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ABSTRACT

Generative models trained on internet data are capable of generating novel texts
and images. A natural question is whether these models can advance science
(e.g., generate novel stable materials). Traditionally, models with explicit struc-
tures (e.g., graphs) have been used in modeling structural relationships (e.g., atoms
and bonds in crystals), but have faced challenges scaling to large and complex sys-
tems. Another challenge in generating materials is the mismatch between standard
generative modeling metrics and downstream applications. For instance, common
metrics such as the reconstruction error do not correlate well with the downstream
goal of discovering novel stable materials. In this work, we tackle the scalabil-
ity challenge by developing a unified crystal representation that can represent any
crystal structure (UniMat), followed by training a diffusion probabilistic model
on the UniMat representations. Despite the lack of explicit structure modeling,
UniMat can generate high fidelity crystals from larger and more complex chem-
ical systems, outperforming previous approaches. To better connect generation
quality to downstream applications, we propose additional metrics for evaluating
generative models of materials, including per-composition formation energy and
stability with respect to convex hulls from Density Function Theory (DFT). Lastly,
we show that conditional generation with UniMat can scale to up to millions
of crystal structures, outperforming random structure search (the current lead-
ing method) in discovering new stable materials. See website at https://unified-
materials.github.io.

1 INTRODUCTION

Large generative models trained on internet-scale vision and language data have demonstrated
exceptional abilities in synthesizing highly realistic texts (OpenAI, 2023; Anil et al., 2023), im-
ages (Ramesh et al., 2021; Yu et al., 2022), and videos (Ho et al., 2022a; Singer et al., 2022). The
need for novel synthesis, however, goes far beyond conversational agents or generative media, which
mostly impact the digital world. In the physical world, technological applications such as cataly-
sis (Nørskov et al., 2009), solar cells (Green et al., 2014), and lithium batteries (Mizushima et al.,
1980) are enabled by the discovery of novel materials. The traditional trial-and-error approach that
discovered these materials can be highly inefficient and take decades (e.g., blue LEDs (Nakamura,
1998) and high-Tc superconductors (Bednorz & Müller, 1986)). Generative models have the poten-
tial to dramatically accelerate materials discovery by generating and evaluating material candidates
with desirable properties more efficiently in silico.
One of the difficulties in materials generation lies in characterizing the structural relationships be-
tween atoms, which scales quadratically with the number of atoms. While representations with ex-
plicit structures such as graphs have been extensively studied (Schütt et al., 2017; Xie & Grossman,
2018; Batzner et al., 2022; Xie et al., 2021), explicit characterization of inter-atomic relationships
becomes increasingly challenging as the number of atoms increases, which can prevent these meth-
ods from scaling to large materials datasets with complex chemical systems. On the other hand,
given that generative models are designed to discover patterns from data, it is natural to wonder if
material structures can automatically arise from data through generative modeling, similar to how
natural language structures arise from language modeling, so that large system sizes becomes more
of a benefit than a roadblock.
Existing generative models that directly model atoms without explicit structures are largely inspired
by generative models for computer vision, such as learning VAEs or GANs on voxel images (Noh
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Figure 1: UniMat representation of crystal structures. Crystals are represented by the atom locations stored
at the corresponding elements in the periodic table (and additional unit cell parameters if coordinates are frac-
tional). For instance, the bottom right atom Na in the crystal is located at [1, 0, 0], hence the periodic table has
value [1, 0, 0] at the Na entry.

et al., 2019; Hanakata et al., 2020) or point cloud representations of materials (Kim et al., 2020).
VAEs and GANs have known drawbacks such as posterior collapse (Lucas et al., 2019) and mode
collapse (Srivastava et al., 2017), potentially making scaling difficult (Dhariwal & Nichol, 2021).
More recently, diffusion models (Song & Ermon, 2019; Ho et al., 2020) have been found particularly
effective in generating diverse yet high fidelity image and videos, and have been applied to data at
internet scale (Saharia et al., 2022; Ho et al., 2022a). However, it is unclear whether diffusion
models are also effective in modeling structural relationships between atoms in crystals that are
neither images nor videos.
In this work, we investigate whether diffusion models can capture inter-atomic relationships effec-
tively by directly modeling atom locations, and whether such an approach can be scaled to complex
chemical systems with a larger number of atoms. Specifically, we propose a unified representation
of materials (UniMat) that can capture any crystal structure. As shown in Figure 1, UniMat rep-
resents atoms in a material’s unit cell (the smallest repeating unit) by storing the continuous value
x, y, z atom locations at the corresponding element entry in the periodic table. This representation
overcomes the difficulty around joint modeling of discrete atom types and continuous atom loca-
tions, while introducing prior knowledge from the periodic table (e.g., elements in the same group
have similar chemical properties). With such a unified representation of materials, we train diffusion
probabilistic models by treating the UniMat representation as a 4-dimensional tensor and applying
interleaved attention and convolution layers, similar to Saharia et al. (2022), across periods and
groups of the periodic table. This allows UniMat to capture inter-atom relationships while preserv-
ing any inductive bias from the periodic table, such as elements in the same group having similar
chemical properties.
We first evaluate UniMat on a set of proxy metrics proposed by Xie et al. (2021), and show that
UniMat generally works better than the previous state-of-the-art graph based approach and a recent
language model (Flam-Shepherd & Aspuru-Guzik, 2023) and diffusion model (Pakornchote et al.,
2023) baseline. However, we are ultimately interested in whether the generated materials are phys-
ically valid and can be synthesized in a laboratory (e.g., low-energy materials). We found proxy
metrics based on learning a separate energy network either saturate or fall short in evaluating gen-
erated materials reliably under the context of material discovery (i.e., generating materials that have
not been seen by the energy prediction network). In answering this question, we run DFT relax-
ations (Hafner, 2008) to compute the formation energy of the generated materials, which is more
widely accepted in material science than learned proxy metrics in Bartel et al. (2020). We then use
per-composition formation energy and stability with respect to convex hull through decomposition
energy as more reliable metrics for evaluating generative models for materials. UniMat drastically
outperforms previous state-of-the-art according to these DFT based metrics.
Lastly, we scale UniMat to train on all experimentally verified stable materials as well as additional
stable / semi-stable materials found through search and substitution (over 2 million structures in
total). We show that predicting material structures conditioned on element type can generalize (in a
zero-shot manner) to predicting more difficult structures that are not a neighboring structure to the
training set, achieving better efficiency than the predominant random structure search. This allows
for the possibility of discovering new materials with desired properties effectively. In summary, our
work contributes the following:
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• We develop a novel representation of materials that enables diffusion models to scale to large and
complex materials datasets, outperforming previous methods on previous proxy metrics.

• We conduct DFT calculations to rigorously verify the stability of generated materials, and propose
to use per-composition formation energy and stability with respect to convex hull for evaluating
generative models for materials.

• We scale conditional generation to all known stable materials and additional materials found
by search and substitution, and observe zero-shot generalization to generating harder structures,
achieving better efficiency than random structure search in discovering new materials.

2 SCALABLE DIFFUSION FOR MATERIALS GENERATION

We start by proposing a novel crystal representation that can represent any material with a finite
number of atoms in a unit cell (the smallest repeating unit of a material). We then illustrate how
to learn both unconditional and conditional denoising diffusion models on the proposed crystal rep-
resentations. Lastly, we explain how we can verify generated materials rigorously using quantum
mechanical methods.

2.1 SCALABLE REPRESENTATION OF CRYSTAL STRUCTURES

An ideal representation for crystal structures should not introduce any intrinsic errors (unlike voxel
images), and should be able to support both up scaling to large sets of materials on the internet
and down scaling to a single compound system that a particular group of scientists care about (e.g.,
silicon carbide). We develop such a scalable and flexible representation below.
Periodic Table Based Material Representation. We first observe that periodic table captures rich
knowledge of chemical properties. To introduce such prior knowledge to a generative model as an
inductive bias, we define a 4-dimensional material space, M := RL×H×W×C , where H = 9 and
W = 18 correspond to the number of periods and groups in the periodic table, L corresponds to
the maximum number of atoms per element in the periodic table, and C = 3 corresponds to the
x,y,z locations of each atoms in a unit cell. We define a null location using special values such
as x = y = z = −1 to represent the absence of this atom. A visualization of this representation
is shown in Figure 1. To account for invariances in order, rotation, translation, and periodicity, we
incorporate data augmentation through random shuffling and rotations similar to Hoffmann et al.
(2019); Kim et al. (2020); Court et al. (2020). We also include unit cell parameters (a, b, c) ∈ R3

and (α, β, γ) ∈ R3 as shown in Figure 1. We denote this representation UniMat, as it is a unified
representation of crystals, and has the potential to represent broader chemical structures (e.g., drugs,
molecules, and proteins).
Flexibility for Smaller Systems. While UniMat can represent any crystal structure, sometimes
one might only be interested in generating structures with one specific element (e.g., carbon in
graphene) or two-chemical compounds (e.g., silicon carbide). Instead of setting H and W to the full
periods and groups of the periodic table, one can set H = 1,W = 1 (for one specific element) or
H = 9,W = 2 (for elements from two groups) to model specific chemical systems of interest. L
can also be adjusted according to the number of elements expected to exist in the system.

2.2 LEARNING DIFFUSION MODELS WITH UNIMAT REPRESENTATION

With the UniMat representation above, we now illustrate how effective training of diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020) on crystal structures can be enabled, followed by
how to generate crystal structures conditioned on compositions or other types of material properties.
Details of the model architecture and training procedure can be found in Appendix A.
Diffusion Model Background. Denoising diffusion probablistic models (DDPM) are a class of
probabilistic generative models initially designed for images where the generation of an image x ∈
Rd is formed by iterative denoising. That is, given an image x sampled from a distribution of images
p(x), a randomly sampled Gaussian noise variable ϵ ∼ N (0, Id), and a set of T different noise levels
βt ∈ R, a denoising model ϵθ is trained to denoise the noise corrupted image x at each specified
noise level t ∈ [1, T ] by minimizing:

LMSE = ∥ϵ− ϵθ(
√
1− βtx+

√
βtϵ, t))∥2.

Given this learned denoising function, new images may be generated from the diffusion model by
initializing an image sample xT at noise level T from a Gaussian N (0, Id). This sample xT is then
iteratively denoised by following the expression:

xt−1 = αt(xt − γtϵθ(xt, t)) + ξ, ξ ∼ N
(
0, σ2

t Id
)
, (1)
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Figure 2: Illustration of the denoising process for unconditional generation with UniMat. The denoising model
learns to move atoms from random locations back to their original locations. Atoms not present in the crystal
are moved to the null location during the denoising process, allowing crystals with an arbitrary number of atoms
to be generated.

where γt is the step size of denoising, αt is a linear decay on the currently denoised sample, and σt

is some time varying noise level that depends on αt and βt. The final sample x0 after T rounds of
denoising corresponds to the final generated image.
Unconditional Diffusion with UniMat. Now instead of an image x ∈ Rd, we have a material
x ∈ Rd with d = L×H×W×3 tensor as described in Section 2.1, where the inner-most dimension
of x represents the atom locations (x,y,z). The denoising process in Equation 1 now corresponds
to the process of moving atoms from random locations back to their original locations in a unit cell
as shown in Figure 2. Note that the set of null atoms (i.e., atoms that do not exist in a crystal) will
have random locations initially (left-most structure in Figure 2), and are gradually moved to the
special null location during the denoising process. The null atoms are then filtered when the final
crystals are extracted. The inclusion of null atoms in the representation enables UniMat to generate
crystals with an arbitrary number of atoms (up to a maximum size). Since the denoising process
of a DDPM nicely corresponds to the process of gradually moving atoms in space until they reach
their target location, we choose DDPM over other diffusion models (e.g., denoising score matching).
We parametrize ϵθ(xt, t) using interleaved convolution and attention operations across the L,H,W
dimensions of xt similar to Saharia et al. (2022), which can capture inter-atom relationships in
a crystal structure. When atom locations are represented using fractional coordinates, we treat unit
cell parameters as additional inputs to the diffusion process by concatenating the unit cell parameters
with the crystal locations.
Conditioned Diffusion with UniMat. While the unconditional generation procedure described
above allows generation of materials from random noise, naı̈vely sampling from the unconditional
model can lead to samples that largely overlap with the training set. This is undesirable in the
context of materials discovery, where the goal is to discover novel materials that do not exist in the
training set. Futhermore, practical applications such as material synthesis often focus on specific
types of materials, but one do not have much control over what compound gets generated during an
unconditional denoising process. This suggests that conditional generation may be more relevant
for materials discovery.
We consider conditioning generation on compositions (types and ratios of chemical elements)
c ∈ RH×W when only the composition types are specified (e.g., carbon and silicon), or on
c ∈ RL×H×W when the exact composition (number of atoms per element) is given (e.g., Si4C4). We
denote the conditional denoising model as ϵθ(xt, t|c). Since the input to the unconditional denois-
ing model ϵθ(xt, t) is a noisy material of dimensions (L,H,W, 3), we concatenate the conditioning
variable c with the noisy material along the last dimension before inputting the noisy material into
the denoising model, so that the denoising model can easily condition on compositions as desired.
To condition on auxiliary information such as energy, we can leverage classifier-free guidance (Ho
& Salimans, 2022) and use

ϵ̂θ(xt, t|c,aux) = (1 + ω)ϵθ(xt, t|c,aux)− ωϵθ(xt, t|c) (2)
as the denoising model in the reverse process for sampling materials conditioned on auxiliary infor-
mation aux, where ω controls the strength of auxiliary information conditioning.
2.3 EVALUATING GENERATED MATERIALS

Different from generative models for vision and language where the quality of generation can be eas-
ily assessed by humans, evaluating generated crystals rigorously requires calculations from Density
Functional Theory (DFT) (Hohenberg & Kohn, 1964), which we elaborate in detail below.
Drawbacks of Learning Based Evaluations. One way to evaluate generative models for materi-
als is to compare the distributions of formation energy Ef between a generated and reference set,
D(p(Egen

f ), p(Eref
f )), where D is a distance measure over distributions, such as earth mover’s dis-
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tance (Xie et al., 2021). Since using DFT to compute Ef is computationally demanding, previous
work has relied on a learned network to predict Ef from generated materials (Xie et al., 2021).
However, predicting Ef can have intrinsic errors, particularly in the context of materials discovery
where the goal is to generate novel materials beyond the training manifold of the energy prediction
network.
Even when Ef can be predicted with reasonable accuracy, a low Ef does not necessarily reflect
ground-truth (DFT) stability. For example, Bartel et al. (2020) reported that a model that can predict
Ef with an error of 60 meV/atom (a 16-fold reduction from random-guessing) does not provide
any predictive improvement over random guessing for stable material discovery. This is because
most variations in Ef are between different chemical systems, whereas for stability assessment,
the important comparison is between compounds in a single chemical system. When materials
generated by two different models contain different compounds, the model that generated materials
with a lower Ef could have simply generated compounds from a lower Ef system without enabling
efficient discovery (Merchant et al., 2023).
The property that captures relative stabilities between different compositions is known as decompo-
sition energy (Ed). Since Ed depends on the formation energy of other compounds from the same
system, predicting Ed directly using machine learning models has been found difficult (Bartel et al.,
2020).
Evaluating via Per-Composition Formation Energy. Different from learned energy predictors,
DFT calculations provide more accurate and reliable Ef values. When two models each generate a
structure of the same composition, we can directly compare which structure has a lower DFT com-
puted Ef (and is hence more stable). We call this the per-composition formation energy comparison.
We define average difference in per-composition formation energy between two sets of materials A
and B as

∆Ef (A,B) =
1

|C|
∑

(x,x′)∈C

(
EA

f,x − EB
f,x′

)
, (3)

where C = {(x, x′) | x ∈ A, x′ ∈ B, comp(x) = comp(x′)} denotes the set of structures from A
and B that have the same composition. We also define the Ef Reduction Rate between set A and
B as the rate where structures in A have a lower Ef than the structures in B of the corresponding
compositions, i.e.,

Ef Reduction Rate(A,B) =
1

|C|
|{(x, x′) | (x, x′) ∈ C ∧ EA

f,x < EB
f,x′}|, (4)

where C is the same as in Equation 3. We can then use ∆Ef and the Ef Reduction Rate to compare
a generated set of structures to some reference set, or to compare two generated sets. ∆Ef (A,B)
measures how much lower in Ef (on average) the structures in a set A are compared to the structures
of correponding compositions in a set B, while Ef Reduction Rate(A,B) reflects how many struc-
tures in A have lower Ef than the corresponding structures in B. We use these metrics to evaluate
generated materials in Section 3.2.1.
Evaluating Stability via Decomposition Energy We also want to compare generated materials that
differ in composition. To do so, we can use DFT to compute decomposition energy Ed. Ed measures
a compound’s thermodynamic decomposition enthalpy into its most stable compositions on a convex
hull phase diagram, where the convex hull is formed by linear combinations of the most stable
(lowest energy) phases for each known composition (Jain et al., 2013). As a result, decomposition
energy allows us to compare compounds from two generative models that differ in composition by
separately computing their decomposition energy with respect to the convex hull formed by a larger
materials database. The distribution of decomposition energies will reflect a generative model’s
ability to generate relatively stable materials. We can further compute the number of novel stable
(Ed < 0) materials from set A with respect to convex hull as

# Stable(A) = |{x ∈ A | EA
d,x < 0}|, (5)

and compare this quantity to some other set B. We apply this metric to evaluate generative models
for materials in Section 3.2.
Evaluating against Random Search Baseline. For structure prediction given compositions, one
popular non-learning based approach is Ab initio random structure search (AIRSS) (Pickard &
Needs, 2011). AIRSS works by initializing a set of sensible structures given the composition and a
target volume, relaxing randomly initialized structures via soft-sphere potentials, followed by DFT
relaxations to minimize the total energy of the system. However, discovering structures (especially
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Validity % ↑ COV % ↑ Property Statistics ↓
Method Dataset Structure Composition Recall Precision Density Energy # Elements

CDVAE
Perov5 100 98.5 99.4 98.4 0.125 0.026 0.062

Carbon24 100 − 99.8 83.0 0.140 0.285 −
MP20 100 86.7 99.1 99.4 0.687 0.277 1.432

DP-CDVAE
Perov5 100 98.0 99.5 97.2 0.102 0.026 0.021

Carbon24 99.9 − 100 77.98 0.097 0.259 −
MP20 99.9 85.4 99.4 99.3 0.179 0.052 0.567

LM
Perov5 100 98.7 99.6 99.4 0.071 − 0.036
MP20 95.8 88.8 99.6 98.5 0.696 − 0.092

UniMat
Perov5 100 98.8 99.2 98.2 0.076 0.022 0.025

Carbon24 100 − 100 96.5 0.013 0.207 −
MP20 97.2 89.4 99.8 99.7 0.088 0.034 0.056

Table 1: Proxy evaluation of unconditional generation using CDVAE (Xie et al., 2021), language model (Flam-
Shepherd & Aspuru-Guzik, 2023), diffusion baseline (Pakornchote et al., 2023), and UniMat. UniMat generally
performs better in terms of property statistics, and achieves the best coverage on more difficult dataset (MP-20).
We note the limitation of these proxy metrics, and defer more rigorous evaluation to DFT calculations.

Test Set CDVAE Test Set CDVAE Test Set CDVAE Test Set UniMat Test Set UniMat Test Set UniMat

Figure 3: Qualitative evaluation of materials generated by CDVAE (Xie et al., 2021) (left) and UniMat (right)
trained on MP-20 in comparison to the test set materials of the same composition. Materials generated by
UniMat generally align better with the test set.

if done in a high-throughput framework) requires a large number of initializations and relaxations
which can often fail to converge (Cheon et al., 2020; Merchant et al., 2023).
One practical use of conditional UniMat is to propose initial structures given compositions, with
the hope that the generated structures will result in a higher convergence rate for DFT calculations
compared to structures proposed by AIRSS, which are based on manual heuristics and random
guessing of initial volumes.

3 EXPERIMENTAL EVALUATION

We now evaluate UniMat using previous proxy metrics from Xie et al. (2021) and metrics derived
from DFT calculations from Section 2.3. UniMat is able to generate orders of magnitude more
stable materials verified by DFT calculations compared to the previous state-of-the-art generative
model. We further demonstrate UniMat’s ability in accelerating random structure search through
conditional generation.
3.1 EVALUATING UNCONDITIONAL GENERATION USING PROXY METRICS

Datasets, Metrics, and Baselines. We begin the evaluation following the same setup as CDVAE Xie
et al. (2021) using Perov-5, Carbon-24, and MP-20 materials datasets. We report metrics on struc-
tural and composition validity determined by atom distances and SMACT, coverage metrics based
on CrystalNN fingerprint distances, and property distributions in density, learned formation energy,
and number of atoms (e.g., earth mover’s distance between the distribution of number of elements
in generated materials versus test materials.). We include a recent language model baseline (Flam-
Shepherd & Aspuru-Guzik, 2023) and a diffusion baseline (Pakornchote et al., 2023).
Results. Evaluation results on UniMat and baselines are shown in Table 5. All four models perform
similarly in terms of structure and composition validity on the Perov-5 dataset due to its simplicity.
UniMat performs slightly worse on the coverage based metrics on Perov-5, but achieves better dis-
tributions in energy and number of unique elements. On Carbon-24, UniMat outperforms CDVAE in
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Figure 5: Difference in Ef for each composition gener-
ated by UniMat and CDVAE, i.e., EA

f,x −EB
f,x′ , where

A and B are sets of structures generated by UniMat and
CDVAE, respectively. UniMat generates more struc-
tures with lower Ef .

A, B ∆Ef (eV/atom) Ef Reduc. Rate

CDVAE, MP-20 test 0.279 0.083

UniMat, MP-20 test 0.061 0.254
UniMat, CDVAE -0.216 0.863

Table 2: ∆Ef (Equation 3) and Ef Reduction Rate
(Equation 4) between CDVAE and MP-20 test, be-
tween UniMat and MP-20 test, and between UniMat
and CDVAE. UniMat generates structures with an aver-
age of -0.216 eV/atom lower Ef than CDVAE. 86.3%
of the overlapping (in composition) structures gener-
ated by UniMat and CDVAE has a lower energy in Uni-
Mat.

all metrics. On the more realistic MP-20 dataset, UniMat achieves the best property statistics, cov-
erage, and composition validity, but worse structure validity than CDVAE. Results on full coverage
metrics from CDVAE are in Appendix D. We note that some of these metrics have been saturated
with close to 100% performance. We defer more rigorous evaluations with DFT calculations to
Section 3.2.
In addition, we qualitatively evaluate the generated materials from training on MP-20 in Figure 3.
We select generated materials that have the same composition as the test set from MP-20, and use
the VESTA crystal visualization tool (Momma & Izumi, 2011) to plot both the test set materials and
the generated materials. The range of fractional coordinates in the VESTA settings were set from
-0.1 to 1.1 for all coordinates to represent all fractional atoms adjacent to the unit cell. In general,
we found that UniMat generates materials that are visually more aligned with the test set materials
than CDVAE.

Validity % ↑ COV % ↑
Model size Struct. Comp. Recall Precision

Small (64) 95.7 86.0 99.8 99.3
Medium (128) 96.8 86.7 99.8 99.5

Large (256) 97.2 89.4 99.8 99.7

Figure 4: UniMat trained with a larger feature dimen-
sion results in better validity and coverage.

Ablation on Model Size. In training on larger
datasets with more diverse materials such as
MP-20, we found benefits in scaling up the
model as shown in Table 4, which suggests
that the UniMat representation and the UniMat
training objective can be further scaled to sys-
tems larger than MP-20, which we elaborate
more in Section 3.3.
3.2 EVALUATING UNCONDITIONAL GENERATION USING DFT CALCULATIONS

As discussed in Section 2.3, proxy-based evaluation in Section 3.1 should be backed by DFT ver-
ifications similar to Noh et al. (2019). In this section, we evaluate stability of generated materials
using metrics derived from DFT calculations in Section 2.3.

3.2.1 PER-COMPOSITION FORMATION ENERGY

Setup. We start by running DFT relaxations using the VASP software (Hafner, 2008) to relax
both atomic positions and unit cell parameters on generated materials from models trained on MP-
20 to compute their formation energy Ef (see details of DFT in Appendix B). We then compare
average difference in per-composition formation energy (∆Ef in Equation 3) and the formation
energy reduction rate (Ef Reduction Rate in Equation 4) between materials generated by CDVAE
and the MP-20 test set, between UniMat and the test set, and between UniMat and CDVAE.
Results. We plot the difference in formation energy for each pair of generated structures from Uni-
Mat and CDVAE with the same composition in Figure 5. We see the majority of the generated
compositions from UniMat have a lower formation energy. We further report ∆Ef and the Ef Re-
duction Rate in Table 2. We see that among the set of materials generated by UniMat and CDVAE
with overlapping compositions, 86% of them have a lower energy when generated by UniMat. Fur-
thermore, materials generated by UniMat have an average of -0.21 eV/atom lower Ef than CDVAE.
Comparing the generated set against the MP-20 test set also favors UniMat.

3.2.2 STABILITY ANALYSIS THROUGH DECOMPOSITION ENERGY

As discussed in Section 2.3, generated structures relaxed by DFT can be compared against the
convex hull of a larger materials database in order to analyze their stability through decomposition
energy. Specifically, we downloaded the full Materials Project database (Jain et al., 2013) from
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Figure 6: Histogram of decomposition energy Ed of
structures generated by CDVAE and UniMat after DFT
relaxation. UniMat generates structures with lower de-
composition energies.

# Stable # Metastable # Stable
MP 2021 MP 2021 GNoME

CDVAE 56 90 1
UniMat 414 2157 32

Table 3: Number of stable (Ed < 0) and metastable
(Ed < 25meV/atom) materials generated compared
against the convex hull of MP 2021, and stabil-
ity against GNoME with 2 million structures. Uni-
Mat generates an order of magnitude more stable /
metastable materials than CDVAE.

MgBr10 Rb2TcF6 Sm2Cl2O2 Sr2BrNBa2TbIr1O6 CsCeSe2 ErBi2ClO4 KI10 KTmTe2 KGdSe2

Figure 7: Visualizations of materials generated by UniMat trained on MP-20 before DFT relaxation that have
Ed < 0 after relaxation compared against the convex hull of MP 2021. We note that these materials require
further analysis and verification before they can be claimed to be realistic or stable.

July 2021, and used this to form the convex hull. We then compute the decomposition energy for
materials generated by UniMat and CDVAE individually against the convex hull.
Results. We plot the distributions of the decomposition energies after DFT relaxation for the gen-
erated materials from both models in Figure 6. Note that only the set of generated materials that
converged after DFT calculations are plotted. We see that UniMat generates materials that are lower
in decomposition energy after DFT relaxation compared to CDVAE. We further report the number
of newly discovered stable / metastable materials (with Ed < 25meV/atom) from both UniMat and
CDVAE in Table 3. In addition to using the convex hull from Materials Project 2021, we also use
another dataset (GNoME) with 2.2 million materials constructed via structure search to construct a
more challenging convex hull (Merchant et al., 2023). We see that UniMat is able to discover an or-
der of magnitude more stable materials than CDVAE with respect to convex hulls constructed from
both datasets. We visualize examples of newly discovered stable materials by UniMat in Figure 7.

3.3 EVALUATING COMPOSITION CONDITIONED GENERATION

We have verified that some of the unconditionally generated materials from UniMat are indeed novel
and stable through DFT calculations. We now assess composition conditioned generation which is
often more practical for downstream synthesis applications.
Setup. We use AIRSS to randomly initialize 100 structures per composition followed by relaxation
via soft-sphere potentials. We then run DFT relaxations on these AIRSS structures. For conditional
generation using UniMat, we train composition conditioned UniMat on the GNoME dataset con-
sisting of 2.2 million stable materials. We then sample 100 structures per composition for the same
compositions used by AIRSS. We evaluate the rate of compositions for which at least 1 out of 100
structures converged during DFT calculations. In addition to convergence rate, we also evaluate the
∆Ef (UniMat,AIRSS) and the Ef Reduction Rate (UniMat,AIRSS) on the DFT relaxed structures.
Since none of the test compositions exist in the training set, we are evaluating the ability of UniMat
to generalize to more difficult structures in a zero-shot manner. See details of AIRSS in Appendix C.

Figure 8: Difference in per-composition formation
energy between structures produced by UniMat and
AIRSS. More compounds generated by UniMat lead to
lower formation energy than AIRSS.

Results. We first observe that AIRSS has an
overall convergence rate of 0.55, whereas Uni-
Mat has an overall convergence rate of 0.81.
We note that both AIRSS and UniMat can be
further optimized for convergence rate, so these
results are only initial signals on how con-
ditional generative models compare to struc-
ture search. Next, we take the relaxed struc-
ture with the lowest Ef from both UniMat and
AIRSS for each composition, and plot the per-
composition Ef difference in Figure 8, and
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∆Ef (UniMat,AIRSS) = −0.68eV/atom, and Ef Reduction Rate(UniMat, AIRSS) = 0.8, which
suggests that UniMat is indeed effective in initializing structures that lead to lower Ef than AIRSS.

4 RELATED WORK

Diffusion Models for Structured Data Diffusion models (Song & Ermon, 2019; Ho et al., 2020;
Kingma et al., 2021) were initially proposed for generating images from noise of the same dimension
through a Markov chain of Gaussian transitions, and have been adopted to structured data such as
graphs (Niu et al., 2020; Vignac et al., 2022; Jo et al., 2022; Yim et al., 2023), sets (Giuliari et al.,
2023) and point clouds (Qi et al., 2017; Luo & Hu, 2021; Lyu et al., 2021). Diffusion modeling for
materials requires modeling continuous atom locations and discrete atom types. Previous approaches
either embed discrete quantities into a continuous latent space, risking information loss (Xie et al.,
2021), or directly learn discrete-space transformations (Vignac et al., 2022; Austin et al., 2021) on
graphs represented by adjacency matrices that scale quadratically in the number of atoms.
Generative Models for Materials Discovery. Generative models originally designed for images
have been applied to generating material structures, such as GANs (Nouira et al., 2018; Kim et al.,
2020; Long et al., 2021; 2022), VAEs (Hoffmann et al., 2019; Noh et al., 2019; Ren et al., 2020;
Court et al., 2020), and diffusion models (Xie et al., 2021). These methods were developed to work
with different materials representations as voxel images (Hoffmann et al., 2019; Noh et al., 2019;
Court et al., 2020), graphs (Xie et al., 2021), point clouds (Kim et al., 2020), and phase fields or
electron density maps (Vasylenko et al., 2021; Court et al., 2020). However, existing work has
mostly focused on simpler materials in binry compounds (Noh et al., 2019; Long et al., 2021),
ternary compounds (Nouira et al., 2018; Kim et al., 2020), or cubic systems (Hoffmann et al., 2019).
Xie et al. (2021) show that graph neural networks with latent space diffusion guided by gradient of
formation energy can scale to Materials Project (Jain et al., 2013). However, the quality of generated
materials seems to decrease drastically on complex datasets. Recently, large language models have
been applied to generate crystal files (Antunes et al., 2023; Flam-Shepherd & Aspuru-Guzik, 2023).
However, the ability of language models to generate files with structural information requires further
confirmation, and the generated materials require further DFT verification. Pakornchote et al. (2023)
uses diffusion models to model atom locations, but Pakornchote et al. (2023) uses a separate VAE
to predict lattice parameters and number of atoms, limiting modeling flexibility.
Evaluation of Materials Discovery The most reliable verification of generated materials is through
Density Function Theory (DFT) calculations (Neugebauer & Hickel, 2013), which uses quantum
mechanics to calculate thermodynamic properties such as formation energy and energy above the
hull, thereby determining the stability of generated structures (Noh et al., 2019; Long et al., 2021;
Choubisa et al., 2020; Dan et al., 2020; Korolev et al., 2020; Ren et al., 2022; Long et al., 2021; Kim
et al., 2020). However, DFT calculations require extensive computational resources. Alternative
proxy metrics such as pairwise atom distances and charge neutrality (Davies et al., 2019) were
developed as a sanity check of generated materials (Xie et al., 2021; Flam-Shepherd & Aspuru-
Guzik, 2023). Fingerprint distances (Zimmermann & Jain, 2020; Ward et al., 2016) have also been
used to measure precision and recall between the generated set and some held-out test set (Ganea
et al., 2021; Xu et al., 2022; Xie & Grossman, 2018; Flam-Shepherd & Aspuru-Guzik, 2023). To
evaluate properties of generated materials, previous work learns a separate graph neural network,
which has intrinsic errors. Furthermore, Bartel (2022) has shown that learned formation energies
do not reproduce DFT-calculated relative stabilities, bringing the value of learned property based
evaluation into question.

5 LIMITATIONS AND CONCLUSION

We have presented the first diffusion model for materials generation that can scale to datasets with
millions of materials. To enable effective scaling, we developed a novel representation, UniMat,
based on the periodic table, which enables any crystal structure to be effectively represented. The
advantage of UniMat lies in modeling flexibility which enables scalability and computational effi-
ciency compared to traditional search methods. UniMat has a few limitations. It does not achieve
100% validity on complex datasets (e.g., MP-20). The UniMat representation is sparse when the
chemical system is small, which incurs additional computational cost (e.g., 99% atoms might be
null atoms). Despite these limitations, UniMat enables training of diffusion models that results in
better generation quality than previous state-of-the-art learned materials generators. We further ad-
vocate for using DFT calculations to perform rigorous stability analysis of materials generated by
generative models. Expanding UniMat to other materials (e.g., non-crystalline or amorphous) and
broader scientific data is an exciting direction of future work.
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Appendix
A ARCHITECTURE AND TRAINING

We repurpose the 3D U-Net architecture (Çiçek et al., 2016; Ho et al., 2022b) which originally mod-
els the spatial and time dimensions of videos into modeling periods and groups of the periodic table
as well as the number of atoms dimension, which can be seen as the time dimension in videos. We
apply the spatial downsampling pass followed by the spatial upsampling pass with skip connections
to the downsampling pass activations with interleaved 3D convolution and attention layers as in
standard 3D U-Net. The hyperparamters in training the UniMat diffusion model are summarized in
Table 4.

Hyperparameter Value
Base channels 256
Optimizer Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers 1, 2, 4
Learning rate 0.0001
Blocks per resolution 3
Batch size 512
Attention resolutions 1, 3, 9
EMA 0.9999
Attention head dimension 64
Dropout 0.1
Training hardware 32 TPU-v4 chips
Training steps 200000
Diffusion noise schedule cosine
Noise schedule log SNR range [-20, 20]
Sampling timesteps 256
Sampling log-variance interpolation γ = 0.1
Weight decay 0.0
Prediction target ϵ

Table 4: Hyperparameters for training the UniMat diffusion model.

B DETAILS OF DFT CALCULATIONS

We use the Vienna ab initio simulation package (VASP) (Kresse & Furthmüller, 1996b;a) with the
Perdew-Burke-Ernzerhof (PBE) (Perdew et al., 1996) functional and projector-augmented wave
(PAW) (Blöchl, 1994; Kresse & Joubert, 1999) potentials in all DFT calculations. Our DFT set-
tings are consistent with Materials Project workflows as encoded in pymatgen (Ong et al., 2013)
and atomate (Mathew et al., 2017). We use consistent settings with the Materials Project work-
flow including the Hubbard U parameter applied to a subset of transition metals in DFT+U, 520 eV
plane-wave basis cutoff, magnetization settings and the choice of PBE pseudopotentials, except for
Li, Na, Mg, Ge, and Ga. For Li, Na, Mg, Ge, and Ga, we use more recent versions of the respective
potentials with the same number of valence electrons. For all structures, we use the standard proto-
col of two stage relaxation of all geometric degrees of freedom, followed by a final static calculation
along with the custodian package (Ong et al., 2013) to handle any VASP related errors that arise and
adjust appropriate simulations. For the choice of KPOINTS, we also force gamma centered kpoint
generation for hexagonal cells rather than the more traditional Monkhorst-Pack. We assume ferro-
magnetic spin initialization with finite magnetic moments, as preliminary attempts to incorporate
different spin orderings showed computational costs prohibitive to sustain at the scale presented. In
AIMD simulations, we turn off spin-polarization and use the NVT ensemble with a 2 fs time step,
except for simulations including hydrogen, where we reduce the time step to 0.5 fs.

C DETAILS OF AIRSS AND CONDITIONAL EVALUATION

Random structures for conditional evaluation of UniMat are generated through Ab initio random
structure search (Pickard & Needs, 2011). Random structures are initialized as “sensible” structures
(obeying certain symmetry requirements) to a target volume then relaxed via soft-sphere potentials.
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For this paper, we always generate 100 AIRSS structures for every composition, many of which
failed to converge as detailed in Section 3.3. We try a range of initial volumes spanning 0.4 to 1.2
times a volume estimated by considering relevant atomic radii, finding that the DFT relaxation fails
or does not converge for the whole range for each composition. Note that these settings could be
further finetuned to optimize AIRSS for convergence rate.
To compute the convergence rate for AIRSS, we use a total of 57,655 compositions from previous
AIRSS runs(Merchant et al., 2023), for which 31,917 converged, and hence the AIRSS conver-
gence is 0.55. When we run conditional generation, we randomly sampled 157 compounds from
the 31,917 AIRSS-converged compounds, and 309 compounds from the 25,738 compounds where
AIRSS had no structure that converged. Among the 157 compounds where AIRSS converged, 137
from UniMat converged, and among the 309 compounds that AIRSS did not converge, 231 from
UniMat converged, resulting in an overall convergence rate 137/157 ∗ 31917/(31917 + 25738) +
231/309 ∗ 25738/(31917 + 25738) = 0.817 for UniMat.

D ADDITIONAL RESULTS

Method Dataset COV-R ↑ AMSD-R ↓ AMCD-R ↓ COV-P ↑ AMSD-P ↓ AMCD-P ↓
CDVAE Perov-5 99.4 0.048 0.696 98.4 0.059 1.27

Carbon-24 99.8 0.048 0.00 83.0 0.134 0.00
MP-20 99.15 0.154 3.62 99.49 0.1883 4.014

UniMat
Perov5 99.2 0.046 0.711 98.2 0.074 1.399

Carbon24 100 0.018 0.0 96.5 0.052 0.0
MP20 99.8 0.097 2.41 99.7 0.119 2.41

Table 5: Full proxy coverage metrics from CDVAE. UniMat performs better on larger datasets such as MP-20.
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