
A Societal impact

The impact of this study on society has both positive and negative aspects. Here we discuss each.

On the positive side, our proposal would promote modeling methods using LSTMs in computer vision.
This study takes image patches as tokens and models their relationships with LSTMs. Although
LSTMs have been used in computer vision, designing image recognition with a module that includes
LSTMs in the spatial direction as the main elements, as our study does, is new. It is exciting to see if
this design benefits computer vision tasks other than image classification. Thus, our study would be
an impetus for further research on its application to various computer vision tasks.

On the other side, our architecture may increase the carbon dioxide footprint: the study of new
architectures for vision, such as Sequencer, requires iterative training of models for long periods
to optimize the model’s design. In particular, Sequencer is not a FLOPs-friendly design, and the
amount of carbon dioxide emitted during training is likely to be high. Therefore, considering the
environmental burden caused by the training of Sequencers, research to reduce the computational
cost of Sequencers is also desired by society.

B Implementation details

In this section, implementation details are supplemented. We describe the pseudocode of the
BiLSTM2D layer, the architecture details, settings for training on IN-1K, and introduce settings for
transfer learning.

B.1 Pseudocode

Algorithm 1 Pseudocode of BiLSTM2D layer.

B: batch size H: height, W: width, C: channel, D: hidden dimension

x: input tensor of shape (B, H, W, C)

initialization

self.rnn_v = nn.LSTM(C, D, num_layers=1, batch_first=True, bias=True, bidirectional=True)

self.rnn_h = nn.LSTM(C, D, num_layers=1, batch_first=True, bias=True, bidirectional=True)

self.fc = nn.Linear(4 * D, C)

forward

def forward(self, x):

v, _ = self.rnn_v(x.permute(0, 2, 1, 3).reshape(-1, H, C))

v = v.reshape(B, W, H, -1).permute(0, 2, 1, 3)

h, _ = self.rnn_h(x.reshape(-1, W, C))

h = h.reshape(B, H, W, -1)

x = torch.cat([v, h], dim=-1)

x = self.fc(x)

return x

B.2 Architecture details

This subsection describes Sequencer’s architecture. The architectural details are shown in Table 4
and 5.

Sequencer2D-S is based on a ViP-S/7-like architecture. We intend to directly compare the BiLSTM2D
layer in Sequencer2D, which has a similar structure, with the Permute-MLP layer in ViP-S/7. Table 4
is a summary of the architecture. In keeping with ViP, the first stage of Sequencers involves patch
embedding with a 7x7 kernel. The second stage of Sequencers performs patch embedding with
a 2x2 kernel, but the following two stages have no downsampling. The classifier of Sequencers
then continues with layer normalization (LN) [1], followed by global average pooling and a linear
layer. The number of blocks of Sequencer2D-S, Sequencer2D-M, and Sequencer2D-L correspond to
ViP-S/7, ViP-M/7, and ViP-L/7, respectively. However, as described in Appendix C, we configure
the dimension of the block to be different from ViP-M/7 and ViP-L/7 for Sequencer2D-M and
Sequencer2D-L, respectively, because high dimension causes over-fitting.

VSequencer is a bit different from Sequencer2D in that it is non-hierarchical architecture. Table 5
define that no downsampling is performed in the second stage, instead of downsampling with 14x14
kernel for patch embedding in the first stage. In addition, we match the dimension of the blocks in
the first stage to the dimension of the subsequent blocks.

15

Following the overall architecture, we describe the details of the modules not mentioned in the main
text. Sequencer2D block and the Vanilla Sequencer block use LNs [1] for the normalization layers.
We follow previous studies for the channel MLPs of these blocks and employ MLPs with Gaussian
Error Linear Units (GELUs) [25] as the activation function; the ratio of increasing dimension in
MLPs is uniformly 3x, as shown in Table 4 and 5.

B.3 IN-1K settings

On IN-1K dataset [39], we utilize the hyper-parameters displayed in Table 6 to scratch train models
in subsections 4.1 and 4.3. All Sequencer variants, including the models in the ablation study, follow
almost the same settings for pre-training. However, the stochastic depth rate and batch size are
adjusted depending on the model variant. The models in the ablation study are Sequencer2D-S based
because of the following Sequencer2D-S settings.

The fine-tuning Sequencer2D-L" 3922 in subsection 4.2 has slightly different hyper-parameters than
the pre-training models. There are changes in the settings for the number of epochs and learning rate
because it uses trained weights, so there is no need to increase these hyper-parameters. In addition,
we used crop ratio 0.875 during testing in the pre-training models instead of crop ratio 1.0 in the
fine-tuning model.

B.4 Transfer learning settings

Details of the datasets used for transfer learning in subsection 4.4 are shown in Table 7. This summary
includes for each dataset CIFAR-10 [38], CIFAR-100 [38], Flowers-102 [55], and Stanford Cars [37],
the number of training images, test images, and number of categories are listed.

Table 6 demonstrates the hyperparameters used in transfer learning with these datasets. The training
epochs are especially adjusting to the datasets and changing them. The reason for this is attributable
to the different sizes of the datasets.

C More results

This section discusses additional results that could not be addressed in the main text. The contents of
the experiment consist of three parts: an evaluation of robustness in subsection C.1, an evaluation of
generalization performance in subsection C.2, and a discussion of over-fitting in subsection C.3.

C.1 Robustness

In this subsection, we evaluate the robustness of Sequencer. There are two main evaluation methods,
benchmark datasets and adversarial attacks.

Evaluation with benchmark datasets reveals nice robustness of Sequencer. The evaluation results
are summarized in Table 8. We test our models, trained on only IN-1K, on several datasets such as
ImageNet-A/R/Sketch/C (IN-A/R/Sketch/C) [26, 23, 78, 24] to evaluate robustness. We evaluate
our models on IN-C with mean corruption error (mCE), and on other datasets with top-1 accuracy.
This result leads us to suggest that for models with a similar number of parameters, Sequencer is
conquered by Swin and is robust enough to be competitive with ConvNeXt. Table 9 shows detail
evaluation on IN-C. According to the results, it is understood that Sequencer is more immune to
corruptions other than Noise than Swin and ConvNeXt, and, in particular, the model is less sensitive
to weather conditions.

Sequencers are tolerant of principal adversarial attacks. We evaluate robustness using the single-step
attack algorithm FGSM [18] and multi-step attack algorithm PGD [52]. Both algorithms give a
perturbation of max magnitude 1. For PGD, we choose steps 5 and step size 0.5. This setup is based
on RVT [53]. Table 9 indicates that Sequencer2D-L defeats in both FGSM and PGD compared to
other models. Thus, Sequencer has an advantage over conventional models, such as RVT, which tout
robustness on these adversarial attacks.

16

Table 4: Variants of Sequencer2D and details. "d" denotes the input/output dimension, and D

denotes the hidden dimension as above. "# n" (e.g., #2) shows the stride of the downsampling is n
Sequencer2D-S Sequencer2D-M Sequencer2D-L

stage 1

Patch Embedding#7 Patch Embedding#7 Patch Embedding#72

664

BiLSTM2D: 192d

D = 48

MLP: 3 exp. ratio

3

775⇥ 4

2

664

BiLSTM2D: 192d

D = 48

MLP: 3 exp. ratio

3

775⇥ 4

2

664

BiLSTM2D: 192d

D = 48

MLP: 3 exp. ratio

3

775⇥ 8

stage 2

Patch Embedding#2 Patch Embedding#2 Patch Embedding#22

664

BiLSTM2D: 384d

D = 96

MLP: 3 exp. ratio

3

775⇥ 3

2

664

BiLSTM2D: 384d

D = 96

MLP: 3 exp. ratio

3

775⇥ 3

2

664

BiLSTM2D: 384d

D = 96

MLP: 3 exp. ratio

3

775⇥ 8

stage 3

Point-wise Linear Point-wise Linear Point-wise Linear2

664

BiLSTM2D: 384d

D = 96

MLP: 3 exp. ratio

3

775⇥ 8

2

664

BiLSTM2D: 384d

D = 96

MLP: 3 exp. ratio

3

775⇥ 14

2

664

BiLSTM2D: 384d

D = 96

MLP: 3 exp. ratio

3

775⇥ 16

stage 4

Point-wise Linear Point-wise Linear Point-wise Linear2

664

BiLSTM2D: 384d

D = 96

MLP: 3 exp. ratio

3

775⇥ 3

2

664

BiLSTM2D: 384d

D = 96

MLP: 3 exp. ratio

3

775⇥ 3

2

664

BiLSTM2D: 384d

D = 96

MLP: 3 exp. ratio

3

775⇥ 4

classifier Layer Norm., Global Average Pooling, Linear

C.2 Generalization ability

The generalization ability of Sequencers is also impressive. We evaluate our models on ImageNet-
Real/V2 (IN-Real/V2) [2, 62] to test their generalization performance: IN-Real is a re-labeled dataset
of the IN-1K validation set, and IN-V2 is the dataset that re-collects the IN-1K validation set. Table 8
shows the results of evaluating the top-1 accuracy on both datasets. We reveal an understanding of
the Sequencer’s excellent generalization ability.

C.3 Over-fitting

Wide Sequencers tend to be over-trained. We scratch-train Sequencer2D-Lx1.3, which has 4/3 times
the dimension of each layer of Sequencer2D-L, on IN-1K. The training utilizes the same conditions
as Sequencer2D-L. Consequently, as Table 10 shows, Sequencer2D-Lx1.3 has 0.8% less accuracy
than Sequencer2D-L. Figure 6 illustrates the cross-entropy evolution and top-1 accuracy on IN-1K
validation set for the two models. On the one hand, cross-entropy decreased on Sequencer2D-L in
the last 100 epochs. On the other hand, Sequencer2D-Lx1.3 is increasing. Thus, widening Sequencer
is counterproductive for training.

C.4 Semantic segmentation

We evaluate models with Sequencer as the backbone for a semantic segmentation task. We trained and
evaluated on ADE20K dataset [89], a well-known scene parsing benchmark. The dataset consists of
the training set with about 20k images and the validation set with about 2k, covering 150 fine-grained
semantic classes. We employed Sequencer as the backbone of SemanticFPN [36] to train and evaluate
semantic segmentation. The training adopts a batch size of 32 and AdamW [50] with the initial
learning rate of 2e-4, decay in the polynomial decay schedule with a power of 0.9, and 40k iterations

17

Table 5: Variants of VSequencer and details. "d" denotes the input/output dimension, and D

denotes the hidden dimension as above. "# n" (e.g., #2) shows the stride of the downsampling is n
VSequencer-S VSequencer-S(H) VSequencer-S(PE)

stage 1

Patch Embedding#14 Patch Embedding#7 Patch Embedding#142

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 4

2

664

BiLSTM: 192d

D = 96

MLP: 3 exp. ratio

3

775⇥ 4

2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 4

stage 2

Point-wise Linear Patch Embedding#2 Point-wise Linear2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 3

2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 3

2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 3

stage 3

Point-wise Linear Point-wise Linear Point-wise Linear2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 8

2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 8

2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 8

stage 4

Point-wise Linear Point-wise Linear Point-wise Linear2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 3

2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 3

2

664

BiLSTM: 384d

D = 192

MLP: 3 exp. ratio

3

775⇥ 3

classifier Layer Norm., Global Average Pooling, Linear

(a) Cross entropy (b) Top-1 accuracy

Figure 6: Comparison of different model widths. (a) is cross entropy, (b) is top-1 accuracy
comparison, on IN-1K validation set. The blue curve represents the original Sequencer2D-L, which
did not produce any problems and is learning all the way through. In contrast, the green curve
represents the wider Sequencer2D-Lx1.3. This model stalls in the second half and is somewhat
degenerate.

of training. These settings follow Metaformer [83]. Table 3 of the result indicates that Sequencer has
the generalization for segmentation is comparable to other leading models.

C.5 Object Detection

We evaluate Sequencer on COCO benchmark [45]. The dataset consists of 118k training images and
5k validation images. Sequencer with ImageNet pre-trained weights is employed as the backbone of
RetinaNet [44]. Following [44], we employ AdamW, batch size of 16, and 1⇥ training schedule.
Table 11 shows that Sequencer is not suited for existing standard object detection models such as

18

Table 6: Hyper-parameters. " denotes fine-tuning pre-trained model on IN-1K. Multiple values are
for each model, respectively.

Training config. Sequencer2D-S/M/L Sequencer2D-L" Sequencer2D-S"/M"/L"
2242 3922 2242

dataset IN-1K [39] IN-1K [39] CIFAR10, 100, Flowers, Cars
optimizer AdamW [50] AdamW [50] AdamW [50]
base learning rate 2e-3/1.5e-3/1e-3 5e-5 1e-4
weight decay 0.05 1e-8 1e-4
optimizer ✏ 1e-8 1e-8 1e-8
optimizer momentum �1,= 0.9,�2=0.999 �1,= 0.9,�2=0.999 �1,= 0.9,�2=0.999
batch size 2048/1536/1024 512 512
training epochs 300 30 CIFAR: 200, Others: 1000
learning rate schedule cosine decay cosine decay cosine decay
lower learning rate bound 1e-6 1e-6 1e-6
warmup epochs 20 None 5
warmup schedule linear None linear
warmup learning rate 1e-6 None 1e-6
cooldown epochs 10 None 10
crop ratio 0.875 1.0 0.875
randaugment [11] (9, 0.5) (9, 0.5) (9, 0.5)
mixup ↵ [87] 0.8 0.8 0.8
cutmix ↵ [85] 1.0 1.0 1.0
random erasing [88] 0.25 0.25 None
label smoothing [66] 0.1 0.1 0.1
stochastic depth [30] 0.1/0.2/0.4 0.4 0.1/0.2/0.4
gradient clip None None 1

Table 7: Transfer learning datasets.
Dataset Train Size Test size #Classes
CIFAR-10 [38] 50,000 10,000 10
CIFAR-100 [38] 50,000 10,000 100
Flowers-102 [55] 2,040 6,149 102
Stanford Cars [37] 8,144 8,041 196

RetinaNet. It shows no improvement trend for model scaling. It also struggles to detect small objects,
making RNN-based object detection models an issue to consider in the future.

C.6 More studies

Method of merge As shown in Figure 2, "concatenate" is used to merge the vertical BiLSTM
and horizontal BiLSTM outputs but "add" can also be used. See Table 12a for the result of the
experiment.

D Effective receptive field

This section covers in detail the effective receptive fields (ERFs) [51] used in the visualization in
subsection 4.5. First, we explain how the visualized effective receptive fields are obtained. Second,
we present other visualization results not addressed in the main text. The ERF’s calculations in this
paper are based on [14].

D.1 Calculation of visualized ERFs

The ERF [51] is a technique for calculating the pixels that contribute to the center of a output feature
maps of a neural network. Let I 2 Rn⇥h⇥w⇥c be a input image collection and O 2 Rn⇥h

0⇥w
0⇥c

0

be the output feature map collection. The center of the output feature map can be expressed as
O:,bh0/2c,bw0/2c,:, where b·c is the floor function. Each element of the derivative of Oi,bh0/2c,bw0/2c,j

to I, i.e.,
@(

P
i,j Oi,bh0/2,cbw0/2c,j)

@I
, represents to what extent the center of the output feature map

19

Table 8: The robustness is evaluated on IN-A [26] (top-1 accuracy), IN-R [23] (top-1 accuracy),
IN-Sketch [78] (top-1 accuracy), IN-C [24] (mCE), FGSM [18] (top-1 accuracy), and PGD [52]
(top-1 accuracy). The generalization ability is evaluated on IN-Real [2] and IN-V2 [62]. We denote
the higher as better value as " and the lower as better value as #. Rather than those reported in the
original paper, the values we observed are marked with †. If the model name has †, it means that we
observed all the metrics of the model.
Model #Param. FLOPs Clean(") A(") R(") Sk.(") C(#) FGSM(") PGD(") Real(") V2(")
Swin-T [48] 28M 4.5G 81.2 21.6 41.3 29.1 62.0 33.7 7.3 86.7† 69.6†

ConvNeXt-T [49] 29M 4.5G 82.1 24.2 47.2 33.8 53.2 37.8† 10.5† 87.3† 71.0†

RVT-S* [53] 23M 4.7G 81.9 25.7 47.7 34.7 49.4 51.8 28.2 - -
Sequencer2D-S 28M 8.4G 82.3 26.7 45.1 33.4 53.0 49.2 25.0 87.4 71.8
Sequencer2D-M 38M 11.1G 82.8 30.5 46.3 34.7 51.8 50.8 26.3 87.6 72.5
Swin-S [48]† 50M 8.7G 83.2 32.5 45.2 32.3 54.9 45.9 18.1 87.7 72.1
ConvNeXt-S† [49] 50M 8.7G 83.1 31.3 49.6 37.1 49.5 46.1 17.7 88.1 72.5
Sequencer2D-L 54M 16.6G 83.4 35.5 48.1 35.8 48.9 53.1 30.9 87.9 73.4
Swin-B [48] 88M 15.4G 83.4 35.8 46.6 32.4 54.4 49.2 21.3 89.2† 75.6†

ConvNeXt-B [49] 89M 15.4G 83.8 36.7 51.3 38.2 46.8 47.5† 18.3† 88.4† 73.7†

RVT-B* [53] 92M 17.7G 82.6 28.5 48.7 36.0 46.8 53.0 29.9 - -

Table 9: Details of robustness evaluation with IN-C.
Noise Blur Weather Digital

Model mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
Swin-S [48] 54.9 42.9 44.9 43.2 61.3 74.1 56.6 67.5 50.8 48.5 46.0 44.1 42.1 68.9 62.1 70.7
ConvNeXt-S [49] 49.5 38.1 39.1 37.9 57.8 72.5 51.8 61.9 46.1 43.8 44.6 39.6 37.6 66.7 55.1 50.1
Sequencer2D-L 48.9 43.3 42.0 41.4 55.2 71.0 51.8 63.3 44.2 41.0 41.9 37.1 33.8 66.6 50.4 51.1

changes for each perturbation of each pixel in each input image. Adding these together for all
images and channels, we can calculate the average pixel contribution for all input images, which
can be activated with a Rectified Linear Unit (ReLU) to get the positively contributing pixel values
P 2 Rn⇥h⇥w⇥c, defined by

P = ReLU

0

@
@

⇣P
i,j

Oi,bh0/2,cbw0/2c,j

⌘

@I

1

A . (8)

Furthermore, the score S 2 Rh⇥w is calculated by

S = log10

0

@
X

i,j

Pi,:,:,j + 1

1

A , (9)

and S is called the effective receptive field.

Next, define a visualized effective receptive field based on the effective receptive field. We want to
compare the effective receptive fields across models. We, therefore, calculate the score Smodel for
each model and rescale Smodel from 0 to 1 across the models. The tensor calculated in this way is
called the visualized effective receptive field.

The derivatives used in these definitions are efficient if they take advantage of the auto-grad mecha-
nism. Indeed, we also relied on the automatic auto-grad function on PyTorch [56] to calculate the
effective receptive fields.

Table 10: Comparison of accuracy for different model widths.
Model #Params. FLOPs Acc.

Sequencer2D-L 54M 16.6G 83.4
Sequencer2D-Lx1.3 96M 29.4G 83.0

20

Table 11: Object detection results on COCO dataset [45]
Backbone Params (M) AP AP50 AP75 APS APM APL

ResNet-18 [22] 21.3 31.8 49.6 33.6 16.3 34.3 43.2
PoolFormer-S12 [83] 21.7 36.2 56.2 38.2 20.8 39.1 48.0
Sequencer2D-S 37.3 33.6 54.8 34.8 15.3 37.5 50.2
ResNet-50 [22] 37.7 36.3 55.3 38.6 19.3 40.0 48.8
PoolFormer-S24 [83] 31.1 38.9 59.7 41.3 23.3 42.1 51.8
Sequencer2D-M 47.9 34.5 55.5 35.9 15.0 39.0 51.6
ResNet-101 [22] 56.7 38.5 57.8 41.2 21.4 42.6 51.1
PoolFormer-S36 [83] 40.6 39.5 60.5 41.8 22.5 42.9 52.4
Sequencer2D-L 63.9 35.0 56.4 36.5 16.5 39.6 51.6

Table 12: More Sequencer ablation experiments.

(a) Method of merge

Union #Params. FLOPs Acc.
add 27M 8.0G 82.2

concatnate 28M 8.4G 82.3

D.2 More visualization of ERFs

We introduce additional visualization and concrete visualization method. We experiment with
visualization using input images of two different resolutions.

We visualize the effective receptive fields of Sequencer2D-S and comparative models by using 2242
resolution images. The method is applied to the following models for comparing: ResNet-50 [22],
ConvNeXt-T [49], CycleMLP-B2 [7], DeiT-S [72], Swin-T [48], GFNet-S [61], and ViP-S/7 [28].
The object to be visualized is the output for each block, and the effective receptive fields are calculated.
For example, in the case of Sequencer2D-S, the effective receptive fields are calculated for the output
of each Sequencer block. We are rescaling within a value between 0 and 1 for the whole to effective
receptive fields for each model block.

The effective receptive fields of Sequencer2D-S and comparative models are then visualized using
input images with a resolution of 4482. The reason for running experiments is to verify how the
receptive field is affected when the input resolution is increased compared to the 2242 resolution
input image. Sequencer2D-S compare with ResNet-50 [22], ConvNeXt-T [49], CycleMLP-B2 [7],
DeiT-S [72], and GFNet-S [28]. The method of visualization of the effective receptive field follows
the case of input images with a resolution of 2242.

Sequencer has very distinctive cruciform ERFs in all layers. Table 7, 8, 9, 10, 11, 12, 13, and 14
illustrates this fact for 2242 resolution input images. Furthermore, as shown in Table 15, 16, 17,
18 and 19, we observe the same trend when the double resolution. The ERFs are structurally quite
different from the ERFs other than ViP, which have a similar structure. ViP’s ERFs have, on average,
some also coverage except for the cruciforms. In contrast, Sequencer’s ERFs are limited to the
cruciform and its neighborhood.

It is interesting to note that Sequencer, with its characteristic ERFs, achieves high accuracy. It will
be helpful for future architecture development because of the possibility of creating Sequencer-like
ERFs outside of LSTM.

21

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16 (q) Block 17 (r) Block 18

Figure 7: ERFs in Sequencer2D-S on images with resolution 2242.

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16

Figure 8: ERFs in ResNet-50 [22] on images with resolution 2242.

22

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16 (q) Block 17 (r) Block 18

Figure 9: ERFs in ConvNeXt-T [49] on images with resolution 2242.

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16 (q) Block 17 (r) Block 18

Figure 10: ERFs in CycleMLP-B2 [7] on images with resolution 2242.

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12

Figure 11: ERFs in DeiT-S [72] on images with resolution 2242.

23

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12

Figure 12: ERFs in Swin-T [48] on images with resolution 2242.

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16 (q) Block 17 (r) Block 18 (s) Block 19

Figure 13: ERFs in GFNet-S [61] on images with resolution 2242.

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16 (q) Block 17 (r) Block 18

Figure 14: ERFs in ViP-S/7 [28] on images with resolution 2242.

24

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16 (q) Block 17 (r) Block 18

Figure 15: ERFs in Sequencer2D-S on images with resolution 4482.

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16

Figure 16: ERFs in ResNet-50 [22] on images with resolution 4482.

25

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16 (q) Block 17 (r) Block 18

Figure 17: ERFs in ConvNeXt-T [49] on images with resolution 4482.

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12 (m) Block 13 (n) Block 14

(o) Block 15 (p) Block 16 (q) Block 17 (r) Block 18

Figure 18: ERFs in CycleMLP-B2 [7] on images with resolution 4482.

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4 (e) Block 5 (f) Block 6 (g) Block 7

(h) Block 8 (i) Block 9 (j) Block 10 (k) Block 11 (l) Block 12

Figure 19: ERFs in DeiT-S [72] on images with resolution 4482.

26

	Introduction
	Related works
	Method
	Preliminaries: Long short-term memory
	Sequencer architecture

	Experiments
	Scratch training on IN-1K
	Fine-tuning on IN-1K
	Ablation studies
	Transfer learning and semantic segmentation
	Analysis and visualization

	Conclusions
	Societal impact
	Implementation details
	Pseudocode
	Architecture details
	IN-1K settings
	Transfer learning settings

	More results
	Robustness
	Generalization ability
	Over-fitting
	Semantic segmentation
	Object Detection
	More studies

	Effective receptive field
	Calculation of visualized ERFs
	More visualization of ERFs

