A Missing Details of Section 3

A.1 Missing Details of Section 3.1

A.1.1 Moreau Envelope Smoothing

Let M be a (potentially unbounded) closed interval, y € R, and 3 > 0. Consider a function £¥) : M — R as in Definition 2.
The 3-Moreau envelope of /() is given as

ﬂ(ﬁy) (m) := min [ﬁ(y) (u) + §|u —m|?].

ueM

Denote the proximal operator with respect to /(%) as

proxf(y) (m) = arg min [(*) (u) + g\u —mf*].

ueM
For convex functions, the Moreau envelope satisfies the following properties.

Lemma 18. (See [Nes05, Canll]) Let {%¥) : M — R be a convex function and Lo-Lipschitz. Then the following hold:
(a) Eé‘y) is convex, 2Lg-Lipschitz and 3-smooth.
(b) £ (m) = Bm — proxj, (m)].
(c) €9 (m) < W (m) < ¢¥(m) + L3/(25)

A.1.2 Proof of lemma 3
The Lipschitzness guarantee follows straightforwardly from Lemma 18. For the smoothness guarantee, note that
Vfs(w, (x,y)) = Zéy)/(@u, x))z. Since Egy) is B-smooth, for any w, w’ € W we have
IV fa(w, (@,9)) = V fopw’, (@ 9)ll = 165”7 (w0, 2)e — 67 (', 2))al .
=l 168" (w, ) — €5 (', )
< llzll 81w, z) — (W', 7))
< [l 2B]w — ',

where the last step follows from the definition of the dual norm. For the accuracy, by the guarantees of the Moreau envelope of
¢W) it holds that for all w € R? and (x,y) € X x R that

f(w, (2,9)) — fa(w, (z,9)] = %) ((w,2)) — €% ((w, 2))]

2

~

<52

w
E

A.1.3 Proof of Lemma 4

Let x, y and w be the inputs to Algorithm 3. Note as defined in Algorithm 3, m = (w,z) and P = M N [m — % m+ %]

Define hp(u) 2 (W) (u) + 5 |u —m[?, i.e. the proximal loss. Let u* = arg min{hg(u)}. We first show that |& — u*| is small
€R

by noting that lines 1-10 of Algorithm 3 implement the bisection method on hﬁ Thus, so long as P is a closed interval, u* € P,
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Algorithm 3 Og , r: Gradient Oracle for Smoothed GLL

Require: Parameter Vector w € W, Datapoint (z,y) € (X x R)
1: m = {(w,x)

2 Let[a,b] = M [m — 22, m + 2]

2 o (2405)
fort =1toT do
Let my = GTer
I £0)(520) 41500 2 > 0)(2522) 4 [ 2522 12 then
b= me
else
a = Mg
@ = argmin {£%)(m;) + |m, — m|?}
{m:te[T]}
: Output: S(m — u)x

SN A A

—_

—_
—

and ma%c{h/;(u) — hg(u*)} < 7, standard guarantees of the bisection method give that hg() — hg(u*) < 7277 (see, e.g.,
ue

[Nem95, Theorem 1.1.1]). Clearly P is a closed interval since M is closed. To see that u* € P, note that since u™* is the
minimizer of hg it holds that

B

B A
2

2

0 < LW (m) 4+ Zjm —m|? — (W (w*) — S|u* —m|? =W (m) — 1) (u*) — §|u* —ml|?.

Further since /() is Lo-Lipschitz we have that £(¥)(m) — (™) (u*) < Lo|u* — m/|. Using this fact in the above inequality
we obtain |m — u*| < 2Ly/B and thus u* € P. Using the bound on the radius of P and Lipschitz constant of /) it holds

that 7 < 8L3/f3. The setting of T' = {log2 (16L3R2 ﬂ and the accuracy gaurantees of the bisection method then gives that

o’

hg(w) — hg(u*) < 25‘%. Since hg is S-strongly convex we then have

0| < ¢2<hﬁ<a> —hs(u)) _ o
B B - BR

The accuracy guarantee ||Op o, r(w, (z,y)) — V fa(w, (z,y))||, < o then follows straightforwardly using part (b) of Lemma
18 and the facts that ||z||, < Rand u* = proxf(y) (m).

A.2 Proof of Theorem 5

The proof of convergence follows similarly to [FKT20], but additionally we account for the change in gradient sensitivity and
extra error introduced by using the approximate gradient oracle of the smoothed loss, Og ,r. Let PSGD(O, 1, wo, T) (used in
Algorithm 4) denote the process which computes w; = Hyy[ws—1 + nO(wi_1)] : Vt € [T], where IIy is the projection onto
constraint set WW. By Lemma 3, f3 is a (2Lo R)-Lipschitz and (3R?)-smooth loss function. Further, the increase in error due to
using a-approximate gradients in PSGD is at most 2a.D (see, e.g., [FGV17, BFTT19]). Let Fj3 p(w) = ZED [fa(w)] and let

wj = arg min{F p(w)}. For notational convenience, let wy = wi and § = w0y — wj. We have (following [FKT20, Proof
w

we
of Theorem 4.4]):
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Algorithm 4 Phased SGD for GLL

Require: Private dataset (zl, ... ,zn) € Z", constraint set W C R?, privacy parameters (€,9) s.t. € < 4/log(1/6), constraint
diameter (for constrained case) D, Lipschitz constant L, smoothness parameter (3, oracle accuracy «, feature vector norm
bound R

Let wy € W be arbitrary

— £
p= 24/log(1/3)

= logy(n)
For Constrained setting: 7 = 325 min{% %}

oW e

For Unconstrained setting: 1 =

(Note that we always have 6 < n.)
s=1
for k =1to K do
Ty = 57
Mk = 1k
Initialize PSGD algorithm of [FKT20] (over domain W) at 70,1 and run with oracle Og i in place of V f and step
size ny, for T}, steps over dataset {zs, ..., Zs4+1, }. Let wy, be the average of the iterate of PSGD.
11: W = wi + &k where{kwN(O,]IdU,%) WithO’k:%
122 s=s4+1Ty
13: Output: W

3 Lo 7 min{ 2 L f} where 6 is an upper bound on the expected rank of Y| x;x]

9 XD

E [Fgp(wk) — Fpp(wk—1)] + E[Fpp(0k) — Fp(wik)]

Mx

E [F@D(TI)K) - Fﬂ,D(wE)} -

£
Il
-

IN

dU 2 2
T +27) LiR* +2Da | + 2LoRE[||¢k||2]
Nk

M TTMN

da2 5
L+ 20, L2R? ) + 2LoRVdok + 2DKa.
27}ka

LoR
nlog(n)’
we have 2DKa = %. It can be verified that the rest of the expression is O (LORD NG + o ) (see [FKT20,

Proof of Theorem 4.4]). To convert to population loss with respect to the original function, we provide the following analysis.
Let w* = mi\?\; Fp(w*). By Lemma 3 we have for any w € W
we

Where the first inequality follows from the convergence of PSGD [FKT20, Lemma 4.5]. By the setting of a =

2
Fp(w) — Fp(w") < Fpp(w) - Fgp(w )*%
L2

Thus by the setting 3 = \/nLo/(RD) we have
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Plugging in our value of p into the above we have the final result.

E [Fp(wx) — Fp(w*)] = O <L0RD <\/lﬁ n ‘“Ongg(l/‘s)» ,

For privacy, note that ||Op o r(w, 2)|| < (2LoR + L2 and thus the sensitivity of the approximate gradient is bounded by

n

3LoR. Thus, by setting the parameters of Phased SGD as they would be for a (3LgR)-Lipschitz function, Lemma 4.5 of
[FKT20] implies that Algorithm 4 satisfies (¢, §)-DP so long as < ﬁ. It’s easy to see that the condition on 7 holds.

Proof for the Unconstrained Case: We show here a detailed proof for the excess risk guarantees for our construction for
(possibly non-smooth) GLLs in the unconstrained case (Algorithm 4). This result was mentioned in the remark after Theorem 5.
Unlike the construction in [SSTT21] with super-linear time, the construction we give here runs in near-linear time.

Before presenting our result for this setting, a few preliminaries are necessary. Let V' be a matrix whose columns are an
eigenbasis for > | x;x] . For any u,v’ € R%, let |[ully = vVuT V'V Tu denote the semi-norm of u induced by V/, and let
(u, ')y = u'VVTu'. Here, we assume knowledge of some upper bound @ on SIED [Rank(V)]. Note that this is no loss of

generality since we always have SED [Rank(V')] < n; hence, if we don’t have this additional knowledge, we can set 6 = n.

Theorem 19. Let W = R% Let f : W x (X x R) — R be a Lo-Lipschitz and R-bounded GLL with respect to || - ||2.
Let 8 = \/nLo/R, a = £2E Then Phased-SGD run with oracle Op , p and dataset S € 2" satisfies (¢,0) differential

nlogn

privacy and has running time O(nlogn). Further, if S ~ D™ the output of Phased-SGD has expected excess population risk

0 (LOR (Hﬁ)o - U)E”z + 1) <' blos(1/o) 1))

ne Vvn

To prove the claim, we start by providing the following lemma. As before, denote wo = wj and §o = wo — wj.
Lemma 20. Let o, 5, R be as in Theorem 19. Then the output, wy, of phase k of Phased SGD using Og . r satisfies

E [[|dx-1 — we—1]l}] snpL2R? Lot (]E ([ h—1 — wr—1llv] + 1)
2, T, A Vnlog(n)

E [Fp,p(wk) — Fg,p(wg—1)] <

Proof. Let {ug, ..., ur, } denote the iterates generated by round k of PSGD (where ug = wy_1), and let z; be the datapoint

sampled during iteration ¢. For all ¢ € {0, ... T} }, define the potential function ®*) £ |ju; — wy,_;||?. Using standard algebraic
manipulation, we have

(D) = o) — 2m{Op . r (Ut 2t), Ut — Wi—1)v + ni\\oﬁ,aﬂ(uu Zt)||%/
< W — 20 (V fa(ue, 20), up — wi—1)v + 2nearljuy — w—1llv + 17 (o + 4LFR?),

where the inequality follows from the fact that ||Og o r(ue, 2:) — V f5(us, 2¢)|| < o and the nonexpansiveness of the projection
onto the span of V. Since the gradient is in the span of V', we have

DD < W — 20 (V fa(ug, 2t), ur — wi—1) + 2nper||us — wi_1 ||y + 02 (e +4L2R?).
Hence 5B _ pt+D "
B TR— + aljuy — wi—1|lv + ?(a2 + 4L2R?).
Taking the expectation w.r.t. all randomness (i.e., w.r.t. S ~ D™ and the Gaussian noise random variables), we have
E [@(t) — q)(t+1)]

21,

(Vfa(ue, z0), up — wrp—1) <

E[(VFs,p(ut), ur —wi-1)] <

+ aF [Jlug — wi—1lv] + ’7—2’“(042 +AL2R?).
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Moreover, by the convexity of Fiz p we have E [(VF3 p(us), ur — wi—1)] > E[Fs,p(ur) — Fz,p(wg—1)]. Combining this

inequality with the above, and using the fact that wy, = T% ZtTi 1 u¢ together with the convexity of Fig p, we have

Ty
1
E[F3 p(ws) ~ Fy p(wi-)] < 7> (E[Fs p(ue) = Fy.plwi)])
t=1
E [0©)] T
« Nk, 2 2 2
—E — W — 412 R*).
o T ;Ilut wiilv | + 5 (o +4L5R?)

To bound E [ZtT:’“ 1 llug — wr—1]|v| in the above, observe that,

lur — wi—1llv < ||us—1 — we—1|lv + [|us — we—1]|v

t
< g1 — wr—1]|v + Z l[uj —wj—allv-
j=1
Hence

t

E[llue — we—1llv] < E[dr-1 — weallv] + > Eflluj — uj_a|lv]

Jj=1

<E {\/<I><0>} +pt(2LoR + o),

where the last inequality follows from the definition of ®( and the fact that E[|u; —u;_1]v] =
ME [|08,a,r (w1, zj—1)|]] < nk(2LoR + «). Thus we have

E [¢@)]
20Ty

E [Q(O)] 5n L2 R2
o N Lo R
=gt e (E [\/cb(O)} + 3TknkL0R) .

E [Fg,p(wy) — Fs,p(wy—1)] < +a (E[VeO] + Tin(2LoR + ) + 5 (a? +4LER?)

The last step follows from the fact that o« = #g?n) < LgR. Further, since n;, = m min{%,

it holds that 3Ty nx Lo R < +/n. Thus by the setting of «, we have

1
1 < SToRVR andT), <n

S

n

E[2O] 5, 12pe LR (E|[VE©] +1)

E[Fg,p(wk) — Fp,p(wk—1)] < ST 2 Vnlog(n)
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Recall that we denote wy = w;; and &y = wo — wg Using the above lemma and noting that wy_; — wi—1 = &x—1, the excess

risk of the wg is bounded by
K

E [Fsp(k) — Fsp(ws)] = E[Fsn(wy) — Fsp(wi-1)] +E [Fsp (k) — Fgp(wk)]
k=1
K (E[[[&-1}] seL2R? Lol (E (N€k—1llv] + 1)
<2 |~ 2 T Vnlgn)
+E [Fs,p(0k) — Fap(wk)]. ®)

Note that for any 2 < k£ < K, we have
E (l-l] =B | B 6 VYT elv]] < ERonk(V)]of, < oo

k—1

Atround k = 1, we simply have I‘i;: [[I§ollv] < l[wo — w}]|. Finally, since f is a GLL, the expected increase in loss due to {x is

bounded as

EFsp(0x) = Fpp(w)l = E [ E [ﬁgy)(@;(,x» - egy>(<wK,x>)H

< B |ELoler 2l
< L()RO'K
_ LoR
NG
LoR
T a2
The second inequality follows from the fact that Egy) is Lo-Lipschitz, and the last two steps follow form the fact that

o < ﬁ and K = log,(n). Thus, using inequality (8) above, we have

k=2

Vo o1 K (007,  smpLiR?  LoR(VOoj_1+1)
E [Fsp(iix) — Fsn(ws)] = O LoR (|[ig — wi]? + 1 5
[P0 (k) = Fap(w)] 0( oft (Il —wjll” + )<np T)) T\ T e T o)

LoR
4An5/2

N/
vn

=0 (LOR (llwo — wj||* + 1) (np + 7n

) X <ea,§_1 5nkL3R2>+3L0R
k=

=0 <L0R (llwo — wi|* + 1) (;{f + \}ﬁ» .

The first line comes from bounding the term corresponding to k£ = 1 in the sum in (8), and the settings of 7; = m
and T} = n/2. The second equality follows from the fact that /Aoy, = 4vVOLoRn._1/p < 4V/0LoRn/p < 2, and the
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fact that K = log,(n). The third step follows from the choices of 7, T}, and oj_1. To reach the final result, we convert the
guarantee above to a guarantee for the original (unsmoothed) loss and use the setting of 3 = v/nLg/R (as done in the proof of
Theorem 5).

A.3 Proof of Theorem 6

Algorithm 5 Noisy Frank Wolfe

Require: Private dataset S = (21, ..., 2,) € Z7, polyhedral set VW with vertices V, Lipschitz constant L, constraint diameter
D, privacy parameters (&, §), smoothness parameter /3, oracle accuracy «, feature vector norm bound R
1: Let w; € W be arbitrary
ne

2: T =
log(|V]) log(n)+/log(1/9)
5 _ BLoRD/8Tlog(1/5)

3 5=
4: fort =1to T'do
S V=1%o Opan(w,2)
6:  Draw {by ¢ }vey i.i.d from Lap(s)
7 0y = arg min{(v, @t) + by}
veV
8  wpy1 = (1 — py)wy + g0y, where py = H_%
9: Output: wr

The proof follows from the analysis of noisy Frank Wolfe from [TTZ16]. Let F g(w) = = > ¢ fa(w, z). Define wj g as
the minimizer Fg g in W.

Define v = (0, @t> - mi\I}1<’U, @t). Since F s is (3R?)-smooth (by Lemma 3), standard analysis of the Noisy Frank-Wolfe
ve
algorithm yields (see, e.g., [TTZ15])

BR2D?
T

EMmWﬂ—%ﬁW%ﬂéO(

) +D ZT:ME {H@t — VEjs(w) OJ + ZT:utE el
t=1 t=1

By a standard argument concerning the maximum of a collection of Laplace random variables, we have for all ¢t € [T
E[v] < 2slog(|V]). Note also that for all ¢, by the approximation guarantee of Og  r, we have (with probability 1)

H@t — VF[g’S(wt)H < «. Hence,

2 M2
E [Fp.s(wr) — Fp.s(wj g)] <O (ﬁRTD

0 (BR2D2> ¢ log(T) ( LoRD LORD\/8Tlc7)1g€(1/5) log(|V)> |

T nlog(n)

) + log(T) (Da + slog(|V]))

LoR

where the second equality follows from the setting of o = wlog(n)

and the noise parameter s.

Using the same argument as in the proof of Lemma 5, we arrive at the following bound on the excess empirical risk for the
unsmoothed empirical loss Fis:

E[Fs(wr) - Fs(wg)] = O (

BR2D®>  LoRD+/T2Tlog(1/5)log(|V|)log(T) LoRDlog(T) L2
+ + +20).
T ne nlog(n) B
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By the setting of 5 = Lov/ne and T e

RDlog'/4(1/8)\/log(|V]) log(n) - log(|V|) log(n)4/log(1/5)’
. LoRDlog"/*(1/6)\/log([V]) log(n)
E[Fs(wT)—Fs(wS)] =O< \/% .

Via a standard Rademacher-complexity argument, we know that the generalization error of GLLs is bounded as O (% Vl"gd)
(see [SSBD14] Theorem 26.15). This gives the claimed bound.

The privacy guarantee follows almost the same argument as in [TTZ15]. Note that the sensitivity of the approximate gradients
generated by Og o g is at most % since f3 is (2L R)-Lipschitz and the error due to the approximate oracle is less than

Ly R. We then guarantee privacy via a straightforward application of the Report-Noisy-Max algorithm [DR14, BLST10] and
advanced composition for differential privacy.

B Missing Details of Section 4

Regularity of Normed Spaces. The algorithms we consider in Section 4 can be applied to general spaces whose dual has
a sufficiently smooth norm. To quantify this property, we use the notion of regular spaces ([JNO8]). Given k > 1, we say a

normed space (E, ||-||) is x-regular, if there exists 1 < x4 < x and a norm || - ||+ such that (E, || - ||+) is x4-smooth, i.e.,
o+l < ll2llf + (V- 13)(@),9) + mellylly (Va,y € E), ©
and ||-|| and || - ||+ are equivalent with constant \/r/kK:
K
Izl < llzll} < —JlzI*  (vz € E). (10)
K
One relevant fact is that d-dimensional ¢, spaces, 2 < ¢ < oo, are k-regular with £ = min (¢ — 1,2log d). Also, if || - || is a

polyhedral norm defined over a space E with unit ball B).; = conv(V), then its dual (E, ||-||,) is (2log |V|)-regular.

Remark concerning the choice of parameters £ and b: Note that the total number of samples used by our algorithms in
Section 4is .7 S22 b/ (E4+1) < b (In(27) +1) = b3 (rIn(2) + 1) < bR2. Moreover, the batch drawn in
each iteration (r,t) is b/(t + 1). Hence, for the algorithms to be properly defined, it suffices to have bR?* < n and b > 2%.
Note that our choices of R and b in both algorithms satisfy these conditions. Note also that we assume w.l.o.g. that n is large
enough so that the claimed bounds on the stationarity gap are non-trivial. Hence, the choice of R in each of our algorithms is
meaningful.

B.1 Missing Proofs of Section 4.1
B.1.1 Proof of Theorem 7

Since the batches used in different rounds » = 0,..., R — 1 are disjoint, it suffices to prove the privacy guarantee for
a given round 7. The rest of the proof follows by parallel composition of differential privacy. For notational brevity, let
gt =13 5 Vf(wk, z). By unravelling the recursion in the gradient estimator (Step 11 of Algorithm 1) and using the

setting of 7.1 = ﬁ, we have for any t € [27 — 1]:

t
Vi=af V043 (o) Ak gb) (11)
k=1
where, for all k € [t], agk) = H;:k(l — ].1“) and cgk) = \/klﬁ H;:kﬂ(l - ﬁ) Note also that agk) < land cgk) <1

for all ¢, k.
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Let S, 5" be any neighboring datasets (i.e., differing in exactly one data point). Let VL, {A¥* : k € [t]}, {gF¥ : k € [t]} be the
quantities above when the input dataset is \S'; and let V;f, {A;k, 1k e [t]} , { g;’“ ke [t]} be the corresponding quantities

when the input dataset is S’. Now, since the batches B, ..., Bl are disjoint, changing one data point in the input dataset
can affect at most one term in the sum (11) above, i.e., it affects either the V? term, or exactly one term corresponding to

< Ly/b, and

some k € [t] in the sum on the right-hand side. Moreover, since f is Lo-Lipschitz, we have HV? — V;O

‘ gl — g;t . < Lo(t + 1)/b. Also, by the L;-smoothness of f and the form of the update rule (Step 13 of Algorithm 1), for
an cl,..., — 1}, we have Wy, 2) — w, T,z < L7 ||wy —w,; || < L1 ke < L1 + 1. Hence,
yke{l 2" — 1 have ||V f(w” ViwE=12)|, < Ly ||jwF — wk=Y| < LiDnyp < LiD/VE+ 1. H

HA’; — A;k . < k—Jbrl ;% = L1 Dvk + 1/b. Using these facts, it is then easy to see that for any ¢ € [2" — 1],
, Lo (Lo+LiD)yt+1 Lo+ Ly D)27/?
HV?—VTt Smax(bo,(o—i_ 1b) + >§(0+l)1 ) .

r/
Hence, for each v € V, the global sensitivity of (v, V%) is upper bounded by w. By the privacy guarantee of
the Report Noisy Max mechanism [DR14, BLST10], the setting of the Laplace noise parameter s, ensures that each iteration

te{0,...,2" —1}is %—DR Thus, by advanced composition (Lemma 1) applied to the 2" iterations in round r, we
og
conclude that the algorithm is (&, 0)-DP.

B.1.2 Proof of Lemma 9

Recall that we consider the polyhedral setup, where the feasible set WV is a polytope with at most J vertices. Since the norm is
polyhedral, the dual norm is also polyhedral. Hence, (E, ||-||,) is (21log(.J))-regular as discussed earlier in this section.

Fixany r € {0,...,R—1}. Forany ¢t € {1,...,2" — 1}, we can write
VE = VFp(wt) = (1= ) [V5! = VPp ()] + (1= 5ea) [AL = (VFp(wl) — VEp(ut)]

t+1
+ M.t T Z Vf(wiaz) - VFD(wi)
z€BL

Let Zf. £ VFp(wl)—VFp(wi™"). Recall that ||-||, is (21og(J))-regular, and denote ||-|| , the corresponding r . -smooth norm,
where 1 < k4 < 2log(J). First we will bound the variance in ||-||_, and then we will derive the result using the equivalence
property (10). Let Q' be the o-algebra generated by the randomness in the data and the algorithm up until iteration (r,t),
i.e., the randomness in { (Bz, (ufc(v) RS V)) 0<k<r0<j< t}. Define 72 £ E ||| V! — VFp(wﬁ)Hi | Qﬁ_l]. By
property (9), observe that

2
_ —t t+1 _
< Q=) B (=) (A =B+ [ 5= D0 VA (wh2) = VEp () ||| |

z€BL 4

2
—t||% t+1
< (L= )+ 260 (1= 1,0 E || AL - B, ‘Qi—l +on B || 2 Y Vi) - VEp(f)| [
. ,
z€Bt,

T +

and the independence of

o

In the first inequality, we used the fact that ED [Vf(w,2z)] = VFp(w), IED [Al] = Al
(Viml = VFp(wi™)) and (1 — n,,) (Aﬁ —Z:) + 0y (VF(wl, 2) — VEp(wl)) conditioned on Q!~!. The second
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inequality follows by triangle inequality and the fact that (a + b)? < 2a? + 2b% for a,b € R. Hence, using (10) and
L;-smoothness of the loss, we can obtain the following bound inductively:

2

—_+ 112 1 .
E U\A: -5, ‘Qi—l =B || S (Vhwh ) - Vi) - B )| e
z€Bt
r +
(t+1)° ¢ t—1 ~t 2 t—1
< b2 E Z (vf(wr7 Z) - vf(wr 72) - AT) Qr
eBIN(=') .
1)2 2
g [wam -V - a ‘Qi*]
t+1)32 _ —t |2 _
<n S B ||vr(ut,2) - Vi 2) - A +‘Q¢ ]
z€B
< Wl S g ([t - Vi o - & et
> K b2 Wy, 2 w, %2 ||, T
z€B!
_ A(LD) log(J)Z, (t+1)
— b )

where the inequality before the last one follows from the fact that x; < x, and the last inequality follows from the fact that
r = 2log(J). Similarly, since the loss is Lo-Lipschitz, using the same inductive approach, we can bound

2

t+1
E||l— EZB Vf(w}, 2) = VFp(ur)

_ AL3log(J) (t+1)

t—1
Q, 5

+

Using the above bounds and the setting of 7),. ;, we reach the following recursion

>2 -1 8e (LG + L3D?) log(J)
T b N

1
t < 1 _
= ( Vi+1
Unravelling the recursion, we can further bound ’yﬁ as:
t

2t 2 272 L 2j
At <0 (1_ 1 ) N 8k+(Lg + LiD?)log(J) Z (1 1 )

Jj=0

Vi+1 b Vt+1
2t 2 2712
<0 (1- 1 N 8k (Lg + LD )log(J)\/t—i—l’ (12)
Vi+1 b
. . t—1 1 29 1
where the last inequality follows from the fact that Zj:()(l — \/tTl) 7 < [ gE—F <Vt+1.
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Moreover, observe that we can bound 7! using the same inductive approach we used earlier:

i _
W= || 3 Vi) - VEu)| |2
zEBU
+
2
1 r—1 =1
< Bl X (Vrwde) - VP )| Q27| 4 kB [HVf(wva’)—VFDW)Hi Qs _1]
eBN{=1} ;
< "SRV, 2) - VE )| |2 1]
z€B?
< 4Lglog(])
=7

Plugging this in (12), we can finally arrive at

4L%log(J) 1 \2t  8ky(L3+ LID*)log(J)Vt+1

]E[va VEp(wh)||? }S ; (1- t+1> + ;
413 10g(J) (1 1 )Zt N 16(L3 + L3D?)log®(J)VE + 1
- b VE+1 b ’

where the last inequality follows from the fact that k. < k = 2log(J).

By property (10) of regular norms and using Jensen’s inequality together with the subadditivity of the square root, we reach the
desired bound:

B (V% - VEswh].] < \/B IV - VEp(wiI? ]
log(J) 1 ' log(J) 1/4
< 4Ly 3 (1—m> +4(L1D + Lo) VG (t+ 1)1

B.1.3 Proof of Theorem 8

For any r € {0,...,R — 1} and t € {0,...,2" — 1}, let oL £ (v., VL) — minyey (v, VL); and let v}, =
arg min(V Fp(w?),v — wt). By smoothness and convexity of Fp, observe

veEW
FD(wfj”l) < Fp (’LU ) <VFD( )’thrl > L1 Hthrl 7t||2

2, 2

< Fp(w}) 4+ npt(VFp(wl) — VL, vt 7w>+n”<vfﬂv?¢7wt>+%

SF (w)+77rt<VFD(’LU) V ’ >+’r]7"t<vr7vrt >+’r]7"t06 +L1D nrt

D2

= Po(wh) + . (VFp(wh) = Vi vt = 07,) = nr(VFp(wh), of, = w!) 4 pgal+ 25570
D2

< Fp(wl) + 0D [|[VEp(wh) — VE||, — nrtGapp, (w}) + nreal. + 17%

Hence, we have
E[Fp(w}) = Fp(wy™)] | LiD*pey
E[Gapp, (w))] < - + =5 +DE [|Vt = VEp(wl)]|,] +
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Note that by a standard argument E [o!] < 2s,log(J) = 4D(L°+L1D)27;€0g(‘]) VIos(1/0) Thus, given the bound on

E[|VL — VFp(wt)||,] from Lemma 9, we have

E[Gapp, (w))] Vi T (ElFp(ul) — Fp(w ™)) + 22 4 4z,p/28) (1— ! )

2V/t+1 b Vitl
] Tog(1/
4D (LD + Lo) B (4 1)1 4 ap(Lg + 10y 2B 0V1080/0) o

Vb be

For any given r € {0, ..., R — 1}, we now sum both sides of the above inequality over ¢ € {0,...,2" — 1}.
LetD, £ 32 1 V/i+1 (E[Fp(w!) — Fp(wtt)]) . Observe that

2"—1 2"—1
ZEGapFD H] < T, +L1D2Z\[+4LO 1/1Ogb(J) Z( _

log(J

Vb

2 —1
<T,+ L,D?2"/2 4 4L, Dy log g/

log(J) log(J)/1og(1/6) 92r
NG be

)

log(J)/1og(1/6)

22?”
be

+4D(Lo + DL,) Z tY/4 4 4D(Lo 4 L1 D)

+8D(Lo 4+ DL;)—~~ 25T/4+4D(L + L,D)

<T, + L,D?2"/% 4 ALyD logb(‘])

log(J)
2"/2 + 8D (Lo + L1D 25r/4
( 0 ) \/B
log(J) v/108(1/6) o,

be

Next, we bound T',.. Before we do so, note that for all z € Z, f(-, z) is Lo-Lipschitz and the ||-||-diameter of W is bounded
by D, hence, w.l.o.g., we will assume that the range of f(-, z) lies in [—LoD, Lo D]. This implies that the range of Fp lies in
[—LoD, LoD]. Now, observe that

+4D(Lo + L1 D)

L, = 22_31 Vi+1 (E[Fp(wy) — Fp(w;*)])
o > 1
=3 (VIFT1E [Fp(w)] - Vi+2 E [Fp(wi*)]) + 3 (VET2— Vi+1) E [Fp(wl™)]
2ti01 - 271
<> (VIHTE[Po())] - VT2 E [Fp(wi)]) + LoD Y (Vi+2 - Vit1)
Note that both su;;) on the right-hand side are telescopic. Hence, we get -
T, <E {FD( V2 ¥ 1Fp(w? } )| + LoD 2772
—E [Fp(uf) - Fp(w?)| - (V2 +1-1)E [Fp(u?)] + LoD 2""?
<3LyD2"/2.
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Thus, we arrive at

= log(J) log(J)
Z E[Gapy, (w!)] < 3D(Lo + L1D)2"/? + 4LoD gb 9/2 4 8D (Lo + L1 D) %/g 957/4
1 log(1/6
AD(E + 1,y BNV
Now, summing over all rounds r € {0,..., R — 1}, we have
R—1 27"—1
1 1

3" 3 ElGapp, (wl)] < 9D(Lo + L1 D)2%/? 4 12L4D Ogb(J)2R/2 +6D(Lo + L, D) 0;5/%]) 95R/4
r=0 t=0

VDLt L,D) 1og<J>\/biog<1/6> -

Recall that the output @ is uniformly chosen from the set of all 27 iterates. By taking expectation with respect to that random
choice and using the above, we get

2" -1

1 R—
E[Gapp,, (@ :?Z > E[Gapp, (w))]

t=0
1 1
< 9D(Lo + LiD)2~%/2 4 12L,D Ogb(‘])Q—R/Q +6D(Lo + L1 D) O%/(B‘]) oR/4

log(J)/1og(1/9) .
be

+2D(Lo + L1 D)

_ 2 ne — n
Recall that R = 3 log <1og2(J) 10g2(n)\/log(1/5)) and b = o (n) - Hence, we have

/3
1 log(1/6)1 1 log(1/6)1
E[Gapp,, (w)] < 9D(Lo + L1D) < og’( og( /5 og”( ) 12LoD log(J 10g < og?( og( /5 og”( )

1/6 2 1/3 1 Toa(178) I 1/3
+6D(Lo+ L1D) 73 c D (log (J)> +2D(Lo + L1 D) Og )\/W og”(n)
log!'/3(n)log'/2(1/4) n ne

ne

log?(J) log?(n)/Tog(178) |
= 0| D(Lo + L1D) ( )

which is the claimed bound.

B.2 Missing Details of Section 4.2
B.2.1 Noisy Stochastic Frank-Wolfe

A formal description of the noisy stochastic Frank-Wolfe algorithm for non-convex smooth losses in the £, setting is given in
Algorithm 6 below.
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Algorithm 6 A,srw: Private Noisy Stochastic Frank-Wolfe Algorithm for ¢, DP-SO, 1 < p < 2

Require: Private dataset S = (z1,...2,) € 2", privacy parameters (£, ), a number p € (1,2] feasible set W C R? with
(||| ,,-diameter D, number of rounds R, batch size b, step sizes (n+ : 7 =0,...,R—1,t=0,...,2" = 1)

1: Choose an arbitrary initial point w) € W

2: forr=0to R —1do

. o 16L2d*/? 'log(1/6
33 Leto?, = UT(/)

4:  Draw a batch BY of b samples without replacement from S
5: Compute VO = 15 _po Vf(wl,2) + N2, NP ~N (0,02,L4)
6: 0 = argmin(v, V)
veEW

7wy (L= mro)wy + 700,
8 fort=1t02" —1do ,

2 2 52/p—1 212, 2 2 2/p—1
0: Let O_z’t _ 16Lg(t+1) d2 ;" log(l/é)7 ag)t _ 16L5D nT’t(t_‘—le)Egd log(1/6)
10: Draw a batch B! of b/(t + 1) samples without replacement from S
11: Let Al = &1 >.en (Vf(wk,2) = Vf(wi™,2)), and let gf = 1 >sep VI(wy,2)
12: Compute Al = Al + NI, NI~ N (0,62,1q)
13: Compute gt = gl + Nf, NE~N(0,02,14)
14: VE = (1= 1) (67271 + &ﬁ) + Nt gL
15: Compute v = arg min, .y, (v, V%)
16: witl (1 — np)wt + g0l

. 0 _ 2"
170wy =wy

18: Output @ uniformly chosen from the set of all iterates (w% : r =0,...,R—1,t =0,...,2" — 1)

B.2.2 Proof of Theorem 10

Note that it suffices to show that for any given (r,¢), 7 € {0,..., R — 1}, t € [2" — 1], computing V° (Step 5 in Algorithm 6)
satisfies (g, §)-DP, and computing A’ g% (Steps 12 and 13) satisfies (£, §)-DP. Assuming we can show that this is the case,

then note that at any given iteration (r,t), the gradient estimate %fn_l from the previous iteration is already computed
privately. Since differential privacy is closed under post-processing, then the current iteration is also (&, d)-DP. Since the
batches used in different iterations are disjoint, then by parallel composition, the algorithm is (g, d)-DP. Thus, it remains
to show that for any given (r, ), the steps mentioned above are computed in (e, §)-DP manner. Let S, S’ be neighboring
datasets (i.e., differing in exactly one point). Let VY, AL G’ be the quantities above when the input dataset is S; and let

T
V;O, A;t, ij be the corresponding quantities when the input dataset is S’. Note that the £5-sensitivity of VO can be bounded

1 1
-~ -~/ = = 775
as || 70 - ¥ VOV < LedrZ2

, where the dual norm here is ||-||, = [-||, where ¢ = ;2. Similarly,

1 1
< dr7z
, S

*

1_1
LodP 2(t+1)
b

we can bound the /5-sensitivity of gﬁ as ‘ . Also, by the L;-smoothness of the loss, we have

~ ~
gf’ - grt <
1 1 2
» 2 . . . .
< M. Given these bounds and the settings of the noise parameters in the

~ ~ 11 ||~ ~
HAﬁ—A,f <AL Ay

algorithm, the argument follows dire*ctly by the privacy guarantee of the Gaussian mechanism.
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B.2.3 Proof of Lemma 12

Note that for the ¢, space, where p € (1, 2], the dual is the £, space where ¢ = 1% > 2. To keep the notation consistent with
the rest of the paper, in the sequel, we will be using ||-|[, to denote the dual norm |[-[|, unless specific reference to ¢ is needed.

As discussed earlier in this section, the dual space ¢, is x-regular with k = min (¢ — 1, 2log(d)) = min (p—il, 2 1og(d)).
Fixanyr € {0,...,R—1}andt € {1,...,2" — 1}. As we did in the proof of Lemma 9, we write
Vi = VEp(wh) = (1= 1) [63_1 - VFD(wﬁ_l)} + (1 =) [zi - ZL}
+ Nt [@f« - VFD(U’D] .
where AL 2 VFp(w!) — VEp(wi~1).

Let |-||, denote the #-smooth norm associated with ||-||, (as defined by the regularity property, in the beginning of this
section). Note that by x-regularity of ||-||,, such norm exists for some 1 < r; < r. Let QL be the o-algebra induced by all the

- 2
randomness up until the iteration indexed by (r,¢). Define 72 2 E {HVﬁ — VFp(wt) ‘
+

Qi_l} . Note by property (9) of
k-regular norms, we have

_ ~p =t 2 _
W< (=) 7 + Ry E H(l—m,t) (Ai—Ar) + 1 @”ﬁ—VFD(wi))‘L Q; 1]
. ~ 2
<A =)V + Ky E H(knm) (A%AHNﬁ)mﬁt (gt — VFp(wl) + N?) |Q£1]
+
_ (2
< (1= )P + 260 (1 = 9P E UjAzAi+Nﬁ ) |Q¢1 +omn | lgk — VEn(wf) + N 931]
2 112
S(l—nr,t)Qvf-1+4/~”v+(1—77r,t)2E[HM—A: Lot + a0 E || |Q]
g2 B ok = VEo(wh|f} Q0+, B |V 91—1]. (13)
where the last two inequalities follow from the triangle inequality.
Now, using the same inductive approach we used in the proof of Lemma 9, we can bound
412 t+1)2 4|2 26L2D%n?, (t+1
e ||at- || < e S B {0t s) - Vri s - B ot | < HEE I EE D
—+ b2 Bt * b

E

gt = VEp(wh)]|}

2
Qil] P ZE[va(w:,z)—VFDM)Hf

b2
z€BL

2kL2 (t+1)
-1 0
Q, ] < b

Qt1‘|

Moreover, observe that by property (10) of s-regular norms, we have

E [Hﬁﬁ ’

951] < E Mﬁf.
Kt

2
*

2
q

+

Qill =" E Mﬁ;ﬁ
K+
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Note that when p = g = 2 (i.e., the Euclidean setting), then the above is bounded by d&%t (in such case, note that kK = ky = 1).
Otherwise (when 1 < p < 2), we have

St? |ot-1 K St|1% [ At-1 k St|% [ Ht-1
E HNT Qr < —EK HNT Qr =—E HNT Qr
+ K4 * K4 q
< ote || o
+

< 2" di log(d) 32,
KJ+ ’

r L3D?n? (t +1)? dlog(d)log(1/6)

=32
K4 b2€2

Hence, putting the above together, for any p € (1, 2], we have

2 01| < 3 Py L%Dan,t(t +1)2dlog(1/9)
+ T - H b2e2 ’

B Mﬁ;
where kK = 1 + log(d) - 1(p < 2).

Similarly, we can show

KR L3(t +1)%dlog(1/6)
K4 b2e2

E [HN;ni Qp] <2 it~

Plugging these bounds in inequality (13) and using the setting of 7, in the lemma statement, we arrive at the following
recursion:

ooy 1 S gt (L§ + L1D?) N LogFR(LE + LID?)(t + 1)dlog(1/9)
= Vi+1 " b bh2e2
2 ~
<(i- 1 -1 4 SKQ(L(Q) + L3D?) N 128/%(L(2) + L3D?)(t + 1)d10g(1/(5)’
vi+1 b h2e2

where the last inequality follows from the fact that x; < x. Unraveling this recursion similar to what we did in the proof of
Lemma 9, we arrive at

2t 272 22 ~(72 212
) 50 (8,% (LO—ZLlD ) N 128,%,%([/0 +L1Db)2(€t?+ 1)dlog(1/6)) Ny (14)

1
t< 1=
7’“( Vi+1
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Now, we can bound 7 via the same approach used before:
2

W =E ZVf — VFp(w?) + N?
zEBO

Q27 1_

+
2

< 2E Zw — VFPp(w?)

z€BY

pOE

zeB?
kL2 Kk Lidlog(1/6)
<40 gm0 S

b + R4 b2e2

kL3 kkL3dlog(1/9)
< 420 YRl Vit = ANl
=iy 0 b2e? ’

2r—l_1

r—1__
Qi—l ! +2E r—1

N0 |2

| E—

+

va VFD( )H 647 h2e2

o ] ki L2dlog(1/5)

where the last inequality follows from the fact that ;. > 1. Plugging this in (14), we finally have

[Hvt V Fp( M<64L2(b F»%d;igl/é)) (1_\/%>2t

2 ~
r128(2 + 1307 (5 VAT T4 S gy,

Hence, by property (10) of x-regular norms and using Jensen’s inequality together with the subadditivity of the square root, we

conclude
B \/E [H%s — VFp(ul) 2}
* +

E ||V - Vo))

< 8Ly <\/§+ W) (1 - \/tl+71> +16(Lo + L1 D) (\/'{B (t+1)V4 + ”E#g(l/é) (t + 1)3/4> .

B.2.4 Proof of Theorem 11

For any iteration (7, t), using the same derivation approach as in the proof of Theorem 8, we arrive at the following bound:

t t t t t LlDz’??,t
FD(wr> < FD(wr) + 77r>tD HVFD<wr) - VT‘H* - nT,tGapFD (wr) e

2
Thus, using the bound of Lemma 12, the expected stationarity gap of any given iterate w’. can be bounded as:
E[Fp(w;) — Fp(w;™)] LlD LDy
E[Gapp, (w})] < - +DE[||VL = VFp(wh)]|,] +
L,D? \/dlﬁl/ﬁl 10 (1/6) _ t
S\/t+1(E[FD(w£)*FD(w£+1)]) 2\/7+8 Lo (\/> g(1/ ) ( _9 T/Q)

116D (LD + Lo) (\;E(t_‘_l)l/él_i_cwgg(l/a)(t_‘_l)fi/zi).
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For any given r € {0,..., R — 1}, we now sum both sides of the above inequality over ¢ € {0,...,2" — 1} as we did in the
proof of Theorem 8. Let T', 2 37 -1 \/f 1 (E[Fp(w!) — Fp(wi™)]) . Observe that

2r 1 2r 1 .
S E[Gapp, (w!)] < L1D2 Z i +8DLg ([ Vi log /%) ) S (1-272)
t=0

t=0

Ko 1 «/dﬁ;ﬁ;log V/drklog(1/4) 13/4
+16D (L1 D + Lo) \/EZt Z

t=1

v drklog(1/6)
SFT+L1D22T’/2+8DLO (\/E_i_ KJKJ;“) 27“/2
9

drrlog(1/0
+32D (L1 D + Lo) (\/“525r/4+mb<:s(/)27r/4>_

Next, using exactly the same technique we used in the proof of Theorem 8, we can bound I, < 3LyD 27/2 Thus, we arrive at

2" —1
Vdrwlog(1
Z E[Gapp, (wl)] < 3D (Lo + L1 D) 27/% + 8D L ([ drfs Og /9) ) or/2

+32D (LD + Lo) ( 957/4 | d'“fﬁll)zg(l/%nﬂ;)

Sz

Now, summing over r € {0,..., R — 1}, we have

p e \/dmﬁlo (1/9)
3" E[Gapp, (wh)] < 9D (Lo + LyD) 27/2 4 24DL, ([ & >2R/2

r=0 t=0

drrlog(1/9) 9TR/4

+48D (L1 D + Lo) ~=25%/4 4 24D (L, D + Ly) =

=

Since the output @ is uniformly chosen from the set of all 2% iterates, then averaging over all the iterates gives the following
(after some algebra similar to what we did in the proof of Theorem 8)

_ 1 i s \/d/mlog VdrElog(1/6) \  _g/o
E[Gapp, (0)] == Z [Gapp, (w')] < 9D(Lo + L1 D)2 +24DLyg 2

drklog(1/0) 93R/1

B 9R/A 4 24D(Lg + L D) ;
1>

+48D(Lo + L D) 7
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: _ 4 ne
Plugging R = £ log (\/dg e (0) 1og2(n)> , we finally get

E[Gapy, ()] < 9D(Lo + LyD)x2/? d/5 715 10g'/%(1/6) log?/® (n)
D <

n2/5z2/5

24D L k23 klog?(n)  +/drrlog(1/0)log?(n) \ d'/5#/510g'/®(1/8)10g*®(n)

* 0K 0 ' ne n2/5¢2/5
1/5 10g3/5(n) d1/5 ’,%1/5 10g1/5(1/5) 1og4/5(n)
48D(Lo + L1 D)w2/3—° 24D(Lo + LD

AP0t L D) g1y TPt D) R0 €27
_ 2/3 gl/s 10g3/5(n) dY/5 /5 log1/5(1/5) 10g4/5(n)
=0 D(L0+L1D)I€ - — 1/10 + 2/5.2/5 .

n3/10 (dk log(1/6)) neee

nl/352
log(1/6) log?/3(n)
the first term is decreasing in d. Thus, we can obtain a more refined bound via the following simple argument. When

~ 711/382
dk = o (1og(1/5) log?/3(n)
nl/322

d, SatisﬁeS: d/<1 + log(d/) . 1(p < 2)) = @ (m

9 log2/3(n - nl/3g2
1o} (D(LO +L1D)Ii2/3 gnl/i?g )) When dx = Q (—log(l/6)loz2/3(n)

Putting these together, we finally arrive at the claimed bound:

log®®(n) | dY/°%Y/51og'/?(1/5)log"/®(n)
2/3
0 <D(L0 + LlD)K“ / ( nl/3 + n2/5¢2/5 :

Now, observe that the bound above is dominated by the first term when dk = o ( ) Moreover, note that

), we embed our optimization problem in higher dimensions; namely, in d’ dimensions, where
). In such case, the bound above (with d = d) becomes

), the bound above is dominated by the second term.

C Missing Details of Section 5

For this section, we will occasionally require the use of indicator functions. Given a closed convex set W, we define the
(convex) indicator function as
0 weW
xw(w) = { +oo wé¢W.
Also recall the definition of the normal cone of W at pointw € W, Ny (w) = {p € W: (p,w —w) < 0 Vw € W}. The
normal cone is the subdifferential of the indicator function: Ny (w) = dxyy(w).

C.1 Background Information on Weakly Convex Functions and their Subdifferentials
Definition 21. We say that a function f : W — R is p-weakly convex w.r.t. norm || - || if forall 0 < A < 1 and w,v € W, we
have
pA(1 = X)
P
For nonconvex functions, defining the subdifferential can be done in a local fashion.

Definition 22. Let f : E — R. We define the (regular) subdifferential of f at point w € E, denoted Jf(w), as the set of

vectors g € E such that
po e J0) = fw) = (g0 — w)
VoW, vFEW ||’U — w”
We say that f is subdifferentiable at w if 0 f(w) # (). We will say f is subdifferentiable if it is subdifferentiable at every point.

fOw+ (1 =A)v) < Af(w) + (1= A)f(v) +

— o).

> 0.
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We will need a characterization of the regular subdifferential in terms of directional derivatives. We recall the definition of the
directional derivative of a function f at point w in direction e:

f(x;e) ;== liminf flwtee) - f(w)

e—0,c—e £

Proposition 23 (Regular subdifferential and directional derivatives). Let f : E — R be a Lipschitz function which is
subdifferentiable at w, then

If(w)={g € E: (g,e) < f'(w;e) Ve € E}.

Proof. Let L be the Lipschitz constant of f w.r.t. || - ||. We prove both inclusions. First (), if g € 9f(w), thenlete € E\ {0}.
Using the definition of subdifferential for w and v = w 4 ec (where ¢ — 0 and ¢ — €), we get

lim inf flw+ec) - f(w) — {9,<) >0
e—0,c—e elle]] llell

Taking first the limit ¢ — e and then ¢ — 0, we get f'(w;e) > (g, €), concluding the desired inclusion.

For the reverse inclusion (D), let g € E be s.t. {(g,e) < f/'(w;e), for all e € E. Now let v — w, and consider any e € E
accumulation point of (v — w)/||v — w]|| (they exist by compactness of the unit sphere). Next, let ¢ = ||v — w||, and notice that
€ — 0. Then

f) = f(w)+[f() = f(w+ee)] + [flw + ee) — f(w)]
Fw) ~ Loll(w — w) — eel + LTI,

Fw) + f(w+ce) _f(w)s—LOHv—wH(& e).

€ [[o = wll

Y

Y

Taking v — w (which is equivalent to ¢ — 0), we get

flo) = f(w)+ f(w;e)e+o(flo —wl)
> f(w)+{g,e€) + o([Jo — wl)
= fw)+ oo —w)+e(ae— DY) (o - w)
= f(w)+(g,v = w) +o(v—wl),
where in the second step we used the starting assumption. O

Finally, we present the well-known fact that weak convexity implies that the variation of the function compared to its subgradient
approximation is lower bounded by a negative quadratic.

Proposition 24 (Characterization of weak convexity from the regular subdifferential). Letr f : W — R be subdifferentiable
and Lipschitz w.rt. || - ||. Then f is p-weakly convex if and only if for all w,v € E, and g € 0f (w)

J) = fw)+ (g0 = w) = Flo — wl? (1s)
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Proof. 'We prove both implications. For =, let v,w € E, and 0 < A < 1. By p-weak convexity:

FUL= X+ daw) < (1= A)f(0) + Af(w) + 20Ny e
— (- N)  F)] 2 £ Mo+ — f) - POy e
= f(v) = f(w) > limggfl flw+ (1 _()\1)(_1};)10)) — ) _ %Hv - sz}
= f'(wsv —w) = Sl —wl?

p
> (g,0—w) — Lo~ wl?,

where in the last inequality we used Proposition 23.

Next, for <=, let v,w € E and 0 < A < 1. Then, letting g € 9f((1 — A\)w + Av), and using (15) twice, we get

~

—
<

S~—
Vv

F(L = Mw + A0) + {g, (1= N = w)) = (1 = N —w)]*
Fw) = F((1 =N+ €) + g, A(w = 0)) = SIA@ = w) %

Multiplying the first inequality by A and the second one by (1 — X), gives

pA(1 =)
2
which concludes the proof. O

Af)+ @ =Nf(w) > f(QA—=Nw+ ) -

lv = wlf?,

From the previous proposition, we can easily conclude that any smooth function is weakly convex.

Corollary 25. Let f : W — R be a Ly-smooth function (i.e., |V f(v) — V f(w)||« < Li||v — w||, for all v,w € W). Then f
is Li-weakly convex.

Proof. Letv,w € W. Then by the Fundamental Theorem of Calculus:
1
0) = fw)+ [ (9wt s(0 =)0 = w)ds
1
= () + (Vfw) v —w)+ [ (VS s = w) - V)0 - w)ds
0

1
> f(w) + {Vf(w),v —w) — Lyfjv - w||2/ sds.
0
We conclude by Proposition 24 that f is L;-weakly convex. O

C.1.1 Basic Rules of the Subdifferential, Optimality Conditions and Stationarity Gap

We know provide some basic tools regarding subdifferentials and optimality conditions in weakly convex programming, which
will also allow us to introduce the notion of stationarity gap in this setting.

To start, we provide a basic calculus rule for the subdifferential of a sum of weakly convex functions.

Theorem 26 (Corollary 10.9 from [RW98]). If f : E — R be weakly convex, and g : E — R U {+o0} be convex, lower
semicontinuous, and such that w € dom(g). Then O(f + g)(w) = df(w) + dg(w).
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Next, we provide a relation between directional derivatives and the regular subdifferential.
Proposition 27 (From Proposition 8.32 in [RW98]). If ¢ : E — R U {+o0} is weakly convex, then

dist(0, dp(w)) = — inf ¢'(w;e).
llell <1
With these results, we can now provide optimality conditions for weakly convex optimization

Proposition 28 (Stationarity conditions for weakly convex optimization). Let f : W — R be p-weakly convex and Lg-Lipschitz
w.rt. || - ||, and W a closed and convex set. Then, if w* € arg min{ f(w) : w € W}, then there exists g € 0 f(w*) such that

(g,v—w*y >0 (Vv eW).

Proof. First, we observe that without loss of generality, f : EE — R (this is a consequence of the Lipschitz extension Theorem).
Let now g(w) = xw(w) (i.e., the convex indicator function, as defined in the beginning of this section). Since w* € W, by
Proposition 26, we have 9(f + g)(w*) = 9 f(w*) + dg(w*). Now we apply Proposition 28 to ¢(w) = f(w) + g(w); since w*
is a minimizer of o, we have that ¢’ (w*; €) > 0 for all e, and hence dist(0, dp(w*)) = 0. Since dg(w*) = N (w*), we get that

0 = dist(0, df (w*) + N (w™)),
and this implies that there exists g € f(w*), such that g € —Nyy (w*), i.e.,
(g,v —w*) >0 (Vv e W).

The previous result leads to a natural definition of the stationarity gap in weakly convex optimization:

o) = i 210 ) o

Notice that, by Proposition 28, any minimizer of a weakly convex and Lipschitz function is such that its stationarity gap is
equal to zero.

C.2 Missing proofs from Section 5.1
C.2.1 Proof of Proposition 13

1

By strong convexity of || - [|? and weak convexity of f:

2w+ (1= Xo] — P < A2 o=l (1= 22—~ P2C= Ay 2
PO+ (1= X)) < A () + (1= X7 ) + P2 oy g2

Adding these inequalities, and using that v3 > p, we conclude the (v — p)-strong convexity of f(-) + gH - —u)|?, concluding
the proof.

C.2.2 Proof of Lemma 14

We now present the proof. First, notice that the proximal-type mapping can be computed as a solution of the optimization
problem

min [f(v) + B

min 5 v —wl’] (17)
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By Proposition 13, problem (17) is strongly convex, and therefore it has a unique solution; in particular, w is well-defined
and unique. Next, we use the optimality conditions of constrained convex optimization for problem (17), together with the
subdifferential of the sum rule (Theorem 26), and the chain rule of the convex subdifferential; to conclude that

(05 () + Bl = w] () - 1)1 = w)) 1 =N (D) # 0. (18)

First, consider the case where @ = w, then there exists g € df () s.t., (g, W —v) < 0, for all v € W, which shows the desired
conclusion. In the case W # w, consider g € 0f(w) and h € 9(|| - ||) (& — w) such that by (18), (g + S|l — w||h,v —w) > 0,
for all v € W. We first prove that ||h]|. = 1. Indeed, first ||h]|. < 1 since the norm is 1-Lipschitz. The reverse inequality
follows from the equality in the Fenchel inequality, when p is a subgradient [HULO1],

[ —wl| = [J& = wl + x5.(0,1)(P) = (p, 0 — w).
Since W # w, this shows in particular that ||p||. = 1. We conclude that in this case, (g, — v) < SD||w — ||, forall v € W,
which concludes the proof.

C.2.3 Missing Details in Consequences of Proximal Near Stationarity

Now we explain some technical details behind the derivation of the following consequence for proximal nearly-stationary
algorithms

Es~pn a[|lproxp, (A(S)) — A(S)[|] < ¥ and  Eg.pr a[Gapp, (proxy (A(S)))] < 9. (19)
First, we suppose A is (¢, 3)-proximal nearly stationary. From this, we directly conclude the first property,
Es~pn,allproxg, (A(S)) — A(S)|] < 9.
For the second property, we first recall the stationarity gap in weakly convex optimization (see eqn. (16)): here, for w € WV and
objective f : W — R, define
Gap,(w) = inf sup(g,w —v).
Py(w) 9€0f(w) ye%@ )
Now, if B : Z™ +— R is a randomized algorithm, its expected gap corresponds to

]ENnG BS :]E,\,n f 785_ .
50 5[Gop sy (B(S))] = Eswps| _ inf  sup (g, B(S) ~v)|

Finally, under this definition of the expected gap, we have that if B(S) = prox?p (A(S)), then by Lemma 14 and (¢, 8)-
proximal near stationarity,

GapFD (B) == ]ESND",B [

<47,

inf B(S) — < Egpn DI||B(S) — A(S
seorllss S50 BS) = 1] < B 3DIB(S) - A

concluding the claim.

C.3 Missing Details of Section 5.2

Algorithm 2 is inspired by the proximally guided stochastic subgradient method of Davis and Grimmer [DG19], where the
proximal subproblems are solved using an optimal algorithm for DP-SCO in the strongly convex case, given in [AFKT21].
Hence, we cite their theorem below.

Theorem 29 (Thm. 8 in [AFKT21]). Consider the £, setting of A-strongly convex stochastic optimization, where 1 < p < 2.
There exists an (g, §)-differentially private algorithm Asc with excess risk
O(Ii%{ﬁ N f%/ileog(l/é)D7
Aln n2e2
where Kk = min{l/(p — 1),logd} and &k = 1 + logd - 1(p < 2). This algorithm runs in time O(logn - loglogn -

min{n®2\/logd, n’c//d}).
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We note in passing that Thm. 8 in [AFKT21] is stated only for the ¢;-setting; however, since their mirror descent algorithm and
reduction to the strongly convex case works more generally, we state a more general version of their statement.

C.3.1 Proof of Theorem 16

The privacy of Algorithm 2 is certified by parallel composition and the privacy guarantees of Agc. For the accuracy, first
consider the case p > 1+ 1/log d. Here, recall that w +— &|jw —w||2 is a 1/k-strongly convex function w.r.t. || - ||, [Bec17], so

we can choose v = 1/k = (p — 1) as the strong convexity parameter. Let 1, = proxﬁF73 (w,) be the optimal solution to problem

(6). Our goal now is to show that ' is ¥-proximal nearly stationary. First, by Proposition 13, F},. is (3/k — p)-strongly convex
w.rt. || - ||p. Since (8/k — p) = p, we have by Theorem 29 that forall » = 1,..., R,

- ~(Lir K Rr?dlog(1/6)
E[F, (w,11) — Fr(i,)] = 0(; s TD (20)
By strong convexity of F}., we have almost surely:
Fo(w,) = Fy(w,) > Fy(i,) + Sl — w2 @1
Hence, using (20) and (21), we get
B 2 . Lirk  Rr*dlog(1/d)
= _ — < —“0|r , MY oA/ T
B[ Fp(wrn) + gl = wrl] = EIF )] < ELF ()] +0 (T2 [+ 5820 )
B 2 9 L73 K fr2dlog(1/6)
= B[Fow) = Gl —urlb] + O(Z2 |-+ =557
and summing from r = 1, ..., R, we obtain
R R _
1 . 5 2 L3rk  RK2dlog(1/6)
— _ < = _ —oyr MmN
7 2 Bllir = el < o[BG - Flumen)] +0 (1 2+ =552 )

:O(l{LOD L3 {/@%4— /%K;leog(l/é)]ﬁ]}).

plU R +7 g2 n?

Now we use that R = {min { fo, (Rkﬁl)l/g (L[Z(lzgzi%) ) 13 }J , which is at most n by the assumption nd > pD/Lg. Then,

R 3/2p /e o
Elprox, (%) ~ 2] = & S B[, —wi 2] = 0 (; [P Gt (0o () 3}) .
r=1

Finally, by the Jensen inequality, we have that

E[max{1, BD}||proxp,, (@") — w"||,]

max K 3/2( Do) 1/4 0 1/
< el 22l (LA oy ("),

Next, in the case 1 < p < 1+ 1/logd, we can use that || - || and || - ||, are equivalent with a constant factor (recall that here

p =1+ 1/logd). Using then || - ||5 in the algorithm and argument above clearly leads to the same conclusion with £ = log d.
Finally, the running time upper bound follows by Theorem 29.
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