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Supplementary Materials

We first discuss the limitations, ethcial concerns and broader impact of this work (Section . We detail the
datasets (Section , models (Section , and training setups (Section @ in the supplementary materials to
improve this work’s reproducibility. Besides, Section [E] includes more experimental studies to strengthen the
main text.

A Limitation, ethical concern, and broader impact

Limitation. VideoGLUE covers various unimodal video tasks and could be strengthened by adding
multimodal tasks like video question answering. We chose three representative FM adaptation methods and
used them to provide as uniform experiment protocols for different FMs as possible. However, some of our
observations could be flipped with the evolution of adaptation methods, which are an active research area.
We proposed a scalar score, VideoGLUE Score (VGS), to capture the efficacy and efficiency of an FM on
video understanding. However, VGS might be dominated by one or a few datasets — when it becomes a
serious issue, we should probably improve the score and/or retire the other datasets from future versions of
VideoGLUE. Indeed, VGS is not a perfect score that covers all aspects of FMs in a comprehensive manner.
For example, it does not account for an FM’s model size, model architecture, etc. We hope future research
will lead to new metrics to complement VGS and a more comprehensive evaluation of FMs for visual tasks.

Ethical concern. We evaluate FMs on three video tasks, eight datasets in total. We select the tasks and
datasets based on their popularity and representativeness. Although carefully designed, our benchmark
inevitably inherited some ethical concerns from those datasets. For instance, many of the datasets are curated
by crawling videos from the Internet, which do not proportionately represent the experiences of the global
population and can potentially lead to biased evaluations of FMs. Moreover, the video datasets involve
human daily activities, leading to privacy concerns about the human actors in the videos. How to evaluate
FMs for video understanding in a fair and privacy-preserving manner could be an important direction for
future research.

Broader impact. Our research reveals the need and tremendous opportunities to research video-first FMs
by improving pretraining video data and methodologies. Our studies on different adaptation methods on
versatile tasks confirms that both tasks and adaptation methods matter when it comes to the evaluation of
FMs, shedding light on the already vibrant area of FM adaptations. Finally, we hope our research could
inspire research on foundation models development and video understanding in general, along with their
applications in the real world.

B Video understanding datasets

B.1 Appearance-focused action recognition

Video classification is a task of classifying videos into pre-defined labels, with the major focus on human
actions.

Kinetics400 (Kay et al.l |2017) (K400) is a large-scale, high-quality video dataset widely used as a standard
video classification benchmark. It contains more than 250k video clips with annotations of 400 human daily
actions. The actions are human focused and cover a broad range of classes including human-human interactions
and human-object interactions. Although the video clips span 10 seconds on average, many studies (Sevilla;
Lara et all|2021; \Wang et al.l |2018) have pointed out the task could be easily solved on the Kinetics datasets
by inferring from the static objects appeared or background environment — motion information is less
important than the visual appearance. Hence, we categorize Kinetics400 as an appearance-focused action
classification dataset.

Moments-in-Time (Monfort et al., 2019) (MiT) is a large-scale video event classification dataset, with one
million human annotated short video clips (around 3 seconds each). The temporal span corresponds to the
averaged duration of human working memory and is a temporal envelope holding meaningful actions between
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people, objects, and phenomena. Videos in MiT are annotated with 339 most used verbs in the English
vocabulary.

B.2 Motion-focused action recognition

Videos contain much more commonsense knowledge than still images do, such as an object’s motion patterns
and the causal consequences of an action, just to name a few. However, appearance-based benchmarks do
not evaluate a model’s understanding of such commonsense knowledge, complex scenes, and situations. In
observance of this, some video datasets have been proposed and studied in recent years with the focus on
motions and common-sensing reasoning that are prosperous in video data.

Something-something v2 (Goyal et al.l 2017) (SSv2) is a collection of around 200k videos of human performing
pre-defined, basic actions with everyday objects. There are 174 unique labels in total depicting atomic hand
manipulations, like putting something into something, turning something upside down or covering something
with something. This dataset benchmarks a model’s fine-grained understanding capability of object motions
and scene changes by making the label space atomic-action-focused and background-invariant.

Diving48 (Li et al., 2018]) (D48) is introduced to evaluate a model’s dynamic reasoning capability. The
video clips in this dataset are obtained by segmenting online videos of major diving competitions. In total,
there are around 18k videos annotated with 48 classes. Because of its standardization, the diving scenario is
purposefully chosen to avoid the scene, object, and person biases.

B.3 Multi-label daily action classification

Most of current action classification datasets involve video clips with a clean snapshot of a single action.
In contrast, humans perform daily complex activities step-by-step, simultaneously, or in an interleaving
manner. Towards more comprehensive human daily activity reasoning, Charades (Sigurdsson et al.l 2016)) is
introduced. Different from web-collected datasets whose contents are more structured, Charades is collected
by crowd-sourcing from hundreds of actors recording their videos in their own homes, acting out casual
everyday activities. Charades brings in more diversity into the video classification task due to its close-to-
daily-life setting. Its videos are 30 seconds long on average and have multi-label annotations testing models’
understanding of complex daily activities with multiple steps. Charades provides 110k videos with 157 action
classes for training and evaluation.

B.4 Temporal action localization

Natural long videos contain scene changes and semantic shifts, while most of the existing video benchmarks
formulate problems to focus on trimmed video clips. Such a gap introduces evaluation bias as clip-level
benchmarks could not reflect a model’s temporal feature discriminativeness, which is of key importance to
solve long-form video understanding tasks. To comprehend the study on foundation models’ video capabilities,
we include the temporal action localization (TAL) task in our evaluation. The task of TAL is to predict not
only the action labels but also each action instance’s temporal boundary in untrimmed videos. We adopt
ActivityNet v1.3 (Fabian Caba Heilbron & Niebles| 2015]) as the dataset for the TAL task, which contains
10,002 untrimmed videos in training and 4,985 in validation. The video length in this dataset is between
5-10 minutes. In total, there are 200 types of activities annotated.

B.5 Spatiotemporal action localization

Spatiotemporal Action Localization (STAL) is a person-centric task that asks a system to localize actors and
predict their atomic actions (Barker & Wright, [1955; |Gu et all 2018) in a transitory duration.

In AVA (Gu et al.l [2018), 15 minutes long movie clips are densely annotated at 1Hz. In the key frames, every
person is localized using a bounding box and labels corresponding to actions being performed by the actor.
The label vocabulary consists of 80 different atomic visual actions. There are 430 different movies in total.
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Figure 1: (a) Single-layer pooler head and (b) multi-layer attention pooling head for video classification and
spatiotemporal action localization.

Table 1: Early vs. late fusion on image-native FMs. In this experiment, the frozen feature with a single-layer
pooler head is used.

K400 SSv2
Method Early Late Early Late
CoCa 727 614 41.5 333
CLIP 70.5 752 38.1 410

FLAVA 679 713 40.4  40.6

AVA-Kinetics (Li et al.l 2020) follows the same labeling protocol as AVA, while its data source comes from
the Kinetics700 (Kay et al., |2017) video pool. The dataset contains over 230k clips annotated with the 80
AVA action classes for each of the humans in key frames.

C Model details

C.1 Task head architectures

In Figure[I] we plot the task heads used in our video classification and spatiotemporal action localization
experiments, namely, the simple pooler head and multi-layer attention pooling head. For temporal localization,

please refer to (Xu et al., [2020) for the task head’s detailed architecture.

Figure 2] illustrates the encoder adapter layer’s architecture. In the the adapter layer, only the down-sample
layer, up-sample layer, and the scaling factor are tunable.

C.2 Image-to-video adaptation

Adapting image backbones to video tasks requires us to fuse the image embeddings at some point in the
network and also introduce additional temporal information.
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Figure 2: The adapter used in vision transformer. In the adapter layer, only the down-sample layer, up-sample
layer, and the scaling factor are tunable. Between the down-sample layer and up-sample layer, an activation
function is applied, which in our case is ReLLU.

Table 2: Ablation study on the temporal positional embedding for image-to-video adaption. We choose
FLAVA (Singh et all |[2022) with the frozen feature setting in this experiment.

Temporal Positional VC (A) VC (M) VC (ML)
Embedding K400 MiT D48 SSv2  Charades

X 713 29.7 41.6  30.3 10.7

v 71.3  29.7 459 40.6 12.6

We consider two choices, early-fusion and late-fusion, and ablate them in the frozen feature setting in Table [T}
In both early-fusion and late-fusion, we first apply the projection layer on each frame independently to embed
pixel patches into embedding tokens. We then average-pool the embedding tokens from nearby frames to
reduce the sequence length to n x h x w. In the early-fusion setting, we pass all tokens together to the image
backbone to extract video features. In late-fusion, we pass each set of h x w tokens independently to the
image backbone. Empirically, we find that the FLAVA (Singh et al., 2022) and CLIP (Radford et al., |2021))
models do better with late-fusion while CoCa (Yu et al.l|2022)) does better with early-fusion.

Furthermore, we ablate the importance of temporal information using the frozen-features from FLAVA
et al) [2022). In Table[2] we find that adding temporal positional embedding to the input is essential for
D48 (Li et al.| 2018), SSv2 (Goyal et al.| 2017), and Charades (Sigurdsson et al., 2016) while not necessary
for K400 (Kay et al.,|2017) and MiT (Monfort et al.,|2019). This supports our grouping that K400 and MiT
are appearance-focused datasets.

Based on these findings, we use late-fusion for FLAVA (Singh et al., 2022) and CLIP (Radford et al.l |2021])
and early-fusion for CoCa (Yu et al, [2022]). We add learnable temporal positional embeddings for all the
image-native FMs.

D Task-specific hyperparameters

In the following, we provide experiment settings and hyperparamters we used in this study. In Table 3] we list
the hyperparameters we applied in the video classification task. In Table 4l we present the hyperparameters
we used on spatiotemporal action localization. In Table [5, we present the hyperparameters we used on
temporal action localization task.
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Table 3: Experimental configurations for video classification tasks. We let learning rate and weight decay to
be tunable per model to allow some flexibility for task adaptations.

Config Kinetics400 | Sth-sth v2 | MiT Diving48 Charades
batch size 256 256 256 256 256

training epochs 150 50 50 100 50

ViT sequence length 8x 14 x14 | 8x14x14 | 8x14x14 | 8x14x14 |8 x 14 x 14
optimization

optimizer AdamW AdamW AdamW AdamW AdamW
optimizer momentum 0.9 0.9 0.9 0.9 0.9

learning rate schedule
warmup ratio
data augmentations

cosine decay

5%

cosine decay

5%

cosine decay

5%

cosine decay

5%

cosine decay

5%

random horizontal flip | true false true true false
aspect ratio (0.5, 2.0) (0.5, 2.0) (0.5, 2.0) (0.5, 2.0) (0.5, 2.0)
area ratio (0.3, 1.0) (0.3, 1.0) (0.3, 1.0) (0.3, 1.0) (0.3, 1.0)
RandAug (9, 0.5) (9, 0.5) - - -

MixUp 0.8 0.8 - - -
CutMix 1.0 1.0 - - -
evaluation

multi-clips 4 1 4 4 4
multi-views 3 3 3 3 3
segment-based sample | false true false false false

We performed a greedy search on the learning rate and weight decay in all our experiments while keeping most
other hyperparameters (e.g., data augmentation magnitude, dropout rate, drop path rate, etc.) consistent
across different models and datasets. Specifically, we start with learning rate le-4 and weight decay le-5
and uniformly sample learning rates and weight decay factors with a rate of 5 and 10, respectively, centered
around the starting points. After the first round, we pick the best-identified learning rate and weight decay
factor as the new starting point and conduct another round of sampling with a rate of 2. We repeat another
two to three rounds of hyperparameter search (with a rate of 2) until the model’s performance converges.
This process is a trade-off between computation costs and thoroughly examining an FM’s performance under
each experiment setup. The search ranges for the learning rate and weight decay are [4e-5, 2.5e-3] and [le-6,
le-4], respectively. We found that the learning rate is the most crucial factor when adapting an FM to
downstream video understanding tasks.

E More studies

E.1 Large model adaptations

For the completeness of this report and reader’s reference, in Table [6] we report experimental results under
our settings with large FMs under the frozen backbone with one pooler head setup.

VideoMAE-v2-B/DL (Wang et al. |2023|) denotes the ViT-B model distilled from ViT-g on the Kinetics710
dataseta[ﬂ VideoMAE-v2-g (Wang et al., [2023)) is the model that pretrained on UnlabeledHybrid dataset,
while VideoMAE-v2-g/FT (Wang et al., 2023) conducts further finetuning using supervised training on
Kinetics710. InternVideo-v2-g (Wang et al.l |2024) and VideoPrism-g (Zhao et al., |2024)) are two video

Thttps://github.com/OpenGVLab/VideoMAEvV2/blob/master/docs/MODEL_Z00.md
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Table 4: Experimental configurations for spatiotemporal action localization.

Config ‘ AVA v2.2 ‘ AVA-Kinetics
batch size 256 256

training epochs 50 50

ViT sequence length 8 x 16 x 16 | 8 x 16 x 16
optimization

optimizer AdamW AdamW
optimizer momentum 0.9 0.9

layer decay 0.75 0.75

learning rate schedule
warmup ratio
data augmentations

cosine decay

5%

cosine decay

5%

random horizontal flip true true
random scale (0.5, 2.0) (0.5, 2.0)
random color augmentation | true true

Table 5: Experimental configurations for temporal action localization.

Config ‘ ActivityNet v1.3
batch size 32

training epochs 10

feature extraction

fps 15

per-clip length 16

clip stride 16
optimization

optimizer AdamW
optimizer momentum | 0.9

learning rate schedule | cosine decay

Table 6: Evaluating large-scale FMs when using frozen feature with a one-layer pooler head. We report the
Top-1 accuracy on K400, MiT, D48, SSv2 and MAP on Charades.

VC (A) VC (M) VC (ML)

Model K400 MiT D48 SSv2 Charades
InternVideo-L 78.6  33.7 69.6 674 20.9
VideoMAE-v2-B/DL 86.7  38.9 61.4 57.7 33.2
VideoMAE-v2-g 59.7  20.7 42.5 44.2 12.7
VideoMAE-v2-g/FT 82.1 35.0 60.5 56.1 22.4
InternVideo-v2-g 85.0 43.0 53.1 61.6 40.9
VideoPrism-g 86.6  44.7 66.1 67.4 61.0

foundation models with multi-stage pre-training on curated in-house web video data. For InternVideo-v2-g,
we use their stage-2 checkpointﬂ For videoPrism-g, we use their final checkpoint.

%https://github.com/OpenGVLab/InternVideo/blob/main/InternVideo2/multi_modality/MODEL_Z00.md
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Table 7: Benchmark FMs adaptation on video understanding tasks under sample-efficient transfer learning.
This table shows Top-1 classification accuracy and the relative accuracy (shown in the bracket). Results are
achieved by using frozen features with pooler head.

K400 SSv2

Method 1% 10% 100% 1% 10% 100%
CoCa 27.1(37.8%) 48.9(67.0%) 73.1 5.6(13.4%)  20.9(50.4%) 415
CLIP 36.9(46.2%) 66.8(83.6%) 79.0 8.7(19.3%)  25.1(55.5%) 45.3
FLAVA  14.4(20.2%) 35.8(50.3%) 71.3 72(17.7%) 14.3(35.3%)  40.6
VideoMAE ~ 15.5(23.9%) 32.0(49.2%)  65.0 13.7(25.4%) 30.3(56.2%)  53.9
InternVideo 20.4(29.5%) 50.2(72.4%)  69.3 19.5(33.6%) 41.1(70.7%) 58.2
VATT  34.1(45.4%) 63.7(84.8%) 75.1 12.9(22.4%) 37.6(65.0%) 57.8

E.2 Sample-efficient transfer learning

A strong FM should be able to adapt to downstream tasks with a few training samples. In this section,
we test the adaption ability of FMs in a sample-efficient transfer learning setting. Particularly, we freeze
backbones and train a pooler head to adapt the FMs on K400 and SSv2. For either dataset, we sample 1%
and 10% data from the training set uniformly for training and evaluate on the full evaluation dataset.

We show our experimental results in Table [7] To better understand the data efficiency, we also show the
relative Top-1 accuracy for each model (shown in the bracket), which is defined as the ratio between accuracy
with fewer training examples and the accuracy achieved using all the training data. A higher relative Top-1
accuracy means the performance of the model is closer to its “full” capacity under the sample-efficient setting.
We notice that the best performed model on each dataset in fully fine-tuned model also performs best in the
few-shot setting. Especially, CLIP (Radford et al., 2021)) achieves 46.2% and 83.6% relative Top-1 accuracy
on K400 using only 1% and 10% of the training data, respectively. On SSv2, InternVideo (Wang et al.| 2022)
achieves 33.6% and 70.6% relative Top-1 accuracy with only 1% and 10% of the training data.
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