

GENERATING INVESTIGATIVE LEADS FROM FORENSIC DNA DATA:

Mapping Y-STR Profiles to Ancestral Haplogroups

Jan Paolo V. Moreno^{1,2}, Kevin Ansel S. Dy¹, Francis Erdey M. Capati¹, Mia Cielo G. Oliveros¹,
Kristine Ann M. Carandang^{1,3}, Christian M. Alis^{1,3}

¹Aboitiz School of Innovation, Technology & Entrepreneurship, Asian Institute of Management ²DNA Laboratory Division, Philippine National Police Forensic Group ³Analytics, Computing, and Complex Systems Laboratory, Asian Institute of Management

FROM STATIC DNA EVIDENCE TO FORENSIC INTELLIGENCE

While Y-chromosome short tandem repeat (Y-STR) typing is the routine forensic analysis for individual identification, it could not provide investigative leads without a direct match from a previously populated database. This research bridges that gap by using machine learning to predict Y-chromosome single nucleotide polymorphism (Y-SNP) haplogroup, transforming what was static DNA evidence into generative intelligence for paternal ancestry and cold case leads.

PROJECT OBJECTIVES

- To predict Y-SNP haplogroups directly from forensic Y-STR profiles using machine learning.
- To demonstrate the use of SHAP (SHapley Additive exPlanations) for model interpretability and judicial transparency.

We engineered a machine learning pipeline using **stratified sampling** and **class weighting** to address extreme population imbalances and ensure high precision for minority lineages.

THE DATASET AND DATA PROCESSING PIPELINE

4,064

unique Y-STR profiles characterized by

27 Y-STR

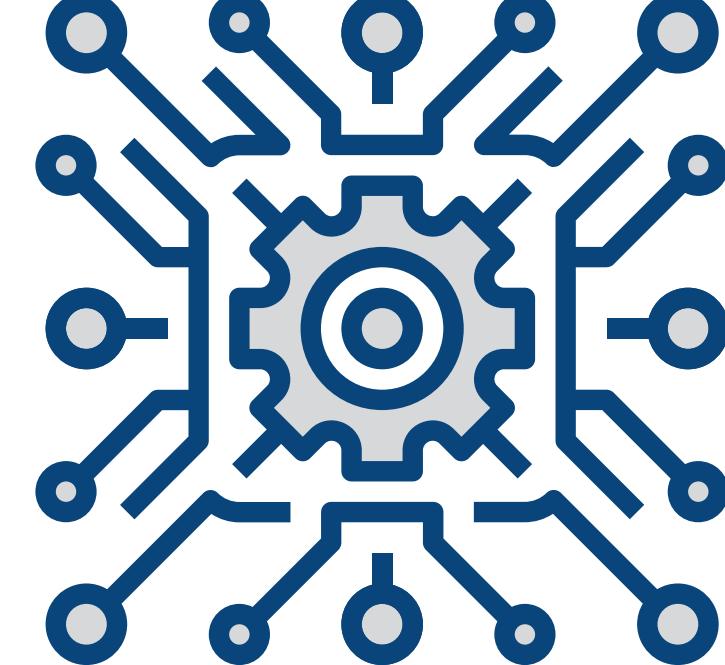
genetic markers to associate with

13 Y-SNP

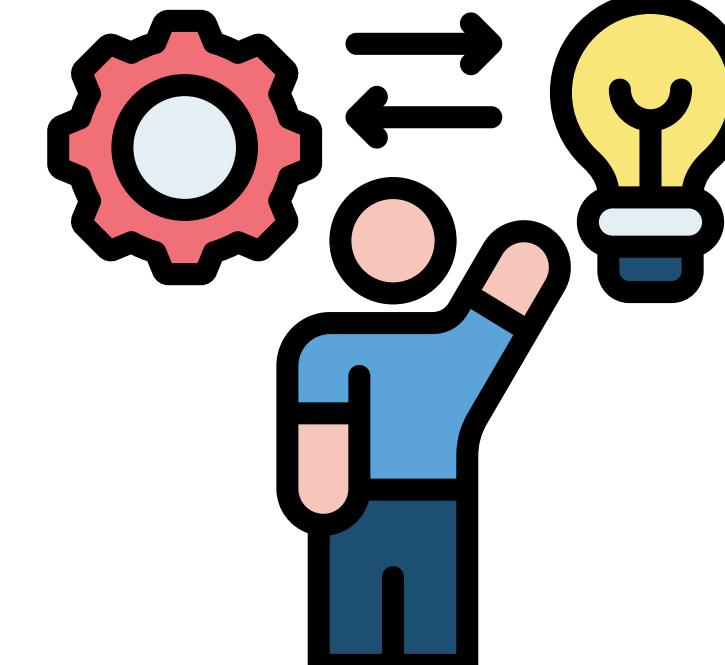
Haplogroups

representing paternal lineages

sourced from the comparative study by Song et al. (2024) YHP: Y-chromosome Haplogroup Predictor for predicting male lineages based on Y-STRs.


DATASET PRE-PROCESSING

INPUT: Forensic Y-STR Data with known Y-SNP Haplogroups Training (75%) and Hold-out Dataset (25%).


MACHINE LEARNING MODEL SELECTION

PROCESS: Stratified sampling used to survey best model among 8 supervised classifiers.

MODEL INTERPRETABILITY

ANALYSIS: Use SHAP Values to identify key Y-STR markers crucial in predicting the corresponding haplogroup.

INVESTIGATIVE LEAD GENERATION

OUTPUT: Probabilistic reporting of Y-SNP Haplogroup from Y-STR input for actionable lead.

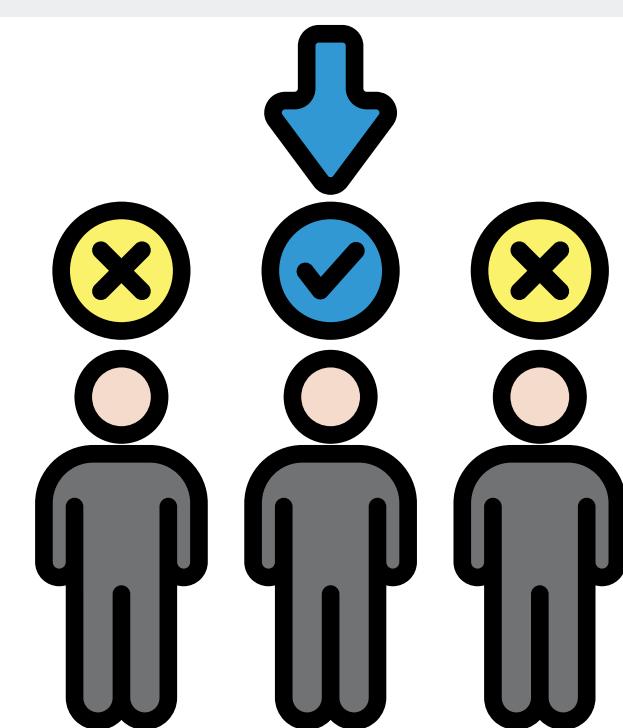


Figure 1. Design of data processing pipeline used in the study.

KEY FINDINGS: MODEL PERFORMANCE & INTERPRETABILITY FOR LAW ENFORCEMENT APPLICATIONS

Machine Learning	Model Accuracy
XGBoost	0.9698
Random Forest	0.9679
SVM	0.9623
kNN	0.9616
LDA	0.9438
Gaussian NB	0.9351
Decision Tree	0.9342
Elastic Net	0.2029

SHAP FEATURE IMPORTANCE BY CLASS

STEPPING INTO THE FUTURE OF FORENSIC INVESTIGATIONS

- This research transforms static DNA data into actionable leads by mapping Y-STR profiles to Y-SNP haplogroups with high fidelity, achieving an overall F1-score of **0.9810**.
- By integrating **XGBoost** with **SHAP interpretability** and class weighting, the framework ensures the judicial transparency and demographic fairness essential for "Trustworthy AI" in forensic settings.
- To operationalize this tool, we recommend implementing **regional data retraining** and **independent peer-validation** of explainability results to establish a **standardized, ethical global protocol** for generative investigative intelligence.

Table 1. Machine Learning Models Performance.

The optimized XGBoost framework achieved a superior **96.98%** Accuracy and Macro F1-score of **0.9810**, drastically outperforming linear models like Elastic Net (20.29%).

Haplogroup Class	Precision	Recall	F1-Score
Major (e.g. O)	0.99	0.98	0.99
Minor (e.g. L)	0.97	0.96	0.97
Overall Model	98.24%	96.98%	0.981

Table 2. Summary of XGBoost Model Performance.

The model maintains high fidelity across imbalanced populations, ensuring reliable investigative leads regardless of ancestral origin.

Figure 2. Summary of SHAP Values per Y-STR genetic marker.