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A ADDITIONAL DETAILS FOR COMPOSITIONAL INVERSE DESIGN IN TIME

This section provides additional details for Section 4.1 and Section 4.2. In both sections, we use
the same dataset for training, and the model architecture and training specifics are the same for both
sections.

Dataset. We use two Python packages Pymunk (Blomqvist, 2007) and Pygame (Shinners, 2000)
to generate the trajectories for this N-body dataset. We use 4 walls and several bodies to define the
simulation environment. The walls are shaped as a 200× 200 rectangle, setting elasticity to 1.0 and
friction to 0.0. A body is described as a ball (circle) with a radius of 20, which shares the same
elasticity and friction coefficient as the wall it interacts with. The body is placed randomly within
the boundaries and its initial velocity is determined using a uniform distribution v ∼ U(−100, 100).
We performed 2000 simulations, for 2 balls, 4 balls, and 8 balls in each simulation. Each simulation
has a time step of 1/60 seconds, consisting of 1000 steps in total. During these simulations, we
record the positions and velocities of each particle in two dimensions at each time step to generate
3 datasets with a shape of [Ns, Nt, Nb, Nf ]. Ns means number of simulations, Nt means number
of time steps, Nb is number of bodies, Nf means number of features. The input of one piece of
data shaped as [B, 1, Nb ×Nf ], B is batch size, for example, [32, 1, 8] for 2 bodies conditioning on
only one step. Before training the model, the final data will be normalized by dividing it by 200 and
setting the time resolution to four simulation time steps.

Model structure. The U-Net (Ronneberger et al., 2015) consists of three modules: the down-
sampling encoder, the middle module, and the upsampling decoder. The downsampling encoder
comprises 4 layers, each including three residual modules and downsampling convolutions. The
middle module contains 3 residual modules, while the upsampling decoder includes four layers,
each with 3 residual modules and upsampling. We mainly utilize one-dimensional convolutions in
each residual module and incorporate attention mechanisms. The input shape of our model is de-
fined as [batch size, n steps, n features], and the output shape follows the same structure. The
GNS (Sanchez-Gonzalez et al., 2020) model consists of three main components. First, it builds an
undirected graph based on the current state. Then, it encodes nodes and edges on the constructed
graph, using message passing to propagate information. Finally, it decodes the predicted accelera-
tion and utilizes semi-implicit Euler integration to update the next state. In our implementation of
GNS, each body represents a node with three main attributes: current speed, distance from the wall,
and particle type. We employ the standard k-d tree search algorithm to locate adjacent bodies within
a connection radius, which is set as 0.2 twice the body radius. The attribute of an edge is the vector
distance between the two connected bodies. More details are in Table 4.

Training. We utilize the MSE (mean squared error) as the loss function in our training process. Our
model is trained for approximately 60 hours on a single Tesla V100 GPU, with a batch size of 32,
employing the Adam optimizer for 1 million iterations. For the first 600,000 steps, the learning rate
is set to 1e-4. After that, the learning rate is decayed by 0.5 every 40,000 steps for the remaining
400,000 iterations. More details are provided in Table 5.

To perform inverse design, we mainly trained the following models: U-Net, conditioned on 1 step
and capable of rolling out 23 steps; U-Net (single step), conditioned on 1 step and limited to rolling
out only 1 step; GNS, conditioned on 1 step and able to roll out 23 steps; GNS (single step), condi-
tioned on 1 step and restricted to rolling out only 1 step; and the diffusion model. Simultaneously,
we conducted a comparison to assess the efficacy of time compose by training a diffusion model
with 44 steps directly for inverse design, eliminating the requirement for time compose. The results
and analysis are shown in Appendix C. Throughout the training process, we maintained consistency
in the selection of optimizers, datasets, and training steps for these models.

Inverse design. The center point is defined as the target point, and our objective is to minimize the
mean squared error (MSE) between the position of the trajectory’s last step and the target point. To
compare our CinDM method, we utilize U-Net and GNS as forward models separately. We then use
CEM (Rubinstein & Kroese, 2004) and Backprop (Allen et al., 2022) for inverse design with con-
ditioned state (x0, y0, vx0, vy0) used as input, and multiple trajectories of different bodies as rolled
out. While the CEM algorithm does not require gradient information, we define a parameterized
Gaussian distribution and sample several conditions from it to input into the forward model for pre-
diction. After the calculation of loss between the prediction and target, the best-performing samples
are selected to update the parameterized Gaussian distribution. Through multiple iterations, we can
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Table 4: Hyperparameters of model architecture for N-body task.

Hyperparameter name 23-steps 1-step
Hyperparameters for U-Net architecture:
Channel Expansion Factor (1, 2, 4, 8) (1, 2, 1, 1)
Number of downsampling layers 4 4
Number of upsampling layers 4 4
Input channels 8 8
Number of residual blocks for each layer 3 3
Batch size 32 32
Input shape [32, 24, 8] [32, 2, 8]
Output shape [32, 24, 8] [32, 2, 8]
Hyperparameters for GNS architecture:
Input steps 1 1
Prediction steps 23 1
Number of particle types 1 1
Connection radius 0.2 0.2
Maximum number of edges per node 6 6
Number of node features 8 8
Number of edge features 3 3
Message propagation layers 5 5
Latent size 64 64
Output size 46 2
Hyperparameters for the U-Net in our CinDM:
Diffusion Noise Schedule cosine cosine
Diffusion Step 1000 1000
Channel Expansion Factor (1, 2, 4, 8) (1, 2, 1, 1)
Number of downsampling layers 4 4
Number of upsampling layers 4 4
Input channels 8 8
Number of residual blocks for each layer 3 3
Batch size 32 32
Input shape [32, 24, 8] [32, 2, 8]
Output shape [32, 24, 8] [32, 2, 8]

sample favorable conditions from the optimized distribution to predict trajectories with low loss val-
ues. Backpropagation heavily relies on gradient information. It calculates the gradient of the loss
concerning the conditions and updates the conditions using gradient descent, ultimately designing
conditions that result in promising output.

During training, we can only predict a finite number of time steps based on conditional states, but
the system evolves over an infinite number of time steps starting from an initial state in real-world
physical processes. To address this, we need to combine time intervals while training a single model
capable of predicting longer trajectories despite having a limited number of training steps. For the
forward model, whether using U-Net or GNS, we rely on an intermediate time step derived from
the last prediction as the condition for the subsequent prediction. We iteratively forecast additional
time steps based on a single initial condition in this manner. As for the forward model (single step),
we employ an autoregressive approach using the last step of the previous prediction to predict more
steps.
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Table 5: Hyperparameters of training for N-body task.

Hyperparameter name 23-steps 1-step
Hyperparameters for U-Net training:
Loss function MSE MSE
Number of examples for training dataset 3× 105 3× 105

Total number of training steps 1× 106 1× 106

Batch size 32 32
Initial learning rate 1× 10−4 1× 10−4

Number of training steps with a fixed learning rate 6× 105 6× 105

Learning rate adjustment strategy StepLR StepLR
Optimizer Adam Adam
Number of steps for saving checkpoint 1× 104 1× 104

Exponential Moving Average decay rate 0.95 0.95
Hyperparameters for GNS training:
Loss function MSE MSE
Number of examples for training dataset 3× 105 3× 105

Total number of training steps 1× 106 1× 106

Batch size 32 32
Initial learning rate 1× 10−4 1× 10−4

Number of training steps with a fixed learning rate 6× 105 6× 105

Learning rate adjustment strategy StepLR StepLR
Optimizer Adam Adam
Number of steps for saving checkpoint 1× 104 1× 104

Exponential Moving Average decay rate 0.95 0.95
Hyperparameters for our CinDM training:
Loss function MSE MSE
Number of examples for training dataset 3× 105 3× 105

Total number of training steps 1× 106 1× 106

Batch size 32 32
Initial learning rate 1× 10−4 1× 10−4

Number of training steps with a fixed learning rate 6× 105 6× 105

Learning rate adjustment strategy StepLR StepLR
Optimizer Adam Adam
Number of steps for saving checkpoint 1× 104 1× 104

Exponential Moving Average decay rate 0.95 0.95

B FULL RESULTS FOR COMPOSITIONAL INVERSE DESIGN OF THE N-BODY
TASK

Here we provide the full statistical results including the 95% confidence interval (for 500 instances)
for N-body experiments, including compostional inverse design in time and more objects. Specif-
ically, Table 6 shows detailed results for Table 1 in Section 4.1; and Table 7 extends Table 2 in
Section 4.2.

Table 6: Compositional Generalization Across Time. The confidence interval information is pro-
vided in addition to Table 1.

2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps
Method design obj MAE design obj MAE design obj MAE design obj MAE

CEM, GNS (1-step) 0.2622 ± 0.0090 0.13963 ± 0.00999 0.2204 ± 0.0072 0.15378 ± 0.01123 0.2701 ± 0.0079 0.21277 ± 0.01264 0.2773 ± 0.0070 0.21706 ± 0.01256
CEM, GNS 0.2699 ± 0.0081 0.12746 ± 0.00662 0.3142 ± 0.0064 0.14637 ± 0.00657 0.3056 ± 0.0060 0.18155 ± 0.00689 0.3124 ± 0.0062 0.20266 ± 0.00679
CEM, U-Net (1-step) 0.2364 ± 0.0068 0.07720 ± 0.00623 0.2391 ± 0.0081 0.09701 ± 0.00796 0.2744 ± 0.0073 0.11885 ± 0.00854 0.2729 ± 0.0074 0.12992 ± 0.00897
CEM, U-Net 0.1762 ± 0.0071 0.03597 ± 0.00395 0.1639 ± 0.0062 0.03094 ± 0.00342 0.1816 ± 0.0072 0.03900 ± 0.00451 0.1887 ± 0.0075 0.04350 ± 0.00487

Backprop, GNS (1-step) 0.1452 ± 0.0050 0.04339 ± 0.00285 0.1497 ± 0.0061 0.03806 ± 0.00304 0.1511 ± 0.0062 0.03621 ± 0.00322 0.1851 ± 0.0062 0.04104 ± 0.00285
Backprop, GNS 0.2407 ± 0.0067 0.09788 ± 0.00615 0.2678 ± 0.0072 0.11017 ± 0.00620 0.2762 ± 0.0071 0.12395 ± 0.00657 0.2952 ± 0.0073 0.13963 ± 0.00623
Backprop, U-Net (1-step) 0.2182 ± 0.0068 0.07554 ± 0.00466 0.2445 ± 0.0093 0.08278 ± 0.00613 0.2536 ± 0.0078 0.08487 ± 0.00611 0.2751 ± 0.0088 0.10599 ± 0.00709
Backprop, U-Net 0.1228 ± 0.0040 0.01974 ± 0.00223 0.1171 ± 0.0032 0.01236 ± 0.00104 0.1143 ± 0.0026 0.00970 ± 0.00076 0.1289 ± 0.0043 0.01067 ± 0.00090

CinDM (ours) 0.1160 ± 0.0019 0.01264 ± 0.00057 0.1288 ± 0.0030 0.00917 ± 0.00070 0.1447 ± 0.0040 0.00959 ± 0.00116 0.1650 ± 0.0045 0.01064 ± 0.00117
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Table 7: Compositional Generalizaion Across Objects.. The confidence interval information is
provided in addition to Table 2.

4-body 24 steps 4-body 44 steps 8-body 24 steps 8-body 44 steps
Method design obj MAE design obj MAE design obj MAE design obj MAE

CEM, GNS (1-step) 0.3173 ± 0.0040 0.23293 ± 0.01007 0.3307 ± 0.0022 0.53521 ± 0.00987 0.3323 ± 0.0023 0.38632 ± 0.00737 0.3306 ± 0.0023 0.53839 ± 0.01001
CEM, GNS 0.3314 ± 0.0023 0.25325 ± 0.00369 0.3313 ± 0.0023 0.28375 ± 0.00336 0.3314 ± 0.0023 0.25325 ± 0.00369 0.3313 ± 0.0023 0.28375 ± 0.00336

Backprop, GNS (1-step) 0.2947 ± 0.0044 0.06008 ± 0.00437 0.2933 ± 0.0041 0.30416 ± 0.03387 0.3280 ± 0.0026 0.46541 ± 0.02768 0.3317 ± 0.0023 0.72814 ± 0.01783
Backprop, GNS 0.3221 ± 0.0043 0.09871 ± 0.00499 0.3195 ± 0.0042 0.15745 ± 0.00561 0.3251 ± 0.0021 0.15917 ± 0.00261 0.3299 ± 0.0022 0.21489 ± 0.00238

CinDM (ours) 0.2034 ± 0.0032 0.03928 ± 0.00161 0.2254 ± 0.0044 0.03163 ± 0.00251 0.3062 ± 0.0021 0.09241 ± 0.00210 0.3212 ± 0.0023 0.09249 ± 0.00276

C ADDITIONAL BASELINE FOR TIME COMPOSITION OF THE N-BODY TASK

We also make a comparison with a simple baseline that performs diffusion over 44 steps directly
without time composition. We designed this baseline to verify the effectiveness of our time-
compositional approach. This baseline takes the same architecture as CinDM but with 44 time
steps instead of 24 time steps, thus has almost twice of number of parameters in CinDM. The results
are displayed in Table 8, which indicates that this sample baseline is outperformed by our CinDM.
Its reason may be the difficulty in capturing dynamics across 44 time steps simultaneously using a
single model, due to the presence of long-range dependencies. In such cases, a 24-step diffusion
model proves to be more suitable. Hence, when dealing with designs that involve a larger number
of time steps, employing time composition is a more effective approach, with lower cost and better
performance.

Table 8: Compositional Generalization Across Time. Comparison to a baseline that directly
diffuses 44 steps without time composition.

Methods #parameters(Million) 2-body 44 steps 4-body 44 steps
design obj MAE design obj MAE

Our method 20.76M 0.1326 ± 0.0087 0.00695 ± 0.00067 0.2281 ± 0.0145 0.03195 ± 0.00705
Directly diffuse 44 steps 44.92M 0.2779 ± 0.0197 0.00810 ± 0.00200 0.2986 ± 0.01481 0.05166 ± 0.01218
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D ADDITIONAL DETAILS FOR COMPOSITIONAL INVERSE DESIGN OF 2D
AIRFOILS

D.1 DETAILS FOR THE MAIN EXPERIMENT

Dataset. We use Lily-Pad (Weymouth, 2015) as our data generator (Fig. 5). We generate 30,000
ellipse bodies and NACA airfoil boundary bodies and perform fluid simulations around each body.
The bodies are sampled by randomizing location, thickness, and rotation between respective ranges.
Each body is represented by 40 two-dimensional points composing its boundary. The spatial reso-
lution is 64 × 64 and each cell is equipped with temporal pressure and velocities in both horizontal
and vertical directions. Each trajectory consists of 100 times steps. To generate training trajectories,
we use a sliding time window over the 100 time steps. Each time window contains state data of
T = 6 time steps with a stride of 4. So each original trajectory amounts to 25 training trajectories,
and we get 750,000 training samples in total.

Model architecture. We use U-Net (Ronneberger et al., 2015) as our backbone for denoising from a
random state sampled from a prior distribution. Without considering the mini-batch size dimension,
the input includes a tensor of shape (3T + 3) × 64 × 64, which concatenates flow states (pressure,
velocity of horizontal and vertical directions) of T time steps and the boundary mask and offsets of
horizontal and vertical directions along the channel dimension, and additionally the current diffusion
step s. The output tensor shares the same shape with the input except s. The model architecture is
illustrated in Fig. 4. The hyperparameters in our model architecture are shown in Table 9.

Training. We utilize the MSE (mean squared error) between prediction and a Gaussian noise as the
loss function during training. We take a batch size of 48 and run for 700,000 iterations. The learning
rate is initialized as 1× 10−4. Training details are provided in Table 10.

Evaluation of design results. In inference, we set λ in Eq. 3 as 0.0002. We find that this λ could get
the best design result. More discussion on the selection of λ is presented in Appendix I. For each
method and each airfoil design task (one airfoil or two airfoils), we conduct 10 batches of design,
and each batch contains 20 examples. After we get the designed boundaries, we input them into
Lily-Pad and run the simulation. To make the simulation more accurate and convincing, we use a
128×128 resolution of the flow field, instead of 64× 64 as in the generation of training data. Then
we use the calculated horizontal and vertical flow force to compute our two metrics: −lift + drag
and lift-to-drag ratio. In each batch, we choose the best-designed boundary (or pair of boundaries in
two airfoil scenarios) and then we report average values regarding the two metrics over 10 batches.

Table 9: Hyperparameters used in 2D diffusion model architecture.

Number of downsampling blocks 4
Number of upsampling blocks 4
Input channels 21
Number of residual blocks for each layer 2
Batch size 48
Input shape [48, 21, 64, 64]
Output shape [48, 21, 64, 64]

D.2 SURROGATE MODEL FOR FORCE PREDICTION

Model architecture. In the 2D compositional inverse design of multiple airfoils, we propose a
neural surrogate model gφ to approximate the mapping from the state Ut and boundary γ to the
lift and drag forces, so that the design objective J is differentiable to the design variable z =
U[0,T ]

⊕
γ. The input of our model is a tensor comprising pressure, boundary mask, and offsets

(both horizontal and vertical directions) of shape 4 × 64 × 64 for a given time step. The output is
the predicted drag and lift forces of dimension 2. Boundary masks indicate the inner part (+1) and
outside part (0) of a closed boundary. Offsets measure the signed deviation of the center of each
square on a 64× 64 grid from the boundary in horizontal and vertical direction respectively, where
the deviation of a given point is defined as its distance to the nearest point on a boundary. If two
or more boundaries appear in a sample, the input mask (resp. offsets) is given by the summation
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Figure 4: Diffusion model architecture of 2D inverse design.

Figure 5: Example of Lily-Pad simulation.

of masks (resp. offsets) of all the boundaries. Notice that since the input boundaries are assumed
not to be overlapped, the summed mask and offset are still valid. The model architecture is half of
a U-Net Ronneberger et al. (2015) where we only take the down-sampling part to embed the input
features to a 512-dimensional representation; then we use a linear transformation to output forces.

Dataset. We use Lily-Pad (Weymouth, 2015) to generate simulation data with 1, 2, or 3 airfoil
boundaries to train and evaluate the surrogate model. Boundaries are a mixture of ellipses and
NACA airfoils. We generate 10,000 trajectories for the training dataset and 1,000 trajectories for the
test dataset. Each trajectory consists of 100 time steps. We use pressure as features and lift and drag
forces as labels. Thus we have 3 million training samples and 300 thousand testing samples in total.

Training. We use MSE (mean squared error) loss between the ground truth and predicted forces to
train the surrogate model. The optimizer is Adam (Kingma & Ba, 2014). The batch size is 128. The
model is trained for 20 epochs. The learning rate starts from 1× 10−4 and multiplies a factor of 0.1
every five epochs. The test error is 0.04, smaller than 5% of the average force in the training dataset.
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Table 10: Hyperparameters used in 2D diffusion model training.

Loss function MSE
Number of examples for training dataset 3× 106

Total number of training steps 7× 105

Batch size 48
Initial learning rate 1× 10−4

Number of training steps with a fixed learning rate 6× 105

Learning rate adjustment strategy StepLR
Optimizer Adam
Number of saving checkpoint 700
Exponential Moving Average decay rate 0.995

E VISUALIZATION OF N-BODY INVERSE DESIGN.

Examples of N-body design results are provided in this section. Figure 6 shows the results of using
the backpropagation algorithm and CinDM to design 2-body 54-time step trajectories. The results
of designing 2-body 54-time steps trajectories using CEM and CinDM are provided in Figure 7.
Figure 8 are the results of designing44-time 44 time steps trajectories using CEM, backpropagation,
and CinDM.
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Figure 6: 54 time steps trajectories of 2 bodies after performing inverse design using the back-
propagation algorithm. Figures (a), (b), (c), and (d) represent the trajectory graphs obtained using
GNS, GNS (single step), U-Net, and U-Net (single step) as the forward models, respectively. And
(e) is the result of CinDM. The legend of this figure is consistent with Figure 2.
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Figure 7: 54-step trajectories of 2 bodies after performing inverse design using the CEM al-
gorithm. The trajectory graphs (a), (b), (c), and (d) depict the outcomes using different forward
models such as GNS, GNS (single step), U-Net, and U-Net (single step) respectively. Additionally,
figure (e) demonstrates the result generated by CinDM. The legend of this figure is consistent with
Figure 2.
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Figure 8: 44-time steps trajectories of 4 bodies after performing inverse design using CEM.
Figures (a), (b), (c), and (d) represent the trajectory graphs obtained using GNS, GNS (single step),
U-Net, and U-Net (single step) as the forward models, respectively. And (e) is the result of CinDM.
The legend of this figure is consistent with Figure 2.
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F VISUALIZATION RESULTS OF 2D INVERSE DESIGN BY OUR CINDM

We show the compositional design results of our method in 2D airfoil generation in Figure 9.
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Figure 9: Compositional design results of our method in 2D airfoil generation. Each row repre-
sents an example. We show the heatmap of velocity in horizontal and vertical direction and pressure
in the initial time step, inside which we plot the generated airfoil boundaries.
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G SOME VISUALIZATION RESULTS OF 2D INVERSE DESIGN BASELINE.

We show some 2D design results of our baseline model in Fig. 10.

(a)

(b)

(c)

(d)

(e)

Figure 10: Design results of FNO with CEM in 2D airfoil generation. Each row is the heatmap
of optimized velocities in the horizontal and vertical direction and optimized pressure in the initial
time step, inside which we plot the generated airfoil boundaries.
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Table 11: Comparison to NABL and cINN for N-body time composition inverse design task.

2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps
Method design obj MAE design obj MAE design obj MAE design obj MAE

NABL, U-Net (1-step) 0.1174 0.01650 0.1425 0.01511 0.1788 0.01185 0.2606 0.02042
cINN 0.3235 0.11704 0.3085 0.18015 0.3478 0.18322 0.3372 0.19296

CinDM (ours) 0.1143 0.01202 0.1251 0.00763 0.1326 0.00695 0.1533 0.00870

Table 12: Comparison to NABL and cINN for 2D airfoils inverse design task.
1 airfoil 2 airfoils

Method # parameters (Million) design obj ↓ lift-to-drag ratio ↑ design obj ↓ lift-to-drag ratio ↑
NABL, FNO 3.29 0.0323 1.3169 0.3071 0.9541
NABL, LE-PDE 3.13 0.1010 1.3104 0.0891 0.9860

cINN 3.07 1.1745 0.7556 - -

CinDM (ours) 3.11 0.0797 2.177 0.1986 1.4216

H COMPARISON TO ADDITIONAL WORKS

Besides comparison results of baselines shown in the main text, we further evaluated additional two
baselines: neural adjoint method + boundary loss function (NABL) and conditional invertible neural
network (cINN) method for both N-body and airfoils design experiments.

We implement NABL on top of baselines FNO and LE-PDE in the airfoil design task and U-net in
tcompositionalostional taskamed as “NABL, FNO”, “NABL, LE-PDE” and “NABL, U-net” respec-
tively. These new NABL baselines additionally use the boundary loss defined by the mean value
and 95% significance radius of the training dataset. cINN does not apply to compositional design
because the input scale for the invertible neural network function is fixed. Therefore, for the time
composition task, we trained 4 cINN models, each for one of the time steps: 24, 34, 44, and 54.
These models differ only in the input size. The input x to cINN is a vector of size 2× 4× T , where
2 is the number of objects, 4 is the number of features and T is the number of time steps. The condi-
tion y is set to 0, the minimal distance to the target point. For cINN for 2D airfoil design, we adopt
2D coordinates of 40 boundary pointsarewhich is spanned 80-dimensionalensional vector, as the
input, since the invertible constraint on the cINN model hardly accepts image-like inputs adopted
in the main experiments. Therefore we evaluate cINN only in the single airfoil design task. The
condition y is set as the minimal value of drag - lift drag in the training trajectories. In both tasks,
the random variable z has a dimension of dim(x) - dim(y). It is drawn from a Gaussian distribution
and then input to the INN for inference. We also adjust the hyperparameters, such as hidden size
and a number of reversible blocks, to make the number of parameters in cINN close to ours for fair
comparison.

The results of NABL and cINN are shown in Table 11 and Table 12. We can see that CinDM
significantly outperforms the new baselines in both experiments. Even compared to the original
baselines (who contains contain “Backprop-”) without the boundary loss function, as shown in Table
1 and Table 3, the NABL baselines in both tasks do not show the improvement in the objective
for out-of-distribution data. These results show that our method generalizes to out-of-distribution
while the original and new baselines struggle to generalize the out-of-distribution. CinDM also
outperforms cINN by a large margin in both the time composition and airfoil design tasks. Despite
the quantities, we also find that airfoil boundaries generated by cINN have little variation in shape,
and the orientation is not as desired, which could incur high drag force in simulation. These results
may be caused by the limitation of the model architecture of cINN, which utilizes fully connected
layers as building blocks, and thus has an obvious disadvantage in capturing inductive bias of spatial-
temporal features. We think it is necessary to extend cINN to convolutional networks when cINN
is applied to such high-resolution design problems. However, this appears challenging when the
invertible requirement is imposed. In summary, our method outperforms both NABL and cINN in
both tasks. Furthermore, our method could be used for flexible compositional design. We use only
one trained model to generate samples lying in a much larger state space than in training during
inference, which is a unique advantage of our method beyond these baselines.
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I PERFORMANCE SENSITIVITY TO HYPERPARAMETERS, INITIALIZATION
AND SAMPLING STEPS.

This section evaluate the effects of different λ, initialization and sampling steps on performance of CinDM.

I.1 INFLUENCE OF THE HYPERPARAMETER λ

Table 13: Effect of λ in N-body time composition inverse design.

2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps
λ design obj MAE design obj MAE design obj MAE design obj MAE
0.0001 0.3032 ± 0.0243 0.00269 ± 0.00047 0.2954 ± 0.0212 0.00413 ± 0.00155 0.3091 ± 0.0223 0.00394 ± 0.00076 0.2996 ± 0.0201 0.01046 ± 0.00859
0.001 0.2531 ± 0.0185 0.00385 ± 0.00183 0.2937 ± 0.0213 0.00336 ± 0.00115 0.2797 ± 0.0190 0.00412 ± 0.00105 0.2927 ± 0.0219 0.00521 ± 0.00103
0.01 0.1200 ± 0.0069 0.00483 ± 0.00096 0.1535 ± 0.0135 0.00435 ± 0.00100 0.1624 ± 0.0137 0.00416 ± 0.00059 0.1734 ± 0.0154 0.00658 ± 0.00267
0.1 0.1201 ± 0.0046 0.01173 ± 0.00150 0.1340 ± 0.0107 0.00772 ± 0.00099 0.1379 ± 0.0088 0.00816 ± 0.00149 0.1662 ± 0.0180 0.01141 ± 0.00473
0.2 0.1283 ± 0.0141 0.01313 ± 0.00312 0.1392 ± 0.0119 0.00836 ± 0.00216 0.1529 ± 0.0130 0.01019 ± 0.00584 0.1513 ± 0.0131 0.00801 ± 0.00172
0.4 0.1172 ± 0.0084 0.01500 ± 0.00207 0.1385 ± 0.0145 0.00948 ± 0.00293 0.1402 ± 0.0113 0.00763 ± 0.00112 0.1663 ± 0.0126 0.00850 ± 0.00124
0.6 0.1259 ± 0.0100 0.01382 ± 0.00115 0.1326 ± 0.0126 0.01171 ± 0.00595 0.1592 ± 0.0151 0.01140 ± 0.00355 0.1670 ± 0.0177 0.00991 ± 0.00287
0.8 0.1217 ± 0.0073 0.01596 ± 0.00127 0.1385 ± 0.0120 0.01095 ± 0.00337 0.1573 ± 0.0116 0.00893 ± 0.00113 0.1715 ± 0.0181 0.01026 ± 0.00239
1 0.1330 ± 0.0063 0.01679 ± 0.00139 0.1428 ± 0.0112 0.01087 ± 0.00149 0.1634 ± 0.0119 0.00968 ± 0.00079 0.1789 ± 0.0164 0.01102 ± 0.00185
2 0.1513 ± 0.0079 0.02654 ± 0.00160 0.1795 ± 0.0129 0.01765 ± 0.00193 0.1779 ± 0.0121 0.01707 ± 0.00474 0.2113 ± 0.0161 0.01447 ± 0.00130
10 0.2821 ± 0.0197 0.21153 ± 0.01037 0.2210 ± 0.0149 0.09715 ± 0.00236 0.2273 ± 0.0133 0.07781 ± 0.00232 0.2269 ± 0.0175 0.06538 ± 0.00210

Table 14: Effect of λ in 2D inverse design.

λ obj lift/drag
0.05 0.7628±0.1892 1.015±0.2008
0.02 0.3849±0.0632 1.0794±0.1165
0.01 0.2292±0.0408 1.286±0.1402
0.005 0.2061±0.0388 1.2378±0.1414
0.002 0.217±0.0427 1.2429±0.1243
0.001 0.2277±0.0451 1.2608±0.1469
0.0005 0.2465±0.0473 1.4102±0.1771
0.0002 0.1986±0.0431 1.4216±0.1607
0.0001 0.271±0.0577 1.1962±0.1284
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Figure 11: Design objective of different λ in N-body time composition inverse design.

To evaluate influence of the hyperparameter λ in Eq. 3, we perform inference in both N-body time
composition and 2D airfoils design task for a wide range of λ. The results are shown in Table 13,
Table 14, Fig 11, Fig 12, and Fig 13, where Table 13 corresponds to Fig 11 and Fig 12 while Table
Table 14 corresponds to Fig 13. Our method demonstrates robustness and consistent performance
across a wide range of lambda values. However, if λ is set too small (≤0.0001 in the 2D airfoil task,
or ≤0.01 in the N-body task), the design results will be subpar because there is minimal objective

26



Published as a conference paper at ICLR 2024

4 3 2 1 0 1
log10

0.00

0.05

0.10

0.15

0.20

0.25

M
AE

MAE of 24 steps
MAE of 34 steps
MAE of 44 steps
MAE of 54 steps

Figure 12: MAE of different λ in N-body time composition inverse design.
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Figure 13: Performance of different λ in 2D airfoil inverse design.

guidance incorporated. On the other hand, if λ is set too large (≥ 0.01 in the 2D airfoil task, or ≥
1.0 in the N-body task), there is a higher likelihood of entering a poor likelihood region, and the
preservation of physical consistency is compromised. In practical terms, λ can be set between 0.01
and 1.0 for the N-body task, and between 0.0002 and 0.02 for the 2D airfoil task. In our paper,
we choose based on the best evaluation performance, namely we set as 0.4 for the N-body task and
0.0002 for the 2D airfoils task.

I.2 INFLUENCE OF INITIALIZATION

To analyze the sensitivity of initialization in our approach, we follow a similar methodology dis-
cussed in Ren et al. (2020). We consider the “re-simulation” error r of a target objective y as a
function of the number of samplings B, where each sampling starts from a Gaussian initialization
z. We use the simulator to obtain the output ŷ for each design x from the B design results given the
target y and compute the “re-simulation” error L(ŷ, y). We then calculate the least error among a
batch of B design results. This process is repeated for several batches, and the mean least error rB
is obtained by averaging over these batches.

Table 15 and Fig 14 present the results for the N-body inverse design task. We consider values of
B ranging from 10 to 100, with N = 10 batches. The target y is set to be 0, which represents the
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Figure 14: “Re-simulation” error rB of different B in N-body inverse design.
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Figure 15: Design performance (lift-to-drag) of different B in 2D airfoil inverse design.

distance to a fixed target point. The results show that rB gradually decreases as B increases in the
24-step design, indicating that the design space is well explored and most solutions can be retrieved
even with a small number of samplings. This demonstrates the efficiency of our method in generating
designs. Moreover, similar observations can be made when time composition is performed in 34, 44,
and 54 steps, indicating the effectiveness of our time composition approach in capturing long-time
range physical dependencies and enabling efficient generation in a larger design space.

In the 2D inverse design task, the target y is slightly different. Here, we aim to minimize the
model output (drag - lift force). Hence, we adopt the “re-simulation” performance metric, which
is the lift/drag ratio, as opposed to the “re-simulation” error used in the N-body task, to evaluate
sensitivity to initialization. For each B, the lift/drag ratio is chosen as the highest value among the
simulation results of a batch of B designed boundaries (or boundary pairs for the 2 airfoils design).
Any invalid design results, such as overlapping airfoil pairs in the 2-airfoil design, are removed from
the B results before computing the maximal lift/drag ratio. The reported numbers are obtained by
averaging over N = 10 batches for each B.

Table 16 and Fig 15 present the results for the 2D airfoils design task. In the 1 airfoil design column,
we observe that the lift/drag ratio is relatively low for B = 10, indicating that the design space is not
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Table 15: Influence of initialization. rB with respect to B for N-body inverse design task. Each
number is an average over 10 batches.

B 2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps
10 0.10122654 0.1022556 0.10542078 0.11227837
20 0.10051114 0.10122902 0.10261874 0.10554917
30 0.09950846 0.10106587 0.10220513 0.10408381
40 0.09928784 0.10066015 0.10173534 0.10409425
50 0.09794939 0.10023642 0.10168899 0.10462530
60 0.09876589 0.09997466 0.10105932 0.10257294
70 0.09858151 0.09979441 0.10124100 0.10179855
80 0.09809845 0.09972977 0.10060663 0.10203485
90 0.09808731 0.09941968 0.10108861 0.10120515
100 0.09734109 0.09912691 0.10056177 0.10135190

Table 16: Influence of initialization. Design performance (lift-to-drag) with respect to B for 2D
inverse design task. Each number is an average over 10 batches.

B 1 airfoil 2 airfoils
10 1.4505 0.8246
20 2.2725 0.7178
30 2.2049 1.3862
40 2.6506 1.5781
50 2.1355 1.6055

sufficiently explored due to its high dimensionality (64 × 64 × 3 in our boundary mask and offsets
representation). For B ≥ 20, the lift/drag performance remains steady. In the 2 airfoils design
column, the lift/drag ratio increases roughly with B. This is attributed to the higher dimensional
and more complex design space compared to the single airfoil design task. The stringent constraints
on boundary pairs, such as non-overlapping, lead to the presence of complex infeasible regions in
the design space. Random initialization may lead to these infeasible regions, resulting in invalid
design results. The rate of increase in lift/drag ratio becomes slower when B ≥ 30, indicating
that a majority of solutions have been explored. Despite the training data only containing a single
airfoil boundary, which lies in a relatively lower dimensional and simpler design space, our model
demonstrates a strong ability to generalize and efficiently generate designs for this challenging 2
body compositional design problem.

I.3 INFLUENCE OF THE NUMBER OF SAMPLING STEPS IN INFERENCE
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Figure 16: Design objective of different sampling steps in N-body inverse design.
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Figure 17: MAE of different sampling steps in N-body inverse design.

Fig 16 and Fig 17 illustrate the outcomes of inverse design carried out by CinDM. It is apparent
that with an increase in the number of sampling time steps, the design objective gradually decreases.
In contrast, the MAE fluctuates within a small range, occasionally rising. This phenomenon can
be examined as follows: as the number of sampling steps increases, the participation of the design
objective in the diffusion process intensifies. As a result, the designs improve and align more closely
with the design objective, ultimately leading to a decrease in the design objective. However, when
the number of sampling steps increases, the MAE also increases. This is because, with a small
number of sampling steps, the initial velocities of some designed samples are very small, causing
the diffusion of trajectories to be concentrated within a narrow range. Consequently, both the true
trajectory and the diffused trajectory are highly concentrated, resulting in a small calculated MAE.
By analyzing the sensitivity of the design objective and MAE to different sampling steps, we can
conclude that CInDM can achieve desired design results that align with design objectives and phys-
ical constraints by appropriately selecting a sampling step size during the inverse design process.

J BROADER IMPACTS AND LIMITATIONS

Our method, CinDM, extends the scope of design exploration and enables efficient design and con-
trol of complex systems. Its application across various scientific and engineering fields has pro-
found implications. In materials science, utilizing the diffusion model for inverse design facilitates
the customization of material microstructures and properties. In biomedicine, it enables the struc-
tural design of drug molecular systems and optimizes production processes. Furthermore, in the
aerospace sector, integrating the diffusion model with inverse design can lead to the development of
more diverse shapes and structures, thereby significantly enhancing design efficiency and quality.

CinDM combines the advantages of diffusion models, allowing us to generate more diverse and
sophisticated design samples. However, some limitations need to be addressed at present. In terms
of design quality and exploration space, we need to strike a balance between different objectives
to avoid getting stuck in local optima, especially when dealing with complex, nonlinear systems
in the real world. We also need to ensure that the designed samples adhere to complex multi-
scale physical constraints. Furthermore, achieving interpretability in the samples designed by deep
learning models is challenging for inverse design applications. From a cost perspective, training
diffusion models requires large datasets and intensive computational resources. The complexity of
calculations also hinders the speed of our model design.

Moving forward, we intend to incorporate more physical prior knowledge into the model, leverage
multi-modal data for training, employ more efficient sampling methods to enhance training effi-
ciency, improve interpretability, and generalize the model to multiple scales.
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