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Motivation

Methods

Photoacoustic imaging: a multi-physics medical imaging modality which takes 
advantage of high contrast caused by light and the high resolution of acoustic waves.   

Goal: Explore the role of different priors in ill-posed photoacoustic 
imaging problems .

Variational Inference is a method which aims to convert posterior distribution 
inference  into an optimization problem. We are looking to optimize over 
parameters  for some family of distributions We will chose this family to be a 
class of normalizing flows 

x ∼ p(x |y)
θ q .

Normalizing Flows are a composition of invertible and learnable maps that transform 
a target density to a simpler base density (such as the standard normal). They make 
use of the change of variables formula for likelihood maximization training. Here we 
use conditional HINT [1] and train on data pairs ( , ) where  is the ground truth 
image and  is time reversed data . Our training objective is

x y x
y y = A⊤d

Results
Generative prior training: After training the conditional normalizing flow, we have 
access to samples from the posterior distribution. 

Conclusions and Future Work

Inverse Problem: Due to noise and limited-view receivers this problem is ill-posed. 
The adjoint solution (time-reversal given by adjoint operator ) contains artifacts 
that we will improve using a Bayesian framework. 

A⊤

time = 0 time = 1 time = 2

Implicit deep prior: When faced with out-of-distribution data, we can assume that 
the previously trained flow is not as reliable as for in-distribution data. In this case, we 
propose a second phase in which we make use of the physics of the wave operator  
and use the pre-trained generator as an implicit deep prior. This is similar to the 
approach in [2]. The solution to this is the maximum a posteriori (MAP). Formally, we 
solve

A

min
zx

1
2

∥A f −1
θ (zx, zy) − d∥2

2 +
λ2

2
∥zx∥2

2 , zy = f zy
θ (A⊤d) . (1)

Linear operator : 
Forward propagate 
acoust ic waves 
and res t r i c t to 
receivers at top of 
model

A Posterior Sampling from 
in-distribution data .


Note: high reconstruction 
quality in the conditional 
mean and the high 
standard deviation in 
deeper vessels.

d

Posterior Sampling from 
out-of-distribution data 

.


Note: poor reconstruction 
quality in vertical vessels 
due to null space of 
forward operator. 
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We proposed a regularization scheme that 
employs deep priors learned in an offline 
training phase. The generative model is 
trained on a dataset containing pairs of 
solutions and associated measurements, the 
goal is to learn the posterior distribution of 
the solution given some data. The primary 
scope of this work is to compare the 
regularization effect of conditional deep priors 
with marginal or “non-conditional” deep 
priors proposed in the recent past for several 
imaging applications.

Data and Software
The dataset used in this work is a derivative of the ELCAP lung dataset prepared 
by [3]. The results presented here uses our Julia implementation of invertible 
network architectures: https://github.com/slimgroup/InvertibleNetworks.jl [4]
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Prior: The uncertainty of the solution is highly affected by 
measurement noise and data incompleteness (due to 
limited aperture). For these problems, the choice of prior 
information is a crucial aspect of a computationally 
effective solution scheme. We propose a regularization 
scheme that leverages prior information learned by a 
generative network.


qθ(x |y) ≈ p(x |y) .

min
θ

KL (pX,Y∥pθ) = 𝔼x,y∼pX,Y(x,y)
1
2

fθ(x, y)
2

− log | det Jfθ(x, y) | .

Second phase: We compare the reconstruction results for 
out-of-distribution data by solving the MAP problem in 
equation (1) with different choices for the prior. In particular, 
we consider a non-informative Gaussian prior, marginal 
learned priors and conditional priors (our proposal). A 
qualitative inspection and quality metrics indicate superior 
results for the conditional prior approach. Further 
comparison of the results regarding data fit is shown in 
right panel.

In limited-view photoacoustic imaging, the 
resolution of deep near-vertical structures in a 
blood vessel system is a fundamental 
challenge due to the relatively weak imprint on 
t h e m e a s u r e m e n t s . C o n v e n t i o n a l 
regularization methods are typically too 
generic. A straightforward alternative is to use 
problem-specific information.

Our results suggest that the MAP estimate 
based on conditional deep priors is able to 
recover the vertical features of a blood vessel 
image (difficult to image since in null space of 
forward operator). Our results also show that 
the non-conditional deep prior is more prone 
to misplace features.


