treats items at all positions
with equal importance, providing a more holistic evaluation of the ranking order compared to other
alternatives such as pairwise and pointwise losses.

4.2 Generation Length Ranking Predictor

For our predictor P , we utilize a small OPT model as the backbone, capable of processing natural
language prompts as input and generating a score for ranking. While previous methods [7, 6, 11] use
classification (with bucketing) to generate accurate output length predictions, we find this approach
both challenging and unnecessary. Instead, the relative ranking suffices. Based on this insight, we
apply learning to rank to train the OPT model. This section explains how we train the OPT model
as the predictor P to rank prompts by their expected generation length.

Predictor Structure. The original OPT model can not directly output a score. To address this, we
append a linear layer to map the hidden states of the last layer to a floating-point number, which serves
as the ranking score.

Training Data. We aim to train the OPT model to rank prompts according to their expected generation
length when processed by a target LLM (e.g., Llama-3-70B). To achieve this, we first obtain full
generations by feeding prompts into the target LLM and recording the number of generated tokens.
When generating model outputs, we sample tokens with a temperature of 1.0, consistent with our
evaluation methodology (§5.1). The following is an example of the training data structure.

"prompt ": "Divide 10 by 4 and remove the remainder .\n"

4

"output ": "\ nAnswer: 2 with a remainder of 0."
"output_tokens_length ": 12

After obtaining the generation lengths, we convert them to labels representing the ranking. The
simplest way would be to rank the generation lengths directly within the entire training batch and use
these rankings as labels. However, recognizing that LLM generation involves some randomness due
to sampling in real-world serving, we introduce a more robust approach. We bucket the generation
lengths in increments of 10 tokens, then rank these processed lengths to create our training labels.

Training. We train the OPT on 10k samples with a batch size of 32 for 5 epochs. We employ the
ListMLE loss and the Adam optimizer with a constant learning rate of 2e−5, β1 = 0.9, and β2 = 0.999.
To accommodate OPT’s context length limitations, we truncate prompts to a maximum of 2,048 tokens.

The use of ranking loss offers several advantages. First, ranking loss focuses on correct ordering rather
than precise classification, making it more robust when dealing with batches of requests where the
output length distribution for each bucket is uneven. In contrast, classification loss typically relies
on bucket labels for training, which can lead to poor predictive performance for minority buckets in
imbalanced datasets. Second, ranking loss ensures a more reasonable bucket size, while classification
loss attempts to make the predicted labels as close to the actual labels as possible. This naturally leads
to the pursuit of larger bucket sizes, which is not beneficial for scheduling. Finally, ranking loss can
reduce the risk of overfitting. Classification loss forces the model to minimize classification errors
on the training requests, which may not generalize well to requests with covariate shifts and can cause
the model to be highly sensitive to bucket size (see our study in Tab. 3).

4.3 Request Scheduling with Rankings

We propose a simple but effective algorithm, for scheduling requests using ranking information, as
detailed in Algorithm 1. The core idea is to iteratively run the predictor model P to score new requests,
then sort all requests according to their predicted generation length rankings. We form a running batch
based on this sorted order, subject to memory or batch size constraints. To prevent the starvation of long
requests, we’ve incorporated additional mechanisms, which we’ll explain shortly. This ranking-based
scheduling algorithm operates at the iteration level, making it compatible with established LLM
serving techniques such as continuous batching [3] and PagedAttention [2].

Starvation Prevention. While SJF/SRTF scheduling can improve overall latency, it may lead to
starvation for long requests, causing users to wait excessively for responses. Different from previous
fairness-promoting design [39], which focuses on the fairness between different clients, we propose
a max_waiting_time fairness metric to evaluate the fairness at per-request level (hence reflecting
per-user satisfaction). We define max_waiting_time fairness by considering both Time To First Token
(TTFT) and Time Per Output Token (TPOT) [12] in LLM serving as follows:

max_waiting_time=max(TTFT,max(TPOT)). (3)

Intuitively, max_waiting_time characterizes the maximum time interval a user experiences between
receiving two tokens after sending a request to the server. A larger max_waiting_time indicates a
longer waiting time for the user to obtain a response, signifying more severe starvation.

To mitigate starvation, our algorithm implements the following mechanism: 1) For each scheduling
step, we increment a request’s starvation count (StarvationCount) if it is not executed. 2) When a
request’s starvation count reaches a pre-defined threshold (StarvationThreshold), we will promote
this request’s priority by allocating “quantum” of execution time. 3) The request maintains this elevated
priority until it exhausts its allocated quantum (PriorityQuantum). This simple yet effective method
prevents starvation at the request level, improves max_waiting_time, and ensures user satisfaction,
as demonstrated in our experiments (§5.5).

5 Evaluation

In this section, we evaluate our proposed method against several baselines and assess the effectiveness
of each component. Our results demonstrate that our method achieves state-of-the-art performance
in terms of both Kendall’s Tau and end-to-end serving performance metrics: latency and throughput.
Notably, we achieved a 2.8× lower latency in chatbot serving and a 6.5× higher throughput in
synthetic data generation.

5

Algorithm 1 Ranking Scheduler

1: Input: request queue Q, predictor model P , LLM M , hyper-parameter StarvationThreshold
prevents request’s starvation, hyper-parameter PriorityQuantum limits request’s priority time

2: while True do
3: Receive batch of new requests N
4: for r in N do
5: r.Score=P (r) {Batch Run Predictor}
6: end for
7: Append N request into Q upon arrival
8: S=Sort(Q) according to the pair (r.Priority,r.Score) {User-defined sort function}
9: B←∅ {B is the running batch of the current step}

10: for r in S do
11: if B is not full then
12: B←B.append(r)
13: r.StarvationCount=0 {Reset StarvationCount when scheduled}
14: if r.Priority then
15: r.Quantum=r.Quantum−1
16: end if
17: else
18: r.StarvationCount=r.StarvationCount+1
19: end if
20: end for
21: for r in Q do
22: if r.StarvationCount≥StarvationThreshold then
23: Promote(r.Priority) {Promote r’s priority and assign quantum}
24: r.StarvationCount=0
25: r.Quantum=PriorityQuantum
26: else if r.Priority and r.Quantum≤0 then
27: Demote(r.Priority)
28: end if
29: end for
30: Execute B with M
31: Remove finished requests from Q and output
32: end while

5.1 Evaluation Setup

Testbed. Our end-to-end evaluation testbed consists of a DGX server with 8 NVIDIA A100 40GB
GPUs, 256 vCPUs, and 1TB host memory. The GPUs are interconnected via NVLink.

Serving Models. We utilize the latest Meta Llama-3 models in two sizes: 8B and 70B [40]. All
experiments use FP16/BF16 precision, which is the most common setting in LLM deployment. The
8B model runs on a single GPU, while the 70B model runs on 8 GPUs with tensor parallelism [41].

Workloads. We evaluate using the ShareGPT [42] and LMSYS-Chat-1M [43] datasets, which
comprise open-ended, real-world conversations with proprietary LLM chatbots such as ChatGPT [1]
and Claude, as well as 25 other open-source LLMs. For each dataset and model pair, we sample 10k
non-overlapping prompts for serving and another 10k for training the ranking predictor. The length
distributions of the datasets are provided in Appendix B. Model generations are conducted using
random sampling with a temperature of 1.0, ensuring consistency during predictor training and serving
evaluation. It’s worth noting that our framework is insensitive to the sampling parameters.

Evaluation metrics. For chatbot serving, we measure average and p90 per-token latency, which is
the per-request latency divided by the output length. For offline synthetic generation tasks, we use
throughput (requests/second) to indicate request generation speed.

Scheduler Settings. We compare our method (i.e., ranking predictor) with four baselines
implemented on top of vLLM v0.4.1:

6

• FCFS: A First-Come-First-Served scheduler that supports executing prefill and decode in
the same step. For each scheduling step, it selects requests by earliest arrival time.

• MLFQ: We implement a Multi-Level Feedback Queue in 1.2k lines of Python code on vLLM.
This scheduler leverages chunked prefill from vLLM to run prefill and decode in the same step,
as described in FastServe [14]. The implementation’s correctness is validated in Appendix A.

• Perception Only (PO): We implement Perception Only [44] on vLLM, enabling the LLM
to self-predict its token generation length. The implementation consists of two phases: First,
we configure the LLM to generate 15 tokens (half of the maximum token count used in [44])
following a FCFS policy, using this output to determine the predicted generation length.
Second, after obtaining these predictions, we schedule subsequent requests based solely on
the predicted lengths.

• Classification: We train a classifier using an OPT model as a backbone. For Llama-3-8B, we
use the OPT-125m model, and for Llama-3-70B, we use OPT-350m, which can be supported
by 8-way tensor parallelism. Following the setting in S3 [6], we use 10 buckets with a bucket
size of (max context length / number of buckets) for high classification accuracy. We map
the hidden states of the OPT model to the number of buckets with a linear layer and use the
same training settings as in §4.2 but with a cross-entropy loss.

• Ranking (Ours): We implement our ranking scheduler (described in §4.3) with the ranking
predictor and training configuration detailed in §4.2. The implementation uses an OPT model
of identical size to that used in the classification method.

5.2 Chatbot Serving Scheduling

0 10 20 30 40 50 60
Request rate (req/s)

0

2

4

La
te

nc
y

(s
/to

ke
n)

(a) LLaMA-3-8B, 1GPU, LMSYS-Chat-1M

0 10 20 30 40 50 60
Request rate (req/s)

0

1

2

3

4

La
te

nc
y

(s
/to

ke
n)

(b) LLaMA-3-8B, 1GPU, ShareGPT

0 10 20 30 40 50 60
Request rate (req/s)

0

2

4

6

La
te

nc
y

(s
/to

ke
n)

(c) LLaMA-3-70B, 8GPU, LMSYS-Chat-1M

0 10 20 30 40 50 60
Request rate (req/s)

0

1

2

3

4

La
te

nc
y

(s
/to

ke
n)

(d) LLaMA-3-70B, 8GPU, ShareGPT

FCFS MLFQ PO Classification Ranking (Ours)

Figure 3: Mean latency of different schedulers with Llama-3 models on real workloads.

Fig. 3 compares the latency of our proposed ranking method with four baseline methods on ShareGPT
and LMSYS-Chat-1M datasets with increasing arrival rates [2, 14, 12]. Under a rate of 64 requests/sec-
ond, our method improves mean latency by up to 6.9× compared to FCFS and 1.5×–1.9× compared
to PO. MLFQ and PO still face severe HOL blockings as they must run all requests for a certain time
to obtain information for scheduling. PO must execute all arriving requests with the LLM to generate
a length prediction. MLFQ must run all arriving requests before they enter the next priority level. The
classification method optimizes for accuracy instead of ranking, missing optimization opportunities.
While classification and our method still need to process all the requests first to obtain a prediction, using
an OPT model takes less than 2% of the time (as shown in §5.5), thus greatly reducing HOL blocking.

Handling buristiness. We evaluate our method’s performance under bursty workloads, where users
suddenly submit many requests to the LLM server [45, 46]. Tab. 1 compares the latency of our method
against baselines with a burst of 2k requests. Our proposed ranking method significantly improves
latency, achieving up to 2.0× lower mean latency improve and 2.8× lower P90 latency compared to PO.

7

Table 1: Latency (s/token) with Burst of 2K requests
Mean Latency (s/token) P90 Latency (s/token)

Model Dataset FCFS MLFQ PO Class. Ours FCFS MLFQ PO Class. Ours

Llama-3-8B ShareGPT 1.15 1.07 1.35 1.13 0.56 1.60 1.57 1.67 1.51 0.67
Llama-3-8B LMSYS-Chat-1M 1.73 0.80 0.75 1.77 0.38 4.86 1.56 1.47 4.98 0.52
Llama-3-70B ShareGPT 1.44 1.37 1.04 1.26 0.78 2.01 1.89 1.35 1.73 0.96
Llama-3-70B LMSYS-Chat-1M 2.17 1.00 0.95 2.23 0.54 5.54 1.91 1.72 5.72 0.82

5.3 Synthetic Data Generation Scheduling

Synthetic data generation (SDG) is emerging as an important inference workload due to the data-hungry
nature of LLMs. In SDG, shorter responses are often preferred for several practical reasons: First,
generating concise conversations is more cost-effective given the large volume and diversity of samples
required [47] in SDG. Second, longer generations can introduce evaluation metric bias [48, 49, 50].
Consequently, samples with shorter generation lengths are often preferred for model training in specific
applications.

Our proposed method can improve generation throughput in these scenarios by prioritizing shorter
responses. We conducted two experiments to validate this approach: 1) We established a quantity
threshold (i.e., 1k requests) and measure how long the schedulers need to generate such samples given
10k prompts. 2) We set a time constraint (5 minutes) and evaluated the number of samples each scheduler
could generate from the same prompt pool. The results are presented in Tab. 2. The classification method
underperformed compared to FCFS due to the overhead of preprocessing 10k prompts with the OPT
model and its limited ability to identify shorter requests. In contrast, our proposed method effectively
prioritized shorter requests, achieving a 2.4×-6.5× reduction in generation time for 1k requests and up
to 3.2× improvement in throughput within the 5-minute window. However, it’s important to note that
in scenarios where shorter generations are not preferred, the throughput improvements would be minor.

Table 2: Throughput Improvement with Proposed Ranking Method
Time (s) To Generate 1k Samples Generated #samples within 5min

Model Dataset FCFS Classification Ranking (Ours) FCFS Classification Ranking (Ours)

Llama-3-8B ShareGPT 343.29 421.92 143.18 841 655 1706
Llama-3-8B LMSYS-Chat-1M 197.38 237.40 30.48 1348 1644 4434
Llama-3-70B ShareGPT 440.71 512.84 231.59 670 479 1299
Llama-3-70B LMSYS-Chat-1M 253.68 338.83 59.67 1167 895 3710

5.4 Comparing Ranking Predictors

We show that the accuracy of the targeted classification method is suboptimal for LLM scheduling.
Tab. 3 compares the prediction ability of the classification method with different bucket sizes. We
evaluate the classification metric (i.e., accuracy) for the classification method and the ranking metric
(i.e., Kendall’s Tau) for all methods on the same randomly sampled test set. A larger bucket size shows
better accuracy but does not necessarily indicate a higher Kendall’s Tau.

We also evaluate the end-to-end performance of these methods. The “Lat.” column shows the mean
latency to process 2k bursts of requests as in §5.2. The “Time” column shows the time to generate
1k synthetic data as in §5.3. A method with a higher Kendall’s Tau correlates with lower latency, as
proposed in §3. The time to generate 1k synthetic data is less related to Kendall’s Tau, as a high Tau with
a large bucket size does not necessarily mean the predictor can correctly select the shortest requests.

PO achieves higher Kendall’s Tau on the LMSYS-Chat-1M dataset. However, it needs to use the LLM
itself to process all requests and generate a few tokens first for prediction, which introduces a very
large HOL overhead compared to light predictor-based methods, despite its good performance in terms
of Kendall’s Tau. In all other settings, our proposed ranking method outperforms all other methods
in terms of ranking metrics and end-to-end performance.

Generalization Ability across Distribution Shifts. We evaluate the predictor’s performance under
data distribution shifts by using the LMSYS-Chat-1M dataset to test the predictor trained on ShareGPT,
and vice versa. The predictor trained on ShareGPT achieves a Kendall’s Tau of 0.54 on ShareGPT but

8

5 10 15 20 25 30
Request rate (req/s)

0

50

100

M
ax

-T
PO

T
(s

)

(a) LLaMA-3-70B, 8GPUs, LMSYS-Chat-1M

5 10 15 20 25 30
Request rate (req/s)

0

50

100

150

200

250

M
ax

-T
PO

T
(s

)

(b) LLaMA-3-70B, 8GPUs, ShareGPT
FCFS Ranking Ranking w/ Starvation Prevention

Figure 4: Average max_waiting_time across all requests with different scheduling method

5 10 15 20 25 30
Request rate (req/s)

0.0

0.5

1.0

1.5

2.0

La
te

nc
y

(s
/to

ke
n)

(a) LLaMA-3-70B, 8GPUs, LMSYS-Chat-1M

5 10 15 20 25 30
Request rate (req/s)

0.0

0.5

1.0

1.5

La
te

nc
y

(s
/to

ke
n)

(b) LLaMA-3-70B, 8GPUs, ShareGPT
FCFS Ranking Ranking w/ Starvation Prevention

Figure 5: Influence of starvation prevention on latency

drops to 0.45 when tested on LMSYS-Chat-1M. Conversely, the predictor trained on LMSYS-Chat-1M
achieves a Kendall’s Tau of 0.62 on LMSYS-Chat-1M but decreases to 0.40 when tested on ShareGPT.

Although the predictor experiences performance degradation, it still retains predictive capability,
demonstrating a certain level of generalization ability. In real-world scenarios, we can mitigate the
impact of distribution shifts by periodically retraining the model with historical data to maintain good
ranking prediction performance.

Table 3: Ranking prediction ability with different classification (Class. in table) settings (i.e., different
bucket sizes) for Llama-3-70B. Lat. column shows the mean latency processing a burst of 2k requests for
chatbot serving. Time column shows the time to generate 1k requests for synthetic data generation. Op-
timal Prediction is using the generation length of one random seed to predict the length of another seed.
Note that the p-values of Kendall’s Tau are below a given significance level (i.e., 1e-3) in all settings.

ShareGPT LMSYS-Chat-1M

Method Acc. (%) Tau (↑) Lat. (s/tok.) Time (s) Acc. (%) Tau (↑) Lat. (s/tok.) Time (s)

Optimal Prediction / 0.74 0.46 102.04 / 0.84 0.34 34.60

Ranking (Ours) / 0.54 0.78 231.59 / 0.62 0.54 59.67
Class. (#Buckets=10) 85.1% 0.24 1.26 512.84 96.8% 0.17 2.23 338.83
Class. (Bucket Size=100) 28.1% 0.49 0.84 265.91 43.4% 0.58 0.77 101.61
Class. (Bucket Size=10) 4.7% 0.46 0.86 272.13 14.5% 0.57 0.61 78.84
Class. (Bucket Size=1) 1.0% 0.32 1.00 341.63 7.3% 0.50 0.68 92.93
PO / 0.51 1.04 >600 / 0.67 0.95 322.13

5.5 Effectiveness Analysis

Effectiveness of Starvation Prevention. We show that our proposed starvation prevention method
(§4.3) greatly reduces starvation, as measured by max_waiting_time. Fig. 4 shows that mean
max_waiting_time is reduced by up to 3.4× on LMSYS-Chat-1M and up to 3.3× on ShareGPT
compared to not using starvation prevention. Fig. 5 illustrates that starvation prevention has minimal
side effects on latency, with less than 10% overhead in most cases and less than 30% in all cases, which
is an acceptable trade-off.
Overhead of Predictor Model. Tab. 4 illustrates the overhead of the ranking predictor in responsing
1k requests. “Prefill Time” is measured by only processing the prompts with the original LLM. The
overhead of the ranking models (only processing the prompts) is less than 2% in all settings. The
overhead on the ShareGPT dataset is slightly higher (i.e., 1.11% and 1.69%) because the prompt
length of ShareGPT is longer, as shown in Appendix B. The execution time of OPT is 10%~15% of the
execution time of the original LLM in processing the prompts, largely alleviating the HOL blocking
cost in length prediction compared to PO in chatbot servings.

9

Table 4: Overhead of Predictor Model
Model Dataset Overall Time (s) Prefill Time (s) Predictor Time (s) Overhead (%)

Llama-3-8B ShareGPT 254.23 22.34 2.81 1.11
Llama-3-8B LMSYS-Chat-1M 127.82 7.50 1.03 0.81
Llama-3-70B ShareGPT 419.74 46.06 7.09 1.69
Llama-3-70B LMSYS-Chat-1M 211.30 15.44 2.46 1.16

6 Limitations

Limitation of the Ranking Metric. Although Kendall’s Tau is a widely used ranking metric, it has limi-
tations when it comes to reflecting end-to-end performance. For example, consider a ranking prediction
that accurately reflects generation length. If we randomly shuffle the predictions within the shortest
70% of requests and separately shuffle those within the longest 70%, the Kendall’s Tau score will still
be 0.5 for both. However, this leads to a significant latency difference, with the Llama-8B model on the
ShareGPT dataset showing a 1.8× increase in latency. In contrast, when the ranking is uniformly shuf-
fled across the entire list, Kendall’s Tau exhibits a stronger correlation with latency, as shown in Fig. 2.

Limitations of the Proposed Ranking Scheduler. The proposed ranking scheduler is designed
to work with standard LLM serving techniques, such as continuous batching and paged attention.
However, it has not yet been fully tested with newer optimizations like chunk-prefill [13] and
prefill-decode disaggregation [12]. Future work will focus on integrating the scheduler with these
advanced techniques to assess their combined performance benefits.

7 Conclusion

In this paper, we propose a method to train a predictor that learns to rank the generation length of LLM
responses based on the given prompts using a learning-to-rank approach. We implement a rank-based
scheduler on top of vLLM, demonstrating significant improvements across various tasks. Specifically,
our method reduces latency by 2.8x in chatbot serving and increases throughput by 6.5x in synthetic data
generation. Given the simplicity and effectiveness of our approach, we believe it can be easily integrated
into production-level LLM serving systems, reducing serving latencies while enhancing service quality.

Acknowledgments and Disclosure of Funding

We extend our gratitude to Junda Chen, Yinmin Zhong, and Zhuohan Li for their valuable feedback.
We also thank the anonymous reviewers for their insightful and constructive comments.

10

References

[1] OpenAI. Introducing chatgpt. https://openai.com/index/chatgpt/, November 2022.

[2] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[3] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pages 521–538, 2022.

[4] Wikipedia contributors. Kendall rank correlation coefficient — Wikipedia, the free encyclopedia,
2024. [Online; accessed 18-May-2024].

[5] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[6] Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. s3: Increasing gpu utilization
during generative inference for higher throughput. Advances in Neural Information Processing
Systems, 36, 2024.

[7] Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You. Response
length perception and sequence scheduling: An llm-empowered llm inference pipeline. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural
Information Processing Systems, volume 36, pages 65517–65530. Curran Associates, Inc., 2023.

[8] Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in
Information Retrieval, 3(3):225–331, 2009.

[9] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Aashaka Shah, Saeed Maleki, and
Ricardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting. arXiv
preprint arXiv:2311.18677, 2023.

[10] Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski, and Ana Klimovic.
D\’ej\avu: Kv-cache streaming for fast, fault-tolerant generative llm serving. arXiv preprint
arXiv:2403.01876, 2024.

[11] Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, et al. Inference without interference: Disaggregate llm
inference for mixed downstream workloads. arXiv preprint arXiv:2401.11181, 2024.

[12] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving. arXiv preprint arXiv:2401.09670, 2024.

[13] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S
Gulavani, Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-latency tradeoff
in llm inference with sarathi-serve. arXiv preprint arXiv:2403.02310, 2024.

[14] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu, and Xin Jin. Fast
distributed inference serving for large language models. arXiv preprint arXiv:2305.05920, 2023.

[15] Jiachen Liu, Zhiyu Wu, Jae-Won Chung, Fan Lai, Myungjin Lee, and Mosharaf Chowdhury.
Andes: Defining and enhancing quality-of-experience in llm-based text streaming services. arXiv
preprint arXiv:2404.16283, 2024.

[16] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha Choukse. Dynamollm:
Designing llm inference clusters for performance and energy efficiency. arXiv preprint
arXiv:2408.00741, 2024.

11

[17] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[18] Ke Cheng, Wen Hu, Zhi Wang, Peng Du, Jianguo Li, and Sheng Zhang. Enabling efficient batch
serving for lmaas via generation length prediction. arXiv preprint arXiv:2406.04785, 2024.

[19] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus
Franke, Zbigniew T Kalbarczyk, Tamer Başar, and Ravishankar K Iyer. Efficient interactive llm
serving with proxy model-based sequence length prediction. arXiv preprint arXiv:2404.08509,
2024.

[20] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus
Franke, Zbigniew Kalbarczyk, Tamer Başar, and Ravishankar K Iyer. Power-aware deep learning
model serving with {µ-Serve}. In 2024 USENIX Annual Technical Conference (USENIX ATC
24), pages 75–93, 2024.

[21] Alexandros Karatzoglou, Linas Baltrunas, and Yue Shi. Learning to rank for recommender sys-
tems. In Proceedings of the 7th ACM Conference on Recommender Systems, pages 493–494, 2013.

[22] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. Advances in Neural
Information Processing Systems, 31, 2018.

[23] Xingguang Chen, Rong Zhu, Bolin Ding, Sibo Wang, and Jingren Zhou. Lero: applying
learning-to-rank in query optimizer. The VLDB Journal, pages 1–25, 2024.

[24] David Cossock and Tong Zhang. Subset ranking using regression. In Learning Theory: 19th
Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006.
Proceedings 19, pages 605–619. Springer, 2006.

[25] Ping Li, Qiang Wu, and Christopher Burges. Mcrank: Learning to rank using multiple classi-
fication and gradient boosting. Advances in neural information processing systems, 20, 2007.

[26] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang, Jianhui Chen,
Changsung Kang, Hongbo Deng, Chikashi Nobata, et al. Ranking relevance in yahoo search.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 323–332, 2016.

[27] Koby Crammer and Yoram Singer. Pranking with ranking. Advances in neural information
processing systems, 14, 2001.

[28] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boosting algorithm
for combining preferences. Journal of machine learning research, 4(Nov):933–969, 2003.

[29] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pages 89–96, 2005.

[30] Zhaohui Zheng, Keke Chen, Gordon Sun, and Hongyuan Zha. A regression framework for
learning ranking functions using relative relevance judgments. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information retrieval,
pages 287–294, 2007.

[31] Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with nonsmooth cost
functions. Advances in neural information processing systems, 19, 2006.

[32] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. Adapting boosting for
information retrieval measures. Information Retrieval, 13:254–270, 2010.

[33] Christopher JC Burges. From ranknet to lambdarank to lambdamart: An overview. Learning,
11(23-581):81, 2010.

[34] Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval. In Proceedings
of the 30th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 391–398, 2007.

12

[35] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank: optimizing
non-smooth rank metrics. In Proceedings of the 2008 International Conference on Web Search
and Data Mining, pages 77–86, 2008.

[36] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pages 129–136, 2007.

[37] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning
to rank: theory and algorithm. In Proceedings of the 25th international conference on Machine
learning, pages 1192–1199, 2008.

[38] Przemysław Pobrotyn and Radosław Białobrzeski. Neuralndcg: Direct optimisation of a ranking
metric via differentiable relaxation of sorting. arXiv preprint arXiv:2102.07831, 2021.

[39] Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li, Danyang Zhuo, Joseph E
Gonzalez, and Ion Stoica. Fairness in serving large language models. arXiv preprint
arXiv:2401.00588, 2023.

[40] AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI, 2024.

[41] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[42] ShareGPT Team. https://sharegpt.com/, 2023.

[43] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zhuohan Li, Zi Lin, Eric Xing, et al. Lmsys-chat-1m: A large-scale real-world
llm conversation dataset. arXiv preprint arXiv:2309.11998, 2023.

[44] Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You. Response
length perception and sequence scheduling: An llm-empowered llm inference pipeline. Advances
in Neural Information Processing Systems, 36, 2024.

[45] Cade Daniel, Chen Shen, Eric Liang, and Richard Liaw. How continuous
batching enables 23x throughput in llm inference while reducing p50 latency.
https://www.anyscale.com/blog/continuous-batching-llm-inference, June 2023.

[46] Yuxin Wang, Yuhan Chen, Zeyu Li, Zhenheng Tang, Rui Guo, Xin Wang, Qiang Wang,
Amelie Chi Zhou, and Xiaowen Chu. Towards efficient and reliable llm serving: A real-world
workload study. arXiv preprint arXiv:2401.17644, 2024.

[47] Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, February 2024.

[48] Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36, 2024.

[49] Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf. arXiv preprint arXiv:2310.03716, 2023.

[50] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

[51] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

13

https://github.com/tatsu-lab/stanford_alpaca

A Implementation of MLFQ

We are validating the correctness of MLFQ implementation by presenting the relationship of finish
time and output length of requests as shown in Fig. 6. This presents a burst of 1k requests with an
MLFQ base quantum of 16 seconds, the quantum growth rate of 2, and a max requests limitation of
256 for each step in the vLLM scheduler.

These rectangular blocks, whose edge lengths grow exponentially with the quantum growth rate,
represent requests that are completed in queues of varying priorities. When requests from higher
priority fail to fill the entire sliding window, those from lower priority begin to be processed, resulting
in different blocks being adjacent to one another.

The max request limitation for each step is like a sliding window on all requests. According to the
property of MLFQ, requests within the sliding window have two ways out 1) Finish and pop out
marked by a linear increase in output lengths over time; 2) Timeout and demote, occurring when the
finish time reaches a multiple of the quantum for the current queue, a batch of requests that arrive at the
same time will be demoted simultaneously. With a short quantum for the priority queue, most requests
are likely to be demoted rather than completed within the quantum, which explains the clear line trend
for the first block shown in the figure. When the finish time reaches multiples of the base quantum
(16 seconds in this figure), a new linear growth line appears caused by batch timeout demotions.

Figure 6: Finish Time of Requests with MLFQ Scheduler.

14

B Dataset Length Distribution

We randomly sample 10k samples and present the dataset distribution as in Fig. 7. We compute the
input length by appending the chat template onto the prompts. We have a mean value of 85 input
tokens for LMSYS-Chat-1M and a mean value of 240 input tokens for ShareGPT, which is 3× longer
than LMSYS-Chat-1M. The output length of the ShareGPT dataset is 100 tokens more than the
LMSYS-Chat-1M dataset. On average, the 70B version of Llama-3 has a slightly longer output length
(i.e., around 15 tokens).

Figure 7: Dataset Length Distribution

0 500 1000 1500 2000
Tokens

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity
 (1

e-
2)

Llama3-8B LMSYS-Chat-1M
Input (mean: 85)
Output (mean: 293)

0 500 1000 1500 2000
Tokens

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity
 (1

e-
2)

Llama3-70B LMSYS-Chat-1M
Input (mean: 85)
Output (mean: 307)

0 500 1000 1500 2000
Tokens

0.0

0.3

0.6

0.9

1.2

1.5

De
ns

ity
 (1

e-
2)

Llama3-8B ShareGPT
Input (mean: 240)
Output (mean: 412)

0 500 1000 1500 2000
Tokens

0.0

0.3

0.6

0.9

1.2

1.5

De
ns

ity
 (1

e-
2)

Llama3-70B ShareGPT
Input (mean: 240)
Output (mean: 429)

C Predictor’s Sensitivity to Batch Size

The ranking scheduler is insensitive to batch size variations. We assess the predictor’s sensitivity to
batch size on the LMSYS-Chat-1M dataset, as detailed in Tab. 5. We use the predictor to calculate
Kendall’s Tau for various batch sizes and derive the mean and variance across the entire dataset. This
experiment shows that Kendall’s Tau remains within a narrow range across different batch sizes.
Additionally, our method addresses severe HOL problems when there are numerous requests, in which
case, the batch size is often sufficiently large for the predictor to be effective and robust.

15

Table 5: Predictor’s Sensitivity to Batch Size
Batch Size Kendall’s Tau Mean Kendall’s Tau Variance

8 0.619 0.04
16 0.625 0.02
32 0.624 0.008
64 0.625 0.0007
128 0.619 0.001

D Relationship Between the ListMLE Loss and the Kendall’s Tau

The ListMLE loss defines a parameterized exponential probability distribution over all scores (as
given by the model) and formulates the loss function as the negative log likelihood of the ground truth
ranking y. Meanwhile, Kendall’s Tau measures the ordinal association between the scores (as given
by the model) and the ground truth ranking y. It is challenging to accurately describe the relationship
between the likelihood and ordinal association. However, we provide an analysis demonstrating that
minimizing the ListMLE loss can help improve Kendall’s Tau.

To simplify the problem, we assume there are no ties between any two items, meaning each pair should
be either concordant or discordant. In this case, Kendall’s Tau is defined as τ= Nc−Nd

n(n−1)/2 , where Nc

and Nd are the number of concordant and discordant pairs in two rankings, and n is the total number
of items. As Nd increases, Nc decreases because the sum of Nc and Nd is fixed. Consequently, we
have ∆τ= 4∆Nc

n(n−1) , where τ increases when Nc increases.

ListMLE loss is defined as ϕ(g(x),y)=−logP (y |x;g), where P (y |x;g) represents the likelihood of
the ground truth ranking y. As the likelihood of the ground truth ranking y increases, the loss decreases.
Although the increase of P (y |x;g) does not guarantee that Nc increases, the increase in the likelihood
of the ground truth ranking should generally lead to a greater agreement between the ground truth
ranking and the scores given by the model, which implies an increase in the number of concordant pairs
(or Nc) and a decrease in the number of discordant pairs (or Nd) between the scores and the ground
truth. Thus, minimizing the loss can help improve Kendall’s Tau.

We further illustrate this relationship by tracking Tau and loss throughout the training process, as
shown in Tab. 6. The Pearson correlation coefficient between Tau and loss is -0.9, which means that
ListMLE loss and Kendal’s Tau coefficient are highly negatively correlated.

Table 6: Relationship Between the ListMLE Loss and the Kendall’s Tau
Step Kendall’s Tau Loss

20 0.44 77.79
40 0.51 75.73
60 0.53 72.61
80 0.54 70.14

100 0.55 70.59
120 0.53 70.09
140 0.56 67.01
160 0.59 69.94
180 0.59 70.88
200 0.57 68.84
220 0.59 68.67
240 0.61 66.90
260 0.58 67.23
280 0.56 68.71

16

E The Performance Gap Between The Proposed Method and Oracle

Due to noise and randomness in the sampling process, in this section we define the Oracle as utilizing
sampling results from one seed to guide the scheduling of another sampling, which represents the best
performance achievable given one sampling result. The performance gap between the ranking-based
method (ours) and the Oracle varies depending on the evaluation dataset. On certain datasets, our
proposed method can perform as well as the Oracle. For instance, when tested on the Alpaca [51]
dataset with the Llama-8B model, our proposed method closely approximates the Oracle in terms
of Kendall’s Tau and end-to-end latency for a burst of 2K requests, as depicted in Tab. 7. These tests
were conducted on a single A100 80GB GPU.

On datasets such as LMSYS-Chat-1M and ShareGPT, there remains a small gap between the proposed
ranking-based method and the Oracle. The comparison between the ranking-based method (indicated
as "Ranking (Ours)") and the Oracle (indicated as "Optimal Prediction") is presented in Tab. 3.

Table 7: Relationship Between ListMLE Loss and Kendall’s Tau
Kendall’s Tau Latency (s/token)

Ours 0.73 0.28
Oracle 0.72 0.24
FCFS 0.0 1.36

F Influence of The Predictor Size

Our results show that the model size has a minor effect on the prediction ability, as indicated in the
following Tab. 8:

The choice to use an OPT-350m model for Llama-70B model is primarily driven by deployment
considerations. The OPT-350m model, with 16 attention heads, can be easily deployed using 8-way
tensor parallelism, which is also the requirement for the Llama-70B model. In contrast, an OPT-125m
model with 12 attention heads cannot be deployed across 8 GPUs, as discussed in § 5.1. We deploy
the OPT-125m predictor solely on 1 GPU, necessitating the other 7 GPUs to wait when executing the
predictor. This configuration results in a waste of resources and may lead to performance degradation.

Table 8: Relationship Between ListMLE Loss and Kendall’s Tau
Kendall’s Tau 125m-OPT 350m-OPT

ShareGPT 0.55 0.54
LMSYS-Chat-1M 0.64 0.62

G Consideration of Ignoring The Prompt Length

In practice, we have found that focusing solely on the generated length is both simple and sufficiently
effective.

First, our observations from the Imsys-chat-1M and ShareGPT traces, which represent real-world sce-
narios, indicate that prompt length is not a critical factor in generation time. Specifically, the prefill time
constitutes only 5% on Imsys-chat-1M and 8% on ShareGPT, respectively, of the entire generation time,
indicating that they have a minor impact on overall latency. Note that there are already long prompts in
the workloads we tested. For example, 1% of all prompts in the ShareGPT dataset exceed 900 tokens.

Second, although this paper does not particularly focus on long contexts (e.g., prompt length > 32k
tokens), we argue that handling long prompts is relatively straightforward. Since prompt lengths are
always known a priori, it is easy to accurately approximate the latency of the prefill phase through
profiling. We can also map the relative ranking of generation length into a length estimation based
on the dataset distribution. By simply adding the prefill time estimation to the current framework,
we can provide an end-to-end generation time approximation for scheduling.

17

H Influence of Correcting Mispredictions Dynamically

We have implemented preemptive scheduling, where at each decoding step, we compare the generation
rankings of new-incoming requests with those of the currently running requests and preempt those
with lower rankings (as detailed in Algorithm 1). However, we do not re-predict the scores for requests
that have already been executed during the generation process. Our findings, as presented in Tab. 9,
indicate that re-prediction offers minimal improvement. These experiments were conducted using
a Llama-3-8B model on a single 80GB A100 GPU.

Table 9: Influence of Correcting Mispredictions
Latency (s/token) Ours Re-Prediction

ShareGPT 0.43 0.44
LMSYS-Chat-1M 0.64 0.64

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6: Limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend
on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

19

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included the information to reproduce the experiments in the
Evaluation and Method sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

20

Answer: [Yes]

Justification: The implementation is publicly available at https://github.com/
hao-ai-lab/vllm-ltr.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be pos-
sible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have specified the experimental details in Section 4.2: Generation Length
Ranking Predictor, and Section 5.1: Evaluation Setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This paper does not include error bars, confidence intervals, or statistical
significance tests due to very high computational cost running all experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

21

https://github.com/hao-ai-lab/vllm-ltr
https://github.com/hao-ai-lab/vllm-ltr
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: This paper indicates the type of compute workers CPU and GPU in the
evaluation section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require

a deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

23

paperswithcode.com/datasets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is publicly available at https://github.com/hao-ai-lab/
vllm-ltr.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

24

https://github.com/hao-ai-lab/vllm-ltr
https://github.com/hao-ai-lab/vllm-ltr

	Introduction
	Related Work
	Background
	Method
	Problem Formulation
	Generation Length Ranking Predictor
	Request Scheduling with Rankings

	Evaluation
	Evaluation Setup
	Chatbot Serving Scheduling
	Synthetic Data Generation Scheduling
	Comparing Ranking Predictors
	Effectiveness Analysis

	Limitations
	Conclusion
	Implementation of MLFQ
	Dataset Length Distribution
	Predictor's Sensitivity to Batch Size
	Relationship Between the ListMLE Loss and the Kendall's Tau
	The Performance Gap Between The Proposed Method and Oracle
	Influence of The Predictor Size
	Consideration of Ignoring The Prompt Length
	Influence of Correcting Mispredictions Dynamically

