
Under review as a conference paper at ICLR 2024

A EXPRESSION SIMPLIFICATION

The data generation procedure heavily relies on expression simplification. This is of utmost impor-
tance for four reasons:

• It reduces the output expression length and hence memory usage as well as increasing speed
• It improves the supervision by reducing expressions to a more canonical form, easier to

guess for the model
• It increases the effective diversity of the beam search, by reducing the number of equivalent

expressions generated
• It encourages the model to output the simplest formula, which is a desirable property.

We use the package boolean.py11 for this, which is considerably faster than sympy (the function
simplify_logic of the latter has exponential complexity, and is hence only implemented for
functions with less then 9 input variables).
Empirically, we found the following procedure to be optimal in terms of average length obtained after
simplification:

1. Preprocess the formula by applying basic logical equivalences: double negation elimination
and De Morgan’s laws.

2. Parse the formula with boolean.py and run the simplify() method twice

3. Apply once again the first step

Note that this procedure drastically reduces the number of operators and renders the final distribution
highly nonuniform, as shown in Fig. 8.

Figure 8: Distribution of number of operators after expression simplification. The initial number of
binary operators is sampled uniformly in [1, 1000]. The total number of examples is 104.

B DOES THE BOOLFORMER MEMORIZE?

One natural question is whether our model simply performs memorization on the training set. Indeed,
the number of possible functions of D variables is finite, and equal to 22

D

.
Let us first assume naively that our generator is uniform in the space of boolean functions. Since
22

4 ' 6⇥ 104 (which is smaller than the number of examples seen during training) and 22
5 ' 5.109

(which is much larger), one could conclude that for D 4, all functions are memorized, whereas for
D > 4, only a small subset of all possible functions are seen, hence memorization cannot occur.
However, the effective number of unique functions seen during training is actually smaller because
our generator of random functions is nonuniform in the space of boolean functions. In this case,
for which value of D does memorization become impossible? To investigate this question, for each

11https://github.com/bastikr/Boolean.py

14

https://github.com/bastikr/Boolean.py

Under review as a conference paper at ICLR 2024

D < Dmax, we sample min
⇣
22

D

, 100
⌘

unique functions from our random generator, and count how
many times their exact truth table is encountered over an epoch (300,000 examples).
Results are displayed in Fig. 9. As expected, the average number of occurences of each function
decays exponentially fast, and falls to zero for D = 7, meaning that each function is typically unique
for D � 7. Hence, memorization cannot occur for D � 7. Yet, as shown in Fig. 4, our model
achieves excellent accuracies even for functions of 10 variables, which excludes memorization as a
possible explanation for the ability of our model to predict logical formulas accurately.

Figure 9: Functions with 7 or more variables are typically never seen more than once during

training. We display the average number of times functions of various input dimensionalities are
seen during an epoch (300,000 examples). For each point on the curve, the average is taken over
min(22

D

), 100) unique functions.

C LENGTH GENERALIZATION

In this section we examine the ability of our model to length generalize. In this setting, there are
two types of generalization one can define: generalization in terms of the number of inputs N , or in
terms of the number of active variables S12. We examine length generalization in the noisy setup (see
Sec. 2.2), because in the noiseless setup, the model already has access to all the truth table (increasing
N does not bring any extra information), and all the variables are active (we cannot increase S as it is
already equal to D).

C.1 NUMBER OF INPUTS

Since the input points fed to the model are permutation invariant, our model does not use any
positional embeddings. Hence, not only can our model handle N > Nmax, but performance often
continues to improve beyond Nmax, as we show for two datasets extracted from PMLB (Olson et al.,
2017) in Fig. 10.

C.2 NUMBER OF VARIABLES

To assess whether our model can infer functions which contain more active variables than seen during
training, we evaluated a model trained on functions with up to 6 active variables on functions with 7
or more active variables. We provided the model with the truth table of two very simply functions:
the OR and AND of the first S � 7 variables. We observe that the model succeeds for S = 7, but
fails for S � 8, where it only includes the first 7 variables in the OR / AND. Hence, the model can
length generalize to a small extent in terms of number of active variables, but less easily than in

12Note that our model cannot generalize to a problem of higher dimensionality D than seen during training,
as its vocabulary only contains the names of variables ranging from x1 to xDmax .

15

Under review as a conference paper at ICLR 2024

Figure 10: Our model can length generalize in terms of sequence length. We test a model trained
with Nmax = 300 on the chess and german datasets of PMLB. Results are averaged over 10
random samplings of the input points, with the shaded areas depicting the standard deviation.

terms of number of inputs. We hypothesize that proper length generalization could be achieved by
"priming", i.e. adding even a small number of "long" examples, as performed in Jelassi et al. (2023).

D FORMULAS PREDICTED FOR LOGICAL CIRCUITS

In Figs. 11 and 12, we show examples of some common arithmetic and logical formulas predicted by
our model in the noiseless regime, with a beam size of 100. In all cases, we increase the dimensionality
of the problem until the failure point of the Boolformer.

E FORMULAS PREDICTED FOR PMLB DATASETS

In Fig. 13, we report a few examples of boolean formulas predicted for the PMLB datasets in Fig. 6. In
each case, we also report the F1 scores of logistic regression and random forests with 100 estimators.

16

Under review as a conference paper at ICLR 2024

y0

or

and

x0 x2

and

x1 x3 or

x0 x2

y1

and

or

x1 x3

not

and

x1 x3

y2

and

or

x0 not

and

x1 x2 x3

or

and

x0 not

or

x2 and

x1 x3

and

not

x0

x2

and

x1 x3 or

not

x0

x2

(a) Addition of two 2-bit numbers: y0y1y2 = (x0x1) + (x2x3). All formulas are correct.
y0

and

or

x0 x3

or

and

x0 x3

and

x1 x4

and

x2 x5 or

x1 x4

y1

and

or

x2 x5

not

and

x2 x5

y2

not

or

and

x1 x4 not

and

x2 x5

not

or

x1 x4 and

x2 x5

and

x2 x5 or

x1 x4

not

and

x1 x4

y3

or

and

x0 not

or

x3 and

x1 x4

and

x2 x5

and

not

x0

x3 not

or

and

x1 x4

and

x2 x4 x5

and

or

x0 not

x3

or

not

x0

x3

or

x1 and

x2 x5

or

x4 and

x1 x2 x5

(b) Addition of two 3-bit numbers: y0y1y2y3 = (x0x1x2) + (x3x4x5). All formulas are correct, except y3
which gets an error of 3%.

17

Under review as a conference paper at ICLR 2024

y0

and

x0 x1 x2 x3

y1

and

x1 x3

y2

and

not

and

x0 x1 x2 x3

or

and

x0 x3

and

x1 x2

y3

and

x0 x2 not

and

x1 x3

(c) Multiplication of two 2-bit numbers: y0y1y2y3 = (x0x1)⇥ (x2x3). All formulas are correct.
y0

and

x0 x3 or

and

x1 x4

and

x2 x5 or

x1 x4

y1

and

x2 x5

y2

and

not

and

x1 x2 x4 x5

or

and

x1 x5

and

x2 x4

y3

not

or

and

x0 x5 or

x2 and

x1 x4

or

not

x2

x3

and

x1 x2 x3 x4 not

x5

and

not

and

x0 x5

or

not

x1

not

x4

and

x2 x5

not

and

x2 x3

y4

and

or

not

x0

not

x1

x2 not

x3

not

x4

x5

not

and

x0 x1 x2 x5

or

and

x0 x4

and

x1 x2 not

x3

x4 x5

and

x3 or

x1 and

x0 x2 x5

not

and

x2 x4

y5

not

and

or

not

x0

not

x3

and

x1 x4

and

x2 x5 or

x1 x4

or

not

x1

not

x4

and

x0 not

x5

not

or

x0 x3

and

not

x2

x3

(d) Multiplication of two 3-bit numbers: y0y1y2y3y4y5 = (x0x1x2) ⇥ (x3x4x5). All formulas are correct,
except y4 which gets an error of 5%.

Figure 11: Some arithmetic formulas predicted by our model.

18

Under review as a conference paper at ICLR 2024

y0

or

and

x0 x1 not

x2

not

x3

and

x0 not

x1

x2 not

x3

and

not

x0

x1 x2 not

x3

and

not

x0

not

x1

x2 x3

and

x1 x3 or

x0 not

x2

or

not

x0

x2

and

not

x1

not

x2

or

x0 not

x3

or

not

x0

x3

(a) 4-parity: 0% error.
y0

or

and

x0 x1 x2 x3 not

x4

and

x0 not

x2

x3 x4

and

not

x0

x1 x2 not

or

x3 x4

and

not

x0

x2 x3 x4

and

not

x1

not

x2

not

x3

or

x0 not

x4

or

not

x0

x4

and

x2 not

x3

not

x4

or

x0 x1

and

not

x2

x3 x4 or

x0 not

x1

and

not

x2

not

x3

not

x4

or

x0 not

x1

or

not

x0

x1

(b) 5-parity: 28% error.

y0

and

or

x0 and

x1 x2

and

x3 x4

or

x1 x2 and

x0 x3 x4

or

x3 x4 and

x0 x1 x2

(c) 5-majority: 0% error.
y0

and

or

x0 x3 x4 and

x1 x2

or

x1 x2 x4 and

x0 x3 x5

or

x1 x3 x5 and

x0 x2

or

x2 x3 x5 and

x0 x1 x4

or

x4 x5 and

x0 x1

and

x2 x3 or

x0 x1

(d) 6-majority: 6% error.

Figure 12: Some logical functions predicted by our model.

19

Under review as a conference paper at ICLR 2024

not

and

not

A20

or

A32 A09 not

or

A20 not

A31

A34

(a) chess. F1: 0.947. LogReg: 0.958. RF: 0.987.

not

or

surgery=0 not

surgery=1

not

outcome=0

and

or

surgery=0 not

surgery=1

or

surgery=0 outcome=0

(b) horse colic. F1: 0.900. LogReg: 0.822. RF: 0.861.

not

or

pension=2 not

or

contribution to
dental plan=1 pension=0 not

or

not

duration=2

and

not

contribution to
dental plan=1

pension=0

(c) labor. F1: 0.960. LogReg: 1.000. RF: 1.000.

20

Under review as a conference paper at ICLR 2024

or

Jacket color=2 and

Head shape=0 Body shape=0

and

Head shape=2 Body shape=2

(d) monk1. F1: 0.915. LogReg: 0.732. RF: 1.000.

not

or

Jacket color=0 and

Body shape=0 not

and

Holding=2 Jacket color=1

(e) monk3. F1: 1.000. LogReg: 0.985. RF: 0.993.

or

F11 F13 F16 F20 F22 and

F10 or

F11 F16 not

F20

(f) spect. F1: 0.919. LogReg: 0.930. RF: 0.909.

not

or

physician fee
freeze=0 and

not

physician fee
freeze=2

or

and

physician fee
freeze=2 not

physician fee
freeze=0

not

or

physician fee
freeze=2 education spending=2

(g) vote. F1: 0.971. LogReg: 0.974. RF: 0.974.

Figure 13: Some logical formulas predicted by our noisy model for some binary classification

PMLB datasets. In each case, we report the name of the dataset and the F1 score of the Boolformer,
logistic regression and random forest in the caption.

21

Under review as a conference paper at ICLR 2024

F ADDITIONAL RESULTS ON GENE REGULATORY NETWORK INFERENCE

In this section, we give an brief overview of the field of GRN inference and present additional results
using our Boolformer.

F.1 A BRIEF OVERVIEW OF GRNS

Inferring the behavior of GRNs is a central problem in computational biology, which consists in
deciphering the activation or inhibition of one gene by another gene from a set of noisy observations.
This task is very challenging due to the low signal-to-noise ratios recorded in biological systems, and
the difficulty to obtain temporal ordering and ground truth networks.
GRN algorithms can infer relationships between the genes based on static observations Singh &
Vidyasagar (2015); Haury et al. (2012); Huynh-Thu et al. (2010), or on input time-series record-
ings Adabor & Acquaah-Mensah (2019); Huynh-Thu & Geurts (2018), and can either infer correla-
tional relationships, i.e. undirected graphs, or causal relationships, i.e. directed graphs – the latter
being more useful, but harder to obtain.
We focus on methods which model the dynamics of GRNs via Boolean networks: REVEAL (Liang
et al., 1998), Best-Fit (Lähdesmäki et al., 2003), MIBNI (Barman & Kwon, 2017), GABNI (Barman
& Kwon, 2018) and ATEN (Shi et al., 2020a). We evaluate our approach on the recent benchmark
from Pušnik et al. (2022).

F.2 ADDITIONAL RESULTS

The benchmark studied in the main text assesses both dynamical prediction (how well the model
predicts the dynamics of the network) and structural prediction (how well the model predicts the
Boolean functions compared to the ground truth). Structural prediction is framed as the binary
classification task of predicting whether variable i influences variable j, and can hence be evaluated
by several binary classification metrics, defined below13:

Acc =
TP + TN

TP + TN + FP + FN
, Pre =

TP
TP + FP

, Rec =
TP

TP + FN
, F1 = 2

Pre · Rec
Pre + Rec

,

MCC =
TP · TN � FP · FNp

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, AUROC =

TP
TP + FN

+
TN

TN + FP
� 1.

We report these metrics in Fig. 14.

13The authors of the benchmark consider the two latter to be the best metrics to give a comprehensive view on
the classifier performance for this task.

22

Under review as a conference paper at ICLR 2024

Figure 14: Binary classification metrics used in the gene regulatory network benchmark. The
competitors and metrics are taken from the recent benchmark of Pušnik et al. (2022), and described
in Sec. 4.3.

23

Under review as a conference paper at ICLR 2024

G EXPLORING THE BEAM CANDIDATES

In this section, we explore the beam candidates produced by the Boolformer. In Fig. 15, we show the
8 top-ranked candidates when predicting a simple logic function, the 2-comparator. We see that all
candidates perfectly match the ground truth, but have different structure.

H ATTENTION MAPS

In Fig. 16, we show the attention maps produced by our model when presented three truth tables: (a)
that of the 4-digit multiplier, (b) that of the 4-parity function and (c) a random truth table. Each panel
corresponds to a different layer and head of the model.
Recall that each of the N inputs to the transformer is the embedding of an (x, y) pair; in this case, we
ordered the embeddings according to the binary number they form, i.e. from left to right: 0000, 0001,
0010, ..., 1111. We see highly structured patterns emerging, especially for the first two functions
which are non-random.
For example, for the 4-digit multiplier, some attention heads have hadamard-like structure (e.g. head
5 of layer 6), some have block-structured checkboard patterns (e.g. head 12 of layer 4), and many
heads put most attention weight on the final input, 1111, which is more informative (e.g. head 6 of
layer 3).
For the parity function, we see a particularly interesting shape emerge in several heads (e.g. head 2 of
layer 4), and observe that many heads perform anti-diagonal attention (e.g. head 4 of layer 6).

I EMBEDDINGS

In this section, we show that the model learns a compressed representation of the hypercube which
conserves distances, both qualitatively in Fig. 17, and quantitatively in Fig. 18, where we plot the
L2 distance in embedding space against the hamming distance in input space, showing a linear
relationship.

24

Under review as a conference paper at ICLR 2024

or

and

x0 not

x2

and

x1 not

x3

or

x0 not

x2

and

or

x0 not

x2

or

and

x0 not

x2

and

x1 not

x3

not

and

or

not

x0

x2

or

not

x1

x3 and

not

x0

x2

not

or

and

not

x0

x2

and

or

not

x0

x2

or

not

x1

x3

or

and

x0 x1 not

x3

and

not

x2

or

x0 and

x1 not

x3

or

and

x0 or

not

x2

and

x1 not

x3

and

x1 not

or

x2 x3

or

and

x0 not

x2

and

x1 not

x3

or

x0 and

x1 not

x2

and

or

x0 and

x1 not

or

x2 x3

or

not

x2

and

x1 not

x3

Figure 15: Beam search reveals equivalent formulas. We show the first 8 beam candidates for
the 2-comparator, which given two 2-bit numbers a = (x0x1) and b = (x2x3), returns 1 if a > b, 0
otherwise. All candidates perfectly match the ground truth.

25

Under review as a conference paper at ICLR 2024

(a) 4-digit multiplier

(b) 4-parity

(c) 4d random data

Figure 16: The attention maps reveal intricate analysis. See Sec. H for more details on this figure.

26

Under review as a conference paper at ICLR 2024

Figure 17: T-SNE representation of the embeddings. We fed the 1024 input combinations of the
10-dimensional hypercube to the embedder, and colored them according to the number of 1’s, from 0
(blue, which corresponds to 0000000000) to 10 (yellow, which corresponds to 1111111111).

Figure 18: The embedder conserves distances. We plot the squared L2 distance of the embeddings
of all points in the 10-dimensional hypercube against the hamming distance in the input space.

27

