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Abstract

Recent multi-task learning research argues against unitary scalarization, where
training simply minimizes the sum of the task losses. Several ad-hoc multi-task op-
timization algorithms have instead been proposed, inspired by various hypotheses
about what makes multi-task settings difficult. The majority of these optimizers
require per-task gradients, and introduce significant memory, runtime, and imple-
mentation overhead. We show that unitary scalarization, coupled with standard
regularization and stabilization techniques from single-task learning, matches or
improves upon the performance of complex multi-task optimizers in popular super-
vised and reinforcement learning settings. We then present an analysis suggesting
that many specialized multi-task optimizers can be partly interpreted as forms of
regularization, potentially explaining our surprising results. We believe our results
call for a critical reevaluation of recent research in the area.

1 Introduction

Multi-Task Learning (MTL) [5] exploits similarities between tasks to yield models that are more
accurate, generalize better and require less training data. Owing to the success of MTL on traditional
machine learning models [3, 16, 22] and of deep single-task learning across a variety of domains, a
growing body of research has focused on deep MTL. The most straightforward way to train a neural
network for multiple tasks at once is to minimize the sum of per-task losses. Adopting terminology
from multi-objective optimization, we call this approach unitary scalarization.

While some work shows that multi-task networks trained via unitary scalarization exhibit superior
performance to independent per-task models [29, 35], others suggest the opposite [30, 54, 58].
As a result, many explanations for the difficulty of MTL have been proposed, each motivating a
new Specialized Multi-Task Optimizer (SMTO) [11, 42, 54, 62, 66]. These works typically claim that
the proposed SMTO outperforms unitary scalarization, in addition to relevant prior work. However,
SMTOs usually require access to per-task gradients either with respect to the shared parameters,
or to the shared representation. Therefore, their reported performance gain comes at significant
computation and memory cost, the overhead scaling linearly with the number of tasks. By contrast,
unitary scalarization requires only the average of the gradients across tasks, which can be computed
via a single backpropagation.

Existing SMTOs were introduced to solve challenges related to the optimization of the deep MTL
problem. We instead postulate that the reported weakness of unitary scalarization is linked to
experimental variability or to a lack of regularization, leading to the following contributions:
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• A comprehensive experimental evaluation (§4) of recent SMTOs on popular multi-task bench-
marks, showing that no SMTO consistently outperforms unitary scalarization in spite of the
added complexity and overhead. In particular, either the differences between unitary scalarization
and SMTOs are not statistically significant, or they can be bridged by standard regularization
and stabilization techniques from the single-task literature. Our reinforcement learning (RL)
experiments include optimizers previously applied only to supervised learning.
• An empirical and technical analysis of the considered SMTOs, suggesting that they reduce

overfitting on the multi-task problem and hence act as regularizers (§5). We conduct an ablation
study and provide a collection of novel and existing technical results that support this hypothesis.
• Code to reproduce the experiments, including a unified PyTorch [50] implemen-

tation of the considered SMTOs, is available at https://github.com/yobibyte/
unitary-scalarization-dmtl.

We believe that our results suggest that the considered SMTOs can be often replaced by less
expensive techniques. We hope that these surprising results stimulate the search for a deeper
understanding of MTL.

2 Related Work

Before diving into details of specific SMTOs in Section 5, we provide a high-level overview of the
deep MTL research. Seminal work in MTL includes hard parameter sharing [6]: sharing neural
network parameters between all tasks with, possibly, a separate part of the model for each task. Hard
parameter sharing is still the major MTL approach adopted in natural language processing [9, 12],
computer vision [46], and speech recognition [53]. In this work, we implicitly assume that each
parameter update employs information from all tasks. However, not all works satisfy this assumption,
either due to a large number of tasks [4, 36], or simply as an implementation decision [25, 37].
In this setting, MTL resembles other problems dealing with multiple tasks, i.e., continual [32],
curriculum [47], and meta-learning [24], which are not the focus of this work.

Many works strive to improve the performance of deep multi-task models. One line of research
hypothesizes that conflicting per-task gradient directions lead to suboptimal models, and focuses
on explicitly removing such conflicts [11, 28, 41, 42, 62, 66]. Some authors postulate that loss
imbalances across tasks hinder learning, proposing loss reweighting methods [10, 30, 40]. Sener
and Koltun [54] and Navon et al. [48] propose that tasks compete for model capacity and interpret
MTL as multi-objective optimization in order to cope with inter-task competition. Here, we focus
on algorithms that explicitly rely on per-task gradients to try to outperform unitary scalarization (§5).
Research on multi-task architectures [19, 46] or MTL algorithms exclusively motivated by determin-
istic loss reweighting [18, 30, 43] are orthogonal to our work. Both topics are investigated by a recent
survey on pixel-level multi-task computer vision problems [61], which found that the minimization
of tuned weighted sums of losses (scalarizations) is empirically competitive with deterministic loss
reweighting and MGDA in the considered settings. These results are extended to popular SMTOs
by a critical review from Xin et al. [63], concurrent to our work, which argues that the optimization
and generalization performance of SMTOs can be matched by tuning scalarization coefficients.
Our work reaches a similar conclusion, demonstrating that unitary scalarization performs on par
with SMTOs when coupled with standard and inexpensive regularization or stabilization techniques.
In other words, Xin et al. [63] provide complementary support for the link between SMTOs and
regularization by showing that tuning scalarization weights positively affects generalization.

In addition to the common supervised settings, we also consider multi-task RL, whose research can
be grouped into three categories: the first adds auxiliary tasks providing additional inductive biases to
speed up learning [27] on a target task. The second, based on policy distillation, uses per-task teacher
models to provide labels for a multi-task model or per-task policies as regularizers [49, 51, 57]. The
third directly learns a shared policy [29], possibly via an SMTO [66]. We focus on the third category,
whose literature reports varying performance for unitary scalarization (better [29] or worse [66] than
per-task models), indicating confounding factors in evaluation pipelines and further motivating our
work. PopArt [23, 60] performs scale-invariant value function updates in order to address differences
in returns across environments, showing improvements in the multi-task setting while still using
unitary scalarization. PopArt does not require per-task gradients but introduces additional hyperpa-
rameters. In our work, we address the differences in rewards by normalizing them at the replay buffer
level. However, we believe both unitary scalarization and SMTOs might equally benefit from PopArt.
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3 Multi-Task Learning Optimizers

We will now describe the deep MTL training problem and popular algorithms employed for its
solution. Let (X,Y ) ∈ Rd×n × Ro×n be the training set, composed of n d-dimensional points and
o-dimensional labels. In addition, Li : Ro×n ×Ro×n → R denotes the loss for the i-th task, θ ∈ RS
the parameter space, T := {1, . . . ,m} the set of m tasks. The goal of MTL is to learn a single
(generally task-aware) parametrized model f : RS × Rd×n × T → Ro×n that performs well on all
tasks T . The parameter space is often split into a set of shared parameters across tasks (generally the
majority of the architecture), denoted θ‖, and (possibly empty) task-specific parameters, denoted θ⊥,
so that θ := [θ‖,θ⊥]T . In this context, the model f often takes on an encoder-decoder architecture,
where the encoder g learns a shared representation across tasks, and the decoders hi are task-specific
predictive heads: f(θ, X, i) = hi(g(θ‖, X),θ⊥). In this case, we denote by z = g(θ‖, X) ∈ Rr×n
the r-dimensional shared representation of X .

The training problem for MTL is typically formulated as the sum of the per-task losses [11, 54, 66]:

min
θ

[
LMT(θ) :=

∑
i∈T Li(f(θ, X, i), Y )

]
. (1)

Unitary Scalarization The obvious way to minimize the multi-task training objective in equation
(1) is to rely on a standard gradient-based algorithm. While, for simplicity, we focus on standard
gradient descent rather than mini-batch stochastic gradient descent, the notation can be adapted by
replacing the dataset size n by the mini-batch size b. Equation (1) corresponds to a linear scalarization
with unitary weights under a multi-objective interpretation of MTL; hence, we call the direct
application of gradient descent on equation (1) unitary scalarization. For vanilla gradient descent, this
corresponds to taking a step in the opposite direction as the one given by the sum of per-task gradients:
∇θLMT =

∑
i∈T ∇θLi. Per-task gradients are not required, as it suffices to directly compute the

gradient of the sum LMT. Hence, when relying on deep learning frameworks based on reverse-mode
differentiation, such as PyTorch [50], the backward pass is performed once per iteration (rather than
m times). Furthermore, the memory cost is a factor m less than most SMTOs, which require access
to each ∇θLi. As a consequence, unitary scalarization is simple, fast, and memory efficient. Our
experiments demonstrate that, when possibly coupled with single-task regularization such as early
stopping, `2 penalty or dropout layers [56], this simple optimizer is strongly competitive with SMTOs.

MGDA Sener and Koltun [54] point out that equation (1) can be cast as a multi-objective opti-
mization problem with the following objective: LMT(θ) := [L1(θ), . . . ,Lm(θ)]T . A commonly
employed solution concept in multi-objective optimization is Pareto optimality. A point θ∗ is
called Pareto-optimal if, for any another point θ† such that ∃i ∈ T : Li(θ†) < Li(θ∗), then
∃j ∈ T : Lj(θ†) > Lj(θ∗). A necessary condition for Pareto optimality at a point is Pareto
stationarity, defined as the lack of a shared descent direction across all losses at that point. Sener and
Koltun [54] rely on Multiple-Gradient Descent Algorithm (MGDA) [14] to reach a Pareto-stationary
point for shared parameters θ‖. Intuitively, MGDA proceeds by repeatedly stepping in a shared
descent direction [14, 17], which can be found by solving the following optimization problem:

min
g,ε

[
ε+ 1/2 ‖g‖22

]
s.t. ∇θ‖L

T
i g ≤ ε ∀ i ∈ T , (2)

whose dual takes the following form (corresponding to the formulation from Désidéri [14]):

max
α≥0
−1/2 ‖g‖22 s.t.

∑
i

αi∇θ‖Li = −g,
∑
i∈T

αi = 1. (3)

In other words, MGDA takes a step in a direction g given by the negative convex combination
of per-task gradients, whose coefficients are given by solving equation (3). In practice, per-task
gradients are rescaled before applying MGDA: the original authors’ implementation [54] relies
on∇θ‖Li ← ∇θ‖Li/

∥∥∥∇θ‖Li

∥∥∥Li(θ). The convergence of MGDA to a Pareto-stationary point is still
guaranteed after normalization [14].

IMTL Impartial Multi-Task Learning (IMTL) [42] is presented as an SMTO that is not biased
against any single task. It is composed of two complementary algorithmic blocks: IMTL-L, acting on
task losses, and IMTL-G, acting on per-task gradients. IMTL-G follows the intuition that a multi-task
optimizer should proceed along a direction g = −

∑
i αi∇θ‖Li that equally represents per-task
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gradients. This is formulated analytically by requiring that the cosine similarity between g and each
∇θ‖Li be the same. To prevent the resulting problem from being underdetermined, Liu et al. [42]
add the constraint

∑
i∈T αi = 1, resulting in a problem that admits a closed-form solution for g:

gT
∇θ‖L1∥∥∥∇θ‖L1

∥∥∥ = gT
∇θ‖Li∥∥∥∇θ‖Li

∥∥∥ ∀ i ∈ T \ {1}, g = −
∑
i αi∇θ‖Li,

∑
i∈T αi = 1. (4)

IMTL-L, instead, aims to reweight task losses so that they are all constant over time, and equal
to 1. In order to limit oscillations of the scaling factors, the authors propose to learn them jointly
with the network by minimizing a common objective via gradient descent. In particular, given
si ∈ R ∀i ∈ T , Liu et al. [42] derive the following form for the joint minimization problem:
mins,θ [

∑
i (e

siLi(θ)− si)] . As proved by Liu et al. [42], IMTL-L only has a rescaling effect on
the update direction of IMTL-G. Unlike IMTL-G and the other SMTOs presented in this section,
IMTL-L rescaling is designed to affect the updates for task-specific parameters θ⊥ as well.

PCGrad Let us write cos(x, z) for the cosine similarity between vectors x and z. Yu et al. [66]
postulate that multi-task convergence is severely slowed down if the following three conditions
(named the tragic triad) hold at once: (i) conflicting gradient directions: cos(∇θ‖Li,∇θ‖Lj) < 0

for some i, j ∈ T ; (ii) differing gradient magnitudes:
∥∥∇θ‖Li

∥∥� ∥∥∇θ‖Lj
∥∥ for some i, j ∈ T ; and

(iii) the unitary scalarization LMT has high curvature along ∇θ‖LMT. The PCGrad [66] SMTO is
presented as a solution to the tragic triad, targeted at the first condition. Consistent with the previous
sections, let us denote the update direction by g. Furthermore, let [x]+ := max(x,0). Given per-task
gradients ∇θ‖Li, PCGrad iteratively projects each task gradient onto the normal plane of all the
gradients with which it conflicts:[

gi ← ∇θ‖Li, gi ← gi +

[
−gT

i ∇θ‖Lj(x)∥∥∥∇θ‖Lj

∥∥∥2
]
+

∇θ‖Lj ∀j ∈ T \ {i}
]
∀i ∈ T , g = −

∑
i∈T

gi, (5)

where the iterative updates of gi with respect to∇θ‖Lj are performed in random order.

GradDrop Chen et al. [11] focus on conflicting signs across task gradient entries, arguing that
such conflicts lead to gradient “tug-of-wars". The GradDrop SMTO [11], presented as a solution to
this problem, proposes to randomly mask per-task gradients ∇θ‖Li so as to minimize such conflicts.
Specifically, GradDrop computes the “positive sign purity" pj for the task gradient’s j-th entry and
then masks the j-th entry of each per-task gradient with probability increasing with pj , if the entry is
negative, or decreasing with pj , if the entry is positive. Let us write p := [p1, . . . , pS ], where S is the
dimensionality of the parameter space (see §3), � for the Hadamard product and 1a for the indicator
vector on condition a. Given a vector ui, uniformly sampled in [0,1] at each iteration, GradDrop
takes a step in the direction given by:

g =
∑
i∈T

 −∇θ‖Li � 1(∇θ‖Li>0
) � 1(ui>p)

− ∇θ‖Li � 1(∇θ‖Li<0
) � 1(ui<p)

 , with p =
1

2

(
1 +

∑
i∈T ∇θ‖Li∑
i∈T

∣∣∇θ‖Li
∣∣
)
. (6)

4 Experimental Evaluation

Relying on a unified experimental pipeline, we present an empirical evaluation on common MTL
benchmarks of unitary scalarization (§3), of the popular SMTOs presented in §3, and of the recent
RLW algorithms [40] due to their similarities with PCGrad and GradDrop (see §5.2). We benchmark
against the two RLW instances that showed the best average performance in the original paper: RLW
with weights sampled from a Dirichlet distribution (“RLW Diri.”), and RLW with weights sampled
from a Normal distribution (“RLW Norm.”). The goal of this section is to assess the efficacy of
a popular line of previous work, focusing on a few representative or well-established optimizers.
Therefore, we forego comparison with more recent SMTOs [28, 41, 48]. Nevertheless, we point out
that these algorithms often lack significant enough improvements over the optimizers we consider, or
may have substantial commonalities with them (see §5.2 for Nash-MTL [48], which was published
concurrently to the finalization of this work). Whenever appropriate, we employ “Unit. Scal.” as
shorthand for unitary scalarization. We first present supervised learning experiments (§4.1), and then
evaluate on a popular reinforcement learning benchmark (§4.2).
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Unit. Scal. IMTL MGDA GradDrop PCGrad RLW Diri. RLW Norm.
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(a) Avg. task test accuracy: mean and 95% CI (10 runs).
Unit. Scal. IMTL MGDA GradDrop PCGrad RLW Diri. RLW Norm.
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(b) Box plots for the training time of an epoch (10 runs).

Figure 1: No algorithm outperforms unitary scalarization on the Multi-MNIST dataset.

Our experiments indicate that the performance of unitary scalarization has been consistently un-
derestimated in the literature. By showing the variability between runs and by relying on standard
regularization and stabilization techniques from the single-task literature, we demonstrate that no
SMTO consistently outperforms unitary scalarization across the considered settings. This result
holds in spite of the added complexity and computational overhead associated with most SMTOs.
Furthermore, in supervised learning, most methods drive the training loss of all tasks in the proximity
of the respective global minima. This suggests that the main difficulty of MTL is not associated with
the optimization of its training objective, but rather to incorporating adequate regularization (cf. §5).

4.1 Supervised Learning

All the architectures employed in the supervised learning experiments conform to the encoder-decoder
structure detailed in §3. Whenever suggested by the original authors for this context, the SMTO
implementations rely on per-task gradients with respect to the last shared activation, ∇z, rather
than on the usually more expensive ∇θLi. In particular, this is the case for MGDA, IMTL and
GradDrop. See appendix B for details concerning each individual algorithm. Surprisingly, several
MTL works [11, 40, 42, 66] report validation results, making it easier to overfit. Instead, following
standard machine learning practice, we select a model on the validation set, and later report test
metrics for all benchmarks. Validation results are also available in appendix D. Appendix C.1 reports
dataset descriptions, the computational setup, hyperparameter and tuning details.

4.1.1 Multi-MNIST

We present results on the Multi-MNIST [54] dataset, a simple two-task supervised learning benchmark.
We employ a popular architecture from previous work [54, 66] (see appendix C.1), where a single
dropout layer [56] (with dropout probability 0.5) is employed in both the encoder and the decoder. `2
regularization did not improve validation performance and was therefore omitted. Figure 1 reports the
average task test accuracy, and the training time per epoch. For each run, the test model was selected
as the model with the largest average task validation accuracy across the training epochs. Appendix D
presents the results of Figure 1 in tabular form, as well as the average task validation accuracy per
epoch. As seen from the overlapping confidence intervals, none of the considered algorithms clearly
outperforms the others. However, GradDrop displays higher experimental variability. Furthermore,
Figure 7(b) shows that the sums of the task cross-entropy losses is driven nearly to zero by most meth-
ods. Finally, Figure 1(b) shows that unitary scalarization also has among the lowest training times.

4.1.2 CelebA

We now show results for the CelebA [44] dataset, a challenging 40-task multi-label classification prob-
lem. We employ the same architecture as many previous studies [40, 42, 54, 66] (see appendix C.1).
We tuned `2 regularization terms λ for all SMTOs in the following grid: λ ∈ {0, 10−4, 10−3}. The
best validation performance was attained with λ = 10−3 for unitary scalarization, IMTL and PCGrad,
and with λ = 10−4 for MGDA, GradDrop, and RLW. Validation performance was further stabilized

Unit. Scal. IMTL MGDA GradDrop PCGrad RLW Diri. RLW Norm.
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(a) Avg. task test accuracy: mean and 95% CI (3 runs).
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(b) Box plots for the training time of an epoch (10 runs).

Figure 2: While SMTOs display larger runtimes, none of them outperforms the unitary scalarization
on the CelebA dataset.
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Unit. Scal. IMTL MGDA GradDrop PCGrad RLW Diri. RLW Norm.
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(b) Relative depth test error: lower is better.

Unit. Scal. IMTL MGDA GradDrop PCGrad RLW Diri. RLW Norm.

0.69

0.70

0.71

Se
gm

en
ta

tio
n 

m
IO

U

(c) Test segmentation mIOU: higher is better.
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(d) Test segmentation accuracy: higher is better.
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(e) Box plots for the training time of an epoch (10 runs).

Figure 3: On Cityscapes, none of the
SMTOs outperforms unitary scalarization,
which proves to be the most cost-effective
algorithm. Subfigures (a)-(d) report means
for three runs, and their 95% CIs.

by the addition of several dropout layers (see Figure 5), with dropout probabilities from 0.25 to 0.5.
We present an ablation study on the effect of regularization on this experiment in §5.1. Figure 10
(appendix D.2) shows that regularization improves the peak average validation performance for all
the considered methods. Analogously to our Multi-MNIST results, Figure 2 plots the distribution of
the training time per epoch, and the average test task accuracy. As with Multi-MNIST, the test model
for each run was the one with maximal average validation task accuracy across epochs. In other
words, if the peak is attained before the last epoch, we perform early stopping: as shown in Figure
8(a) in appendix D this is the case for most methods. Due to the large number of tasks, Figure 2(b)
shows relatively large runtime differences across methods. PCGrad is the slowest (roughly 35 times
slower than unitary scalarization). In fact, amongst the considered algorithms, it is the only one that
computes per-task gradients over the parameters (∇θLi ∀i ∈ T ) at each iteration. GradDrop, MGDA
and IMTL have overhead factors (compared to unitary scalarization) ranging from roughly 1.05 to
2.4 due to the relatively small size of z for the employed architecture. The overhead of RLW is
negligible: roughly 5%. Nevertheless, due to largely overlapping confidence intervals in Figure 2(a),
none of the methods consistently outperforms unitary scalarization. In fact, owing to our adoption of
explicit regularization techniques (see §5.1) its average performance is superior to that reported in the
literature [42, 54]. As with Multi-MNIST, Figure 9(a) demonstrates that the cross-entropy loss of
each task can be driven near to its global optimum by most optimizers.

4.1.3 Cityscapes

In order to complement the multi-task classification experiments for Multi-MNIST and CelebA,
we present results for Cityscapes [13], a dataset for semantic understanding of urban street scenes.
We rely on a common encoder architecture from the literature [40, 42] (see appendix C.1), with a
single dropout layer in the task-specific heads [40]. As for CelebA, unitary scalarization, IMTL,
and PCGrad benefit from more regularization than the other optimizers: we employ λ = 10−5 for
these three algorithms, as it resulted in better validation performance on the majority of metrics, and
λ = 0 for the remaining methods. Cityscapes is a heterogeneous MTL problem: it contains tasks of
different types whose validation metrics cannot be averaged to perform model selection. Considering
the lack of an established procedure in this context, we potentially evaluate a different model for each
metric, chosen as the one with the best (maximal or minimal, depending on the metric) validation
performance across epochs (we perform per-run early stopping). This procedure maximizes per-task
performance, at the cost of increased inference time. If inference time is a priority, an alternative
model selection procedure could rely on relative task improvement [28, 41, 48], assuming that
per-metric improvements are to be weighted linearly. Nevertheless, any consistently applied model
selection scheme serves the main goal of our work: evaluating all SMTOs on a fair ground. Figure 3
shows test results for two metrics per task, and the distribution of the training time per epoch. As
with Multi-MNIST and CelebA, no training algorithm clearly outperforms unitary scalarization
(significant overlaps across confidence intervals exist), which is again the least expensive method. In
contrast with a popular hypothesis [10, 30, 42], this holds in spite of relatively large loss imbalances.
In fact, the loss for the depth task is roughly 10 times smaller than that of the segmentation task:
see figures 17(f)-17(g). Nevertheless, both losses are rapidly driven towards their respective global
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Figure 4: On Metaworld, none of the SMTOs significantly outperforms Unit. Scal., which is the
least expensive method. Subfigures (a)-(b) report mean and 95% CI for the best (over the updates)
average success rate. Subfigures (c)-(d) show box plots for the training time of 10,000 updates.

minima. Unlike CelebA (see Figure 2(b)), IMTL, MGDA and GradDrop are significantly slower than
unitary scalarization (factors from 1.6 to 2.3), due to the relatively (compared to the parameter space)
large size of z in the employed architecture. PCGrad, instead, appears to be less expensive (30%
more than the baseline), demonstrating the benefits of working on∇θLi on this model.

4.2 Reinforcement Learning

For RL experiments, we use Meta-World [65] and the Soft Actor-Critic [20] implementation from [55].
Unlike §4.1, the employed network architecture (see appendix C.1) is fully shared across tasks.
Therefore, all SMTO implementations for these experiments rely on per-task gradients with respect
to network parameters ∇θLi (see §5). Among the SMTOs we consider, PCGrad is the only one
developed with the RL setting in mind. For fairness and completeness, we add all the other SMTOs
from the supervised learning experiments, and are the first to test these optimizers in the RL setting.
To stabilize learning, we increase the replay buffer size, a well known technique in single-task RL,
add actor l2 regularization, and modify the reward normalization employed by Sodhani et al. [55].
The unitary scalarization performance reported by Yu et al. [66] is considerably lower than that
of Sodhani et al. [55], which we believe is due to the lack of reward normalization in the former.
Sodhani et al. [55] keep a moving average of rewards in the environment, with a hyperparameter
controlling the speed of the moving average. As we show in Figure 16, the learning algorithm is
sensitive to that hyperparameter. Moreover, such normalization might make similar transitions have
drastically different rewards stored in the replay buffer. To alleviate these issues, we store the raw
rewards in the buffer, and normalize only when a mini-batch is sampled.

Figure 4 reports the best average success rate across the updates and the runtime for 10,000 updates.
In addition to these summary statistics, reported for consistency with §4.1, the learning curves are
shown in appendix E. Our MT10 (10 tasks) results in Figure 4(a) show that by stabilizing the baseline
using standard RL techniques, unitary scalarization performs on par with other SMTOs, mirroring
our findings in §4.1. This is in contrast with the previous literature, which reported that PCGrad
outperforms unitary scalarization [55, 66]. Figure 4(b) presents results on MT50 (50 tasks): similarly
to MT10, none of the SMTOs significantly outperforms unitary scalarization, with PCGrad’s average
being slightly above unitary scalarization. We speculate that the stochastic loss rescaling performed
by PCGrad (see Proposition 3) reduces the differences in task return scales, and expect that methods
like PopArt [60] would have a similar effect without requiring access to per-task gradients. While we
did not tune hyperparameters for MT50 (we employed those found for MT10), it would be much
easier to do that for unitary scalarization due to its lower runtime. In fact, Figure 4(d) shows that
a single unitary scalarization run takes roughly 15 hours, whereas PCGrad, MGDA and GradDrop
require more than a week. Similarly to MT10, actor regularization pushes the average performance
of unitary scalarization higher (see in appendix E.2). Overall, as in the supervised learning setting,
unitary scalarization performs comparably to SMTOs despite being simpler and less demanding in
both memory and compute. IMTL was unstable on this RL benchmark and all of the runs crashed
due to numerical overflow. We hence omit IMTL results from the main body of the paper and show
its results in Figure 13 in appendix E, which also describes a possible explanation. We hypothesize
that the instability of IMTL is due to lack of bounds on scaling coefficients. See appendix C.2 for
hyperparameter settings and ablation studies.
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5 Regularization in Specialized Multi-Task Optimizers

The empirical results presented in §4 motivate the need to carefully analyze existing SMTOs. We
make an initial attempt in this direction by viewing their effects through the lens of regularization.
Let us define a regularizer as a technique to reduce overfitting [15]. We first show that the SMTOs
considered in §4 empirically act as regularizers via an ablation study (§5.1). We then take a closer
look at their behavior, presenting technical results that support their alternative interpretation as
regularizers (§5.2). Finally, §5.3 provides additional empirical backing for some of the technical
results. Unless otherwise stated, we assume that MTL methods apply only to θ‖ and that standard
gradient-based updates are employed for tasks-specific parameters θ⊥. We furthermore adopt the
following shorthands: Li(θ) for Li(f(θ, X, i), Y ), and ∇θLi for ∇θLi(f(θ, X, i), Y ).

5.1 Ablation Study

We repeat the experiment from §4.1.2 and remove explicit regularization: no dropout layers are
added to the encoder-decoder architecture, and λ = 0 for all optimizers. In addition, we examine
the behavior of two different `2-regularized instances of unitary scalarization: λ = 10−4 for “Unit.
Scal. `2”, λ = 2 × 10−3 for “Unit. Scal. `2+”. Figure 5 shows that SMTOs behave similarly to
an `2-penalized unitary scalarization. Importantly, SMTOs delay overfitting, requiring less early
stopping compared to unitary scalarization to obtain comparable performance. In other words, early
stopping is sufficient for unitary scalarization to perform on par with SMTOs. Finally, overfitting is
further reduced by “Unit. Scal. Reg.”, which plots the regularized unitary scalarization from §4.1.2,
with dropout layers and a weight decay of λ = 10−3. Further results are presented in appendix D.2.

5.2 Technical Results

All the methods considered in §5.1 regularize more than unitary scalarization. While RLW was shown
to reduce overfitting by the original authors [40, theorem 2], we now provide a collection of novel
and existing technical results that potentially explain the regularizing behavior of each of the other
algorithms, complementing the presentation from §3. In particular, we show that MGDA, IMTL and
PCGrad have a larger convergence set than unitary scalarization, reducing the chances to land on sharp
local minima [15]. Furthermore, GradDrop and PCGrad introduce significant stochasticity, which
is often linked to the same effect [31, 34]. We hope these observations will steer further research.

MGDA Let us denote the convex hull of a setA by Conv(A). We now recall a well-known property
of MGDA [14] and relate it to the behavior of unitary scalarization.

Proposition 1. The MGDA SMTO [54] converges to a superset of the convergence points of unitary
scalarization. More specifically, it converges to any point θ∗‖ such that: 0 ∈ Conv({∇θ∗

‖
Li | i ∈ T }).

See appendix B.1 for a simple proof. As a consequence of Proposition 1, MGDA does not necessarily
reach a stationary point for LMT (that is, a point for which

∑
i∈T ∇θ‖Li = 0) or for any of the losses

Li (∇θ‖Li = 0). For example, any point θ‖ for which two per-task gradients point in opposite
directions is Pareto stationary. On account of the well-known [15] relationship between under-
optimizing (e.g., early stopping [7, 39]) and overfitting, proposition 1 supports the interpretation of
MGDA as a regularizer for equation (1). Empirical evidence that MGDA under-optimizes is provided
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in §5.3, Figure 9(a), and Figure 5, which shows over-regularization. Proposition 1 can be trivially
extended to the recent Nash-MTL, which shares the same convergence set [48, Theorem 5.4].

IMTL We now show that aggregating per-task gradients so that their cosine similarity is the same
(equation (4)) yields a constrained steepest-descent algorithm (Proposition 2). This view on the
update step of IMTL leads to a novel analysis of its convergence points (corollary 1). Proofs can be
found in appendix B.2. We will denote by Aff(A) the affine hull of a set A.
Proposition 2. IMTL by Liu et al. [42] updates θ‖ by taking a step in the steepest descent direction
whose cosine similarity with per-task gradients is the same across tasks.

Corollary 1. IMTL by Liu et al. [42] converges to a superset of the Pareto-stationary points for θ‖
(and hence of the convergence points of the unitary scalarization). More specifically, it converges to
any point θ∗‖ such that: 0 ∈ Aff

({
∇θ∗

‖
Li/
∥∥∥∥∇θ∗

‖
Li

∥∥∥∥ | i ∈ T
})

.

As seen for MGDA, corollary 1 implies that, even if the employed model f has the capacity to
reach the minimal loss on LMT, IMTL may stop before reaching a stationary point. Recalling the
relationship between under-optimizing and overfitting [15], this supports the interpretation of IMTL
as a regularizer for equation (1). This is empirically shown in §5.3, Figures 5, 9(a). In particular,
unitary scalarization reaches the same average performance of IMTL but requires earlier stopping.

PCGrad We provide an alternative characterization of the PCGrad update rule, highlighting its
stochasticity in the context of its interpretation as loss rescaling [40, 42]. See appendix B.3 for a proof.

Proposition 3. PCGrad is equivalent to a dynamic, and possibly stochastic, loss rescaling for θ‖. At
each iteration, per-task gradients are rescaled as follows:

∇θ‖Li ←
(
1 +

∑
j∈T \{i} dji

)
∇θ‖Li, dji ∈

[
0,

∥∥∥∇θ‖Lj

∥∥∥∥∥∥∇θ‖Li

∥∥∥
]
.

Furthermore, if |T | > 2, dji is a random variable, and the above range contains its support.

The results from proposition 3 can be easily extended to GradVac [62], which generalizes PCGrad’s
projection onto the normal vector to arbitrary target cosine similarities between per-task gradients.
When |T | > 2, PCGrad corresponds to a stochastic loss re-weighting. As such, PCGrad bears many
similarities with Random Loss Weighting (RLW) [40]. RLW proposes to sample scalarization weights
from standard probability distributions at each iteration, and proves that this leads the better general-
ization [40, theorem 2]. Indeed, it is well-known that adding noise to stochastic gradient estimations
leads the optimization towards flatter minima, and that such minima may reduce overfitting [31, 34].
In line with the main technical results by Yu et al. [66], we now restrict our focus to two-task problems,
which allow for an easy description of PCGrad’s convergence points. The result is largely based
on [66, theorem 1]: we relax some of the assumptions and provide a proof in appendix B.3.
Corollary 2. If |T | = 2, PCGrad will stop at any point where cos(∇θ‖L1,∇θ‖L2) = −1. Further-
more, if L1 and L2 are differentiable, and∇θ‖LMT is L-Lipschitz with L > 0, PCGrad with step size
t < 1

L converges to a superset of the convergence points of the unitary scalarization.

Corollary 2 implies that, when |T | = 2, PCGrad may under-optimize equation (1) as MGDA
and IMTL. In particular, if cos(∇θ‖L1,∇θ‖L2) = −1, then 0 ∈ Conv({∇θ‖L1,∇θ‖L2}) (see
proposition 1). We believe that PCGrad’s stochasticity and enlarged convergence set potentially
explain its regularizing effect.

GradDrop While the motivation behind GradDrop is to avoid entry-wise gradient conflicts across
tasks, the main property of the method is to drive the optimization towards “joint minima": points that
are stationary for all the individual tasks at once [11, proposition 1]. In other words: ∇θ‖Li = 0 ∀ i ∈
T . While this property is desirable, we show that it holds beyond GradDrop, and independently of
the gradient directions. Under strong assumptions on the model capacity, the above property would
trivially hold for unitary scalarization (proposition 5, appendix B.4). Proposition 4 shows that it holds
for a simple randomized version of unitary scalarization, which we name Random Grad Drop (RGD).
Proposition 4. Let LRGD(θ‖) :=

∑
i∈T uiLi(θ‖), where ui ∼ Bernoulli(p) ∀i ∈ T and p ∈ (0, 1].

The gradient ∇θ‖LRGD is always zero if and only if ∇θ‖Li = 0 ∀i ∈ T . In other words, the result
from [11, proposition 1] can be obtained without any information on the sign of per-task gradients.
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Proposition 4 (see appendix B.4 for a simple proof) shows that an inexpensive sign-independent
stochastic scalarization shares GradDrop’s main reported property. LRGD can be directly cast
an instance of RLW, and hence as a regularization method [31, 34]. Furthermore, Figure 12 in
appendix D.3 shows that the empirical results of GradDrop on CelebA [44] are closely matched
by a sign-agnostic gradient masking, partly undermining the conflicting gradients assumption. We
believe that the above results, along with the authors’ original experiments showing that GradDrop
delays overfitting on CelebA [11, figure 3], suggest that GradDrop behaves as a regularizer.

5.3 Under-Optimization: Empirical Study

As seen in §5.2, MGDA and IMTL might under-optimize equation (1) compared to unitary scalar-
ization due to their larger convergence sets. In order to assess whether this is empirically the case,
we estimate

∥∥∑
i∈T ∇θ‖Li

∥∥
2
, the norm of the unitary scalarization update on shared parameters θ‖,

for all optimizers throughout the unregularized CelebA experiment from §5.1. Large magnitudes for∥∥∑
i∈T ∇θ‖Li

∥∥
2

towards convergence would indicate that SMTOs steer optimization far from sta-
tionary points of unitary scalarization, resulting in under-optimization. We compute the update norm
on the mini-batch loss every 100 updates, and report the per-epoch average in Figure 6. Most SMTOs
have a smaller update magnitude than unitary scalarization in the first 15 epochs. However, towards
convergence, SMTOs display larger

∥∥∑
i∈T ∇θ‖Li

∥∥
2

compared to unitary scalarization. In particu-
lar, IMTL and MGDA have the largest norm, denoting significant empirical under-optimization. The
additional stochasticity of RLW, PCGrad, and GradDrop also appears to lead to larger norm values
than unitary scalarization, yet to a lesser degree. Given that MGDA and IMTL incur a larger loss
than unitary scalarization in later epochs (see Figure 9(a) in appendix D.2), we can conclude that
they guide optimization towards regions of the parameter space that under-optimize equation (1),
providing empirical support for our analysis.

6 Conclusions

This paper made two main contributions. First, we evaluated popular SMTOs using a single experi-
mental pipeline, including previously unpublished results of MGDA, IMTL, RLW, and GradDrop in
the RL setting. Surprisingly, our evaluation showed that none of the SMTOs consistently outperform
unitary scalarization, the simplest and least expensive method. Second, in order to explain our sur-
prising results, we postulate that SMTOs act as regularizers and present an analysis that supports our
hypothesis. We believe our work calls for further reevaluation of progress in developing principled
and efficient MTL algorithms.

We conclude by addressing the limitations of our work. While we covered a wide range of popular
benchmarks, we do not exclude the existence of settings where unitary scalarization underperforms:
discovering them is an interesting direction for future work. Furthermore, our experimental results
were obtained via grid searches under limited compute resources: some of the methods might
benefit from further fine-tuning. Nevertheless, we remark that fine-tuning will be easier for unitary
scalarization due to its shorter runtimes. Finally, we presented the regularization hypothesis only as a
partial explanation of our results: we hope it will steer further analysis and consequently improve the
understanding of MTL.
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A Societal Impact

Due to the object of its study, our work does not have a direct societal impact. However, as any
machine learning paper, it can potentially negatively effect the society through automation and loss
of jobs. While it is hard to anticipate any particular risk, as any technology, if not regulated properly,
it might lead to growing social and economic inequality.

On the positive side, our work might have a positive environmental impact since it advocates for
simpler and more economical methods which will reduce energy consumption in data centers. Finally,
simpler methods are usually easier to understand, which is beneficial in terms of explainability, an
important factor for real-life applications.

B Supplement to the Overview of Multi-Task Optimizers

This section presents the proofs and the technical results omitted from section 5, along with a descrip-
tion of the use of per-task gradients with respect to the last shared activation for encoder-decoder
architectures (usually less expensive than per-task gradients with respect to shared parameters).

B.1 MGDA

Proposition 1. The MGDA SMTO [54] converges to a superset of the convergence points of unitary
scalarization. More specifically, it converges to any point θ∗‖ such that: 0 ∈ Conv({∇θ∗

‖
Li | i ∈ T }).

Proof. As shown by Désidéri [14], equation (3) is a simplex-constrained norm-minimization problem.
In other words, the argument of the minimum is the projection of 0 onto the feasible set. Therefore:

g = 0 ⇐⇒ 0 ∈ Conv({∇θ‖Li | i ∈ T }).

It then suffices to point out that
∑
i∈T ∇θ‖Li = 0 ⇐⇒

∑
i∈T

1
|T |∇θ‖Li = 0 ⇒ 0 ∈

Conv({∇θ‖Li | i ∈ T }) to conclude the proof.

Due to the cost of computing per-task gradients, Sener and Koltun [54] propose MGDA-UB, which
replaces the gradients wrt the parameters ∇θ‖Li with the gradients wrt the shared activation ∇zLi
in the computation of the coefficients of g = −

∑
i αi∇θ‖Li. This yields an upper bound on the

objective of equation (3), thus restricting the set of points the algorithm convergences to. Rather
than directly relying on ∇θ‖Li, g can then be obtained by computing the gradient of

∑
i∈T αiLi via

reverse-mode differentiation, hence saving memory and compute.

Corollary 3. The MGDA-UB SMTO by Sener and Koltun [54] converges to any point such that:
0 ∈ Conv({∇zLi | i ∈ T }). Furthermore, if ∂z

∂θ‖
is non-singular, it converges to a superset of the

convergence points of the unitary scalarization.

Proof. The first part of the proof proceeds as the proof of proposition 1, noting that the MGDA-UB
update is associated to the following problem:

max
α

− 1

2
‖g‖22

s.t.
∑
i

αi∇zLi = −g,
∑
i∈T

αi = 1,

αi ≥ 0 ∀ i ∈ T .

In order to show that a stationary point of the unitary scalarization satisfies 0 ∈ Conv({∇z∗Li | i ∈
T }), we will assume ∂z

∂θ‖
is non-singular, as done by Sener and Koltun [54, theorem 1]. Then, relying
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on the chain rule, the result follows from:∑
i∈T
∇θ‖Li = 0 ⇐⇒

∑
i∈T

1

|T |
∇θ‖Li = 0

⇐⇒
∑
i∈T

∂z
∂θ‖

|T |
∇zLi = 0

⇐⇒
(
∂z

∂θ‖

)−1
∂z

∂θ‖

∑
i∈T

1

|T |
∇zLi = 0

⇐⇒
∑
i∈T

1

|T |
∇zLi = 0

⇒ 0 ∈ Conv({∇zLi | i ∈ T })

B.2 IMTL

Proposition 2. IMTL by Liu et al. [42] updates θ‖ by taking a step in the steepest descent direction
whose cosine similarity with per-task gradients is the same across tasks.

Proof. First, equation (4) solves the linear system in α := [α1, . . . , αm] given by:

gT

(
∇θ‖L1∥∥∇θ‖L1

∥∥ − ∇θ‖Li∥∥∇θ‖Li
∥∥
)

= 0 ∀ i ∈ T \ {1},

g = −
∑
i

αi∇θ‖Li,
∑
i∈T

αi = 1,

which corresponds to finding a point of A′ := Aff(
{
∇θ‖Li| i ∈ T

}
) which is orthogonal to A :=

Aff
({

∇θ‖Li∥∥∥∇θ‖Li

∥∥∥ | i ∈ T
})

. To see this, it suffices to point out that any point orthogonal to A is also

orthogonal to the vector subspace spanned by differences of vectors belonging toA. As this subspace

has m − 1 dimensions, any vector orthogonal to
(
∇θ‖L1∥∥∥∇θ‖L1

∥∥∥ −
∇θ‖Li∥∥∥∇θ‖Li

∥∥∥
)

for each i ∈ T \ {1} is

orthogonal to the entire subspace.

Second, consider the problem of finding a point inA that is orthogonal to the linear subspace spanned
by differences of vectors in A. In other words, we seek the projection of 0 onto A. Recalling the
definition of A, we can write:

max
α

− 1

2
‖g′‖22

s.t.
∑
i

αi
∇θ‖Li∥∥∇θ‖Li

∥∥ = −g′,
∑
i

αi = 1.
(7)

The solution of equation (7) is always collinear to the solution of equation (4). In fact, if a vector
g ∈ A′ is orthogonal to the affine subspace A (or to the linear subspace spanned by differences

of its members), then γg =

(
−γ
∑
i

(
αi
∥∥∇θ‖Li

∥∥) ∇θ‖Li∥∥∥∇θ‖Li

∥∥∥
)

is orthogonal to A as well, and

γ = 1∑
i

(
αi

∥∥∥∇θ‖Li

∥∥∥) =⇒ γg ∈ A.

Finally, equation (7) differs from equation (3) in two aspects: α is not constrained to be non-negative
(hence the convex hull is replaced by the affine hull), and the task vectors are normalized. Therefore,
equation (7) is the dual of:

min
g,ε

ε+
1

2
‖g‖22

s.t.
∇θ‖LTi∥∥∇θ‖Li

∥∥g = ε ∀ i ∈ {1, . . . ,m} .
(8)
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The proposition then follows by comparing equation (8) with equation (2), and recalling that IMTL-L
only adds a scaling factor to the chosen update direction.

Corollary 1. IMTL by Liu et al. [42] converges to a superset of the Pareto-stationary points for θ‖
(and hence of the convergence points of the unitary scalarization). More specifically, it converges to
any point θ∗‖ such that: 0 ∈ Aff

({
∇θ∗

‖
Li/
∥∥∥∥∇θ∗

‖
Li

∥∥∥∥ | i ∈ T
})

.

Proof. Inspecting equation (8), which yields a collinear point to the IMTL update, reveals that
IMTL might converge to non Pareto-stationary points: due to the restrictive equality constraints,
the minimizer of equation (8) might be 0 even if a descent direction exists. Furthermore, its dual,
equation (7), implies that:

g = 0 ⇐⇒ 0 ∈ Aff

({
∇θ‖Li∥∥∇θ‖Li

∥∥ | i ∈ T
})

⇐⇒ 0 ∈ Aff
({
∇θ‖Li | i ∈ T

})
,

which, noting that Conv(A) ⊆ Aff(A) for any A, concludes the proof.

Similarly to MGDA-UB, Liu et al. [42] advocate using ∇zLi in place of ∇θ‖Li while solving
equation (4), typically reducing the cost of computing the coefficients of g = −

∑
i αi∇θ‖Li.

Corollary 4. When employing the approximation of problem (4) that relies on∇zLi, IMTL by Liu
et al. [42] converges to 0 ∈ Aff

({
∇zLi

‖∇zLi‖ | i ∈ T
})

. If ∂z
∂θ‖

is non-singular, this is a superset of of
the convergence points of the unitary scalarization.

Proof. Following the proof of proposition 2, the following problem yields a collinear point to the
∇zLi-approximate IMTL update:

max
α

− 1

2
‖g′‖22

s.t.
∑
i

αi
∇zLi
‖∇zLi‖

= −g′,
∑
i

αi = 1.

Therefore:

g = 0 ⇐⇒ 0 ∈ Aff
({

∇zLi
‖∇zLi‖

| i ∈ T
})

.

Finally, assuming ∂z
∂θ‖

is non-singular, we can replicate the procedure in the proof of corollary 3 to
get: ∑

i∈T
∇θ‖Li = 0 ⇐⇒

∑
i∈T

1

|T |
∇zLi = 0

⇐⇒
∑
i∈T

‖∇zLi‖
|T |

∇zLi
‖∇zLi‖

= 0

⇐⇒
(

|T |∑
i∈T (‖∇zLi‖)

)∑
i∈T

‖∇zLi‖
|T |

∇zLi
‖∇zLi‖

= 0

⇒ 0 ∈ Conv
({

∇zLi
‖∇zLi‖

| i ∈ T
})

⇒ 0 ∈ Aff
({

∇zLi
‖∇zLi‖

| i ∈ T
})

,

which shows that Aff
({

∇zLi

‖∇zLi‖ | i ∈ T
})

contains the convergence points of the unitary scalariza-
tion.
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B.3 PCGrad

Proposition 3. PCGrad is equivalent to a dynamic, and possibly stochastic, loss rescaling for θ‖. At
each iteration, per-task gradients are rescaled as follows:

∇θ‖Li ←
(
1 +

∑
j∈T \{i} dji

)
∇θ‖Li, dji ∈

[
0,

∥∥∥∇θ‖Lj

∥∥∥∥∥∥∇θ‖Li

∥∥∥
]
.

Furthermore, if |T | > 2, dji is a random variable, and the above range contains its support.

Proof. We start by pointing out that:[
−gTi ∇θ‖Lj(x)∥∥∇θ‖Lj

∥∥2
]
+

=

[
−gTi ∇θ‖Lj(x)∥∥∇θ‖Lj

∥∥
]
+

1∥∥∇θ‖Lj
∥∥

=
[
− cos(gi,∇θ‖Lj) ‖gi‖

]
+

1∥∥∇θ‖Lj
∥∥

∈

[
0,

‖gi‖∥∥∇θ‖Lj
∥∥
]
.

As gi is obtained by iterative projections of∇θ‖Li onto the normals of∇θ‖Lj ∀j ∈ T \ {i}, and the
norm of a vector can only decrease or remain unvaried after projections, we can write the coefficient
of each gi update as:

dij :=

[
−gTi ∇θ‖Lj(x)∥∥∇θ‖Lj

∥∥2
]
+

∈

[
0,

∥∥∇θ‖Li
∥∥∥∥∇θ‖Lj
∥∥
]
, ∀i 6= j.

Furthermore, if |T | > 2 the contraction factor ‖gi‖∥∥∥∇θ‖Li

∥∥∥ for the norm of gi depends on the ordering of

the projections, which is stochastic by design [66]. Therefore, dij a random variable whose support is

contained in
[
0,

∥∥∥∇θ‖Li

∥∥∥∥∥∥∇θ‖Lj

∥∥∥
]

. Finally, exploiting the definition of dij , we can re-write equation (5) as:

−g =
∑
i∈T
∇θ‖Li +

∑
i∈T

∑
j∈T \{i}

dij∇θ‖Lj =
∑
i∈T
∇θ‖Li +

∑
j∈T

∑
i∈T \{j}

dji∇θ‖Li

=
∑
j∈T
∇θ‖Lj +

∑
j∈T

∑
i∈T \{j}

dji∇θ‖Li =
∑
j∈T

 ∑
i∈T \{j}

dji∇θ‖Li +∇θ‖Lj

 .

Introducing (and then removing, using their definition) dummy variables djj = 1:

−g =
∑
j∈T

 ∑
i∈T \{j}

dji∇θ‖Li + djj∇θ‖Lj

 =
∑
j∈T

(∑
i∈T

dji∇θ‖Li

)
=
∑
i∈T

∑
j∈T

dji∇θ‖Li


=
∑
i∈T
∇θ‖Li

∑
j∈T

dji

 =
∑
i∈T
∇θ‖Li

1 +
∑

j∈T \{i}

dji

 ,

from which the result trivially follows.

Corollary 2. If |T | = 2, PCGrad will stop at any point where cos(∇θ‖L1,∇θ‖L2) = −1. Further-
more, if L1 and L2 are differentiable, and∇θ‖LMT is L-Lipschitz with L > 0, PCGrad with step size
t < 1

L converges to a superset of the convergence points of the unitary scalarization.
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Proof. Let us start from the first statement, which does not require any assumption on the loss
landscape. From proposition 3, we get:

−g = ∇θ‖L1 (1 + d21) +∇θ‖L2 (1 + d12)

=

(
1 +

[
− cos(∇θ‖L1,∇θ‖L2)

∥∥∇θ‖L2

∥∥∥∥∇θ‖L1

∥∥
]
+

)
∇θ‖L1

+

(
1 +

[
− cos(∇θ‖L1,∇θ‖L2)

∥∥∇θ‖L1

∥∥∥∥∇θ‖L2

∥∥
]
+

)
∇θ‖L2,

which shows that, in case of conflicting gradient directions, gradient norms are rebalanced propor-
tionally to the angle between them. For cos(∇θ‖L1,∇θ‖L2) = −1, the above evaluates to:

−g =

(∥∥∇θ‖L1

∥∥+ ∥∥∇θ‖L2

∥∥∥∥∇θ‖L1

∥∥
)
∇θ‖L1 +

(∥∥∇θ‖L1

∥∥+ ∥∥∇θ‖L2

∥∥∥∥∇θ‖L2

∥∥
)
∇θ‖L2.

The first part of the result then follows by pointing out that, if cos(∇θ‖L1,∇θ‖L2) = −1, then
∇θ‖L1 = −∇θ‖L2, and hence g = 0. We remark that a similar proof appears in [66, theorem 1 and
proposition 1]. However, our derivation relaxes the author’s assumptions on LMT and is therefore
applicable to the training of neural networks.

Finally, given the assumptions on differentiability and smoothness, we need to prove that PCGrad con-
verges to the stationary points of the unitary scalarization: this directly follows from [66, proposition
1].

B.4 GradDrop

Proposition 5. Let us assume, as often demonstrated in the single-task case [1, 45], that the multi-task
network has the capacity to interpolate the data on all tasks at once: minθ LMT =

∑
i∈T minθ Li,

and that its training by gradient descent attains such global minimum. Then, if infθ Li > −∞ ∀ i ∈
T , unitary scalarization converges to a joint minimum.

Proof. It suffices to point out that if LMT(θ∗) =
∑
i∈T minθ Li, then the globally optimal loss is

attained for all tasks. In other words Li(θ∗) = minθ Li ∀i ∈ T , and hence ∇θ∗Li = 0 ∀ i ∈ T
(joint minimum). Furthermore, running gradient descent on minθ LMT corresponds to the unitary
scalarization (§3), which concludes the proof.

Proposition 4. Let LRGD(θ‖) :=
∑
i∈T uiLi(θ‖), where ui ∼ Bernoulli(p) ∀i ∈ T and p ∈ (0, 1].

The gradient ∇θ‖LRGD is always zero if and only if ∇θ‖Li = 0 ∀i ∈ T . In other words, the result
from [11, proposition 1] can be obtained without any information on the sign of per-task gradients.

Proposition 4 can be proved by adapting the proof from Chen et al. [11, proposition 1]: it suffices to
replace f(P) with the Bernoulli parameter p, which is non-negative by definition. In our opinion, this
seriously undermines the conflicting gradient hypothesis that motivated GradDrop. For the reader’s
convenience, we now provide a straightforward and self-contained proof.

Proof. Let us start from the statement on ∇θ‖LRGD. If ∇θ‖Li = 0 ∀i ∈ T , then ∇θ‖LRGD = 0
with probability one. On the other hand, if ∃j : ∇θ‖Lj 6= 0, then:

P
[
∇θ‖L

RGD 6= 0
]
≥ P

[
∇θ‖L

RGD = ∇θ‖Lj
]

= p(1− p)m−1 > 0,

where the first inequality comes from the fact that ∇θ‖LRGD = ∇θ‖Lj is only one of the many
instances of a non-null∇θ‖LRGD.

Let sign(x) stand for the element-wise sign operator applied on x. On encoder-decoder architectures,
similarly to MGDA and IMTL (see appendices B.1 and B.2), the authors do not apply GradDrop
on ∇θ‖Li, but rather on a the usually less expensive ∇zLi. In more detail, they compute the
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GradDrop sign purity scores p from equation (6) on
∑n
i=1 (sign(z)�∇zLi) [i] ∈ Rr, and then apply

equation (6) on the ∇zLi gradients, yielding a vector gz ∈ Rn×r. Then, relying on reverse-mode
differentiation, the update direction in the space of the parameters θ‖ is obtained via a Jacobian-vector

product: g = −
(
∂z
∂θ‖

)T
gz . Such a computation replaces the similar ∇θ‖LMT =

(
∂z
∂θ‖

)T
∇zLMT

from the unitary scalarization.
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C Experimental Setting, Reproducibility

We now present details concerning the experimental settings from §4, including details on the
employed open-source software, dataset information, hardware specifications, and hyper-parameters.

C.1 Supervised Learning

All the experiments were run under Ubuntu 18.04 LTS, on a single GPU per run (using two 8-GPU
machines in total). Timing experiments were all run on Nvidia GeForce GTX 1080 Ti GPUs, with an
Intel Xeon E5-2650 CPU. The remaining experiments were run on either Nvidia GeForce RTX 2080
Ti GPUs or Nvidia GeForce GTX 1080 Ti GPUs, respectively using an Intel Xeon Gold 6230 CPU
or an Intel Xeon E5-2650 CPU.

C.1.1 MultiMNIST

Multi-MNIST, originally introduced by Sabour et al. [52] and as modified by Sener and Koltun
[54], is a simple two-task supervised learning benchmark dataset constructed by uniformly sampling
MNIST [38] images, and placing one in the top-left corner, the other in the bottom-right corner. Each
of the two overlaid images corresponds to a 10-class classification task. Using the above procedure,
we generate the Multi-MNIST training set from the first 50000 MNIST training images, the validation
set from the last 10000 training images, and the test set from the original MNIST test set. For
consistency with the experimental setup of Sener and Koltun [54], we employ a modified encoder-
decoder version of the LeNet architecture [38]. Specifically, the last layer is omitted from the encoder,
and two fully-connected layers are employed as task-specific predictive heads. The cross-entropy
loss is used for both tasks. All methods are trained for 100 epochs using Adam [33] in the stochastic
gradient setting, with an initial learning rate of η = 10−2 (tuned in η ∈ {10−3, 10−2, 10−1} and
yielding the best validation results for all considered algorithms), exponentially decayed by 0.95 after
each epoch, and a mini-batch size of 256.

C.1.2 CelebA

The CelebA [44] dataset consists of 200, 000 headshots (with standard training, validation and test
splits) associated with the presence or absence of 40 attributes. In the MTL literature, is commonly
treated as a 40-task classification problem, each task being a binary classification problem for
an attribute. As commonly done in previous work [42, 54, 66], we employ an encoder-decoder
architecture where the encoder is a ResNet-18 [21] (without the final layer) with batch normalization
layers [26], and the per-task decoders are linear classifiers. The cross-entropy loss is used for all
tasks. The training is performed from scratch for 50 epochs using Adam, with a mini-batch size
of 128 and a per-epoch exponential decay factor of 0.95. As common on this network-dataset
combination [11, 40], the initial learning rate is η = 10−3 for all methods except for MGDA
and IMTL, for which η = 5 × 10−4 yielded a better validation performance. As done by the
respective authors, for PCGrad, RLW and GradDrop we use the same learning rate as the unitary
scalarization [11, 40, 66].

C.1.3 Cityscapes

We rely on the version of the dataset pre-processed by Liu et al. [43], which consists of 2, 975
training and 500 test images and presents two tasks: semantic segmentation on 7 classes, and depth
estimation. We further split the original training set into a validation set of 595 images, employed to
tune hyper-parameters, and a training set of 2380 images. Consistently with recent work [40], we
rely on a dilated ResNet-50 architecture pre-trained on ImageNet [64] for the encoder, and on the
Atrous Spatial Pyramid Pooling [8], which internally uses batch normalization, as decoders. While
more powerful encoders might lead to better performance on Cityscapes, like the SegNet [2] used
in [28, 41, 48], we aim to provide a fair comparison of MTL optimizers, rather than maximize overall
task performance. Cross-entropy loss is employed on the semantic segmentation task, whereas the `1
loss is used for the depth estimation. The training is performed by using Adam with a mini-batch
size of 32 for 100 epochs, with an initial step size η = 5 × 10−4 resulting in the best validation
performance for all algorithms, exponentially decayed by 0.95 at each epoch.
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C.2 Reinforcement Learning

Similarly to the supervised learning experiments, we ran all the experiments under Ubuntu 18.04 LTS
using one GPU per run (using six 8-GPU machines in total). Timing experiments were all run using
NVIDIA GeForce RTX 2080 Ti GPUs, with an Intel Xeon Gold 6230 CPU. The main bulk of the
remaining experiments was run on Nvidia GeForce RTX 2080 Ti GPUs with either Intel Xeon Gold
6230 or Intel Xeon Silver 4216. We utilised NVIDIA GeForce RTX 3080 GPUs with Intel Xeon
Gold 6230 CPUs for a small fraction of experiments.

We use Meta-World’s MT10/MT50 for our experiment. The benchmark consists of ten/fifty tasks in
which a simulated robot manipulator has to perform various actions, e.g., pressing a button, opening
a door, or pushing the block. We use Sodhani et al. [55] for most of the hyperparameters and list
them in Table 1. We use bold font where we use a hyperparameter different from Sodhani et al. [55].
Similarly to Sodhani et al. [55], we use the V1 version of Metaworld for our experiments2. Sodhani
et al. [55] use a shared entropy loss weight α for PCGrad and separate α for unitary scalarization3. In
our experiments, use shared α for all of the methods for fairness. Since it is a single number (rather
than a vector), we used unitary scalarization to update α for all SMTOs apart from PCGrad which
was already implemented in [55].

We use the same network architecture as in Sodhani et al. [55], i.e. a three-layered feedforward
fully-connected network with 400 hidden units per layer for both, the actor and the critic. The actor
is shared across all tasks as well as the critic.

To normalize rewards, we keep track of first and second moments in the buffer and normalise the
rewards by their standard deviation: r′i = ri/σ̂i, where σ̂i is the sample standard deviation of the
rewards for environment i.

Sodhani et al. [55] average the gradient for unitary scalarisation and pcgrad, whereas our SMTO
implementations sum the gradients, i.e. effectively using larger learning rates (apart from MGDA that
assures that all the aggregation weights sum to 1). We tried reducing the learning rate for SMTOs
that sum (RLW Norm., RLW Diri., and GradDrop) both for MT10 and MT50, but it worked worse
for these methods and we kept the default learning rate for them as well. We had to use a smaller
learning rate for IMTL, because with the default one it crashed at the beginning of training due to
numerical overflow. Smaller learning rate did not prevent it from crashing, but this happened much
later.

We tried 106, 2 × 106, and 4 × 106 for the replay buffer size with the last being superior in terms
of stability. Additionally, for l2 actor regularization, we tried 0.0001 and 0.0003 with the latter
being slightly superior for the baseline. We tried the same options for other SMTOs, and picked the
best option for each of the method. For MGDA, no regularisation works best, most likely due to a
strong regularization effect of the method itself, which is mirrored by our supervised learning results.
PCGrad and Graddrop work best with the regularization coefficient of 0.0001. Both RLW variants
use the same coefficient as the baseline (0.0003).

For MT50, we took the best MT10 hyperparameters, and we believe one could obtain even better
results for unitary scalarisation since it is much faster to tune compared to other SMTOs (e.g. 15
hours for unitary scalarisation vs 9 days for PCGrad).

C.3 Software Acknowledgments and Licenses

Our codebase is built upon several prior works: [54], [43], [40] and [55]: all of them were released
under a MIT license. We also acknowledge Tseng [59], upon which we built some of our code.
Multi-MNIST is based on MNIST dataset that is released under Creative Commons Attribution-
Share Alike 3.0 license. The code for generating Multi-MNIST dataset was taken from Sener
and Koltun [54] released under MIT license. CelebA dataset has a custom license allowing non-
commercial research purposes. More details can be found on the project website:http://mmlab.
ie.cuhk.edu.hk/projects/CelebA.html. Cityscapes also has a custom license allowing non-
commercial research purposes. The full text of the license can be found on the project website:https:
//www.cityscapes-dataset.com/license/. Metaworld, used for RL experiments is released
under MIT license.

2https://github.com/rlworkgroup/metaworld.git@af8417bfc82a3e249b4b02156518d775f29eb289
3https://mtrl.readthedocs.io/en/latest/pages/tutorials/baseline.html
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D Supplementary Supervised Learning Experiments

Table 1: Hyperparameters of the RL experiments. Hy-
perparameters different from Sodhani et al. [55] are in
bold.

Hyperparameter Value
All methods

– training steps 2,000,000
– batch size 1280
– Replay buffer size 4,000,000
– actor learning rate 0.0003
– critic learning rate 0.0003
– entropy α learning rate 0.0003
– shared entropy α True
– runs 10
– discounting γ 0.99

Unit. Scal.

– actor l2 coeff. 0.0003
PCGrad

– actor l2 coeff. 0.0001
RLW Norm.

– normal mean 0
– normal std 1
– actor l2 coeff. 0.0003

RLW Diri.

– α 1
– actor l2 coeff. 0.0003

GradDrop

– k 1
– p 0.5
– actor l2 coeff. 0.0001

MGDA

– gradient normalization L2

– actor l2 coeff. 0.0

IMTL
– actor learning rate 0.00003
– critic learning rate 0.00003
– entropy α learning rate 0.00003
– actor l2 coeff. 0.0

This section presents supervised learning results
omitted from §4.1. In particular, we show ad-
ditional plots for the experiments of §4.1, then
present an analysis of the regularising effect of
SMTOs in the absence of single-task regular-
ization (§D.2), and conclude with an ablation
study on GradDrop’s dependency on the sign of
per-task gradients (§D.3).

D.1 Addendum

This section complements the plots presented
in §4.1. In particular, we show the test and
runtime results in table form, along with the
behavior of the validation metrics and of the
training loss over the training epochs. Plots for
Multi-MNIST, CelebA, and Cityscapes are re-
ported in Figures 7, 8 and 17, respectively. The
Multi-MNIST plots show that all optimizers are
relatively stable and drive each task’s loss to-
wards its global minimum of 0. The behavior of
the CelebA training loss demonstrates heavier
regularization (compare with the unregularized
plot in Figure 9(a)). Except IMTL and MGDA,
for which the tuned values of the weight decay
prevent overfitting, the other optimizers display
very similar validation and training curves, and
start overfitting around epoch 30. Considering
that most SMTOs required less regularization
(see §4.1.2), the results are consistent with our
interpretation of SMTOs as regularizers in §5.
The Cityscapes plots display a certain instability
across training epochs, as demonstrated by the
various peaks and valleys in the metrics. Never-
theless, in spite of a factor 10 difference in scale,
both training losses are rapidly driven towards
0 by most optimizers.

D.2 Unregularized Experiments

Figures 5, 9(a) and 9(b) respectively report the
average task validation accuracy, the multi-task
training loss, and the multi-task validation loss
at each training epoch. The regularizing effect
of SMTOs compared to unitary scalarization is
shown by: (i) the delay of the onset of overfit-
ting on the validation data in figure 5, (ii) the
reduction of the convergence rate on the training
loss in figure 9(a) (compare with figure 8(b)),

and (iii) the fact that validation and training losses remain positively correlated for larger numbers
of epochs. In fact, the behavior of both the training and validation loss for the SMTOs closely
parallels that of `2-regularized unitary scalarization, with differing degrees of regularization. We
further note that unregularized IMTL displays a certain instability (compare with the regularized
version in figure 8(a)).

The addition of dropout layers further reduces overfitting, improves stability (reduced confidence
intervals) and pushes the average validation curve upwards, motivating its use on all optimizers for the
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(a) Mean (and 95% CI) average task validation accuracy
per training epoch.
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(b) Mean (and 95% CI) training multi-task loss LMT

per epoch.

MTO Average Task Accuracy Epoch Runtime [s]

Unit. Scal. 9.476e-01 ± 4.368e-03 [3.510e+00, 3.617e+00]
IMTL 9.487e-01 ± 2.533e-03 [3.695e+00, 3.996e+00]
MGDA 9.478e-01 ± 1.977e-03 [3.491e+00, 3.617e+00]
GradDrop 9.347e-01 ± 1.282e-02 [3.508e+00, 3.589e+00]
PCGrad 9.479e-01 ± 3.578e-03 [3.807e+00, 3.928e+00]
RLW Diri. 9.430e-01 ± 2.973e-03 [3.790e+00, 4.005e+00]
RLW Norm. 9.399e-01 ± 8.929e-03 [3.894e+00, 4.225e+00]

(c) Mean and 95% CI of the avg. task test accuracy
across runs, and interquartile range for the training time
per epoch.

Figure 7: Additional figures for the compari-
son of various SMTOs with the unitary scalar-
ization on the MultiMNIST dataset [54].
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(a) Mean (and 95% CI) average task validation accuracy
per training epoch.
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(b) Mean (and 95% CI) training multi-task loss LMT

per epoch.

MTO Average Task Accuracy Epoch Runtime [s]

Unit. Scal. 9.090e-01 ± 7.568e-04 [2.869e+02, 2.878e+02]
IMTL 9.093e-01 ± 7.631e-04 [3.600e+02, 3.621e+02]
MGDA 9.022e-01 ± 9.687e-04 [6.859e+02, 7.194e+02]
GradDrop 9.098e-01 ± 3.383e-04 [3.001e+02, 3.008e+02]
PCGrad 9.093e-01 ± 1.108e-03 [1.015e+04, 1.016e+04]
RLW Diri. 9.099e-01 ± 7.845e-04 [3.040e+02, 3.054e+02]
RLW Norm. 9.095e-01 ± 1.012e-03 [3.028e+02, 3.037e+02]

(c) Mean and 95% CI of the avg. task test accuracy
across runs, and interquartile range for the training time
per epoch.

Figure 8: Additional figures for the com-
parison of various SMTOs with the unitary
scalarization on the CelebA [44] dataset.

experiments of §4.1.2. Nevertheless, confidence intervals in Figure 5 still overlap due to the instability
of the unregularized unitary scalarization. Figure 11 provides a more detailed comparison over 20
repetitions, confirming that the combined use of dropout layers and `2 regularization improves average
performance and reduces the empirical variance for unitary scalarization. Furthermore, Figure 10
shows that regularization improves the peak average validation performance for all algorithms,
demonstrating the need of tuning λ also for SMTOs. We conclude by pointing out that even without
regularization, when carefully tuned, the maximal performance over epochs of unitary scalarization
is comparable to SMTOs in Figure 5.

D.3 Sign-Agnostic GradDrop

We will now present an ablation study on GradDrop, investigating the effect of the sign of per-task
gradients on the SMTO’s performance. Specifically, we compare the performance of GradDrop
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(a) Mean and 95% CI (3 runs) multi-task training loss
per epoch.

0 10 20 30 40 50
Training Epochs

0

10

20

30

40

50

M
ul

ti-
Ta

sk
 V

al
id

at
io

n 
Lo

ss

Unit. Scal.
IMTL
MGDA
GradDrop
PCGrad

RLW Diri.
RLW Norm.
Unit. Scal. 2
Unit. Scal. 2 +
Unit. Scal. Reg.

(b) Mean and 95% CI (3 runs) multi-task validation
loss per training epoch.

Figure 9: Additional figures for the unregularized comparison of various SMTOs with the unitary
scalarization on CelebA. SMTOs provide varying degrees of regularization.
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Figure 10: Effect of regularization (dropout layers and weight decay) on the average task validation
accuracy for all considered optimizers on the CelebA dataset: regularization improves the average
performance of all algorithms.
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Figure 11: Effect of regularization (dropout layers and weight decay) on unitary scalarization on the
CelebA dataset: violin plots (20 runs) for the best avg. task validation accuracy over epochs. The
width at a given value represents the proportion of runs yielding that result. Regularization improves
the average performance while decreasing its variability.

with a sign-agnostic version of its stochastic gradient masking (which we refer to as “Sign-Agnostic
GradDrop"), whose update direction is defined as follows:

g = −
(
∂z

∂θ‖

)T (∑
i∈T

ui �∇zLi

)
,

where ui,∇zLi ∈ Rn×r and, for all i ∈ T , ui is i.i.d. according to ui[j, k] ∼ Bernoulli(p) ∀j ∈
{1, . . . , n}, k ∈ {1, . . . , r}. Differently from a similar study carried out by Chen et al. [11],
we tuned the hyper-parameter of the sign-agnostic masking in the following range: p ∈
{0.1, 0.25, 0.5, 0.75, 0.9}.
The experimental setup complies with the one described in appendix C.1. Figure 12, plotting test
and validation results for the CelebA dataset [44], shows that the performance of Sign-Agnostic
GradDrop closely matches the original algorithm. Therefore, sign conflicts across per-task gradients
do not seem to play a significant role in GradDrop’s performance.

E Supplementary Reinforcement Learning Experiments

E.1 Addendum

This section presents additional plots for the RL experiments in §4.2. Specifically, Figure 13 re-plots
Figure 4(a) and 4(b) with the omitted IMTL results, while Figure 14 shows the learning curves omitted
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(a) Mean and 95% CI (3 runs) avg. task test accuracy.
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(b) Mean and 95% CI (3 runs) avg. task validation
accuracy per training epoch.

Figure 12: Comparison of GradDrop [11] with sign-agnostic masking of the shared-representation
gradients on the CelebA dataset [44]. No statistically relevant difference between the two methods
can be observed for the majority of the epochs.
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(b) MT50 (10 runs per method).

Figure 13: Mean and 95% CI for the best avg. success rate on Metaworld. None of the SMTOs
significantly outperforms unitary scalarization.
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(a) MT10 (10 points per method).
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Figure 14: Mean and 95% CI for the avg. success rate on Metaworld. None of the SMTOs
significantly outperforms unitary scalarization.

from §4.2. As pointed out in §4.2, none of the IMTL runs successfully terminated due to numerical
instability. Indeed, Liu et al. [42] show that, in supervised settings, coefficients do not fluctuate much
across epochs [42, Figure 4, appendix B] and never become negative. By contrast, up to 50% of
the scaling coefficients α are negative in our experiments, thus reversing subtask gradient directions.
MGDA, which constrains the weights, is more stable and is comparable to unitary scalarization. In
order to avoid incomplete curves and unfair calculations of the mean, Figure 14 plots the highest
value ever achieved by any seed as a dashed horizontal line. The IMTL results in Figure 13, instead,
report the best average success rate of each seed until its termination.

E.2 Ablation studies

Figure 18 presents our ablations for MT10 experiments. Due to computational constraints, we ran
ablations on the unitary scalarization and PCGrad since these are the two methods previously tested
in the RL setting.

Figure 15 shows ablation studies on the effect of regularization on MT10 and MT50. In spite of CI
overlaps, actor l2 regularization pushes the average higher on both benchmarks, motivating our use of
regularization for the experiments in §4.2. Furthermore, the gap between the averages tends to widen
with the number of updates on MT50, suggesting improved stabilization.
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(a) MT10 average performance (10 runs) and 95% CI.
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(b) MT50 average performance (5 runs) and 95% CI.

Figure 15: For both MT10 and MT50, actor l2 regularization pushes the average higher for unitary
scalarization.

E.3 Sensitivity to Reward Normalization

Figure 16 shows that multitask agent performance is highly sensitive to the reward normalization
moving average hyperparameter4 motivating our buffer normalization in Section 4.2.
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Figure 16: The learning outcomes of a Multitask SAC agent vary considerably depending on the
reward normalisation hyperparameter. Each of the curves represents and average of 10 runs with
shaded 95% confidence interval.

4
https://github.com/facebookresearch/mtenv/blob/4a6d9d6fdfb321f1b51f890ef36b5161359e972d/mtenv/envs/metaworld/wrappers/

normalized_env.py#L69
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(a) Mean and 95% CI of the test metrics across runs, and interquartile range for the training time per epoch.

MTO Absolute Depth Error Relative Depth Error Segmentation Accuracy Segmentation mIOU Epoch Runtime [s]

Unit. Scal. 1.301e-02 ± 2.342e-04 4.761e+01 ± 5.148e+00 9.196e-01 ± 2.913e-04 7.012e-01 ± 6.001e-04 [3.228e+02, 3.241e+02]
IMTL 1.281e-02 ± 7.521e-04 4.389e+01 ± 6.984e-01 9.164e-01 ± 2.828e-03 6.967e-01 ± 4.785e-03 [7.329e+02, 7.373e+02]
MGDA 1.418e-02 ± 2.331e-04 4.750e+01 ± 1.466e+01 9.189e-01 ± 2.636e-04 6.999e-01 ± 3.124e-03 [7.251e+02, 7.269e+02]
GradDrop 1.293e-02 ± 2.757e-04 4.674e+01 ± 7.709e+00 9.193e-01 ± 1.282e-03 7.024e-01 ± 3.628e-03 [5.196e+02, 5.215e+02]
PCGrad 1.294e-02 ± 2.284e-04 4.380e+01 ± 5.165e+00 9.198e-01 ± 9.119e-04 7.025e-01 ± 6.531e-04 [4.202e+02, 4.212e+02]
RLW Diri. 1.305e-02 ± 4.155e-04 4.810e+01 ± 2.259e+00 9.199e-01 ± 1.247e-03 7.037e-01 ± 1.989e-03 [3.161e+02, 3.164e+02]
RLW Norm. 1.301e-02 ± 5.528e-04 4.630e+01 ± 2.751e+00 9.192e-01 ± 4.962e-04 7.006e-01 ± 4.580e-03 [3.194e+02, 3.210e+02]
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(b) Mean (and 95% CI) absolute depth validation error
per training epoch.
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(c) Mean (and 95% CI) relative depth validation error
per training epoch.
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(d) Mean (and 95% CI) validation segmentation mIOU
per training epoch.
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(e) Mean (and 95% CI) validation segmentation accu-
racy per training epoch.
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(f) Mean (and 95% CI) training depth loss per epoch.
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(g) Mean (and 95% CI) training segmentation loss per
epoch.

Figure 17: Additional figures for the comparison of SMTOs with the unitary scalarization on the Cityscapes [13]
dataset.
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Use PCGrad parameters for 
the baseline (shared alpha)

Increase replay buffer size

Normalise reward at the buffer level

Regularize the actor

Hyperparameters from [Sodhani et al, 2021] 

Figure 18: Metaworld’s MT10 ablation experiments.
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