Photoacoustic Imaging with Conditional Priors from Normalizing Flows
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Motivation

Photoacoustic imaging: a multi-physics medical imaging modality which takes
advantage of high contrast caused by light and the high resolution of acoustic waves.
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Inverse Problem: Due to noise and limited-view receivers this problem is ill-posed.

The adjoint solution (time-reversal given by adjoint operator AT) contains artifacts

that we will improve using a Bayesian framework. Adjoint Solution y=A"d
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Prior: The uncertainty of the solution is highly affected by -
measurement noise and data incompleteness (due to
limited aperture). For these problems, the choice of prior
information is a crucial aspect of a computationally
effective solution scheme. We propose a regularization
scheme that leverages prior information learned by a 6
generative network. 0 : 4 6
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Goal: Explore the role of different priors in ill-posed photoacoustic
imaging problems .

Methods

Variational Inference is a method which aims to convert posterior distribution
inference X ~ p(X|Yy) into an optimization problem. We are looking to optimize over

parameters 6 for some family of distributions g . We will chose this family to be a
class of normalizing flows
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go(x|y) = p(x|y).

Normalizing Flows are a composition of invertible and learnable maps that transform
a target density to a simpler base density (such as the standard normal). They make
use of the change of variables formula for likelihood maximization training. Here we

use conditional HINT [1] and train on data pairs (X,y) where X is the ground truth
image and y is time reversed datay = A'd. Our training objective is

. 1
min KL (py yllpg) = [EX’YNPX,Y(X’Y)E || fH(x,y) ” g log | detJ,(x,y)].

Implicit deep prior: When faced with out-of-distribution data, we can assume that
the previously trained flow is not as reliable as for in-distribution data. In this case, we

propose a second phase in which we make use of the physics of the wave operator A
and use the pre-trained generator as an implicit deep prior. This is similar to the
approach in [2]. The solution to this is the maximum a posteriori (MAP). Formally, we
solve )
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Results

Generative prior training: After training the conditional normalizing flow, we have
access to samples from the posterior distribution.
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Note: high reconstruction
quality in the conditional
mean and the high
standard deviation in
deeper vessels.
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Note: poor reconstruction
quality in vertical vessels
due to null space of
forward operator.
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Second phase: We compare the reconstruction results for

out-of-distribution data by solving the MAP problem in '
equation (1) with different choices for the prior. In particular,
we consider a non-informative Gaussian prior, marginal
learned priors and conditional priors (our proposal). A
qualitative inspection and quality metrics indicate superior
results for the conditional prior approach. Further -
comparison of the results regarding data fit is shown in *
right panel. o1 2 3456
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MAP Gaussian Prior

PSNR 16.88
SSIM  0.48

MAP Conditional Prior

PSNR 22.09
SSIM  0.87

MAP Non-conditional Prior

PSNR 13.63
SSIM  0.72
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Conclusions and Future Work
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In limited-view photoacoustic imaging, the
resolution of deep near-vertical structures in a
blood vessel system is a fundamental
challenge due to the relatively weak imprint on
the measurements. Conventional
regularization methods are typically too
generic. A straightforward alternative is to use
problem-specific information.
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We proposed a regularization scheme that
employs deep priors learned in an offline
training phase. The generative model is
trained on a dataset containing pairs of
solutions and associated measurements, the
goal is to learn the posterior distribution of -/ ,
the solution given some data. The primary ~ ~Fermmre
scope of this work is to compare the P e
regularization effect of conditional deep priors
with marginal or “non-conditional” deep
priors proposed in the recent past for several
imaging applications.
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MAP Conditional Prior
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Our results suggest that the MAP estimate
based on conditional deep priors is able to
recover the vertical features of a blood vessel
image (difficult to image since in null space of
forward operator). Our results also show that
the non-conditional deep prior is more prone
to misplace features.
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Data and Software

The dataset used in this work is a derivative of the ELCAP lung dataset prepared
by [3]. The results presented here uses our Julia implementation of invertible
network architectures: https://github.com/slimgroup/InvertibleNetworks.jl [4]
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