
A Missing Details of Section 3

A.1 Missing Details of Section 3.1

A.1.1 Moreau Envelope Smoothing

LetM be a (potentially unbounded) closed interval, y ∈ R, and β > 0. Consider a function ℓ(y) :M 7→ R as in Definition 2.

The β-Moreau envelope of ℓ(y) is given as

ℓ
(y)
β (m) := min

u∈M

[
ℓ(y)(u) +

β

2
|u−m|2

]
.

Denote the proximal operator with respect to ℓ(y) as

prox
β
ℓ(y)(m) = arg min

u∈M

[
ℓ(y)(u) +

β

2
|u−m|2

]
.

For convex functions, the Moreau envelope satisfies the following properties.

Lemma 18. (See [Nes05, Can11]) Let ℓ(y) :M 7→ R be a convex function and L0-Lipschitz. Then the following hold:

(a) ℓ
(y)
β is convex, 2L0-Lipschitz and β-smooth.

(b) ℓ
(y)′
β (m) = β[m− prox

β
ℓ(y)(m)].

(c) ℓ
(y)
β (m) ≤ ℓ(y)(m) ≤ ℓ

(y)
β (m) + L2

0/(2β)

A.1.2 Proof of lemma 3

The Lipschitzness guarantee follows straightforwardly from Lemma 18. For the smoothness guarantee, note that

∇fβ(w, (x, y)) = ℓ
(y)′
β (〈w, x〉)x. Since ℓ

(y)
β is β-smooth, for any w,w′ ∈ W we have

‖∇fβ(w, (x, y))−∇fz,β(w′, (x, y))‖∗ = ‖ℓ(y)′β (〈w, x〉)x− ℓ
(y)′
β (〈w′, x〉)x‖∗

= ‖x‖∗ · |ℓ(y)′β (〈w, x〉)− ℓ
(y)′
β (〈w′, x〉)|

≤ ‖x‖∗β|〈w, x〉 − 〈w′, x〉|
≤ ‖x‖2∗β‖w − w′‖,

where the last step follows from the definition of the dual norm. For the accuracy, by the guarantees of the Moreau envelope of

ℓ(y) it holds that for all w ∈ R
d and (x, y) ∈ X × R that

|f(w, (x, y))− fβ(w, (x, y))| = |ℓ(y)(〈w, x〉)− ℓ
(y)
β (〈w, x〉)|

≤ L2
0

2β
.

A.1.3 Proof of Lemma 4

Let x, y and w be the inputs to Algorithm 3. Note as defined in Algorithm 3, m = 〈w, x〉 and P =M∩
[
m− 2L0

β ,m+ 2L0

β

]
.

Define hβ(u) , ℓ(y)(u) + β
2 |u−m|2, i.e. the proximal loss. Let u∗ = argmin

u∈R

{hβ(u)}. We first show that |ū− u∗| is small

by noting that lines 1-10 of Algorithm 3 implement the bisection method on hβ . Thus, so long as P is a closed interval, u∗ ∈ P ,

14

Algorithm 3 Oβ,α,R: Gradient Oracle for Smoothed GLL

Require: Parameter Vector w ∈ W , Datapoint (x, y) ∈ (X × R)
1: m = 〈w, x〉
2: Let [a, b] =M∩

[
m− 2L0

β ,m+ 2L0

β

]

3: T =
⌈
log2

(
16L2

0R
2

α2

)⌉

4: for t = 1 to T do
5: Let mt =

a+b
2

6: if ℓ(y)(a+mt

2) + |a+mt

2 −m|2 ≥ ℓ(y)(mt+b
2) + |mt+b

2 −m|2 then
7: b = mt

8: else
9: a = mt

10: ū = argmin
{mt:t∈[T]}

{ℓ(y)(mt) + |mt −m|2}

11: Output: β(m− ū)x

and max
u∈P
{hβ(u)− hβ(u

∗)} ≤ τ , standard guarantees of the bisection method give that hβ(ū)− hβ(u
∗) ≤ τ2−T (see, e.g.,

[Nem95, Theorem 1.1.1]). Clearly P is a closed interval sinceM is closed. To see that u∗ ∈ P , note that since u∗ is the
minimizer of hβ it holds that

0 ≤ ℓ(y)(m) +
β

2
|m−m|2 − ℓ(y)(u∗)− β

2
|u∗ −m|2 = ℓ(y)(m)− ℓ(y)(u∗)− β

2
|u∗ −m|2.

Further since ℓ(y) is L0-Lipschitz we have that ℓ(y)(m) − ℓ(y)(u∗) ≤ L0|u∗ −m|. Using this fact in the above inequality

we obtain |m − u∗| ≤ 2L0/β and thus u∗ ∈ P . Using the bound on the radius of P and Lipschitz constant of ℓ(y) it holds

that τ ≤ 8L2
0/β. The setting of T =

⌈
log2

(
16L2

0R
2

α2

)⌉
and the accuracy gaurantees of the bisection method then gives that

hβ(ū)− hβ(u
∗) ≤ α2

2βR2 . Since hβ is β-strongly convex we then have

|ū− u∗| ≤
√

2 (hβ(ū)− hβ(u∗))

β
≤ α

βR
.

The accuracy guarantee ‖Oβ,α,R(w, (x, y))−∇fβ(w, (x, y))‖∗ ≤ α then follows straightforwardly using part (b) of Lemma

18 and the facts that ‖x‖∗ ≤ R and u∗ = prox
β
ℓ(y)(m).

A.2 Proof of Theorem 5

The proof of convergence follows similarly to [FKT20], but additionally we account for the change in gradient sensitivity and
extra error introduced by using the approximate gradient oracle of the smoothed loss, Oβ,α,R. Let PSGD(O, η, w0, T) (used in
Algorithm 4) denote the process which computes wt = ΠW [wt−1 + ηO(wt−1)] : ∀t ∈ [T], where ΠW is the projection onto
constraint setW . By Lemma 3, fβ is a (2L0R)-Lipschitz and (βR2)-smooth loss function. Further, the increase in error due to
using α-approximate gradients in PSGD is at most 2αD (see, e.g., [FGV17, BFTT19]). Let Fβ,D(w) = E

z∼D
[fβ(w)] and let

w∗
β = argmin

w∈W
{Fβ,D(w)}. For notational convenience, let w0 = w∗

β and ξ0 = w̃0 − w∗
β . We have (following [FKT20, Proof

of Theorem 4.4]):

15

Algorithm 4 Phased SGD for GLL

Require: Private dataset
(
z1, . . . , zn

)
∈ Zn, constraint setW ⊆ R

d, privacy parameters (ε, δ) s.t. ε ≤
√
log(1/δ), constraint

diameter (for constrained case) D, Lipschitz constant L0, smoothness parameter β, oracle accuracy α, feature vector norm
bound R

1: Let w̃0 ∈ W be arbitrary
2: ρ = ε

2
√

log(1/δ)

3: K = log2(n)
4: For Constrained setting: η = D

3L0R
min{ ρ√

d
, 1√

n
}

5: For Unconstrained setting: η = 1
3L0R

min{ ρ√
θ
, 1√

n
}, where θ is an upper bound on the expected rank of

∑n
i=1 xix

⊤
i .

(Note that we always have θ ≤ n.)
6: s = 1
7: for k = 1 to K do
8: Tk = n

2k

9: ηk = η
4k

10: Initialize PSGD algorithm of [FKT20] (over domainW) at w̃k−1 and run with oracle Oβ,α,R in place of∇f and step
size ηk for Tk steps over dataset {zs, ..., zs+Tk

}. Let wk be the average of the iterate of PSGD.

11: w̃k = wk + ξk where ξk ∼ N (0, Idσ
2
k) with σk = 4L0Rηk

ρ

12: s = s+ Tk

13: Output: w̃K

E
[
Fβ,D(w̃K)− Fβ,D(w

∗
β)
]
=

K∑

k=1

E [Fβ,D(wk)− Fβ,D(wk−1)] + E [Fβ,D(w̃K)− Fβ,D(wK)]

≤
K∑

k=1

(
dσ2

k−1

2ηkTk
+ 2ηkL

2
0R

2 + 2Dα

)
+ 2L0RE[‖ξK‖2]

=

K∑

k=2

(
dσ2

k−1

2ηkTk
+ 2ηkL

2
0R

2

)
+ 2L0R

√
dσK + 2DKα.

Where the first inequality follows from the convergence of PSGD [FKT20, Lemma 4.5]. By the setting of α = L0R
n log(n) ,

we have 2DKα = 2L0RD
n . It can be verified that the rest of the expression is O

(
L0RD

(
1√
n
+

√
d

ρn

))
(see [FKT20,

Proof of Theorem 4.4]). To convert to population loss with respect to the original function, we provide the following analysis.
Let w∗ = min

w∈W
FD(w∗). By Lemma 3 we have for any w ∈ W

FD(w)− FD(w
∗) ≤ Fβ,D(w)− Fβ,D(w

∗) +
L2
0

β

≤ Fβ,D(w)− Fβ,D(w
∗
β) +

L2
0

β
.

Thus by the setting β =
√
nL0/(RD) we have

E [FD(w̃K)− FD(w
∗)] = O

(
L0RD

(
1√
n
+

√
d

ρ

))
.

16

Plugging in our value of ρ into the above we have the final result.

E [FD(w̃K)− FD(w
∗)] = O

(
L0RD

(
1√
n
+

√
d log(1/δ)

nε

))
.

For privacy, note that ‖Oβ,α,R(w, z)‖ ≤ (2L0R+ L0R
n), and thus the sensitivity of the approximate gradient is bounded by

3L0R. Thus, by setting the parameters of Phased SGD as they would be for a (3L0R)-Lipschitz function, Lemma 4.5 of
[FKT20] implies that Algorithm 4 satisfies (ε, δ)-DP so long as η ≤ 2

βR2 . It’s easy to see that the condition on η holds.

Proof for the Unconstrained Case: We show here a detailed proof for the excess risk guarantees for our construction for
(possibly non-smooth) GLLs in the unconstrained case (Algorithm 4). This result was mentioned in the remark after Theorem 5.
Unlike the construction in [SSTT21] with super-linear time, the construction we give here runs in near-linear time.

Before presenting our result for this setting, a few preliminaries are necessary. Let V be a matrix whose columns are an

eigenbasis for
∑n

i=1 xix
⊤
i . For any u, u′ ∈ R

d, let ‖u‖V =
√
u⊤V V ⊤u denote the semi-norm of u induced by V , and let

〈u, u′〉V = u⊤V V Tu′. Here, we assume knowledge of some upper bound θ on E
S∼D

[Rank(V)]. Note that this is no loss of

generality since we always have E
S∼D

[Rank(V)] ≤ n; hence, if we don’t have this additional knowledge, we can set θ = n.

Theorem 19. Let W = R
d. Let f : W × (X × R) → R be a L0-Lipschitz and R-bounded GLL with respect to ‖ · ‖2.

Let β =
√
nL0/R, α = L0R

n logn . Then Phased-SGD run with oracle Oβ,α,R and dataset S ∈ Zn satisfies (ε, δ) differential

privacy and has running time O(n log n). Further, if S ∼ Dn the output of Phased-SGD has expected excess population risk

O

(
L0R

(
‖w̃0 − w∗

β‖2 + 1
)(√

θ log(1/δ)

nε + 1√
n

))

To prove the claim, we start by providing the following lemma. As before, denote w0 = w∗
β and ξ0 = w̃0 − w∗

β .

Lemma 20. Let α, β,R be as in Theorem 19. Then the output, wk, of phase k of Phased SGD using Oβ,α,R satisfies

E [Fβ,D(wk)− Fβ,D(wk−1)] ≤
E
[
‖w̃k−1 − wk−1‖2V

]

2ηkTk
+

5ηkL
2
0R

2

2
+

L0R
(
E [‖w̃k−1 − wk−1‖V] + 1

)

√
n log(n)

.

Proof. Let {u0, . . . , uTk
} denote the iterates generated by round k of PSGD (where u0 = w̃k−1), and let zt be the datapoint

sampled during iteration t. For all t ∈ {0, ...Tk}, define the potential function Φ(t) , ‖ut −wk−1‖2V . Using standard algebraic
manipulation, we have

Φ(t+1) = Φ(t) − 2ηk〈Oβ,α,R(ut, zt), ut − wk−1〉V + η2k‖Oβ,α,R(ut, zt)‖2V
≤ Φ(t) − 2ηk〈∇fβ(ut, zt), ut − wk−1〉V + 2ηkα‖ut − wk−1‖V + η2k(α

2 + 4L2
0R

2),

where the inequality follows from the fact that ‖Oβ,α,R(ut, zt)−∇fβ(ut, zt)‖ ≤ α and the nonexpansiveness of the projection
onto the span of V . Since the gradient is in the span of V , we have

Φ(t+1) ≤ Φ(t) − 2ηk〈∇fβ(ut, zt), ut − wk−1〉+ 2ηkα‖ut − wk−1‖V + η2k(α
2 + 4L2

0R
2).

Hence

〈∇fβ(ut, zt), ut − wk−1〉 ≤
Φ(t) − Φ(t+1)

2ηk
+ α‖ut − wk−1‖V +

ηk
2
(α2 + 4L2

0R
2).

Taking the expectation w.r.t. all randomness (i.e., w.r.t. S ∼ Dn and the Gaussian noise random variables), we have

E [〈∇Fβ,D(ut), ut − wk−1〉] ≤
E
[
Φ(t) − Φ(t+1)

]

2ηk
+ αE [‖ut − wk−1‖V] +

ηk
2
(α2 + 4L2

0R
2).

17

Moreover, by the convexity of Fβ,D we have E [〈∇Fβ,D(ut), ut − wk−1〉] ≥ E [Fβ,D(ut)− Fβ,D(wk−1)]. Combining this

inequality with the above, and using the fact that wk = 1
Tk

∑Tk

t=1 ut together with the convexity of Fβ,D, we have

E [Fβ,D(wk)− Fβ,D(wk−1)] ≤
1

Tk

Tk∑

t=1

(
E [Fβ,D(ut)− Fβ,D(wk−1)]

)

≤
E
[
Φ(0)

]

2ηkTk
+

α

Tk
E

[
Tk∑

t=1

‖ut − wk−1‖V
]
+

ηk
2
(α2 + 4L2

0R
2).

To bound E

[∑Tk

t=1 ‖ut − wk−1‖V
]

in the above, observe that,

‖ut − wk−1‖V ≤ ‖ut−1 − wk−1‖V + ‖ut − ut−1‖V
...

≤ ‖w̃k−1 − wk−1‖V +

t∑

j=1

‖uj − uj−1‖V .

Hence

E [‖ut − wk−1‖V] ≤ E [‖w̃k−1 − wk−1‖V] +
t∑

j=1

E [‖uj − uj−1‖V]

≤ E

[√
Φ(0)

]
+ ηkt(2L0R+ α),

where the last inequality follows from the definition of Φ(0) and the fact that E [‖uj − uj−1‖V] =

ηkE [‖Oβ,α,R(uj−1, zj−1)‖] ≤ ηk(2L0R+ α). Thus we have

E [Fβ,D(wk)− Fβ,D(wk−1)] ≤
E
[
Φ(0)

]

2ηkTk
+ α

(
E

[√
Φ(0)

]
+ Tkηk(2L0R+ α)

)
+

ηk
2
(α2 + 4L2

0R
2)

=
E
[
Φ(0)

]

2ηkTk
+

5ηkL
2
0R

2

2
+ α

(
E

[√
Φ(0)

]
+ 3TkηkL0R

)
.

The last step follows from the fact that α = L0R
n log(n) ≤ L0R. Further, since ηk = 1

3L0R0
min{ ρ√

θ
, 1√

n
} ≤ 1

3L0R
√
n

and Tk ≤ n

it holds that 3TkηkL0R ≤
√
n. Thus by the setting of α, we have

E [Fβ,D(wk)− Fβ,D(wk−1)] ≤
E
[
Φ(0)

]

2ηkTk
+

5ηkL
2
0R

2

2
+

L0R
(
E

[√
Φ(0)

]
+ 1
)

√
n log(n)

.

18

Recall that we denote w0 = w∗
β and ξ0 = w̃0 − w∗

β . Using the above lemma and noting that w̃k−1 − wk−1 = ξk−1, the excess

risk of the w̃K is bounded by

E
[
Fβ,D(w̃K)− Fβ,D(w

∗
β)
]
=

K∑

k=1

E [Fβ,D(wk)− Fβ,D(wk−1)] + E [Fβ,D(w̃K)− Fβ,D(wK)]

≤
K∑

k=1



E
[
‖ξk−1‖2V

]

2ηkTk
+

5ηkL
2
0R

2

2
+

L0R
(
E [‖ξk−1‖V] + 1

)

√
n log(n)




+ E [Fβ,D(w̃K)− Fβ,D(wK)] . (8)

Note that for any 2 ≤ k ≤ K, we have

E
[
‖ξk−1‖2V

]
= E

V

[
E

ξk−1

[
ξ⊤k−1V V ⊤ξk−1|V

]]
≤ E

V
[Rank(V)]σ2

k−1 ≤ θσ2
k−1

At round k = 1, we simply have E
V
[‖ξ0‖V] ≤ ‖w̃0 − w∗

β‖. Finally, since f is a GLL, the expected increase in loss due to ξK is

bounded as

E [Fβ,D(w̃K)− Fβ,D(wK)] = E
(x,y)∼D

[
E
ξK

[
ℓ
(y)
β (〈w̃K , x〉)− ℓ

(y)
β (〈wK , x〉)

]]

≤ E
(x,y)∼D

[
E
ξK

[L0|〈ξK , x〉|]
]

≤ L0RσK

=
L0R

4K−1
√
n

=
L0R

4n5/2

The second inequality follows from the fact that ℓ
(y)
β is L0-Lipschitz, and the last two steps follow form the fact that

σk ≤ 1
4k−1

√
n

and K = log2(n). Thus, using inequality (8) above, we have

E
[
Fβ,D(w̃K)− Fβ,D(w

∗
β)
]
= O

(
L0R

(
‖w̃0 − w∗

β‖2 + 1
)
(√

θ

nρ
+

1√
n

))
+

K∑

k=2

(
θσ2

k−1

2ηkTk
+

5ηkL
2
0R

2

2
+

L0R(
√
θσk−1 + 1)√

n log(n)

)

+
L0R

4n5/2

= O

(
L0R

(
‖w̃0 − w∗

β‖2 + 1
)
(√

θ

nρ
+

1√
n

))
+

K∑

k=2

(
θσ2

k−1

2ηkTk
+

5ηkL
2
0R

2

2

)
+

3L0R√
n

= O

(
L0R

(
‖w̃0 − w∗

β‖2 + 1
)
(√

θ

nρ
+

1√
n

))
+O

(
L0R

(√
θ

nρ
+

1√
n

))

= O

(
L0R

(
‖w̃0 − w∗

β‖2 + 1
)
(√

θ

nρ
+

1√
n

))
.

The first line comes from bounding the term corresponding to k = 1 in the sum in (8), and the settings of η1 = ρ
12L0R

√
n

and T1 = n/2. The second equality follows from the fact that
√
θσk−1 = 4

√
θL0Rηk−1/ρ ≤ 4

√
θL0Rη/ρ ≤ 2, and the

19

fact that K = log2(n). The third step follows from the choices of ηk, Tk and σk−1. To reach the final result, we convert the
guarantee above to a guarantee for the original (unsmoothed) loss and use the setting of β =

√
nL0/R (as done in the proof of

Theorem 5).

A.3 Proof of Theorem 6

Algorithm 5 Noisy Frank Wolfe

Require: Private dataset S = (z1, ..., zn) ∈ Zn, polyhedral setW with vertices V , Lipschitz constant L0, constraint diameter
D, privacy parameters (ε, δ), smoothness parameter β, oracle accuracy α, feature vector norm bound R

1: Let w1 ∈ W be arbitrary
2: T = nε

log(|V |) log(n)
√

log(1/δ)

3: s =
3L0RD

√
8T log(1/δ)

nε
4: for t = 1 to T do
5: ∇̃t =

1
n

∑
z∈S Oβ,α,R(wt, z)

6: Draw {bv,t}v∈V i.i.d from Lap(s)

7: ṽt = argmin
v∈V

{〈v, ∇̃t〉+ bv,t}
8: wt+1 = (1− µt)wt + µtṽt, where µt =

3
t+2

9: Output: wT

The proof follows from the analysis of noisy Frank Wolfe from [TTZ16]. Let Fβ,S(w) =
1
n

∑
z∈S fβ(w, z). Define w∗

β,S as

the minimizer Fβ,S inW .

Define γt = 〈ṽt, ∇̃t〉 −min
v∈V
〈v, ∇̃t〉. Since Fβ,S is (βR2)-smooth (by Lemma 3), standard analysis of the Noisy Frank-Wolfe

algorithm yields (see, e.g., [TTZ15])

E
[
Fβ,S(wT)− Fβ,S(w

∗
β,S)

]
≤ O

(
βR2D2

T

)
+D

T∑

t=1

µtE

[∥∥∥∇̃t −∇Fβ,S(wt)
∥∥∥
∞

]
+

T∑

t=1

µtE [γt] .

By a standard argument concerning the maximum of a collection of Laplace random variables, we have for all t ∈ [T]
E [γt] ≤ 2s log(|V|). Note also that for all t, by the approximation guarantee of Oβ,α,R, we have (with probability 1)
∥∥∥∇̃t −∇Fβ,S(wt)

∥∥∥
∞
≤ α. Hence,

E
[
Fβ,S(wT)− Fβ,S(w

∗
β,S)

]
≤ O

(
βR2D2

T

)
+ log(T)

(
Dα+ s log(|V|)

)

= O

(
βR2D2

T

)
+ log(T)

(
L0RD

n log(n)
+

L0RD
√
8T log(1/δ) log(|V|)

nε

)
,

where the second equality follows from the setting of α = L0R
n log(n) and the noise parameter s.

Using the same argument as in the proof of Lemma 5, we arrive at the following bound on the excess empirical risk for the
unsmoothed empirical loss FS :

E [FS(wT)− FS(w
∗
S)] = O

(
βR2D2

T
+

L0RD
√
72T log(1/δ) log(|V|) log(T)

nε
+

L0RD log(T)

n log(n)
+

L2
0

β

)
.

20

By the setting of β = L0
√
nε

RD log1/4(1/δ)
√

log(|V|) log(n)
and T = nε

log(|V|) log(n)
√

log(1/δ)
,

E [FS(wT)− FS(w
∗
S)] = O

(
L0RD log1/4(1/δ)

√
log(|V|) log(n)√

nε

)
.

Via a standard Rademacher-complexity argument, we know that the generalization error of GLLs is bounded as O
(

L0RD
√
log d√

n

)

(see [SSBD14] Theorem 26.15). This gives the claimed bound.

The privacy guarantee follows almost the same argument as in [TTZ15]. Note that the sensitivity of the approximate gradients

generated by Oβ,α,R is at most 3L0R
n since fβ is (2L0R)-Lipschitz and the error due to the approximate oracle is less than

L0R. We then guarantee privacy via a straightforward application of the Report-Noisy-Max algorithm [DR14, BLST10] and
advanced composition for differential privacy.

B Missing Details of Section 4

Regularity of Normed Spaces. The algorithms we consider in Section 4 can be applied to general spaces whose dual has
a sufficiently smooth norm. To quantify this property, we use the notion of regular spaces ([JN08]). Given κ ≥ 1, we say a
normed space (E, ‖·‖) is κ-regular, if there exists 1 ≤ κ+ ≤ κ and a norm ‖ · ‖+ such that (E, ‖ · ‖+) is κ+-smooth, i.e.,

‖x+ y‖2+ ≤ ‖x‖2+ + 〈∇(‖ · ‖2+)(x), y〉+ κ+‖y‖2+ (∀x, y ∈ E), (9)

and ‖·‖ and ‖ · ‖+ are equivalent with constant
√
κ/κ+:

‖x‖2 ≤ ‖x‖2+ ≤
κ

κ+
‖x‖2 (∀x ∈ E). (10)

One relevant fact is that d-dimensional ℓq spaces, 2 ≤ q ≤ ∞, are κ-regular with κ = min (q − 1, 2 log d). Also, if ‖ · ‖ is a
polyhedral norm defined over a space E with unit ball B‖·‖ = conv(V), then its dual (E, ‖·‖∗) is (2 log |V|)-regular.

Remark concerning the choice of parameters R and b : Note that the total number of samples used by our algorithms in

Section 4 is
∑R−1

r=0

∑2r−1
t=0 b/(t+ 1) ≤ b

∑R
r=0 (ln(2

r) + 1) = b
∑R

r=0 (r ln(2) + 1) < bR2. Moreover, the batch drawn in

each iteration (r, t) is b/(t + 1). Hence, for the algorithms to be properly defined, it suffices to have bR2 ≤ n and b ≥ 2R.
Note that our choices of R and b in both algorithms satisfy these conditions. Note also that we assume w.l.o.g. that n is large
enough so that the claimed bounds on the stationarity gap are non-trivial. Hence, the choice of R in each of our algorithms is
meaningful.

B.1 Missing Proofs of Section 4.1

B.1.1 Proof of Theorem 7

Since the batches used in different rounds r = 0, . . . , R − 1 are disjoint, it suffices to prove the privacy guarantee for
a given round r. The rest of the proof follows by parallel composition of differential privacy. For notational brevity, let
gtr = t+1

b

∑
z∈Bt

r
∇f(wt

r, z). By unravelling the recursion in the gradient estimator (Step 11 of Algorithm 1) and using the

setting of ηr,t =
1√
t+1

, we have for any t ∈ [2r − 1]:

∇t
r = a

(1)
t · ∇0

r +
t∑

k=1

(
a
(k)
t ·∆k

r + c
(k)
t · gkr

)
(11)

where, for all k ∈ [t], a
(k)
t =

∏t
j=k(1− 1√

j+1
) and c

(k)
t = 1√

k+1

∏t
j=k+1(1− 1√

j+1
). Note also that a

(k)
t < 1 and c

(k)
t < 1

for all t, k.

21

Let S, S′ be any neighboring datasets (i.e., differing in exactly one data point). Let∇t
r,
{
∆k

r : k ∈ [t]
}
,
{
gkr : k ∈ [t]

}
be the

quantities above when the input dataset is S; and let ∇′t
r ,
{
∆

′k
r , : k ∈ [t]

}
,
{
g

′k
r : k ∈ [t]

}
be the corresponding quantities

when the input dataset is S′. Now, since the batches B0
r , . . . , B

t
r are disjoint, changing one data point in the input dataset

can affect at most one term in the sum (11) above, i.e., it affects either the ∇0
r term, or exactly one term corresponding to

some k ∈ [t] in the sum on the right-hand side. Moreover, since f is L0-Lipschitz, we have

∥∥∥∇0
r −∇

′0
r

∥∥∥
∗
≤ L0/b, and

∥∥∥gtr − g
′t
r

∥∥∥
∗
≤ L0(t+ 1)/b. Also, by the L1-smoothness of f and the form of the update rule (Step 13 of Algorithm 1), for

any k ∈ {1, . . . , 2r − 1}, we have
∥∥∇f(wk

r , z)−∇f(wk−1
r , z)

∥∥
∗ ≤ L1

∥∥wk
r − wk−1

r

∥∥ ≤ L1Dηr,k ≤ L1D/
√
k + 1. Hence,∥∥∥∆k

r −∆
′k
r

∥∥∥
∗
≤ k+1

b
L1D√
k+1

= L1D
√
k + 1/b. Using these facts, it is then easy to see that for any t ∈ [2r − 1],

∥∥∥∇t
r −∇

′t
r

∥∥∥
∗
≤ max

(
L0

b
,
(L0 + L1D)

√
t+ 1

b

)
≤ (L0 + L1D)2r/2

b
.

Hence, for each v ∈ V , the global sensitivity of 〈v,∇t
r〉 is upper bounded by

D(L0+L1D)2r/2

b . By the privacy guarantee of
the Report Noisy Max mechanism [DR14, BLST10], the setting of the Laplace noise parameter sr ensures that each iteration

t ∈ {0, . . . , 2r − 1} is ε2−r/2√
log(1/δ)

-DP. Thus, by advanced composition (Lemma 1) applied to the 2r iterations in round r, we

conclude that the algorithm is (ε, δ)-DP.

B.1.2 Proof of Lemma 9

Recall that we consider the polyhedral setup, where the feasible setW is a polytope with at most J vertices. Since the norm is
polyhedral, the dual norm is also polyhedral. Hence, (E, ‖·‖∗) is (2 log(J))-regular as discussed earlier in this section.

Fix any r ∈ {0, . . . , R− 1}. For any t ∈ {1, . . . , 2r − 1}, we can write

∇t
r −∇FD(w

t
r) = (1− ηr,t)

[
∇t−1

r −∇FD(w
t−1
r)

]
+ (1− ηr,t)

[
∆t

r −
(
∇FD(w

t
r)−∇FD(w

t−1
r)

)]

+ ηr,t


 t+ 1

b

∑

z∈Bt
r

∇f(wt
r, z)−∇FD(w

t
r)


 .

Let ∆
t

r , ∇FD(wt
r)−∇FD(wt−1

r). Recall that ‖·‖∗ is (2 log(J))-regular, and denote ‖·‖+ the corresponding κ+-smooth norm,

where 1 ≤ κ+ ≤ 2 log(J). First we will bound the variance in ‖·‖+, and then we will derive the result using the equivalence

property (10). Let Qt
r be the σ-algebra generated by the randomness in the data and the algorithm up until iteration (r, t),

i.e., the randomness in
{(

Bj
k,
(
uj
k(v) : v ∈ V

))
: 0 ≤ k ≤ r, 0 ≤ j ≤ t

}
. Define γt

r , E

[
‖∇t

r −∇FD(wt
r)‖

2
+ | Qt−1

r

]
. By

property (9), observe that

γt
r ≤ (1− ηr,t)

2γt−1
r + κ+E




∥∥∥∥∥∥
(1− ηr,t)

(
∆t

r −∆
t

r

)
+ ηr,t


 t+ 1

b

∑

z∈Bt
r

∇f(wt
r, z)−∇FD(w

t
r)



∥∥∥∥∥∥

2

+

∣∣∣∣∣Q
t−1
r




≤ (1− ηr,t)
2γt−1

r + 2κ+(1− ηr,t)
2
E

[∥∥∥∆t
r −∆

t

r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]
+ 2κ+η

2
r,tE




∥∥∥∥∥∥
t+ 1

b

∑

z∈Bt
r

∇f(wt
r, z)−∇FD(w

t
r)

∥∥∥∥∥∥

2

+

∣∣∣∣∣Q
t−1
r


 .

In the first inequality, we used the fact that E
z∼D

[∇f(w, z)] = ∇FD(w), E
z∼D

[∆t
r] = ∆

t

r, and the independence of

(
∇t−1

r −∇FD(wt−1
r)

)
and (1 − ηr,t)

(
∆t

r −∆
t

r

)
+ ηr,t (∇f(wt

r, z)−∇FD(wt
r)) conditioned on Qt−1

r . The second

22

inequality follows by triangle inequality and the fact that (a + b)2 ≤ 2a2 + 2b2 for a, b ∈ R. Hence, using (10) and
L1-smoothness of the loss, we can obtain the following bound inductively:

E

[∥∥∥∆t
r −∆

t

r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]
= E




∥∥∥∥∥∥
t+ 1

b

∑

z∈Bt
r

(
∇f(wt

r, z)−∇f(wt−1
r , z)−∆

t

r

)
∥∥∥∥∥∥

2

+

∣∣∣∣∣Q
t−1
r




≤ (t+ 1)2

b2
E




∥∥∥∥∥∥

∑

z∈Bt
r\{z′}

(
∇f(wt

r, z)−∇f(wt−1
r , z)−∆

t

r

)
∥∥∥∥∥∥

2

+

∣∣∣∣∣Q
t−1
r




+ κ+
(t+ 1)2

b2
E

[∥∥∥∇f(wt
r, z

′)−∇f(wt−1
r , z′)−∆

t

r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]

≤ κ+
(t+ 1)2

b2

∑

z∈Bt
r

E

[∥∥∥∇f(wt
r, z)−∇f(wt−1

r , z)−∆
t

r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]

≤ κ
(t+ 1)2

b2

∑

z∈Bt
r

E

[∥∥∥∇f(wt
r, z)−∇f(wt−1

r , z)−∆
t

r

∥∥∥
2

∗

∣∣∣∣∣Q
t−1
r

]

≤ 4 (L1D)
2
log(J)η2r,t (t+ 1)

b
,

where the inequality before the last one follows from the fact that κ+ ≤ κ, and the last inequality follows from the fact that
κ = 2 log(J). Similarly, since the loss is L0-Lipschitz, using the same inductive approach, we can bound

E




∥∥∥∥∥∥
t+ 1

b

∑

z∈Bt
r

∇f(wt
r, z)−∇FD(w

t
r)

∥∥∥∥∥∥

2

+

∣∣∣∣∣Q
t−1
r


 ≤ 4L2

0 log(J) (t+ 1)

b
.

Using the above bounds and the setting of ηr,t, we reach the following recursion

γt
r ≤

(
1− 1√

t+ 1

)2

γt−1
r +

8κ+(L
2
0 + L2

1D
2) log(J)

b
.

Unravelling the recursion, we can further bound γt
r as:

γt
r ≤ γ0

r

(
1− 1√

t+ 1

)2t

+
8κ+(L

2
0 + L2

1D
2) log(J)

b

t−1∑

j=0

(
1− 1√

t+ 1

)2j

≤ γ0
r

(
1− 1√

t+ 1

)2t

+
8κ+(L

2
0 + L2

1D
2) log(J)

√
t+ 1

b
, (12)

where the last inequality follows from the fact that
∑t−1

j=0(1− 1√
t+1

)2j ≤ 1
1−(1− 1√

t+1
)2
≤
√
t+ 1.

23

Moreover, observe that we can bound γ0
r using the same inductive approach we used earlier:

γ0
r = E




∥∥∥∥∥∥
1

b

∑

z∈B0
r

∇f(w0
r , z)−∇FD(w

0
r)

∥∥∥∥∥∥

2

+

∣∣∣∣∣Q
2r−1−1
r−1




≤ 1

b2


E




∥∥∥∥∥∥

∑

z∈B0
r\{z′}

(
∇f(w0

r , z)−∇FD(w
0
r)
)
∥∥∥∥∥∥

2

+

∣∣∣∣∣Q
2r−1−1
r−1


+ κ+E

[
∥∥∇f(w0

r , z
′)−∇FD(w

0
r)
∥∥2
+

∣∣∣∣∣Q
2r−1−1
r−1

]


≤ κ+

b2

∑

z∈B0
r

E

[
∥∥∇f(w0

r , z)−∇FD(w
0
r)
∥∥2
+

∣∣∣∣∣Q
2r−1−1
r−1

]

≤ 4L2
0 log(J)

b
.

Plugging this in (12), we can finally arrive at

E

[∥∥∇t
r −∇FD(w

t
r)
∥∥2
+

]
≤ 4L2

0 log(J)

b

(
1− 1√

t+ 1

)2t
+

8κ+(L
2
0 + L2

1D
2) log(J)

√
t+ 1

b

≤ 4L2
0 log(J)

b

(
1− 1√

t+ 1

)2t
+

16(L2
0 + L2

1D
2) log2(J)

√
t+ 1

b
,

where the last inequality follows from the fact that κ+ ≤ κ = 2 log(J).

By property (10) of regular norms and using Jensen’s inequality together with the subadditivity of the square root, we reach the
desired bound:

E
[∥∥∇t

r −∇FD(w
t
r)
∥∥
∗
]
≤
√
E

[
‖∇t

r −∇FD(wt
r)‖2+

]

≤ 4L0

√
log(J)

b

(
1− 1√

t+ 1

)t

+ 4 (L1D + L0)
log(J)√

b
(t+ 1)1/4.

B.1.3 Proof of Theorem 8

For any r ∈ {0, . . . , R − 1} and t ∈ {0, . . . , 2r − 1}, let αt
r , 〈vtr,∇t

r〉 − minv∈V 〈v,∇t
r〉; and let v∗r,t =

argmin
v∈W

〈∇FD(wt
r), v − wt

r〉. By smoothness and convexity of FD, observe

FD(wt+1
r) ≤ FD(wt

r) + 〈∇FD(wt
r), w

t+1
r − wt

r〉+ L1

2 ‖wt+1
r − wt

r‖2

≤ FD(wt
r) + ηr,t〈∇FD(wt

r)−∇t
r, v

t
r − wt

r〉+ ηr,t〈∇t
r, v

t
r − wt

r〉+
L1D

2η2
r,t

2

≤ FD(wt
r) + ηr,t〈∇FD(wt

r)−∇t
r, v

t
r − wt

r〉+ ηr,t〈∇t
r, v

∗
r,t − wt

r〉+ ηr,tα
t
r +

L1D
2η2

r,t

2

= FD(wt
r) + ηr,t〈∇FD(wt

r)−∇t
r, v

t
r − v∗r,t〉 − ηr,t〈∇FD(wt

r), v
∗
r,t − wt

r〉+ ηr,tα
t
r +

L1D
2η2

r,t

2

≤ FD(wt
r) + ηr,tD ‖∇FD(wt

r)−∇t
r‖∗ − ηr,tGapFD

(wt
r) + ηr,tα

t
r +

L1D
2η2

r,t

2 .

Hence, we have

E[GapFD
(wt

r)] ≤
E[FD(wt

r)− FD(wt+1
r)]

ηr,t
+

L1D
2ηr,t
2

+DE
[∥∥∇t

r −∇FD(w
t
r)
∥∥
∗
]
+ E[αt

r].

24

Note that by a standard argument E [αt
r] ≤ 2sr log(J) =

4D(L0+L1D)2r log(J)
√

log(1/δ)

bε . Thus, given the bound on

E [‖∇t
r −∇FD(wt

r)‖∗] from Lemma 9, we have

E[GapFD
(wt

r)] ≤
√
t+ 1

(
E[FD(w

t
r)− FD(w

t+1
r)]

)
+

L1D
2

2
√
t+ 1

+ 4L0D

√
log(J)

b

(
1− 1√

t+ 1

)t

+ 4D (L1D + L0)
log(J)√

b
(t+ 1)1/4 + 4D(L0 + L1D)

log(J)
√
log(1/δ)

bε
2r.

For any given r ∈ {0, . . . , R− 1}, we now sum both sides of the above inequality over t ∈ {0, . . . , 2r − 1}.
Let Γr ,

∑2r−1
t=0

√
t+ 1

(
E[FD(wt

r)− FD(wt+1
r)]

)
. Observe that

2r−1∑

t=0

E[GapFD
(wt

r)] ≤ Γr +
L1D

2

2

2r∑

t=1

1√
t
+ 4L0D

√
log(J)

b

2r−1∑

t=0

(
1− 1√

t+ 1

)t

+ 4D(L0 +DL1)
log(J)√

b

2r∑

t=1

t1/4 + 4D(L0 + L1D)
log(J)

√
log(1/δ)

bε
22r

≤ Γr + L1D
2 2r/2 + 4L0D

√
log(J)

b

2r−1∑

t=0

(1− 2−r/2)t

+ 8D(L0 +DL1)
log(J)√

b
25r/4 + 4D(L0 + L1D)

log(J)
√
log(1/δ)

bε
22r

≤ Γr + L1D
22r/2 + 4L0D

√
log(J)

b
2r/2 + 8D(L0 + L1D)

log(J)√
b

25r/4

+ 4D(L0 + L1D)
log(J)

√
log(1/δ)

bε
22r.

Next, we bound Γr. Before we do so, note that for all z ∈ Z , f(·, z) is L0-Lipschitz and the ‖·‖-diameter ofW is bounded
by D, hence, w.l.o.g., we will assume that the range of f(·, z) lies in [−L0D,L0D]. This implies that the range of FD lies in
[−L0D,L0D]. Now, observe that

Γr =
2r−1∑

t=0

√
t+ 1

(
E[FD(w

t
r)− FD(w

t+1
r)]

)

=
2r−1∑

t=0

(√
t+ 1 E

[
FD(w

t
r)
]
−
√
t+ 2 E

[
FD(w

t+1
r)

])
+

2r−1∑

t=0

(√
t+ 2−

√
t+ 1

)
E
[
FD(w

t+1
r)

]

≤
2r−1∑

t=0

(√
t+ 1 E

[
FD(w

t
r)
]
−
√
t+ 2 E

[
FD(w

t+1
r)

])
+ L0D

2r−1∑

t=0

(√
t+ 2−

√
t+ 1

)

Note that both sums on the right-hand side are telescopic. Hence, we get

Γr ≤E
[
FD(w

0
r)−

√
2r + 1FD(w

2r

r)
]
+ L0D 2r/2

=E

[
FD(w

0
r)− FD(w

2r

r)
]
−
(√

2r + 1− 1
)
E

[
FD(w

2r

r)
]
+ L0D 2r/2

≤3L0D 2r/2.

25

Thus, we arrive at

2r−1∑

t=0

E[GapFD
(wt

r)] ≤ 3D(L0 + L1D)2r/2 + 4L0D

√
log(J)

b
2r/2 + 8D(L0 + L1D)

log(J)√
b

25r/4

+ 4D(L0 + L1D)
log(J)

√
log(1/δ)

bε
22r.

Now, summing over all rounds r ∈ {0, . . . , R− 1}, we have

R−1∑

r=0

2r−1∑

t=0

E[GapFD
(wt

r)] ≤ 9D(L0 + L1D)2R/2 + 12L0D

√
log(J)

b
2R/2 + 6D(L0 + L1D)

log(J)√
b

25R/4

+ 2D(L0 + L1D)
log(J)

√
log(1/δ)

bε
22R.

Recall that the output ŵ is uniformly chosen from the set of all 2R iterates. By taking expectation with respect to that random
choice and using the above, we get

E[GapFD
(ŵ)] =

1

2R

R−1∑

r=0

2r−1∑

t=0

E[GapFD
(wt

r)]

≤ 9D(L0 + L1D)2−R/2 + 12L0D

√
log(J)

b
2−R/2 + 6D(L0 + L1D)

log(J)√
b

2R/4

+ 2D(L0 + L1D)
log(J)

√
log(1/δ)

bε
2R.

Recall that R = 2
3 log

(
nε

log2(J) log2(n)
√

log(1/δ)

)
and b = n

log2(n)
. Hence, we have

E[GapFD
(ŵ)] ≤ 9D(L0 + L1D)

(
log2(J)

√
log(1/δ) log2(n)

nε

)1/3

+ 12L0D

√
log(J) log2(n)

n

(
log2(J)

√
log(1/δ) log2(n)

nε

)1/3

+ 6D(L0 + L1D)
ε1/6

log1/3(n) log1/12(1/δ)

(
log2(J)

n

)1/3

+ 2D(L0 + L1D)

(
log2(J)

√
log(1/δ) log2(n)

nε

)1/3

= O


D(L0 + L1D)

(
log2(J) log2(n)

√
log(1/δ)

nε

)1/3

 ,

which is the claimed bound.

B.2 Missing Details of Section 4.2

B.2.1 Noisy Stochastic Frank-Wolfe

A formal description of the noisy stochastic Frank-Wolfe algorithm for non-convex smooth losses in the ℓp setting is given in
Algorithm 6 below.

26

Algorithm 6 AnSFW: Private Noisy Stochastic Frank-Wolfe Algorithm for ℓp DP-SO, 1 < p ≤ 2

Require: Private dataset S = (z1, . . . zn) ∈ Zn, privacy parameters (ε, δ), a number p ∈ (1, 2] feasible setW ⊂ R
d with

‖·‖p-diameter D, number of rounds R, batch size b, step sizes (ηr,t : r = 0, . . . , R− 1, t = 0, . . . , 2r − 1)

1: Choose an arbitrary initial point w0
0 ∈ W

2: for r = 0 to R− 1 do

3: Let σ2
r,0 =

16L2
0d

2/p−1 log(1/δ)
b2ε2

4: Draw a batch B0
r of b samples without replacement from S

5: Compute ∇̃0
r = 1

b

∑
z∈B0

r
∇f(w0

r , z) +N0
r , N0

r ∼ N
(
0, σ2

r,0Id

)

6: v0r = argmin
v∈W

〈v, ∇̃0
r〉

7: w1
r ← (1− ηr,0)w

0
r + ηr,0v

0
r

8: for t = 1 to 2r − 1 do

9: Let σ2
r,t =

16L2
0(t+1)2d2/p−1 log(1/δ)

b2ε2 , σ̂2
r,t =

16L2
1D

2η2
r,t(t+1)2d2/p−1 log(1/δ)

b2ε2

10: Draw a batch Bt
r of b/(t+ 1) samples without replacement from S

11: Let ∆t
r = t+1

b

∑
z∈Bt

r

(
∇f(wt

r, z)−∇f(wt−1
r , z)

)
, and let gtr = t+1

b

∑
z∈Bt

r
∇f(wt

r, z)

12: Compute ∆̃t
r = ∆t

r + N̂ t
r , N̂ t

r ∼ N
(
0, σ̂2

r,tId

)

13: Compute g̃tr = gtr +N t
r , N t

r ∼ N
(
0, σ2

r,tId

)

14: ∇̃t
r = (1− ηr,t)

(
∇̃t−1

r + ∆̃t
r

)
+ ηr,tg̃

t
r

15: Compute vtr = argminv∈W〈v, ∇̃t
r〉

16: wt+1
r ← (1− ηr,t)w

t
r + ηr,tv

t
r

17: w0
r+1 = w2r

r

18: Output ŵ uniformly chosen from the set of all iterates (wt
r : r = 0, . . . , R− 1, t = 0, . . . , 2r − 1)

B.2.2 Proof of Theorem 10

Note that it suffices to show that for any given (r, t), r ∈ {0, . . . , R− 1}, t ∈ [2r − 1], computing ∇̃0
r (Step 5 in Algorithm 6)

satisfies (ε, δ)-DP, and computing ∆̃t
r, g̃

t
r (Steps 12 and 13) satisfies (ε, δ)-DP. Assuming we can show that this is the case,

then note that at any given iteration (r, t), the gradient estimate ∇̃t−1
r from the previous iteration is already computed

privately. Since differential privacy is closed under post-processing, then the current iteration is also (ε, δ)-DP. Since the
batches used in different iterations are disjoint, then by parallel composition, the algorithm is (ε, δ)-DP. Thus, it remains
to show that for any given (r, t), the steps mentioned above are computed in (ε, δ)-DP manner. Let S, S′ be neighboring

datasets (i.e., differing in exactly one point). Let ∇̃0
r, ∆̃

t
r, g̃

t
r be the quantities above when the input dataset is S; and let

∇̃′0
r , ∆̃

′t
r , g̃

′t
r be the corresponding quantities when the input dataset is S′. Note that the ℓ2-sensitivity of ∇̃0

r can be bounded

as

∥∥∥∇̃0
r − ∇̃

′0
r

∥∥∥
2
≤ d

1
p− 1

2

∥∥∥∇̃0
r − ∇̃

′0
r

∥∥∥
∗
≤ L0d

1
p
− 1

2

b , where the dual norm here is ‖·‖∗ = ‖·‖q where q = p
p−1 . Similarly,

we can bound the ℓ2-sensitivity of g̃tr as

∥∥∥g̃tr − g̃
′t
r

∥∥∥
2
≤ L0d

1
p
− 1

2 (t+1)
b . Also, by the L1-smoothness of the loss, we have

∥∥∥∆̃t
r − ∆̃

′t
r

∥∥∥
2
≤ d

1
p− 1

2

∥∥∥∆̃t
r − ∆̃

′t
r

∥∥∥
∗
≤ L1Dηr,td

1
p
− 1

2 (t+1)
b . Given these bounds and the settings of the noise parameters in the

algorithm, the argument follows directly by the privacy guarantee of the Gaussian mechanism.

27

B.2.3 Proof of Lemma 12

Note that for the ℓp space, where p ∈ (1, 2], the dual is the ℓq space where q = p
p−1 ≥ 2. To keep the notation consistent with

the rest of the paper, in the sequel, we will be using ‖·‖∗ to denote the dual norm ‖·‖q unless specific reference to q is needed.

As discussed earlier in this section, the dual space ℓq is κ-regular with κ = min (q − 1, 2 log(d)) = min
(

1
p−1 , 2 log(d)

)
.

Fix any r ∈ {0, . . . , R− 1} and t ∈ {1, . . . , 2r − 1}. As we did in the proof of Lemma 9, we write

∇̃t
r −∇FD(w

t
r) = (1− ηr,t)

[
∇̃t−1

r −∇FD(w
t−1
r)

]
+ (1− ηr,t)

[
∆̃t

r −∆
t

r

]

+ ηr,t
[
g̃tr −∇FD(w

t
r)
]
.

where ∆
t

r , ∇FD(wt
r)−∇FD(wt−1

r).

Let ‖·‖+ denote the κ+-smooth norm associated with ‖·‖∗ (as defined by the regularity property, in the beginning of this

section). Note that by κ-regularity of ‖·‖∗, such norm exists for some 1 ≤ κ+ ≤ κ. Let Qt
r be the σ-algebra induced by all the

randomness up until the iteration indexed by (r, t). Define γt
r , E

[∥∥∥∇̃t
r −∇FD(wt

r)
∥∥∥
2

+

∣∣∣ Qt−1
r

]
. Note by property (9) of

κ-regular norms, we have

γt
r ≤ (1− ηr,t)

2γt−1
r + κ+E

[∥∥∥(1− ηr,t)
(
∆̃t

r −∆
t

r

)
+ ηr,t

(
g̃tr −∇FD(w

t
r)
)∥∥∥

2

+

∣∣∣∣∣Q
t−1
r

]

≤ (1− ηr,t)
2 γt−1

r + κ+E

[∥∥∥(1− ηr,t)
(
∆t

r −∆
t

r + N̂ t
r

)
+ ηr,t

(
gtr −∇FD(w

t
r) +N t

r

)∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]

≤ (1− ηr,t)
2γt−1

r + 2κ+(1− ηr,t)
2
E

[∥∥∥∆t
r −∆

t

r + N̂ t
r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]
+ 2κ+η

2
r,t E

[
∥∥gtr −∇FD(w

t
r) +N t

r

∥∥2
+

∣∣∣∣∣Q
t−1
r

]

≤ (1− ηr,t)
2γt−1

r + 4κ+(1− ηr,t)
2
E

[∥∥∥∆t
r −∆

t

r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]
+ 4κ+(1− ηr,t)

2
E

[∥∥∥N̂ t
r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]

+ 4κ+η
2
r,t E

[
∥∥gtr −∇FD(w

t
r)
∥∥2
+

∣∣∣∣∣Q
t−1
r

]
+ 4κ+η

2
r,t E

[
∥∥N t

r

∥∥2
+

∣∣∣∣∣Q
t−1
r

]
. (13)

where the last two inequalities follow from the triangle inequality.

Now, using the same inductive approach we used in the proof of Lemma 9, we can bound

E

[∥∥∥∆t
r −∆

t

r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]
≤ κ

(t+ 1)2

b2

∑

z∈Bt
r

E

[∥∥∥∇f(wt
r, z)−∇f(wt−1

r , z)−∆
t

r

∥∥∥
2

∗

∣∣∣∣∣Q
t−1
r

]
≤ 2κL2

1D
2η2r,t (t+ 1)

b
,

E

[
∥∥gtr −∇FD(w

t
r)
∥∥2
+

∣∣∣∣∣Q
t−1
r

]
≤ κ

(t+ 1)2

b2

∑

z∈Bt
r

E

[
∥∥∇f(wt

r, z)−∇FD(w
t
r)
∥∥2
∗

∣∣∣∣∣Q
t−1
r

]
≤ 2κL2

0 (t+ 1)

b

Moreover, observe that by property (10) of κ-regular norms, we have

E

[∥∥∥N̂ t
r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]
≤ κ

κ+
E

[∥∥∥N̂ t
r

∥∥∥
2

∗

∣∣∣∣∣Q
t−1
r

]
=

κ

κ+
E

[∥∥∥N̂ t
r

∥∥∥
2

q

∣∣∣∣∣Q
t−1
r

]

28

Note that when p = q = 2 (i.e., the Euclidean setting), then the above is bounded by dσ̂2
r,t (in such case, note that κ = κ+ = 1).

Otherwise (when 1 < p < 2), we have

E

[∥∥∥N̂ t
r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]
≤ κ

κ+
E

[∥∥∥N̂ t
r

∥∥∥
2

∗

∣∣∣∣∣Q
t−1
r

]
=

κ

κ+
E

[∥∥∥N̂ t
r

∥∥∥
2

q

∣∣∣∣∣Q
t−1
r

]

≤ κ

κ+
d

2
q E

[∥∥∥N̂ t
r

∥∥∥
2

∞

∣∣∣∣∣Q
t−1
r

]

≤ 2
κ

κ+
d

2
q log(d) σ̂2

r,t

= 32
κ

κ+

L2
1D

2η2r,t(t+ 1)2 d log(d) log(1/δ)

b2ε2

Hence, putting the above together, for any p ∈ (1, 2], we have

E

[∥∥∥N̂ t
r

∥∥∥
2

+

∣∣∣∣∣Q
t−1
r

]
≤ 32

κκ̃

κ+

L2
1D

2η2r,t(t+ 1)2 d log(1/δ)

b2ε2
,

where κ̃ = 1 + log(d) · 1(p < 2).

Similarly, we can show

E

[
∥∥N t

r

∥∥2
+

∣∣∣∣∣Q
t−1
r

]
≤ 2

κκ̃

κ+
d

2
q σ2

r,t = 32
κκ̃

κ+

L2
0(t+ 1)2 d log(1/δ)

b2ε2
.

Plugging these bounds in inequality (13) and using the setting of ηr,t in the lemma statement, we arrive at the following
recursion:

γt
r ≤

(
1− 1√

t+ 1

)2

γt−1
r + 8

κκ+(L
2
0 + L2

1D
2)

b
+ 128

κκ̃(L2
0 + L2

1D
2)(t+ 1)d log(1/δ)

b2ε2

≤
(
1− 1√

t+ 1

)2

γt−1
r + 8

κ2(L2
0 + L2

1D
2)

b
+ 128

κκ̃(L2
0 + L2

1D
2)(t+ 1)d log(1/δ)

b2ε2
,

where the last inequality follows from the fact that κ+ ≤ κ. Unraveling this recursion similar to what we did in the proof of
Lemma 9, we arrive at

γt
r ≤

(
1− 1√

t+ 1

)2t

γ0
r +

(
8
κ2(L2

0 + L2
1D

2)

b
+ 128

κκ̃(L2
0 + L2

1D
2)(t+ 1)d log(1/δ)

b2ε2

)√
t+ 1. (14)

29

Now, we can bound γ0
r via the same approach used before:

γ0
r = E




∥∥∥∥∥∥
1

b

∑

z∈B0
r

∇f(w0
r , z)−∇FD(w

0
r) +N0

r

∥∥∥∥∥∥

2

+

∣∣∣∣∣Q
2r−1−1
r−1




≤ 2E




∥∥∥∥∥∥
1

b

∑

z∈B0
r

∇f(w0
r , z)−∇FD(w

0
r)

∥∥∥∥∥∥

2

+

∣∣∣∣∣Q
2r−1−1
r−1


+ 2E

[
∥∥N0

r

∥∥2
+

∣∣∣∣∣Q
2r−1−1
r−1

]

≤ 2
κ

b2

∑

z∈B0
r

E

[
∥∥∇f(w0

r , z)−∇FD(w
0
r)
∥∥2
+

∣∣∣∣∣Q
2r−1−1
r−1

]
+ 64

κκ̃

κ+

L2
0d log(1/δ)

b2ε2

≤ 4
κL2

0

b
+ 64

κκ̃

κ+

L2
0d log(1/δ)

b2ε2

≤ 4
κL2

0

b
+ 64

κκ̃L2
0d log(1/δ)

b2ε2
,

where the last inequality follows from the fact that κ+ ≥ 1. Plugging this in (14), we finally have

E

[∥∥∥∇̃t
r −∇FD(w

t
r)
∥∥∥
2

+

]
≤64L2

0

(
κ

b
+

κκ̃d log(1/δ)

b2ε2

)(
1− 1√

t+ 1

)2t

+ 128(L2
0 + L2

1D
2)

(
κ2

b

√
t+ 1 +

κκ̃d log(1/δ)

b2ε2
(t+ 1)3/2

)
.

Hence, by property (10) of κ-regular norms and using Jensen’s inequality together with the subadditivity of the square root, we
conclude

E

[∥∥∥∇̃t
r −∇FD(w

t
r)
∥∥∥
∗

]
≤
√

E

[∥∥∥∇̃t
r −∇FD(wt

r)
∥∥∥
2

+

]

≤ 8L0

(√
κ

b
+

√
κκ̃d log(1/δ)

bε

)(
1− 1√

t+ 1

)t

+ 16(L0 + L1D)

(
κ√
b
(t+ 1)1/4 +

√
κκ̃d log(1/δ)

bε
(t+ 1)3/4

)
.

B.2.4 Proof of Theorem 11

For any iteration (r, t), using the same derivation approach as in the proof of Theorem 8, we arrive at the following bound:

FD(w
t
r) ≤ FD(w

t
r) + ηr,tD

∥∥∇FD(w
t
r)−∇t

r

∥∥
∗ − ηr,tGapFD

(wt
r) +

L1D
2η2r,t
2

Thus, using the bound of Lemma 12, the expected stationarity gap of any given iterate wt
r can be bounded as:

E[GapFD
(wt

r)] ≤
E[FD(wt

r)− FD(wt+1
r)]

ηr,t
+DE

[∥∥∇t
r −∇FD(w

t
r)
∥∥
∗
]
+

L1D
2ηr,t
2

≤
√
t+ 1

(
E[FD(w

t
r)− FD(w

t+1
r)]

)
+

L1D
2

2
√
t+ 1

+ 8DL0

(√
κ

b
+

√
dκκ̃ log(1/δ)

bε

)(
1− 2−r/2

)t

+ 16D (L1D + L0)

(
κ√
b
(t+ 1)1/4 +

√
dκκ̃ log(1/δ)

bε
(t+ 1)3/4

)
.

30

For any given r ∈ {0, . . . , R− 1}, we now sum both sides of the above inequality over t ∈ {0, . . . , 2r − 1} as we did in the

proof of Theorem 8. Let Γr ,
∑2r−1

t=0

√
t+ 1

(
E[FD(wt

r)− FD(wt+1
r)]

)
. Observe that

2r−1∑

t=0

E[GapFD
(wt

r)] ≤ Γr +
L1D

2

2

2r∑

t=1

1√
t
+ 8DL0

(√
κ

b
+

√
dκκ̃ log(1/δ)

bε

)
2r−1∑

t=0

(
1− 2−r/2

)t

+ 16D (L1D + L0)

(
κ√
b

2r∑

t=1

t1/4 +

√
dκκ̃ log(1/δ)

bε

2r∑

t=1

t3/4

)

≤ Γr + L1D
2 2r/2 + 8DL0

(√
κ

b
+

√
dκκ̃ log(1/δ)

bε

)
2r/2

+ 32D (L1D + L0)

(
κ√
b
25r/4 +

√
dκκ̃ log(1/δ)

bε
27r/4

)
.

Next, using exactly the same technique we used in the proof of Theorem 8, we can bound Γr ≤ 3L0D 2r/2. Thus, we arrive at

2r−1∑

t=0

E[GapFD
(wt

r)] ≤ 3D (L0 + L1D) 2r/2 + 8DL0

(√
κ

b
+

√
dκκ̃ log(1/δ)

bε

)
2r/2

+ 32D (L1D + L0)

(
κ√
b
25r/4 +

√
dκκ̃ log(1/δ)

bε
27r/4

)

Now, summing over r ∈ {0, . . . , R− 1}, we have

R−1∑

r=0

2r−1∑

t=0

E[GapFD
(wt

r)] ≤ 9D (L0 + L1D) 2R/2 + 24DL0

(√
κ

b
+

√
dκκ̃ log(1/δ)

bε

)
2R/2

+ 48D (L1D + L0)
κ√
b
25R/4 + 24D (L1D + L0)

√
dκκ̃ log(1/δ)

bε
27R/4.

Since the output ŵ is uniformly chosen from the set of all 2R iterates, then averaging over all the iterates gives the following
(after some algebra similar to what we did in the proof of Theorem 8)

E[GapFD
(ŵ)] =

1

2R

R−1∑

r=0

2r−1∑

t=0

E[GapFD
(wt

r)] ≤ 9D(L0 + L1D)2−R/2 + 24DL0

(√
κ

b
+

√
dκκ̃ log(1/δ)

bε

)
2−R/2

+ 48D(L0 + L1D)
κ√
b
2R/4 + 24D(L0 + L1D)

√
dκκ̃ log(1/δ)

bε
23R/4.

31

Plugging R = 4
5 log

(
nε√

dκ̃ log(1/δ)κ5/3 log2(n)

)
, we finally get

E[GapFD
(ŵ)] ≤ 9D(L0 + L1D)κ2/3 d1/5 κ̃1/5 log1/5(1/δ) log4/5(n)

n2/5ε2/5

+ 24DL0 κ
2/3



√

κ log2(n)

n
+

√
dκκ̃ log(1/δ) log2(n)

nε


 d1/5 κ̃1/5 log1/5(1/δ) log4/5(n)

n2/5ε2/5

+ 48D(L0 + L1D)κ2/3 ε1/5 log3/5(n)

n3/10 (dκ̃ log(1/δ))
1/10

+ 24D(L0 + L1D)
d1/5 κ̃1/5 log1/5(1/δ) log4/5(n)

κ1/2 n2/5 ε2/5

= O

(
D(L0 + L1D)κ2/3

(
ε1/5 log3/5(n)

n3/10 (dκ̃ log(1/δ))
1/10

+
d1/5 κ̃1/5 log1/5(1/δ) log4/5(n)

n2/5ε2/5

))
.

Now, observe that the bound above is dominated by the first term when d κ̃ = o
(

n1/3ε2

log(1/δ) log2/3(n)

)
. Moreover, note that

the first term is decreasing in d. Thus, we can obtain a more refined bound via the following simple argument. When

d κ̃ = o
(

n1/3ε2

log(1/δ) log2/3(n)

)
, we embed our optimization problem in higher dimensions; namely, in d′ dimensions, where

d′ satisfies: d′
(
1 + log(d′) · 1(p < 2)

)
= Θ

(
n1/3ε2

log(1/δ) log2/3(n)

)
. In such case, the bound above (with d = d′) becomes

O
(
D(L0 + L1D)κ2/3 log2/3(n)

n1/3

)
. When d κ̃ = Ω

(
n1/3ε2

log(1/δ) log2/3(n)

)
, the bound above is dominated by the second term.

Putting these together, we finally arrive at the claimed bound:

O

(
D(L0 + L1D)κ2/3

(
log2/3(n)

n1/3
+

d1/5 κ̃1/5 log1/5(1/δ) log4/5(n)

n2/5ε2/5

))
.

C Missing Details of Section 5

For this section, we will occasionally require the use of indicator functions. Given a closed convex set W , we define the
(convex) indicator function as

χW(w) =

{
0 w ∈ W

+∞ w /∈ W.

Also recall the definition of the normal cone ofW at point w ∈ W , NW(w) = {p ∈ W : 〈p, w − w〉 ≤ 0 ∀w ∈ W}. The
normal cone is the subdifferential of the indicator function: NW(w) = ∂χW(w).

C.1 Background Information on Weakly Convex Functions and their Subdifferentials

Definition 21. We say that a function f :W 7→ R is ρ-weakly convex w.r.t. norm ‖ · ‖ if for all 0 ≤ λ ≤ 1 and w, v ∈ W , we
have

f(λw + (1− λ)v) ≤ λf(w) + (1− λ)f(v) +
ρλ(1− λ)

2
‖w − v‖2.

For nonconvex functions, defining the subdifferential can be done in a local fashion.

Definition 22. Let f : E 7→ R. We define the (regular) subdifferential of f at point w ∈ E, denoted ∂f(w), as the set of
vectors g ∈ E such that

lim inf
v→w,v 6=w

f(v)− f(w)− 〈g, v − w〉
‖v − w‖ ≥ 0.

We say that f is subdifferentiable at w if ∂f(w) 6= ∅. We will say f is subdifferentiable if it is subdifferentiable at every point.

32

We will need a characterization of the regular subdifferential in terms of directional derivatives. We recall the definition of the
directional derivative of a function f at point w in direction e:

f ′(x; e) := lim inf
ε→0,c→e

f(w + εe)− f(w)

ε
.

Proposition 23 (Regular subdifferential and directional derivatives). Let f : E 7→ R be a Lipschitz function which is
subdifferentiable at w, then

∂f(w) = {g ∈ E : 〈g, e〉 ≤ f ′(w; e) ∀e ∈ E}.

Proof. Let L0 be the Lipschitz constant of f w.r.t. ‖ · ‖. We prove both inclusions. First (⊆), if g ∈ ∂f(w), then let e ∈ E\{0}.
Using the definition of subdifferential for w and v = w + εc (where ε→ 0 and c→ e), we get

lim inf
ε→0,c→e

f(w + εc)− f(w)

ε‖c‖ − 〈g, c〉‖c‖ ≥ 0

Taking first the limit c→ e and then ε→ 0, we get f ′(w; e) ≥ 〈g, e〉, concluding the desired inclusion.

For the reverse inclusion (⊇), let g ∈ E be s.t. 〈g, e〉 ≤ f ′(w; e), for all e ∈ E. Now let v → w, and consider any e ∈ E

accumulation point of (v − w)/‖v − w‖ (they exist by compactness of the unit sphere). Next, let ε = ‖v − w‖, and notice that
ε→ 0. Then

f(v) = f(w) + [f(v)− f(w + εe)] + [f(w + εe)− f(w)]

≥ f(w)− L0‖(v − w)− εe‖+ f(w + εe)− f(w)

ε
ε

≥ f(w) +
f(w + εe)− f(w)

ε
ε− L0‖v − w‖

(v − w

‖v − w‖ − e
)
.

Taking v → w (which is equivalent to ε→ 0), we get

f(v) ≥ f(w) + f ′(w; e)ε+ o(‖v − w‖)
≥ f(w) + 〈g, εe〉+ o(‖v − w‖)

= f(w) + 〈g, v − w〉+ ε
〈
g, e− (v − w)

ε

〉
+ o(‖v − w‖)

= f(w) + 〈g, v − w〉+ o(‖v − w‖),

where in the second step we used the starting assumption.

Finally, we present the well-known fact that weak convexity implies that the variation of the function compared to its subgradient
approximation is lower bounded by a negative quadratic.

Proposition 24 (Characterization of weak convexity from the regular subdifferential). Let f :W 7→ R be subdifferentiable
and Lipschitz w.r.t. ‖ · ‖. Then f is ρ-weakly convex if and only if for all w, v ∈ E, and g ∈ ∂f(w)

f(v) ≥ f(w) + 〈g, v − w〉 − ρ

2
‖v − w‖2. (15)

33

Proof. We prove both implications. For⇒, let v, w ∈ E, and 0 < λ < 1. By ρ-weak convexity:

f((1− λ)v + λw) ≤ (1− λ)f(v) + λf(w) +
ρλ(1− λ)

2
‖v − w‖2

=⇒ (1− λ)[f(v)− f(w)] ≥ f((1− λ)v + λw)− f(w)− ρλ(1− λ)

2
‖v − w‖2

=⇒ f(v)− f(w) ≥ lim inf
λ→1

[f(w + (1− λ)(v − w))− f(w)

(1− λ)
− ρλ

2
‖v − w‖2

]

= f ′(w; v − w)− ρ

2
‖v − w‖2

≥ 〈g, v − w〉 − ρ

2
‖v − w‖2,

where in the last inequality we used Proposition 23.

Next, for⇐, let v, w ∈ E and 0 ≤ λ ≤ 1. Then, letting g ∈ ∂f((1− λ)w + λv), and using (15) twice, we get

f(v) ≥ f((1− λ)w + λv) + 〈g, (1− λ)(v − w)〉 − ρ

2
‖(1− λ)(v − w)‖2

f(w) ≥ f((1− λ)w + λv) + 〈g, λ(w − v)〉 − ρ

2
‖λ(v − w)‖2.

Multiplying the first inequality by λ and the second one by (1− λ), gives

λf(v) + (1− λ)f(w) ≥ f((1− λ)w + λv)− ρλ(1− λ)

2
‖v − w‖2,

which concludes the proof.

From the previous proposition, we can easily conclude that any smooth function is weakly convex.

Corollary 25. Let f :W 7→ R be a L1-smooth function (i.e., ‖∇f(v)−∇f(w)‖∗ ≤ L1‖v − w‖, for all v, w ∈ W). Then f
is L1-weakly convex.

Proof. Let v, w ∈ W . Then by the Fundamental Theorem of Calculus:

f(v) = f(w) +

∫ 1

0

〈∇f(w + s(v − w)), v − w〉ds

= f(w) + 〈∇f(w), v − w〉+
∫ 1

0

〈∇f(w + s(v − w))−∇f(w), v − w〉ds

≥ f(w) + 〈∇f(w), v − w〉 − L1‖v − w‖2
∫ 1

0

sds.

We conclude by Proposition 24 that f is L1-weakly convex.

C.1.1 Basic Rules of the Subdifferential, Optimality Conditions and Stationarity Gap

We know provide some basic tools regarding subdifferentials and optimality conditions in weakly convex programming, which
will also allow us to introduce the notion of stationarity gap in this setting.

To start, we provide a basic calculus rule for the subdifferential of a sum of weakly convex functions.

Theorem 26 (Corollary 10.9 from [RW98]). If f : E 7→ R be weakly convex, and g : E 7→ R ∪ {+∞} be convex, lower
semicontinuous, and such that w ∈ dom(g). Then ∂(f + g)(w) = ∂f(w) + ∂g(w).

34

Next, we provide a relation between directional derivatives and the regular subdifferential.

Proposition 27 (From Proposition 8.32 in [RW98]). If ϕ : E 7→ R ∪ {+∞} is weakly convex, then

dist(0, ∂ϕ(w)) = − inf
‖e‖≤1

ϕ′(w; e).

With these results, we can now provide optimality conditions for weakly convex optimization

Proposition 28 (Stationarity conditions for weakly convex optimization). Let f :W 7→ R be ρ-weakly convex and L0-Lipschitz
w.r.t. ‖ · ‖, andW a closed and convex set. Then, if w∗ ∈ argmin{f(w) : w ∈ W}, then there exists g ∈ ∂f(w∗) such that

〈g, v − w∗〉 ≥ 0 (∀v ∈ W).

Proof. First, we observe that without loss of generality, f : E 7→ R (this is a consequence of the Lipschitz extension Theorem).
Let now g(w) = χW(w) (i.e., the convex indicator function, as defined in the beginning of this section). Since w∗ ∈ W , by
Proposition 26, we have ∂(f + g)(w∗) = ∂f(w∗)+ ∂g(w∗). Now we apply Proposition 28 to ϕ(w) = f(w)+ g(w); since w∗

is a minimizer of ϕ, we have that ϕ′(w∗; e) ≥ 0 for all e, and hence dist(0, ∂ϕ(w∗)) = 0. Since ∂g(w∗) = N (w∗), we get that

0 = dist(0, ∂f(w∗) +NW(w∗)),

and this implies that there exists g ∈ ∂f(w∗), such that g ∈ −NW(w∗), i.e.,

〈g, v − w∗〉 ≥ 0 (∀v ∈ W).

The previous result leads to a natural definition of the stationarity gap in weakly convex optimization:

Gapf (w) = inf
g∈∂f(w)

sup
v∈W
〈g, v − w〉. (16)

Notice that, by Proposition 28, any minimizer of a weakly convex and Lipschitz function is such that its stationarity gap is
equal to zero.

C.2 Missing proofs from Section 5.1

C.2.1 Proof of Proposition 13

By strong convexity of 1
2‖ · ‖2 and weak convexity of f :

β

2
‖[λw + (1− λ)v]− u‖2 ≤ λ

β

2
‖w − u‖2 + (1− λ)

β

2
‖v − u‖2 − βνλ(1− λ)

2
‖w − v‖2

f(λw + (1− λ)v) ≤ λf(w) + (1− λ)f(v) +
ρλ(1− λ)

2
‖w − v‖2

Adding these inequalities, and using that νβ ≥ ρ, we conclude the (νβ − ρ)-strong convexity of f(·) + β
2 ‖ · −u‖2, concluding

the proof.

C.2.2 Proof of Lemma 14

We now present the proof. First, notice that the proximal-type mapping can be computed as a solution of the optimization
problem

min
v∈W

[
f(v) +

β

2
‖v − w‖2

]
(17)

35

By Proposition 13, problem (17) is strongly convex, and therefore it has a unique solution; in particular, ŵ is well-defined
and unique. Next, we use the optimality conditions of constrained convex optimization for problem (17), together with the
subdifferential of the sum rule (Theorem 26), and the chain rule of the convex subdifferential; to conclude that(

∂f(ŵ) + β‖ŵ − w‖ ∂(‖ · ‖)(ŵ − w)
)
∩ −NW(ŵ) 6= ∅. (18)

First, consider the case where ŵ = w, then there exists g ∈ ∂f(ŵ) s.t., 〈g, ŵ− v〉 ≤ 0, for all v ∈ W , which shows the desired
conclusion. In the case ŵ 6= w, consider g ∈ ∂f(ŵ) and h ∈ ∂(‖ · ‖)(ŵ−w) such that by (18), 〈g+ β‖ŵ−w‖h, v− ŵ〉 ≥ 0,
for all v ∈ W . We first prove that ‖h‖∗ = 1. Indeed, first ‖h‖∗ ≤ 1 since the norm is 1-Lipschitz. The reverse inequality
follows from the equality in the Fenchel inequality, when p is a subgradient [HUL01],

‖ŵ − w‖ = ‖ŵ − w‖+ χB∗(0,1)(p) = 〈p, ŵ − w〉.
Since ŵ 6= w, this shows in particular that ‖p‖∗ = 1. We conclude that in this case, 〈g, ŵ − v〉 ≤ βD‖w − ŵ‖, for all v ∈ W ,
which concludes the proof.

C.2.3 Missing Details in Consequences of Proximal Near Stationarity

Now we explain some technical details behind the derivation of the following consequence for proximal nearly-stationary
algorithms

ES∼Dn,A
[
‖proxβFD

(A(S))−A(S)‖
]
≤ ϑ and ES∼Dn,A

[
GapFD

(
prox

β
FD

(A(S))
)]
≤ ϑ. (19)

First, we suppose A is (ϑ, β)-proximal nearly stationary. From this, we directly conclude the first property,

ES∼Dn,A
[
‖proxβFD

(A(S))−A(S)‖
]
≤ ϑ.

For the second property, we first recall the stationarity gap in weakly convex optimization (see eqn. (16)): here, for w ∈ W and
objective f :W 7→ R, define

Gapf (w) = inf
g∈∂f(w)

sup
v∈W
〈g, w − v〉.

Now, if B : Zn 7→ R is a randomized algorithm, its expected gap corresponds to

ES∼Dn,B[GapFD
(B(S))] = ES∼Dn,B

[
inf

g∈∂FD(B(S))
sup
v∈W
〈g,B(S)− v〉

]
.

Finally, under this definition of the expected gap, we have that if B(S) = prox
β
FD

(A(S)), then by Lemma 14 and (ϑ, β)-
proximal near stationarity,

GapFD
(B) = ES∼Dn,B

[
inf

g∈∂FD(B(S))
sup
v∈W
〈g,B(S)− v〉

]
≤ ES∼Dn,B

[
βD‖B(S)−A(S)‖

]

≤ ϑ,

concluding the claim.

C.3 Missing Details of Section 5.2

Algorithm 2 is inspired by the proximally guided stochastic subgradient method of Davis and Grimmer [DG19], where the
proximal subproblems are solved using an optimal algorithm for DP-SCO in the strongly convex case, given in [AFKT21].
Hence, we cite their theorem below.

Theorem 29 (Thm. 8 in [AFKT21]). Consider the ℓp setting of λ-strongly convex stochastic optimization, where 1 ≤ p ≤ 2.
There exists an (ε, δ)-differentially private algorithm ASC with excess risk

O
(L2

0

λ

[κ
n
+

κ̃κ2d log(1/δ)

n2ε2

])
,

where κ = min{1/(p − 1), log d} and κ̃ = 1 + log d · 1(p < 2). This algorithm runs in time O(log n · log log n ·
min{n3/2

√
log d, n2ε/

√
d}).

36

We note in passing that Thm. 8 in [AFKT21] is stated only for the ℓ1-setting; however, since their mirror descent algorithm and
reduction to the strongly convex case works more generally, we state a more general version of their statement.

C.3.1 Proof of Theorem 16

The privacy of Algorithm 2 is certified by parallel composition and the privacy guarantees of ASC. For the accuracy, first
consider the case p ≥ 1+1/ log d. Here, recall that w 7→ 1

2‖w− w̄‖2p is a 1/κ-strongly convex function w.r.t. ‖ · ‖p [Bec17], so

we can choose ν = 1/κ = (p− 1) as the strong convexity parameter. Let ŵr = prox
β
FD

(wr) be the optimal solution to problem

(6). Our goal now is to show that wR is ϑ-proximal nearly stationary. First, by Proposition 13, Fr is (β/κ− ρ)-strongly convex
w.r.t. ‖ · ‖p. Since (β/κ− ρ) = ρ, we have by Theorem 29 that for all r = 1, . . . , R,

E
[
Fr(wr+1)− Fr(ŵr)

]
= O

(L2
0

ρ

[κ

nr
+

κ̃κ2d log(1/δ)

n2
rε

2

])
. (20)

By strong convexity of Fr, we have almost surely:

FD(wr) = Fr(wr) ≥ Fr(ŵr) +
ρ

2
‖ŵr − wr‖2p. (21)

Hence, using (20) and (21), we get

E

[
FD(wr+1) +

β

2
‖wr+1 − wr‖2p

]
= E[Fr(wr+1)] ≤ E[Fr(ŵr)] +O

(L2
0

ρ

[κ

nr
+

κ̃κ2d log(1/δ)

n2
rε

2

])

= E

[
FD(wr)−

ρ

2
‖ŵr − wr‖2p

]
+O

(L2
0

ρ

[κ

nr
+

κ̃κ2d log(1/δ)

n2
rε

2

])
,

and summing from r = 1, . . . , R, we obtain

1

R

R∑

r=1

E‖ŵr − wr‖2 ≤
2

Rρ

[
E[F (w1)− F (wR+1)] +O

(R∑

r=1

L2
0

ρ

[κ

nr
+

κ̃κ2d log(1/δ)

n2
rε

2

])]

= O
(1
ρ

{L0D

R
+

L2
0

ρ

[
κ
R

n
+

κ̃κ2d log(1/δ)

ε2
R2

n2

]})
.

Now we use that R =
⌊
min

{√
nDρ
κL0

, 1
(κ̃κ2)1/3

(D(nε)2ρ
L0d log(1/δ)

)1/3}⌋
, which is at most n by the assumption nd ≥ ρD/L0. Then,

E
[
‖proxFD

(wR)− wR‖2p
]
=

1

R

R∑

r=1

E
[
‖ŵr − wr‖2p

]
= O

(
1

ρ

[L3/2
0 D

√
κ√

nρ
+ (κ̃κ2)1/3(L2

0D)2/3
(d log(1/δ)

(nε)2ρ

)1/3]
)
.

Finally, by the Jensen inequality, we have that

E
[
max{1, βD}‖proxFD

(wR)− wR‖p
]
≤ max{1, 2ρDκ}√

ρ
O
(L3/2

0 (Dκ)1/4

[nρ]1/4
+ (κ̃κ)1/6(L2

0D)1/3
(d log(1/δ)

(nε)2ρ

)1/6)
.

Next, in the case 1 ≤ p < 1 + 1/ log d, we can use that ‖ · ‖p̄ and ‖ · ‖p are equivalent with a constant factor (recall that here
p̄ = 1 + 1/ log d). Using then ‖ · ‖p̄ in the algorithm and argument above clearly leads to the same conclusion with κ = log d.
Finally, the running time upper bound follows by Theorem 29.

37

