
Published as a conference paper at ICLR 2025

A APPENDIX

A.1 DATA ORIGINS, PREPROCESSING AND DATA STATISTICS

Table 4: Involved state and federal agencies that provided raw time-series discharge data and cor-
responding meta information. We here note the number of stations that remain in the final graph
after preprocessing. ”Freely available” denotes if the full five years of data are available from the
corresponding web service.

Agency
Name State Abbreviation Discharge

stations
Freely

available

Thüringer Landesamt
für Umwelt, Bergbau

und Naturschutz
Thuringia T 175 ✗

Sächsisches Landesamt
für Umwelt,

Landwirtschaft und
Geologie

Saxony S 167 ✓

Landesamt für
Umwelt Brandenburg Brandenburg BR 145 ✗

Landesbetrieb für
Hochwasserschutz und

Wasserwirtschaft
Sachsen-Anhalt

Saxony-Anhalt SA 92 ✓

Landesamt für
Umwelt, Naturschutz und
Geologie Mecklenburg-

Vorpommern.

Mecklenburg–
Western

Pomerania
MV 67 ✗

Wasserstraßen un
Schifffahrtsverwaltung

des Bundes
federal BSCV 12 ✗

Senatsverwaltung für
Mobilität, Verkehr,

Klimaschutz und Umwelt
Berlin B 8 ✗

Bayerisches Landesamt
für Umwelt Bavaria BA 494 ✓

For our benchmarking kit, we fused several data sources that we aggregated from different state
agencies in Germany and online resources. In Table 4, we list all agencies involved and some
meta information. Concerning the causal ground truth graph, we relied on the Wikipedia pages of
individual rivers5, specifically in the German language, as these are very often more extensive. Other
resources that were partly used are elevation services such as Meteo6 and simply Google Maps 7 for
manual quality control. Finally, we build on Hydrosheds8 for visualizations. For further details, we
refer to our repository9.

As we, in many cases, receive raw time-series data from the state agencies without quality checks,
we filter out stations that have more than 66% of missing data or that have no meta information
available. Further, we remove doubled measurement stations and drop some stations that show clear
signs of broken sensors (e.g., constant values for the majority of the time). Again, we provide the full
preprocessing pipeline in our repository. Additional statistics can be observed in Figure 4, Figure 5,
Figure 6, Figure 7 and Table 5. Notably, on average, time-series in ”RiversEastGermany” include
around 8% missing values, while for ”RiversBavaria”, only around 1% of values are missing.

5https://de.wikipedia.org/wiki/Elz (Rhein)
6https://open-meteo.com
7https://www.google.com/maps/
8https://www.hydrosheds.org
9https://github.com/causalrivers
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https://hnz.thueringen.de/hw-portal/
https://www.umwelt.sachsen.de/umwelt/infosysteme/hwims/portal/web/wasserstand-uebersicht
https://pegelportal.brandenburg.de/start.php
https://gld.lhw-sachsen-anhalt.de/
https://pegelportal-mv.de/pegel_mv.html
www.wsv.bund.de
https://wasserportal.berlin.de/start.php
https://www.hnd.bayern.de/
https://de.wikipedia.org/wiki/Elz_(Rhein)
https://open-meteo.com/en/docs/elevation-api
https://www.google.com/maps/
https://www.hydrosheds.org/products/hydrorivers
https://github.com/causalrivers/documentation
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Figure 4: Left/Center: Annual discharge patterns (Mean over 5 years) of the biggest rivers (Elbe or
Danube) in the three datasets. Notably, the Elbe shows a more pronounced annual cycle than the
Danube, emphasizing distributional differences between the two datasets. Right: Discharge pattern
of the Elbe river in the RiversElbeFlood dataset. A strong and sudden increase in discharge can be
observed.
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Figure 5: Distribution over the average discharge in the three CausalRivers time-series datasets.
Notably, a few big rivers (e.g., Elbe, Danube, Oder) show vastly higher average discharges.

A.2 HYPERPARAMETERS

Generally, we evaluate different time-series resolutions (15min,1H,6H,12H, 24H) and evaluate with
normalized and unnormalized data. Additionally, we evaluate maximum lags (3 and 5) for VAR,
PCMCI, Dynotears, and Varlingam. Further, for VAR, we evaluate whether considering absolute
coefficient values is beneficial. For CP, we evaluated two architectures (a GRU and a Transformer).
As CDMI does not provide default parameters, we rely on a number of Hyperparameters, that were
selected based on the first 10 samples of the ”random 5” graph set. We however only evaluate this
single Hyperparameter combination on the full graph sets. Besides that, we rely on the default pa-
rameters of the specific implementations we use. All Hyperparameters, along with implementations
and experiments, are documented in 10.

Table 5: Statistics of parent and child nodes in the ground truth causal graphs in CausalRivers. Most
nodes have a single or no parent and a single child.

Number of nodes with n predecessors with n successors
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4

RiversEastGermany 296 206 108 26 16 5 6 1 - 1 1 44 596 24 1 1
RiversBavaria 257 110 64 34 15 2 7 2 3 - - 19 462 11 2 -
RiversFlood 23 13 3 - 1 - - - - 1 1 1 40 1 - -

10https://github.com/causalrivers/experiments
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https://github.com/causalrivers/experiments/
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Figure 6: Distribution over the standard deviation of the normalized (0-1) time-series in the three
CausalRivers time-series datasets. Depending on the geographical location and elevation changes,
the amount of change in the time-series can vary.
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Figure 7: Distribution over the number of missing values per time-series in the three CausalRivers
datasets (on a log scale). While RiversEastGermany includes more missing values, the total amount
of missing values is below 10% in all cases.

A.3 ADDITIONAL RESOURCES - EXPERIMENT SET 1 - 3

Table 6: A short list the number of samples that each of our evaluated graph sets holds.

Graph set Close Root cause Random +1 Random Confounder Disjoint

3 5 3 5 3 5 3 5 3 5 10

Number of samples 636 637 649 655 651 2790 1196 7521 24 361 7519

Here we include information on the amount of samples in each graph set that was used in Experiment
Set 1 and 3 in Table 6. Further, we provide alternative threshold-free performance metrics for
Experiment Set 1 in Table 7 and Table 8. Finally, we provide a depcition of the RiversFlood graph
in Figure 8.
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Weather Stations
Tributary River(BR)
Elbe River (BR)
Elbe River (BSCV)

Figure 8: Causal ground truth graph of RiversFlood. This graph is a subset of RiversEastGermany.
Weatherstations that were used to investigate the general precipitation levels are depicted in pink.

Table 7: F1 max scores for Experiment Set 1. We mark the Top 2 performances in green. The
null model refers to predicting all causal links (as F1 is not defined without positive predictions),
which achieves the smallest possible F1 max. †: CP networks are not able to process more than five
variables. With some exceptions, Granger-based approaches (VAR, Varlingam, and CDMI) achieve
the most robust performance.

Close Root cause Random +1 Confounder Random Disjoint

Method 3 5 3 5 3 5 3 5 3 5 10

N
ai

ve
B

as
el

in
es

RP .75 .53 .71 .48 .48 .42 .66 .48 .74 .52 .29
RP+N .68 .46 .86 .67 .55 .43 .55 .45 .69 .49 .36
RP+B .73 .57 .50 .33 .61 .50 .56 .47 .71 .53 .24
CC .65 .44 .66 .46 .44 .39 .65 .43 .67 .49 .25
CC+C .67 .49 .70 .57 .52 .46 .60 .45 .68 .52 .53
RPCC .66 .47 .64 .45 .50 .42 .62 .44 .67 .51 .30
RPCC+N .65 .44 .73 .58 .52 .43 .60 .44 .67 .49 .38
RPCC+B .65 .48 .55 .36 .56 .44 .60 .43 .65 .49 .25
RPCC+C .68 .52 .68 .54 .55 .47 .62 .47 .68 .52 .55
Null model .50 .34 .50 .33 .29 .26 .54 .36 .50 .33 .16

C
D

St
ra

te
gi

es

VAR .82 .68 .80 .62 .77 .60 .77 .60 .83 .65 .48
Varlingam .81 .65 .79 .64 .80 .63 .72 .61 .81 .63 .48
Dynotears .56 .37 .60 .47 .46 .49 .67 .46 .62 .54 .42
PCMCI .68 .48 .71 .57 .77 .55 .73 .53 .70 .52 .47
CDMI .82 .67 .73 .50 .80 .63 .72 .59 .82 .63 .37
CP (Transf) .68 .53 .69 .55 .77 .55 .65 .49 .68 .53 †
CP (Gru) .72 .48 .71 .46 .78 .48 .66 .49 .71 .49 †
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Table 8: Max Accuracy for Experiment Set 1. We mark the top 2 performances in green. The null
model refers to predicting no causal links. †: CP networks are not able to process more than five
variables. Simple Granger-based approaches (VAR, Varlingam) achieve the highest performance.

Close Root cause Random +1 Confounder Random Disjoint

Method 3 5 3 5 3 5 3 5 3 5 10

N
ai

ve
B

as
el

in
es

RP .80 .80 .79 .80 .83 .85 .76 .78 .80 .80 .91
RP+N .78 .81 .90 .89 .83 .86 .67 .79 .79 .82 .91
RP+B .82 .85 .67 .80 .83 .87 .70 .80 .80 .83 .91
CC .76 .80 .76 .80 .84 .85 .74 .78 .77 .81 .91
CC+C .78 .83 .80 .85 .84 .86 .72 .80 .79 .83 .92
RPCC .77 .81 .75 .80 .85 .85 .75 .79 .77 .81 .91
RPCC+N .77 .82 .82 .86 .85 .86 .73 .80 .79 .83 .91
RPCC+B .77 .83 .71 .81 .86 .86 .74 .80 .78 .83 .91
RPCC+C .80 .84 .79 .85 .86 .87 .76 .82 .80 .84 .92

Null model .67 .80 .67 .80 .83 .85 .63 .78 .67 .80 .91

C
D

St
ra

te
gi

es

VAR .87 .86 .85 .87 .92 .89 .81 .84 .87 .85 .93
Varlingam .86 .86 .85 .86 .93 .89 .81 .84 .86 .85 .92
Dynotears .71 .81 .75 .83 .87 .88 .74 .81 .75 .85 .93
PCMCI .71 .80 .78 .83 .92 .87 .80 .81 .77 .83 .91
CDMI .83 .84 .78 .81 .91 .87 .78 .81 .81 .82 .91
CP (Transf) .76 .83 .79 .84 .91 .88 .74 .80 .77 .83 †
CP (Gru) .79 .81 .80 .81 .92 .87 .76 .80 .79 .82 †
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