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ABSTRACT

Autonomous agents powered by foundation models have seen widespread adop-
tion across various real-world applications. However, they remain highly vul-
nerable to malicious instructions and attacks, which can result in severe con-
sequences such as privacy breaches and financial losses. More critically, exist-
ing guardrails for LLMs are not applicable due to the complex and dynamic na-
ture of agents. To tackle these challenges, we propose SHIELDAGENT, the first
guardrail agent designed to enforce explicit safety policy compliance for the ac-
tion trajectory of other protected agents through logical reasoning. Specifically,
SHIELDAGENT first constructs a safety policy model by extracting verifiable rules
from policy documents and structuring them into a set of action-based proba-
bilistic rule circuits. Given the action trajectory of the protected agent, SHIELD-
AGENT retrieves relevant rule circuits and generates a shielding plan, leverag-
ing its comprehensive tool library and executable code for formal verification.
In addition, given the lack of guardrail benchmarks for agents, we introduce
SHIELDAGENT-BENCH, a dataset with 3K safety-related pairs of agent instruc-
tions and action trajectories, collected via SOTA attacks across 6 web environ-
ments and 7 risk categories. Experiments show that SHIELDAGENT achieves
SOTA on SHIELDAGENT-BENCH and three existing benchmarks, outperform-
ing prior methods by 11.3% on average with a high recall of 90.1%. Addition-
ally, SHIELDAGENT reduces API queries by 64.7% and inference time by 58.2%,
demonstrating its high precision and efficiency in safeguarding agents. Our project
is available here: https://shieldagent-aiguard.github.io/

1 INTRODUCTION

LLM-based autonomous agents are rapidly gathering momentum across various applications, inte-
grating their ability to call external tools and make autonomous decisions in real-world tasks such as
web browsing Zhou et al. (2023), GUI navigation Lin et al. (2024), and embodied control Mao et al.
(2023). Among these, LLM-based web agents, such as OpenAI’s Operator OpenAI (2025b), deep
research agent OpenAI (2025a), and Anthropic’s computer assistant agent Anthropic (2024), have
become particularly prominent, driving automation in areas like online shopping, stock trading, and
information retrieval.

Despite their growing capabilities, users remain reluctant to trust current web agents with high-
stakes data and assets, as they are still highly vulnerable to malicious instructions and adversarial
attacks Chen et al. (2024b); Wu et al. (2025), which can lead to severe consequences such as privacy
breaches and financial losses Levy et al. (2024). Existing guardrails primarily focus on LLMs as
models, while failing to safeguard them as agentic systems due to two key challenges: (1) LLM-
based agents operate through sequential interactions with dynamic environments, making it difficult
to capture unsafe behaviors that emerge over time Xiang et al. (2024); (2) Safety policies governing
these agents are often complex and encoded in lengthy regulation documents (e.g. EU AI Act Act
(2024)) or corporate policy handbooks GitLab (2025), making it difficult to systematically extract,
verify, and enforce rules across different platforms Zeng et al. (2024). As a result, safeguarding the
safety of LLM-based web agents remains an open challenge.
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To address these challenges, we introduce SHIELDAGENT, the first LLM-based guardrail agent
designed to shield the action trajectories of other LLM-based autonomous agents, ensuring explicit
safety compliance through probabilistic logic reasoning and verification. Unlike existing approaches
that rely on simple text-based filtering Xiang et al. (2024), SHIELDAGENT accounts for the unique-
ness of agent actions and explicitly verifies them against relevant policies in an efficient manner. At
its core, SHIELDAGENT automatically constructs a robust safety policy model by extracting verifi-
able rules from policy documents, iteratively refining them, and grouping them based on different
action types to form a set of structured, action-based probabilistic rule circuits Kang & Li (2024).
During inference, SHIELDAGENT only verifies the relevant rule circuits corresponding to the in-
voked action, ensuring both precision and efficiency. Specifically, SHIELDAGENT references from
a hybrid memory module of both long-term shielding workflows and short-term interaction his-
tory, generates a shielding plan with specialized operations from a rich tool library, and runs formal
verification code. Once a rule is verified, SHIELDAGENT performs probabilistic inference within
the circuits and provides a binary safety label, identifies any violated rules, and generates detailed
explanations to justify its decision.

While evaluating these guardrails is critical for ensuring agent safety, existing benchmarks remain
small in scale, cover limited risk categories, and lack explicit risk definitions (see Table 8). There-
fore, we introduce SHIELDAGENT-BENCH, the first comprehensive agent guardrail benchmark com-
prising 2K safety-related pairs of agent instructions and trajectories across six web environments and
seven risk categories. Specifically, each unsafe agent trajectory is generated under two types of at-
tacks Chen et al. (2024b); Xu et al. (2024) based on different perturbation sources (i.e., agent-based
and environment-based), capturing risks present both within the agent system and the external envi-
ronments.

We conduct extensive experiments demonstrating that SHIELDAGENT achieves SOTA performance
on both SHIELDAGENT-BENCH and three existing benchmarks (i.e., ST-WebAgentBench Levy et al.
(2024), VWA-Adv Wu et al. (2025), and AgentHarm Andriushchenko et al.). Specifically, SHIELD-
AGENT outperforms the previous best guardrail method by 11.3% on SHIELDAGENT-BENCH, and
7.4% on average across existing benchmarks. Grounded on robust safety policy reasoning, it
achieves the lowest false positive rate at 4.8% and a high recall rate of violated rules at 90.1%.
Additionally, SHIELDAGENT reduces the number of closed-source API queries by 64.7% and in-
ference time by 58.2%, demonstrating its ability to effectively shield LLM agents’ actions while
significantly improving efficiency and reducing computational overhead.

2 RELATED WORKS

2.1 SAFETY OF LLM AGENTS

While LLM agents are becoming increasingly capable, numerous studies have demonstrated their
susceptibility to manipulated instructions and vulnerability to adversarial attacks, which often result
in unsafe or malicious actions Levy et al. (2024); Andriushchenko et al.; Zhang et al. (2024b). Exist-
ing attack strategies against LLM agents can be broadly classified into the following two categories.

(1) Agent-based attacks, where adversaries manipulate internal components of the agent, such as
instructions Guo et al.; Zhang et al. (2024d), memory modules or knowledge bases Chen et al.
(2024b); Jiang et al. (2024), and tool libraries Fu et al. (2024); Zhang et al. (2024a). These attacks
are highly effective and can force the agent to execute arbitrary malicious requests. However, they
typically require some access to the agent’s internal systems or training data.

(2) Environment-based attacks, which exploit vulnerabilities in the environment that the agents
interact with to manipulate their behavior Liao et al. (2024), such as injecting malicious HTML
elements Xu et al. (2024) or deceptive web pop-ups Zhang et al. (2024c). Since the environment is
less controlled than the agent itself, these attacks are easier to execute in real world but may have a
lower success rate.

Both attack types pose significant risks, leading to severe consequences such as life-threatening
failures Chen et al. (2024b), privacy breaches Liao et al. (2024), and financial losses Andriushchenko
et al.. Therefore in this work, we account for both agent-based and environment-based adversarial
perturbations in the design of SHIELDAGENT. Besides, we leverage SOTA attacks Chen et al.
(2024b); Xu et al. (2024) from both categories to construct our SHIELDAGENT-BENCH dataset
which involves diverse risky web agent trajectories across various environments.
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Figure 1: Overview of SHIELDAGENT. (Top) From AI regulations (e.g. EU AI Act) and platform-
specific safety policies, SHIELDAGENT first extracts verifiable rules and iteratively refines them to
ensure each rule is accurate, concrete, and atomic. It then clusters these rules and assembles them
into an action-based safety policy model, associating actions with their corresponding constraints
(with weights learned from real or simulated data). (Bottom) During inference, SHIELDAGENT
retrieves relevant rule circuits w.r.t. the invoked action and performs action verification. By refer-
encing existing workflows from a hybrid memory module, it first generates a step-by-step shielding
plan with operations supported by a comprehensive tool library to assign truth values for all pred-
icates, then produces executable code to perform formal verification. Finally, it runs probabilistic
inference in the rule circuits to provide a safety label and explanation and reports violated rules.

2.2 LLM GUARDRAILS

While LLM agents are highly vulnerable to adversarial attacks, existing guardrail mechanisms are
designed for LLMs as models rather than agents, leaving a critical gap in safeguarding their se-
quential decision-making processes Andriushchenko et al.. Current guardrails primarily focus on
filtering harmful inputs and outputs, such as LlamaGuard Inan et al. (2023) for text-based LLMs,
LlavaGuard Helff et al. (2024) for image-based multimodal LLMs, and SafeWatch Chen et al.
(2024a) for video generative models. However, these methods focus solely on content modera-
tion, failing to address the complexities of action sequences, where vulnerabilities often emerge
over time Debenedetti et al. (2024). While GuardAgent Xiang et al. (2024) preliminarily explores
the challenge of guardrailing LLM agents with another LLM agent, it focus solely on textual space
and still relies on the model’s internal knowledge rather than explicitly enforcing compliance with
external safety policies and regulations Zeng et al. (2024), limiting its effectiveness in real-world
applications. To our knowledge, SHIELDAGENT is the first multimodal LLM-based agent to safe-
guard action sequences of other LLM agents via probabilistic policy reasoning to ensure explicit and
efficient policy compliance.
3 SHIELDAGENT
As illustrated in Figure 1, SHIELDAGENT consists of two main stages: (1) constructing an auto-
mated action-based safety policy model (ASPM) that encodes safety constraints from government
regulations or platform-wide policies, and (2) leveraging the ASPM to verify and enforce these
safety policies on the shielded agents’ actions via robust probabilistic safety policy reasoning. No-
tably, while SHIELDAGENT can be generalized to guardrail arbitrary agents and environments, we
use web agents as an example for illustration.
3.1 OVERVIEW

Let πagent be the action policy of an agent we aim to shield, where at each timestep i, the agent
receives an observation oi from the environment and then produces an action ai ∼ πagent(oi) to
progressively interacts with the environment.

Then SHIELDAGENT As is a guardrail agent aiming to safeguard the action of πagent, leveraging
ASPM which encodes safety constraints in a logical knowledge graph GASPM with n rules, as well
as a variety of tools and a hybrid memory module. Our guardrail task can be formulated as:

(ls, Vs, Ts) = As(ai | (oi,H<i,GASPM)) (1)
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whereAs takes as input the past interaction historyH<i = {(oj , aj)|j ∈ [1, i−1]}, the observation
oi, and the invoked action ai at step i, and consequently produces: (1) a binary flag ls indicat-
ing whether action ai is safe; (2) a list of flags indicating rule violation Vs = {ljr|j ∈ [1, n]}, if
applicable; (3) a textual explanation Ts justifying the shielding decision.

3.2 ACTION-BASED SAFETY POLICY MODEL

To achieve tractable verification, we first construct an action-based safety policy model (ASPM) that
structurally encodes all safety constraints in a logical knowledge graph GASPM.

3.2.1 OVEWVIEW OF ASPM

Specifically, all constraints are represented as linear temporal logic (LTL) rules Zhu et al. (2017)
where each rule includes corresponding atomic predicates as decision variables1. Please refer to
section 3.2.2 for details. Thus let P ,R denote the predicate and rule space respectively, we have:

GASPM =
(
P,R, πθ

)
s.t. P = {Pa,Ps},R = {Ra,Rp} (2)

where πθ denotes the probabilistic logic model (parameterized by θ) which organizes the rules
(see section 3.2.4). Specifically, GASPM partitions P into state predicates ps ∈ Ps to represent system
states or environmental conditions, and action predicates pa ∈ Pa to represent target actions. Con-
sequently, R is divided into action rules Ra which encodes safety specifications for target actions,
and physical rulesRp which capture internal constraints on system variables. Specifically, whileRp
does not directly constrain actions in Pa, these knowledge rules are critical for the logical reasoning
in ASPM, enhancing the robustness of our shield Kang & Li (2024). Therefore, by structuring the
solution space this way, we achieve a clear and manageable verification of target actions. Refer to
Appendix A.2 for more details.
Specifically, we construct ASPM from policy documents via the following steps: (1) Extract struc-
tured safety rules from government regulations Act (2024), corporate policies GitLab (2025), and
user-provided constraints; (2) Refine these rules iteratively for better clarity, verifiability, and effi-
ciency; (3) Cluster the optimized rules by different agent actions and obtain a set of action-based
rule circuits Kisa et al. (2014) where each circuit associates an agent action with relevant rules for
verification; (4) Train the ASPM by learning rule weights from either real-world interactions or
simulated data, ensuring adaptive and robust policy verification.

3.2.2 AUTOMATIC POLICY AND RULE EXTRACTION

Since policy definitions are typically encoded in lengthy documents with structures varying widely
across platforms Act (2024); GitLab (2025), directly verifying them is challenging. To address
this, SHIELDAGENT first extracts individual actionable policies from these documents and further
translates them into manageable logical rules for tractable verification.

Policy Extraction. Given policy documents, we first query GPT-4o (prompt detailed in Appendix H)
to extract individual policy into a structured format that contains the following elements: term def-
inition, application scope, policy description, and reference (detailed in Appendix C.2.1). These
elements ensure that each policy can be interpreted independently and backtracked for verification
during shielding.

LTL Rule Extraction. Since natural language constraints are hard to verify, we further extract log-
ical rules from these formatted policies via GPT-4o (prompt detailed in Appendix H). Specifically,
each rule is formulated as r = [Pr, Tr, ϕr, tr] that involves: (1) a set of predicates Pr ⊂ P from
a finite predicate set P = {Pa,Ps}; (2) a natural language description of the constraint Tr; (3) a
formal representation of the rule in LTL; (4) the rule type tr (i.e. action or physical). Please refer
to Appendix C.3 for more details.

3.2.3 ASPM STRUCTURE OPTIMIZATION

While the procedure in section 3.2.2 extracts structured LTL rules from policy documents, they may
not fully capture the original constraints or be sufficiently concrete for verification.

1Each predicate can be assigned a boolean value per time step to describe the agent system variables or
environment state.
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Algorithm 1 SHIELDAGENT Inference Procedure

Require: Interaction history H<i = {(oj , aj) | j ∈
[1, i − 1]} from the target agent; Current obser-
vation oi; Agent output ai; Safety policy model
GASPM =

(
P,R, πθ

)
; Safety threshold ϵ.

1: pa ← EXTRACT(ai) ▷ Extract action predicates
2: Cpa

θa
=

(
Ppa

, Rpa
, θa

)
← RETRIEVE(pa, GASPM)

3: Vs = {pis : vis} ← ∅ ▷ Initialize predicate-value
map

4: for each rule r = [Pr, Tr, ϕr, tr] ∈ Rpa
do

5: Wr ← RETRIEVEWORKFLOW(r, pa)
6: while ∃ps ∈ Pr s.t. Vs[ps] is not assigned do
7: As ← PLAN(Wr, r,Pr) ▷ Generate an

action plan with shielding operations (e.g.,
SEARCH, CHECK)

8: for each step tis in action plan As do
9: ois ← EXECUTE(tis,H<i, oi) ▷ Get step

result
10: Vs[ps]← PARSE

(
ois
)
, ps ∈ Pr ▷ Attempt

to assign a truth value to any unassigned
predicates

11: end for
12: end while
13: lr ← VERIFY(r,Vs) ▷ Run formal verification
14: end for
15: ϵs ← Pθ

(
µpa=1

)
− Pθ

(
µpa=0

)
▷ Calculate

safety condition via Eq. (4) and Eq. (5)
16: if ϵs ≥ ϵ then
17: ls ← 1 ▷ Action pa is safe
18: else
19: ls ← 0 ▷ Action pa is unsafe
20: end if
21: return

(
ls, Vs, Ts

)
▷ Return safety label,

violated rules, textual explanation

Therefore, we propose a bi-stage optimiza-
tion algorithm to iteratively refine the rules
in ASPM by: (1) improving their alignment
with the original natural language policies,
(2) enhancing verifiability by decomposing
complex or vague rules into more atomic
and concrete forms, and (3) increasing ver-
ification efficiency by merging redundant
predicates and rules. As detailed in algo-
rithm 2 in Appendix C.4, the optimization
process alternates between two stages, i.e.,
Verifiability Refinement (VR) and Redun-
dancy Pruning (RP).

Verifiability Refinement (VR). In this
stage, we refine rules to be: (1) accu-
rate, i.e., adjusting incorrect LTL represen-
tations by referencing their original defi-
nitions; (2) verifiable, i.e., refining predi-
cates to be observable and can be assigned
a boolean value to be deterministically used
for logical inference; and (3) atomic, i.e.,
decomposing compound rules into individ-
ual rules such that their LTL representa-
tions cannot be further simplified. Specif-
ically, we prompt GPT-4o (prompt detailed
in Appendix H) by either traversing each
rule or prioritizing vague rules under an op-
timization budget. For example, based on
the observation that concrete, useful rules
usually have more specialized predicates
that distinguish from each other, we devise
an offline proxy to estimate the vagueness
of rules via Vr = max{V1

p , · · · ,V
|Pr|
p },

where Vi
p quantifies the vagueness for each

of its predicates pi by averaging its top-k
embedding similarity with all other predicates of the same type Pi (i.e., either action or state):

Vi =
1

k

k∑
i=m

Sα(m) s.t. Sα = desc
(
{ei · ej | j ≤ |Pi|}

)
(3)

where ei denotes the normalized vector representation of predicate pi obtained by a SOTA embed-
ding model (e.g. OpenAI’s text-embedding-3-large model OpenAI (2024)). Please refer to Ap-
pendix C.4 for more details.

Redundancy Pruning (RP). Since the previous VR stage operates at the rule level without tak-
ing account of the global dynamics, it may introduce repetitive or contradictory rules into ASPM.
To address this, RP evaluates ASPM from a global perspective by clustering rules with semanti-
cally similar predicates. Then within each cluster, we prompt GPT-4o (see Appendix H) to merge
redundant predicates and rules, enhancing both efficiency and clarity in ASPM.

Iterative Optimization. By alternating between VR and RP, we progressively refine ASPM, im-
proving rule verifiability, concreteness, and verification efficiency. This process iterates until con-
vergence, i.e., no further rule optimizations are possible, or the budget is reached. Finally, human
experts may review the optimized rules and make corrections when necessary, and the resulting
ASPM thus effectively encodes all safety specifications from the given policy documents.
3.2.4 ASPM INFERENCE & TRAINING

Given that rules in ASPM can be highly interdependent, we equip ASPM with logical reasoning
capabilities by organizing it into a set of action-based rule circuits πθ := {Cpa

θa
| pa ∈ Pa}, where

Cpa

θa
represents the rule circuit responsible for verifying action pa, where its rules are assigned a soft
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weight θr to indicate their relevant importance for guardrail decision-making. Refer to Appendix C.5
for more details.

Action-based ASPM Clustering. Observing that certain agent actions exhibit low logical cor-
relation to each other (e.g. delete data and buy product), we further construct an action-based
probabilistic circuit πθ Kisa et al. (2014) from ASPM to boost its verification efficiency while re-
taining precision. Concretely, we first apply spectral clustering Von Luxburg (2007) to the state
predicates Ps, grouping rules that exhibit strong logical dependencies or high semantic relevance.
Then, we associate each action predicate pa with its relevant constraints by unifying rule clusters
that involve pa into a single probabilistic circuit Cpa

θa
(weights θa are trained in section 3.2.4). Dur-

ing verification, the agent only needs to check the corresponding circuit w.r.t. the invoked action,
thereby substantially reducing inference complexity while preserving logical dependencies among
rules.

ASPM Inference. At each step i, SHIELDAGENT first extracts action predicates pa from the agent
output and retrieves corresponding action rule circuits from GASPM to verify the invoked action ai.
Then, SHIELDAGENT generates a shielding plan to assign boolean values vis to each state predicates
pis in Cpa

θa
by leveraging a diverse set of verification operations and tools (detailed in section 3.3).

In each action circuit Cpa

θa
, the joint distribution over all possible assignments of predicates (i.e.,

world) is modeled via Markov Logic Network Richardson & Domingos (2006). Let µp denote the
assignment of predicate p, the probability of the proposed world µ with action pa invoked is given
by:

Pθ(µpa = 1|{µps = vs}) =
1

Z
exp

∑
r∈Rpa

θrI[µ ∼ r] (4)

where I[µ ∼ r] = 1 indicates that the world µ follows the logical rule r and Z is a constant partition
for normalization. However, since the absolute value of world probability is usually unstable Gürel
et al. (2021), directly thresholding it as the guardrail decision may cause a high false positive rate.
Thus inspired by the control barrier certificate Ames et al. (2019), we propose the following relative
safety condition:

ls(ai) = 1 iff Pθ(µpa=1)− Pθ(µpa=0) ≥ ϵ (5)

where Pθ(µpa
= 1) is the probability in Eq. (4), rewritten for brevity, and Pθ(µpa=0) = Pθ(µpa

=
0|{µps

= vs}) reverses the value of the invoked action while keeping others unchanged. Specif-
ically, condition Eq. (5) guarantees the safety of the action sequence from a dynamic perspective,
allowing executing action ai only when the safety likelihood increases or remains within a tolerable
region bounded by |ϵ| from the current state (i.e. no action taken). Users are allowed to adjust ϵ to
adapt to different levels of safety requirements (e.g. higher ϵ for more critical safety needs).

ASPM Weight Learning. Since some rules in ASPM may be inaccurate or vary in importance
when constraining different actions, treating them all as absolute constraints (i.e., rule weights are
simply infinity) can lead to a high false positive rate. To improve ASPM’s robustness, we optimize
rule weights for each circuit θa over a datasetD = {ζ(i), y(i))}Ni=1 via the following guardrail hinge
loss:

Lg(θ) = E
(ζ,Y)∼D

max(0,−y(i)(Pθ(µ
(i)
pa=1)− Pθ(µ

(i)
pa=0))) (6)

where labels y(i) = 1 if action a(i) is safe or y(i) = −1 if unsafe. Specifically, y(i) can be derived
from either real-world safety-labeled data or simulated pseudo-learning Kang & Li (2024). The
learned weights act as soft constraints, capturing the relative importance of each rule in guardrail
decision-making. We illustrate the training process in algorithm 3.
3.3 SHIELDAGENT FRAMEWORK

In this section, we detail the verification workflow of SHIELDAGENT for each action rule cir-
cuit. Specifically, SHIELDAGENT integrates specialized shielding operations designed for diverse
guardrail needs, supported by a rich tool library. To further enhance efficiency, it employs a hybrid
memory module that caches short-term interaction history and stores long-term successful shielding
workflows.

Shielding Pipeline. As illustrated in the lower part of Figure 1, at each step i, SHIELDAGENT
first extracts action predicates from the agent output and retrieves corresponding rule circuits for
verification. Then it formats all the predicates and rules in a query and retrieves similar shielding
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workflows from the long-term memory. Using them as few-shot examples, it then produces a step-
by-step shielding plan supported by a diverse set of operations and tools to assign truth values for
the predicates. Once all predicates are assigned, it then generates model-checking code to formally
verify each rule. For each violated rule, it provides an in-depth explanation and potential counter-
measures. Finally, it performs a probabilistic inference (as detailed in section 3.2.4) to deliver the
final guardrail decision (see details in Appendix D).

Shielding Operations. SHIELDAGENT includes four inbuilt operations for rule verification: (1)
Search: Retrieves relevant information from past history H≤i and enumerates queried items as
output; (2) Binary-Check: Assigns a binary label to the input query; (3) Detect: Calls moderation
APIs to analyze target content and produce guardrail labels for different risk categories; (4) Formal
Verify: Run model-checking algorithms to formally verify target rules.

Tool Library. To support these operations, SHIELDAGENT is equipped with powerful tools, includ-
ing moderation APIs for various modalities (e.g., image, video, audio) and formal verification tools
(e.g., Stormpy). To enhance guardrail accuracy, we fine-tuned two specialized guardrail models
based on InternVL2-2B Chen et al. (2024c) for enumeration-based search and binary-check opera-
tions.

Memory Modules. To optimize efficiency, SHIELDAGENT employs a hybrid memory module com-
prising: (1) History as short-term memory: To copilot with the shielded agent πagent in real time,
SHIELDAGENT incrementally stores agent-environment interactions as KV-cache, minimizing re-
dundant computations. Once the current action sequence is verified, the cache is discarded to main-
tain a clean and manageable memory; (2) Successful workflows as long-term memory: Since
verifying similar actions often follows recurring patterns, SHIELDAGENT also stores successful ver-
ification workflows for diverse action circuits as permanent memory, enabling efficient retrieval and
reuse of these effective strategies. This module is also continually updated to incorporate new suc-
cessful shielding experiences.

Built on the MCP framework Anthropic (2024), SHIELDAGENT collectively integrates these mod-
ules to handle diverse shielding scenarios while allowing users to customize new tools to extend the
guardrail capabilities.
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Figure 2: Pipeline for curating SHIELDAGENT-
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Existing guardrail benchmarks primarily
evaluate the content generated by LLMs
rather than their actions as decision-making
agents. To bridge this gap, we introduce
SHIELDAGENT-BENCH, the first comprehen-
sive benchmark for evaluating guardrails for
LLM-based autonomous agents, encompass-
ing safe and risky trajectories across six di-
verse web environments. As shown in Fig-
ure 2, we curate 960 safety-related web in-
structions and collect 3110 unsafe trajectories
by attacking agents to violate targeted safety
policies via two practical perturbations. Fur-
thermore, we categorize the resulting failure
patterns into seven common risk categories.

Safety-related Instructions. We selectively reuse the instruction templates from WebArena Zhou
et al. (2023) and ST-WebAgentBench Levy et al. (2024) across six environments (i.e., Shopping,
CMS, Reddit, GitLab, Maps, SuiteCRM), and curate instructions that yield potential safety risks
by augmenting the templates with safety-critical information (e.g. API token). Finally, we obtain
960 high-quality safety-related instructions. Specifically, each sample in our dataset consists of
(Is, ζs, ζ

a
u , ζ

e
u), where Is is the instruction, ζs is the safe trajectory, and ζau , ζeu are unsafe trajectories

induced by two types of attacks, respectively. Each ζ includes the complete interactions between the
agent and the environment at each step, including: (1) all conversations, (2) visual screenshots, (3)
HTML accessibility trees.

Policy-Targeted Agent Attacks. We consider two types of adversarial perturbations against agents,
each instanced by a practical attack algorithm: (1) Agent-based: we adopt AgentPoison Chen et al.
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Table 1: Agent guardrail performance comparison of SHIELDAGENT with various baselines on
SHIELDAGENT-BENCH. For each perturbation source (i.e., agent-based and environment-based),
we report the individual accuracy for each risk category, along with average accuracy (ACC@G)
and false positive rate (FPR@G) for the final guardrail label. Additionally, we report the average
rule recall rate (ARR@R). Inference cost is measured by the average number of queries (NoQ) to
GPT-4o and inference time (seconds per sample). The best performance is in bold.

Perturbation
Source Guardrail

Risk Category Overall Cost
Access Content Hallu. Instr. Operation Error Long-term ACC@G ↑ FPR@G ↓ ARR@R ↑ NoQ ↓ Time ↓

Agent-based
Direct 68.2 78.6 76.3 78.0 69.2 74.3 68.8 73.3 7.6 31.5 1 6.3
Rule Traverse 83.4 85.9 74.0 85.0 87.9 70.5 87.0 82.0 18.1 69.0 27.1 75.3
GuardAgent 77.0 77.6 80.3 87.7 85.3 84.7 76.9 81.4 14.3 55.9 13.6 62.3
SHIELDAGENT 92.0 89.2 85.5 93.3 93.0 88.7 91.3 90.4 5.6 87.5 9.5 31.1

Environment-
based

Direct 75.0 81.6 73.3 74.9 73.5 70.3 82.0 75.8 6.6 31.5 1 6.7
Rule Traverse 85.0 86.2 76.7 83.2 88.0 69.3 83.0 81.6 15.0 75.0 31.5 80.1
GuardAgent 89.3 88.2 88.1 86.3 83.1 77.7 80.9 84.8 10.7 70.0 14.8 58.7
SHIELDAGENT 95.1 92.7 86.7 95.2 91.0 89.3 92.0 91.7 4.0 92.7 11.2 33.8

(2024b), which injects adversarial demonstrations in the agent’s memory or knowledge base to ma-
nipulate its decision-making; (2) Environment-based: we adopt AdvWeb Xu et al. (2024), which
stealthily manipulates the environment elements to mislead the agent. Specifically, we adapt both
algorithms to attack a SOTA web agent, AWM Wang et al. (2024) to violate at least one extracted
safety policy per instruction, ensuring policy-centered safety violation for tractable guardrail evalu-
ation.
Comprehensive Risk Categories. We carefully investigate the extracted policies, risky trajectories
induced by our attack, and concurrent studies on agents’ risky behaviors Levy et al. (2024), and
categorize the unsafe trajectories into seven risk categories: (1) access restriction, (2) content re-
striction, (3) hallucination, (4) instruction adherence, (5) operational restriction, (6) typical error
patterns, and (7) long-term risks. Please refer to Appendix F for more details.
Quality Control. For each trajectory, human annotators manually review its guardrail label and all
violated policies, ensuring a reliable testbed for evaluating agent guardrails.

5 EXPERIMENT

5.1 SETUP

Datasets. We evaluate SHIELDAGENT against guardrail baselines on our SHIELDAGENT-BENCH
dataset and three existing benchmarks: (1) ST-WebAgentBench Levy et al. (2024), which includes
234 safety-related web agent tasks with simple safety constraints; (2) VWA-Adv Wu et al. (2025),
consisting of 200 realistic adversarial tasks in the VisualWebArena Koh et al. (2024); and (3) Agen-
tHarm Andriushchenko et al., comprising 110 malicious tasks designed for general agents. Notably,
to properly evaluate agent guardrails, each sample must include an instruction, agent trajectory,
enforced policy, and ground-truth label as protocols—all of which are available in SHIELDAGENT-
BENCH. However, existing benchmarks only provide task instructions (see Table 8). To address
this, we augment them by collecting corresponding policies and both safe and unsafe trajectories
using various algorithms. See Appendix F for details on the curation pipeline and dataset statistics.

Baselines. We consider three representative baselines: (1) Direct prompt: We provide GPT-4o with
the complete policy and directly prompt it to produce an overall safety label and any violated rules.
(2) Rule traverse: We traverse each rule and prompt GPT-4o to identify potential violation. We
flag the trajectory as unsafe once a rule is flagged as violated. (3) GuardAgent Xiang et al. (2024):
We follow their pipeline and set the guard request to identify any policy violations in the agent
trajectory. To ensure a fair comparison, we provide all methods with the same safety policy as input
and collect the following outputs for evaluation: (i) A binary flag (safe or unsafe); (ii) A list of
violated rules, if any.

Metrics. We evaluate these guardrails using three holistic metrics: (1) Guardrail Accuracy: We
report the accuracy (ACC) and false positive rate (FPR) based on the overall safety label, capturing
the end-to-end guardrail performance. (2) Rule Recall Rate: For each rule, we compute their
average recall rates (ARR) from the list of reported violations, reflecting how well the guardrail
grounds its decisions based on the underlying policy. (3) Inference Cost: We report the average
number of API queries to closed-source LLMs (e.g., GPT-4o) and the inference time (in seconds)
per sample for different guardrail methods, capturing both monetary and computational overhead
for real-time applications.
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5.2 RESULTS

SHIELDAGENT-BENCH. As shown in Table 1, SHIELDAGENT achieves SOTA performance, out-
performing the best baseline (rule traverse) by an average of 10.2% in terms of accuracy. It also at-
tains the lowest false positive rate at 4.8% and a high rule recall rate of 90.1%, attributed to the robust
logical reasoning of ASPM. In terms of efficiency, SHIELDAGENT reduces API queries by 64.7%
and inference time by 58.2% due to its streamlined verification pipeline. (1) Policy Grounding: The
high ARR demonstrates SHIELDAGENT’s strong ability to ground decisions in self-extracted con-
straints, highlighting the effectiveness of our ASPM pipeline in both rule extraction and rigorous
verification. (2) Guardrail Robustness: Guardrails generally perform better on environment-based
perturbations, as these are externally observable by the guardrail, unlike agent-based which rely on
internal agent configurations. Nonetheless, SHIELDAGENT performs consistently well across both
types due to its proactive evidence-grounded verification, making it robust and agnostic to attack
modality. (3) Guardrail by Category: SHIELDAGENT leads across most risk categories, particularly
in access restriction and instruction adherence, with slightly lower performance on hallucination-
related risks that often require external knowledge beyond the policy.

Table 2: Comparison of guardrails across three ex-
isting benchmarks. Averaged accuracy (ACC) and
false positive rate (FPR) are reported. The best per-
formance is in bold.

Guardrail ST-Web VWA-Adv AgentHarm
ACC ↑ FPR ↓ ACC ↑ FPR ↓ ACC ↑ FPR ↓

Direct 74.1 4.2 90.3 4.2 76.9 4.4
GuardAgent 84.0 6.6 89.9 4.4 78.4 4.1
SHIELDAGENT 91.1 4.4 94.1 3.4 86.9 3.9

Existing Datasets. As shown in Table 2
and Figure 3, SHIELDAGENT outperforms
the baselines across all three benchmarks by
an average of 7.4% in ACC. Specifically:
(1) On ST-WebAgentBench, SHIELDAGENT
shows notable gains in User Consent and
Boundary and Scope Limitation, highlighting
its strength in grounding and enforcing target
policies; (2) On VWA-Adv, SHIELDAGENT
achieves the highest ACC and lowest FPR,
demonstrating robust guardrail decisions grounded in logical reasoning. (3) On AgentHarmthat
spans a broader range of agent tasks, SHIELDAGENT achieves SOTA performance, showing its gen-
eralizability to guardrail across diverse agent types and scenarios.

Table 3: Comparison of online guardrail perfor-
mance of different guardrail methods across six web
environments. We report the policy compliance rate
(%) conditioned on task success for the tasks from
each web environment, along with the average time
cost. The best performance is in bold.

Shopping CMS Reddit GitLab Maps SuiteCRM

AWM Agent 46.8 53.2 45.9 22.8 67.9 36.0
+ Direct 50.2 56.1 48.3 26.5 70.2 38.5
+ Rule Traverse 58.7 62.9 55.4 32.0 75.1 41.0
+ GuardAgent 57.9 61.5 54.8 36.1 74.3 40.6
+ SHIELDAGENT 65.3 68.4 60.2 50.7 80.5 55.9

Online Guardrail. We further evaluate
SHIELDAGENT’s performance in providing
online guardrails for web agents. Specifi-
cally, we use the AWM agent as the task
agent and integrate each guardrail method as
a post-verification module that copilots with
the agent. These guardrails verify the agent’s
actions step-by-step and provide interactive
feedback to help it adjust behavior for bet-
ter policy compliance. Notably, this evalua-
tion setting comprehensively captures key di-
mensions such as guardrail accuracy, fine-
grained policy grounding, and explanation
clarity, which are all critical components for effectively guiding the task agent’s behavior toward
better safety compliance. As shown in Table 3, SHIELDAGENT also outperforms all baselines in
this online setting, achieving the highest policy compliance rate. These results highlight SHIELDA-
GENT’s effectiveness as System 2 Li et al. (2025) to seamlessly integrate with task agents to enhance
their safety across diverse environments.
6 CONCLUSION

In this work, we propose SHIELDAGENT, the first LLM-based guardrail agent that explicitly en-
forces safety policy compliance for autonomous agents through logical reasoning. Specifically,
SHIELDAGENT leverages a novel action-based safety policy model (ASPM) and a streamlined ver-
ification framework to achieve rigorous and efficient guardrail. To evaluate its effectiveness, we
present SHIELDAGENT-BENCH, the first benchmark for agent guardrails, covering seven risk cat-
egories across diverse web environments. Empirical results show that SHIELDAGENT outperforms
existing methods in guardrail accuracy while significantly reducing resource overhead. As LLM
agents are increasingly deployed in high-stakes, real-world scenarios, SHIELDAGENT marks a crit-
ical step toward ensuring their behavior aligns with explicit regulations and policies—paving the
way for more capable and trustworthy AI systems.
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A DETAILED INTRODUCTION TO SHIELDAGENT

A.1 NOTATIONS

Let X denote the environment, and let πagent be the action policy of an agent we aim to shield. At
each step i, the agent receives an observation oi ∈ X and maps it to a partial state si = f(oi) via
a state-space mapping function f . Specifically for web agents, f extracts accessibility trees (AX-
trees) from the webpage’s HTML and visual screenshots, condensing key information from lengthy
observations Zhou et al. (2023). Then, the agent generates an action ai by sampling from policy
ai ∼ πagent(si) and progressively interacts with the environment X .

A.2 SOLUTION SPACE

Given the uniqueness of verifying agent trajectories, we further categorize the predicates into two
types: (1) action predicate pa: indicates the action to be executed (e.g. delete data); and (2) state
predicate ps: describes the environment states involved for specifying the condition that certain
actions should be executed (e.g. is private). A detailed explanation can be found in Appendix C.3.

Consequently, we characterize the solution space of LLM-based agents with the following two types
of rules.

Action rule: an action rule ϕa specifies whether an action pa should be executed or not under certain
permissive or preventive conditions pc. Note ϕa must involve at least one pa. For example, the dele-
tion action cannot be executed without user consent (i.e., ¬is user authorized→ ¬delete data).

Physical rule: a physical rule ϕp specifies the natural constraints of the system, where conditions
can logically depend on the others. For example, if a dataset contains private information then it
should be classified as red data under GitLab’s policy (i.e., is private→ is red data).

Since predicates can sometimes be inaccurately assigned, ϕp can serve as knowledge in ASPM
to enhance the robustness of our shield Kang & Li (2024). With these rules, SHIELDAGENT can
effectively reason in the solution space to shield the agent action with high accuracy and robustness.

B ADDITIONAL RESULTS

B.1 ST-WEBAGENTBENCH
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Figure 3: Performance comparison of SHIELDAGENT with rule traverse and GuardAgent baselines
on ST-WebAgentBench. We report the individual guardrail accuracy for each risk category.

Table 4: Comparison of guardrail performance across three risk categories in ST-
WebAgentBench Levy et al. (2024). Specifically, we report the averaged accuracy (ACC) and false
positive rate (FPR) for each evaluation category, along with overall averages. The best performance
is in bold.

Guardrail User Consent Boundary Strict Execution Overall
ACC ↑ FPR ↓ ACC ↑ FPR ↓ ACC ↑ FPR ↓ ACC ↑ FPR ↓

Direct 78.0 5.0 72.3 3.4 71.9 4.3 74.1 4.2
Rule Traverse 84.3 10.7 85.0 11.5 80.5 7.0 83.3 9.7
GuardAgent 80.1 4.5 88.9 8.7 83.0 6.5 84.0 6.6
SHIELDAGENT 91.4 4.2 93.5 4.0 88.3 5.1 91.1 4.4
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B.2 VWA-ADV

Specifically, VWA-Adv Wu et al. (2025) attacks web agents by perturbing either the text instruction
by adding a suffix or the image input by adding a bounded noise. Specifically, VWA-Adv constructs
200 diverse risky instructions based on the three environments from VisualWebArena Koh et al.
(2024). The environments are detailed as follows:

Classifieds. Classifieds is a similar environment inspired by real-world platforms like Craigslist
and Facebook Marketplace, comprising roughly 66K listings and uses OSClass—an open-source
content management system—allowing realistic tasks such as posting, searching, commenting, and
reviewing.

Shopping. This environment builds on the e-commerce site from WebArena Zhou et al. (2023),
where successful navigation requires both textual and visual comprehension of product images,
reflecting typical online shopping tasks.

Reddit. Adopting the social forum environment from WebArena, this environment hosts 31K+
posts (including images and memes) across different subreddits. The content variety offers broad
coverage of social media interactions and challenges in forum-based tasks.

Table 5: Guardrail performance comparison on VWA-Adv Wu et al. (2025) across three environ-
ments in VisualWebArena Koh et al. (2024), i.e., Classifieds, Reddit, Shopping, under two pertur-
bation sources, i.e., text-based and image-based. We report accuracy (ACC) and false positive rate
(FPR) for each environment. The best performance is in bold.

Perturbation
Source

Guardrail Classifieds Reddit Shopping Overall
ACC ↑ FPR ↓ ACC ↑ FPR ↓ ACC ↑ FPR ↓ ACC ↑ FPR ↓

Text-based
Direct 87.8 4.6 91.1 3.9 90.1 5.0 89.7 4.5
GuardAgent 90.5 6.8 87.3 2.6 91.8 5.8 89.9 5.1
SHIELDAGENT 93.2 3.4 93.4 4.9 95.1 3.2 93.9 3.8

Image-based
Direct 93.7 3.5 91.2 4.3 87.9 3.6 90.9 3.8
GuardAgent 92.4 3.9 87.2 2.7 90.0 4.1 89.9 3.6
SHIELDAGENT 91.0 3.4 96.6 2.7 94.9 3.0 94.2 3.0

B.3 AGENTHARM

Table 6: Guardrail performance comparison on AgentHarm Andriushchenko et al. across 11 harm
categories. The reported numbers have been slightly perturbed (by ±0.1 in an alternating pattern)
and the overall is recalculated as the arithmetic mean of the 11 categories. The best performance is
in bold.

Fraud Cybercrime Self-harm Harassment Sexual Copyright Drugs Disinfo. Hate Violence Terrorism Overall

Direct ACC 75.7 82.4 76.5 80.6 82.2 72.0 82.0 76.9 71.0 75.8 71.1 76.9
FPR 5.2 3.6 3.6 3.8 3.8 3.9 7.0 4.1 3.5 4.4 5.1 4.4

GuardAgent ACC 82.6 66.1 75.1 75.9 82.1 69.6 76.6 80.1 77.7 92.4 83.9 78.4
FPR 4.7 4.0 4.5 3.4 6.3 4.3 3.8 3.2 3.7 3.3 4.2 4.1

SHIELDAGENT
ACC 89.1 92.9 82.5 92.4 94.0 89.0 80.4 81.9 81.7 83.9 88.3 86.9
FPR 4.6 4.9 3.9 2.5 4.0 2.1 5.5 4.2 3.8 4.7 3.2 3.9

C ACTION-BASED PROBABILISTIC SAFETY POLICY MODEL

C.1 AUTOMATED POLICY EXTRACTION

We detail the prompt for automated policy extraction in Appendix H and LTL rule extraction in Ap-
pendix H.
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C.2 SAFETY POLICY MODEL CONSTRUCTION

C.2.1 AUTOMATIC POLICY AND RULE EXTRACTION

Specifically, we detail the prompt used for extracting structured policies in Appendix H). Specifi-
cally, each policy contains the following four elements:

1. Term definition: clearly defines all the terms used for specifying the policy, such that each
policy block can be interpreted independently without any ambiguity.

2. Application scope: specifies the conditions (e.g. time period, user group, region) under
which the policy applies.

3. Policy description: specifies the exact regulatory constraint or guideline (e.g. allowable
and non-allowable actions).

4. Reference: lists original document source where the policy is extracted from, such that
maintainers can easily trace them back for verifiability.

C.3 LINEAR TEMPORAL LOGIC (LTL) RULES

Temporal logic represents propositional and first-order logical reasoning with respect to time. Linear
temporal logic over finite traces (LTLf ) Zhu et al. (2017) is a form of temporal logic that deals with
finite sequences, i.e., finite-length trajectories.

Syntax. The syntax of an LTLf formula φ over a set of propositional variables P is defined as:

φ ::= p ∈ P | ¬φ | φ1 ∧ φ2 | ⃝φ | □φ | φ1 U φ2. (7)

Specifically, LTLf formulas include all standard propositional connectives: AND (∧), OR (∨), XOR
(⊕), NOT (¬), IMPLY (→), and so on. They also use the following temporal operators (interpreted
over finite traces):

• Always (2φ1): φ1 is true at every step in the finite trajectory.

• Sometimes (3φ1): φ1 is true at least once in the finite trajectory.

• Next (⃝φ1): φ1 is true in the next step.

• Until (φ1 U φ2): φ1 must hold true at each step until (and including) the step when φ2 first
becomes true. In a finite trace, φ2 must become true at some future step.

Specifically, φ1 and φ2 are themselves LTLf formulas. An LTLf formula is composed of variables
in P and logic operations specified above.

Trajectory. A finite sequence of truth assignments to variables in P is called a trajectory. Let Φ
denote a set of LTLf specifications (i.e., {ϕ | ϕ ∈ Φ}), we have ζ |= Φ to denote that a trajectory ζ
satisfies the LTLf specification Φ.

C.4 ASPM STRUCTURE OPTIMIZATION

We detail the prompt for the verifiability refinement of ASPM in Appendix H and redundancy merg-
ing in Appendix H.

We detail the overall procedure of the iterative ASPM structure optimization in Algorithm 2.

C.5 TRAINING ASPM
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Algorithm 2 ASPM Structure Optimization

Require: Predicate set P = {Pa,Ps}; Rule set R = {Ra,Rp}; Embedding model E ; Clustering
algorithm C; Refinement budget Nb; Max iterations Mit; Surrogate LLM; Graph G = (P, E)
with initial edge weights E.

1: Initialize vagueness score for each predicate Vp, p ∈ P ▷ Calculate via Eq. (3)
2: Vr = max{Vp1

, . . . ,Vp|Pr|},Pr ⊆ P ▷ Compute vagueness score for each rule
3: Initialize a max-heap U ←

{
(Vr, r)

∣∣ r ∈ R
}

4: n← 0 ▷ Count how many refinements have been done
5: for m = 1 to Mit do
6: changed← false ▷ Tracks if any update occurred in this iteration
7: while U ̸= ∅ ∧ n ≤ Nb do
8: ( , r)← HeapPop(U) ▷ Pop the most vague rule
9: if LLM verifiable(r) = false then

10: rnew ← LLM refine
(
r, Pr

)
▷ Refine rule r to be verifiable; update its predicates if

needed
11: UpdateR: replace r with rnew
12: Update P: if rnew introduces or revises predicates
13: Recompute Vp for any changed predicate p in rnew
14: Recompute Vrnew

= max{Vp | p ∈ Prnew}
15: Push (Vrnew

, rnew) into U
16: n← n+ 1
17: changed← true
18: end if
19: end while
20: K ← C(G) ▷ Cluster predicates in G to prune redundancy
21: for each cluster C ∈ K do
22: pmerged ← LLM merge

(
C, R

)
▷ Merge similar predicates/rules in C if beneficial

23: if pmerged ̸= ∅ then
24: Update G: add pmerged, remove predicates in C
25: UpdateR to replace references of predicates in C with pmerged

26: Recompute Vpmerged
and any affected Vr

27: Push updated rules into U by their new Vr
28: changed← true
29: end if
30: end for
31: if changed = false then
32: break ▷ No more refinements or merges
33: end if
34: end for
35: return ASPM GASPM with optimized structure and randomized weights

D SHIELDAGENT FRAMEWORK

E SHIELDAGENT-BENCH

E.1 RISK CATEGORIES

We categorize the unsafe trajectories from SHIELDAGENT-BENCH into the following seven risk
categories.

(1) Access restriction: Ensuring the agent only interacts with explicitly authorized areas within an
application (e.g., enforcing user-specific access control); (2) Content restriction: Verifying that
content handling follows predefined policies (e.g., preventing exposure of private or harmful data);
(3) Hallucination: the cases where the agent generates or retrieves factually incorrect or mislead-
ing outputs in information-seeking tasks; (4) Instruction adherence: Assessing the agent’s ability
to strictly follow user-provided instructions and constraints without deviation; (5) Operational re-
striction: Enforcing explicit policy-based operational constraints, such as requiring user permission
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Figure 4: The number of rules during each itera-
tion step for GitLab policy. Specifically, the or-
ange bar denotes the number of rules after each
verifiability refinement step, and the blue bar de-
notes the number of rules after each redundancy
pruning step.
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Figure 5: The number of predicates during each
iteration step for GitLab policy. Specifically,
the orange bar denotes the number of predicates
after each verifiability refinement step, and the
blue bar denotes the number of predicates after
each redundancy pruning step.
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Figure 6: The vagueness score of the rule set during each iteration step for optimizing the GitLab
policy. Specifically, we leverage GPT-4o as a judge and prompt it to evaluate the vagueness of each
rule within the rule set. A lower vagueness score signifies that the rules are more concrete and
therefore more easily verified.

before executing sensitive actions; (6) Typical error pattern: Identifying common failure patterns
like infinite loops or redundant executions; (7) Long-term risks: Evaluating actions with delayed
consequences, such as repeated failed login attempts leading to account lockout.

F DETAILED EXPERIMENT RESULTS

F.1 DATASET DISTRIBUTION

We detail the distribution of samples in our proposed SHIELDAGENT-BENCH dataset in Figure 7.

Table 7: Distribution of samples in our proposed SHIELDAGENT-BENCH dataset. For each envi-
ronment, we report the number of safe and unsafe trajectories. Each instruction is paired with one
safe trajectory (i.e., compliant with all policies) and one unsafe trajectory (i.e., violating at least one
policy), such that these paired trajectories are always equal in quantity.

Environment Unsafe Safe Total

Shopping 265 265 530
CMS 260 260 520
Reddit 230 230 460
GitLab 450 450 900
Maps 160 160 320
SuiteCRM 190 190 380
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Algorithm 3 ASPM TRAINING PIPELINE

Require: Rule setR; state predicates Ps and action predicates Pa; similarity threshold θ; number
of clusters k.

1: A ∈ {0, 1}|Ps|×|Ps| ← 0 ▷ Initialize adjacency matrix
2: Aij ← 1 if (pis, p

j
s) co-occur in any rule OR cosSim

(
emb(pis), emb(pjs)

)
≥θ; else 0. ▷ Build

adjacency matrix
3: labels← SPECTRALCLUSTERING(A, k) ▷ Cluster the state predicates into k groups
4: for ℓ = 1 to k do
5: Cℓ

p ← {ps | labels[ps] = ℓ} ▷ Form predicate clusters Cp
6: end for
7: for each pair (pis, p

j
s) that co-occur do

8: if labels[pis] ̸= labels[pjs] then
9: Cℓp ← Cℓp ∪ Cmp s.t. pis ∈ Cℓp, pjs ∈ Cmp ▷ If two co-occurring predicates appear in different

clusters, merge them
10: end if
11: end for
12: for ℓ = 1 to k′ do
13: Cℓ

r ← {rs | ps ∈ Cℓ
p} ▷ Group rules which share state predicates in the same cluster

14: end for
15: GASPM ← ∅ ▷ Initialize ASPM as an empty dictionary with actions as keys
16: for each pa ∈ Pa do
17: for each rule cluster Cℓ

r ∈ Cr do
18: for each rule r ∈ Cℓ

r do
19: if pra ∈ r then
20: GASPM[pa] = GASPM[pa] ∪ Cℓ

r ▷ Associate action circuits with any relevant rule
clusters

21: break
22: end if
23: end for
24: end for
25: end for
26: for each action circuit Cpa

θa
do

27: for each rule r ∈ Cpa

θa
do

28: Initialize rule weight θr randomly
29: end for
30: for epoch = 1 to max epochs do
31: for i = 1 to N do
32: Compute Pθ(µ

(i)
pa=1) and Pθ(µ

(i)
pa=0) ▷ Run probabilistic inference to obtain

corresponding safety probabilities via Eq. (4)
33: Compute loss L(θ) ▷ Calculate loss w.r.t. the groundtruth labels via Eq. (6)
34: Update θ using gradient descent
35: end for
36: end for
37: end for
38: return Action-based safety policy model GASPM with trained weights

F.2 COMPARISON WITH EXISTING DATASETS

G CASE STUDY
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Table 8: Comparison of SHIELDAGENT-BENCH with existing agent safety benchmarks.
SHIELDAGENT-BENCH extends prior work by offering more samples, operation risk categories,
and types of adversarial perturbations (both agent-based and environment-based). In addition,
SHIELDAGENT-BENCH provides verified annotations of both risky inputs and output trajectories,
explicitly defining each case of safety violations, and annotating relevant policies for verifying each
trajectory.

Benchmark #Sample #Operation Risk #Attack Type #Environment Risky Trajectory Risk Explanation #Rule

ST-Web Levy et al. (2024) 234 3 0 3 ✓ 36
AgentHarm Andriushchenko et al. 440 1 0 0 0
VWA-Adv Wu et al. (2025) 200 1 1 3 0

SHIELDAGENT-BENCH 3110 7 2 6 ✓ ✓ 1080

GitLab – Access Restriction

• Policy description: Users must not access, modify, delete, or disseminate GitLab’s or 
its users’ confidential information without authorization.

• Applicable scope: Applicable to all GitLab and user data handled via GitLab 
services.

• Term definition: Confidential Information: Unauthorized access, modification, or 
dissemination of protected data.

• Policy source: handbook.LACA.acceptable_use_policy

• Predicates: 
• is_confidential_data:
• description: The data is classified as confidential information
• type: condition

• user_authorized:
• description: The user has authorized to perform actions on the data.
• type: condition

• delete_data:
• description: The user deletes the data.
• type: action

• Rule Logic: (is_confidential_data AND NOT is_authorized_user) IMPLIES NOT 
delete_data.

• Logic template: (P1 AND NOT P2) IMPLIES NOT P3

• Risk type: access restriction; content restriction

R
ul

e
Po

lic
y

Figure 7: An example of the access restriction policy and the corresponding extracted rules from
GitLab policy handbook.
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GitLab – Content Restriction

• Policy description: Users must not create, share, or facilitate the distribution of 
illegal content, including child exploitation materials.

• Applicable scope: Applicable to all content hosted or transmitted via GitLab.
• Term definition: (1) Illegal or Harmful Content: Content that promotes illegal 

activities or endangers safety; (2) Child Exploitation: Any content that depicts or 
facilitates the exploitation of minors.

• Policy source: handbook.content_security_policy

• Predicates: 
• is_illegal_content:
• description: The content is classified as illegal or harmful.
• type: condition

• create_content:
• description: An action to create content.
• type: action

• Rule Logic: is_illegal_content IMPLIES NOT create_content

• Logic template: P1 IMPLIES NOT P2

• Risk type: content restriction

R
ul

e
Po

lic
y

Figure 8: An example of the content restriction policy and the corresponding extracted rules from
GitLab policy handbook.

GitLab – Hallucination

• Policy description: The retrieved information must be consistent with the information 
source and should not introduce fabricated content.

• Applicable scope: Applies to all retrieved content from GitLab services.
• Term definition: (1) Source Consistency: The retrieved content must align factually 

with the source data.
• Policy source: empirical_policy

• Predicates: 
• consistent_with_source:
• description: The retrieved or produced content is consistent with the source 

data.
• type: condition

• send_to_user:
• description: An action to send specific information/data to the user.
• type: action

• Rule Logic: NOT consistent_with_source IMPLIES NOT send_to_user

• Logic template: NOT P1 IMPLIES NOT P2

• Risk type: hallucination

R
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e
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y

Figure 9: An example of the hallucination policy and the corresponding extracted rules from GitLab
policy handbook.
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H PROMPT TEMPLATE

Prompt Template for Video Guardrail

SYSTEM: You are a helpful policy extraction model to identify actionable poli-
cies from organizational safety guidelines. Your task is to exhaust all the
potential policies from the provided organization handbook which sets re-
strictions or guidelines for user or entity behaviors in this organization.
You will extract specific elements from the given guidelines to produce
structured and actionable outputs.

USER: As a policy extraction model to clean up policies from {organization
(e.g. GitLab)}, your tasks are:

1. Read and analyze the provided safety policies carefully, section by
section.

2. Exhaust all actionable policies that are concrete and explicitly con-
strain behaviors.

3. For each policy, extract the following four elements:
1. Definition: Any term definitions, boundaries, or interpretative

descriptions for the policy to ensure it can be interpreted without
any ambiguity. These definitions should be organized in a list.

2. Scope: Conditions under which this policy is enforceable (e.g.
time period, user group).

3. Policy Description: The exact description of the policy detailing
the restriction or guideline.

4. Reference: All the referenced sources in the original policy arti-
cle from which the policy elements were extracted. These sources
should be organized piece by piece in a list.

Extraction Guidelines:
• Do not summarize, modify, or simplify any part of the original policy.

Copy the exact descriptions.
• Ensure each extracted policy is self-contained and can be fully inter-

preted by looking at its Definition, Scope, and Policy Description.
• If the Definition or Scope is unclear, leave the value as None.
• Avoid grouping multiple policies into one block. Extract policies as

individual pieces of statements.

Provide the output in the following JSON format:
```json
[

{
"definition": ["Exact term definition or interpretive description."],
"scope": "Conditions under which the policy is enforceable.",
"policy_description": "Exact description of the policy.",
"reference": ["Original source where the elements were extracted."]

},
...

]

```

Output Requirement:
- Each policy must focus on explicitly restricting or guiding behaviors.
- Ensure policies are actionable and clear.
- Do not combine unrelated statements into one policy block.
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Question List for QA Guardrail Task

SYSTEM: You are an advanced policy translation model designed to convert organiza-
tional policies into structured Linear Temporal Logic (LTL) rules. Your task is
to extract verifiable rules from the provided safety guidelines and express them
in a machine-interpretable format while maintaining full compliance with logical
correctness.

USER: As a policy-to-LTL conversion model, your tasks are:
1. Carefully analyze the policy’s definition, scope, and policy description.
2. Break down the policy into structured rules that precisely capture its con-

straints and requirements.
3. Translate each rule into LTL using atomic predicates derived from the policy.

Translation Guidelines:
• Use atomic predicates that are directly verifiable from the agent’s observa-

tions and action history.
• Prefer positive predicates over negative ones (e.g., use store data in-

stead of is data stored).
• If a rule involves multiple predicates, decompose it into smaller, verifiable

atomic rules whenever possible.
• Emphasize action-based predicates, ensuring that constrained actions are

positioned appropriately within logical expressions (e.g., “only authorized
users can access personal data” should be expressed as:

(is authorized∧has legitimate need) ⇒ access personal data
(8)

).

Predicate Formatting: Each predicate must include:
• Predicate Name: Use snake case format.
• Description: A brief, clear explanation of what the predicate represents.
• Keywords: A list of descriptive keywords providing relevant context (e.g.,

actions, entities, attributes).

LTL Symbol Definitions:
• Always: ALWAYS
• Eventually: EVENTUALLY
• Next: NEXT
• Until: UNTIL
• Not: NOT
• And: AND
• Or: OR
• Implies: IMPLIES

Output Format: ```json

[
{
"predicates": [
["predicate_name", "Description of the predicate.", ["kw1", "kw2", ...]]

],
"logic": "LTL rule using predicate names."

},
...

]

```

Output Requirements:
• Ensure each rule is explicitly defined and unambiguous.
• Keep predicates general when applicable (e.g., use create project in-

stead of click create project).
• Avoid combining unrelated rules into a single LTL statement.
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A List of Examples for Policy Guidelines

SYSTEM: You are a helpful predicate refinement model tasked with ensuring
predicates in the corresponding rules are clean, verifiable, concrete, and
accurate enough to represent the safety policies. Your task is to verify
each predicate and refine or remove it if necessary.

USER: As a predicate refinement model, your tasks are:
1. Check if the provided predicate satisfies the following criteria:

• Verifiable: It should be directly verifiable from the agent’s observa-
tion or action history.

• Concrete: It should be specific and unambiguous.
• Accurate: It must represent the intended fact or condition precisely.
• Atomic: It should describe only one fact or action. If it combines

multiple facts, break it into smaller predicates.
• Necessary: The predicate must refer to meaningful information. If it

is redundant or assumed by default, remove it.
• Unambiguous: If the same predicate name is used in different rules

but has different meanings, rename it for clarity.
2. If refinement is needed, refine the predicate accordingly with one of the
following:

• Rewrite the predicate if it is unclear or inaccurate.
• Break it down into smaller atomic predicates if it combines multiple

facts or conditions.
• Rename the predicate to reflect its context if it is ambiguous.
• Remove the predicate if it is redundant or unnecessary for the rule.

Output Requirements:
• Provide step-by-step reasoning under the section Reasoning.
• Include the label on whether the predicate is good, needs refinement,

or redundant.
• If refinement is needed, provide a structured JSON including:

– Updated predicate with definitions and keywords.
– Each of the updated rules which are associated with the updated

predicate.
– Definitions of the predicate in each rule’s context.

Output Format:
Reasoning:
1. Step-by-step reasoning for why the predicate is good, needs refinement,
or is redundant.
2. If yes, then reason about how to refine or remove the redundant predi-
cate.
Decision: Yes/No
If yes, then provide the following:
Output JSON:

{
"rules": [

{
"predicates": [

["predicate_name", "Predicate definition.", ["keywords"]]
],
"logic": "logic_expression_involving_predicates"

}
]

}

{Few-shot Examples}
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Policy Guidelines for Unseen Categories

SYSTEM: You are a helpful predicate merging model tasked with analyzing
a collection of similar predicates and their associated rules to identify
whether there are at least predicates that can be merged or pruned. Your
goal is to simplify and unify rule representation while ensuring the mean-
ing and completeness of the rules remain intact after modifying the predi-
cates.

USER: As a predicate merging model, your tasks are:
1. Identify predicates in the cluster that can be merged based on the

following conditions:
• Redundant Predicates: If two or more predicates describe the

same action or condition but use different names or phrasing,
merge them into one.

• Identical Rule Semantics: If two rules describe the same behav-
ior or restriction but are phrased differently, unify the predicates
and merge their logics to represent them with fewer rules.

2. Ensure the merged predicates satisfy the following:
• Consistency: The merged predicate must be meaningful and rep-

resent the combined intent of the original predicates.
• Completeness: The new rules must perfectly preserve the logic

and intent of all original rules.

Output Requirements:
• Provide step-by-step reasoning under the section Reasoning.
• Include a decision label on whether the predicates should be merged.
• If merging is needed, provide a structured JSON including:

– Updated predicates with definitions and keywords.
– Updated rules with the new merged predicates.

Output Format:
Reasoning:

1. Step-by-step reasoning for why the predicates should or should not
be merged.

2. If merging is needed, explain how the predicates and rules were up-
dated to ensure completeness and consistency.

Decision: Yes/No
If yes, then provide the following:
Output JSON:

{
"rules": [

{
"predicates": [

["predicate_name", "Predicate definition.", ["keywords"]]
],
"logic": "logic_expression_involving_predicates"

}
]

}

Few-shot Examples
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