
MixMin: Finding Data Mixtures via Convex Minimization

Anvith Thudi 1 2 Evianne Rovers 3 4 Yangjun Ruan 1 2 Tristan Thrush 5 Chris J. Maddison 1 2

Abstract
Modern machine learning pipelines are increas-
ingly combining and mixing data from diverse
and disparate sources, e.g., pre-training large lan-
guage models. Yet, finding the optimal data mix-
ture is a challenging and open problem. We for-
malize this data mixing problem as a bi-level ob-
jective: the best mixture is the one that would
lead to the best model for a downstream objec-
tive. Unfortunately, this objective is generally in-
tractable. In this paper, we make the observation
that the bi-level data mixing objective becomes
convex as our model class becomes larger. We
develop and study a gradient-based approach for
optimizing this convex objective, which we call
MixMin, and test it on language modeling and
chemistry tasks. MixMin was the only method
that uniformly improved the data mixture in all
our experiments. With MixMin, we improved the
data mixture using less than 0.2% additional com-
pute for a pythia-410M model trained on 8.2B
tokens, resulting between 1-5% relative improve-
ment to negative log likelihood on PIQA, ARC
Easy, SciQ, and OpenWebMath. Crucially, we
found that MixMin mixtures for smaller mod-
els improved training of larger models, suggest-
ing that MixMin mixtures may be scale-invariant.
When mixing bioassay data to train an XGBoost
model, we saw improvements to average precision
scores of 0.03− 0.15.

1. Introduction
Recent progress in ML has come from training on vast
web-scale data (Dubey et al., 2024; Touvron et al., 2023;

1Department of Computer Science, University of Toronto,
Toronto, Canada 2Vector Institute, Toronto, Canada 3Department
of Chemistry, University of Toronto, Toronto, Canada 4Structural
Genomics Consortium, Toronto, Canada 5Department of Computer
Science, Stanford University, Palo alto, USA. Correspondence to:
Anvith Thudi <anvith.thudi@mail.utoronto.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Raffel et al., 2020; Achiam et al., 2023). These models are
known to generalize to data-poor downstream tasks, a core
motivation behind scaling training data. However, as we
increase the amount and diversity of data sources we can
train on, a core challenge becomes choosing how to weigh
these sources when training. The effectiveness of a model
pre-trained on surrogate data is known to be directly related
to how similar the surrogate (or “pretraining”) data is to
the downstream task (target distribution) (Ben-David et al.,
2010; Isik et al., 2024; Jain et al., 2024; Pouget et al., 2024).

Formally, finding the best mixture of data sources to train on
for a downstream loss poses a bi-level optimization which
is hard to optimize. We must find the mixture whose risk
minimizer optimizes the downstream loss. This generally
only admits expensive zero-order approaches, such as grid
search (Dubey et al., 2024; Blakeney et al., 2024). Past
work has considered learning to simulate the loss oracle for
unseen mixtures (Liu et al., 2024), or leveraging a large pool
of existing models (Thrush et al., 2024). Other approaches
consider solving data mixing objectives agnostic to a down-
stream loss, but are known to not consistently improve the
baseline of training on all the data with their natural propor-
tions (when evaluated on diverse downstream losses) (Xie
et al., 2024; Jiang et al., 2024; Liu et al., 2024; Fan et al.,
2023; Held et al., 2025).

In this paper we show that the bi-level optimization for
data mixing reduces to a convex minimization as the model
classes become larger, which we can solve cheaply with
gradient based methods. A key insight is that by restricting
the loss functions to cross-entropy (CE) or mean-squared
error (MSE), we gain additional structure which simplifies
the data mixing objective. Practically, we show we can find
the best mixture by first training a (cheap) proxy model for
each source, learning the best mixture of their outputs for
the target dataset (convex minimization), and then using this
weighting to remix the data, see Figure 1.

First, we note that when our models are relatively close to
Bayes optimal (the best possible functions), data mixing is
equivalent to learning a linear model over the predictions
of a fixed set of models (a convex objective). Learning this
linear model requires comparatively little data to training
modern large models, and is relatively cheap to optimize.
Our reduction is specific to CE or MSE, where we leverage

1

MixMin: Finding Data Mixtures via Convex Minimization

!!!

Source 2

Source 3

Source 1

Train cheap
proxy

models

Target

! ! !

Optimize
mixtures

with
MixMin

Train on
re-mixed

data

!

Figure 1: Optimizing MixMin to find the mixture weights requires training a few cheap models for each source and a target
dataset. Given the mixture weights we train a more expensive model using the mixture.

the fact the Bayes optimal model for a mixture is the mixture
of the Bayes optimal models for each source. However,
this reduction does not yet make data mixing amenable to
first-order optimization. To evaluate our convex objective’s
gradient we need the Bayes optimal model for each source.

A key challenge is that the proxy models needed to evaluate
this convex objective can be expensive to compute. We
find that in practice, we can use cheaply computed mod-
els and still have good data mixing performance. We call
this approach to optimizing the convex objective MixMin.
Empirically, we found the performance of MixMin did not
significantly degrade between using proxy models computed
with 100% the cost of a full training run to 1%. In other
cases, the MixMin mixture significantly improved over base-
lines, but the ensemble of proxy models performed much
worse than retraining, suggesting they were far from Bayes
optimal but did not hinder MixMin performance.

We empirically compared data mixing with MixMin to cur-
rent baselines on both language modeling and chemistry
tasks. For language modeling we considered optimizing the
mixture of source domains in SlimPajama (cer, 2023) for
PIQA (Bisk et al., 2020), ARC Easy (Clark et al., 2018),
SciQ (Welbl et al., 2017), or OpenWebMath (Paster et al.,
2023). In all cases we found MixMin improved the base-
lines for log likelihood, improving or maintaining the gap
as we increased the scale of the models from pythia-160M
to pythia-410M (Biderman et al., 2023). Moreover, for
pythia-410M the mixtures we used took 0.15% the com-
pute of the training run to find and improved the negative
log likelihood by 1 − 5%. For our chemistry experiments
we considered mixing assay datasets in PubChem (Beaini
et al., 2023; Kim et al., 2016) to improve the performance
of an XGBoost (Chen & Guestrin, 2016) model on several
held-out assay datasets. In all cases, we observed MixMin
improved over the natural distribution (the standard data
mixture after filtering for this domain (Salem et al., 2020;
Li et al., 2022; Ye et al., 2018)) as we increased the num-
ber of surrogates to mix over, improving average precision
scores between 0.03− 0.15. We note an additional benefit
of optimizing data mixtures for chemistry tasks is that the
found MixMin weights could provide interpretability; we
highlight patterns MixMin found in PCBA for predicting

assays (e.g., distinct but predictive cytotoxicity assays). To
summarize, our contributions are:

1. Observing data mixing reduces to a single convex min-
imization as model classes become more expressive

2. Proposing MixMin which approximately solves the
convex objective by using cheap proxy models and
downstream data samples

3. Empirically showing MixMin improves past baselines
for finding data mixtures across language modeling
and chemistry tasks

4. Empirical and analytical evidence showing MixMin is
robust to the use of weak/cheap proxy models

2. Preliminaries
We denote a hypothesis space by H, a model by f : X →
O ∈ H, a datapoint by (x, y) ∈ X × Y , and our loss
function by L(o, y) : O × Y → R+. This paper considers
the problem of mixing a set of finite source distributions
(dp ∈ P where P is finite) to train on to do better on
some downstream “target” distribution (dt). For example,
mixing Wikipedia and arXiv data to do better on benchmarks
evaluating scientific knowledge.

Specifically, we are searching for the best weighting λ ∈
∆P (where ∆P is the simplex) of our sources to train a
model on to perform well on our downstream distribution.
Formally, using our loss function L as both our measure of
downstream performance and training objective:

DM(λ,H) =
∫
X×Y

L(fλ(x), y)dt(x, y)

where fλ(x) = argmin
f∈H

∑
λp

∫
X×Y

L(f(x), y)dp(x, y)

(Data Mixing)

In general minλ DM(λ,H) a bi-level optimization that can
be hard to optimize: a standard approach is grid/random
searching through mixture weights and solving the inner

2

MixMin: Finding Data Mixtures via Convex Minimization

Training Mixture

Ta
rg

et
 L

os
s

Bigger Model Classes

MixMin

Data
Mixing

Figure 2: The convex MixMin objective better approximates
the Data Mixing objective as the model class becomes larger
(and better approximates Bayes optimal).

minimization by fitting a (small) proxy model. In this paper
we describe settings where the bi-level optimization col-
lapses and we can use simple gradient based optimization
to find the best mixture.

Data Filtering is not Data Mixing An often related but
different approach to curating training data is data filtering.
Abstractly, data filtering is some map F that takes a dataset
D → D′ where D′ ⊂ D. Such approaches are motivated
by training efficiency, e.g., coresets, and/or data quality, e.g.,
rejection sampling to be closer to a desired target distribu-
tion. Data filtering can be composed with data mixing; one
typically mixes amongst filtered data sources (Dubey et al.,
2024). We leave studying such compositions to future work,
but note some popular examples of data filtering include:
perplexity correlations (Thrush et al., 2024), n-gram or em-
bedding similarity with a target distribution (Xie et al., 2023;
Everaert & Potts, 2024), handcrafted classifiers (Xiao et al.,
2024; Li et al., 2024a), and perplexity filtering (Li et al.,
2024a)

3. Data Mixing is Learning a Linear Model
We show that Data Mixing simplifies to a convex optimiza-
tion problem as the model classes become larger. This
intuition is presented in Figure 2.

3.1. Well-Specified: Data Mixing is just Risk
Minimization

We show that, when our hypothesis space contains the Bayes
optimal model fp for all dp ∈ P , the best Data Mixing
weights are also the best weighting of models trained on
each source (a convex objective). The core idea is that
for certain losses, cross-entropy (CE) and mean-squared
error (MSE), the Bayes optimal model for a mixture is
the mixture of the Bayes optimal models’ for the sources.
However this is only true if there is no input distribution
shift among the sources (p(x) are all the same), e.g., for
generative tasks. To clarify, MixMin holds for the uncon-
ditional CE loss,

∫
−log(f(x))dp(x), which matches f(x)

to dp(x). MixMin also holds for conditional CE and MSE
losses under no covariate shift:

∫
−log(fy(x))dp(x, y) and∫

||f(x) − y||22dp(x, y), with dp(x) = dp′(x) ∀dp, dp′ ∈
P .

Theorem 3.1. Let the objective for Data Mixing be un-
conditional CE,

∫
−log(f(x))dp(x), or conditional CE or

MSE with no covariate shift,
∫
−log(fy(x))dp(x, y) and∫

||f(x) − y||22dp(x, y), with p(x) = p′(x) ∀p, p′ ∈ P .
Suppose also H contains the Bayes optimal model for
each mixture of the source distributions dp ∈ P . Then
λ∗ = argminλ∈∆P DM(λ,H) iff

λ∗ = arg min
λ∈∆P

∫
X×Y

L
(∑

λpfp(x), y
)
dt(x, y) (1)

The proof is provided in Appendix A.1. This optimization
is clearly convex, and can be handled with gradient based
approaches unlike Data Mixing. However, running this
optimization requires having the Bayes optimal fp and an
estimator for the integral to compute the gradients. The
main hurdle will be how to get reasonable approximations
for the Bayes optimal fp, which we discuss in Section 4.

3.2. Not Well-Specified: ‘Expressivity’ is Enough

We now show that Data Mixing smoothly approaches Equa-
tion 1 as the hypothesis space H contains models closer
Bayes optimal, e.g., becomes larger. This follows from
assuming some regularity in our loss function and the defi-
nition of the data mixing objective.

Lemma 3.2. For L either CE or MSE, suppose∫
L(f(x), y)dt(x, y) is C-Lipschitz in f w.r.t a norm on

the functions ∥f(x)∥ 1. Let

λ∗ = arg min
λ∈∆P

∫
X×Y

L
(∑

λpfp(x), y
)
dt(x, y).

Then, for any hypothesis spaceH such that for all mixtures
dpλ ∈ Conv(P), the dpλ risk minimizer f̂λ(H) in H sat-
isfies ∥f̂λ(H) − fλ∥ ≤ ϵ where fλ is the Bayes optimal
model2, we have the excess Data Mixing error is bounded
by ϵ:

DMH(λ∗, dt)− min
λ∈∆P

DMH(λ, dt) ≤ 2Cϵ (2)

The proof is provided in Appendix A.2. The main intuition
to take away from Lemma 3.2 is that as our model classes

1To ensure this for MSE one could consider only bounded
output spaces, and for cross-entropy, bounded away from 0 and 1.

2Effectively this means functions too far away will not have
low error. Mathematically, this means there is lower-bound on the
increase in loss from Bayes optimal in terms of the norm of the
perturbation to the function (e.g., strong-convexity).

3

MixMin: Finding Data Mixtures via Convex Minimization

Algorithm 1 MixMin

Require: Step size η, number of steps n, loss function L
(either cross-entropy or ℓ22), samples Dt from the target
distribution dt, and (cheap) models trained on each source
f̂p(x) ∀ dp ∈ P .
Initialize: λp ← 1

|P | for all dp ∈ P , and pre-compute

{f̂p(x) ∀ x ∈ Dt, dp ∈ P}
1: for i = 1, . . . , n do
2: f̂λ(x)←

∑
dp∈P λpf̂p(x)

3: l← λp

|Dt|
∑

(x,y)∈Dt
L(f̂λ(x), y)

4: g ← ∇λl

5: λp ← λpe
ηgp∑

dp∈P λpe
ηgp for all dp ∈ P

6: end for
Return{λp}dp∈P

get larger and becomes closer to expressing the Bayes op-
timal model, the Equation 1 weights become closer to the
optimal Data Mixing weights. This is depicted in Figure 2

4. MixMin
We now consider how to optimize the objective in Equa-
tion 1. If we had a gradient oracle, we could optimize the
objective using entropic descent (Duchi, 2018). However,
the objective (and gradient) is typically intractable for sev-
eral reasons which we now alleviate with approximations.

Firstly, computing the integral for the objective (and gra-
dient) is typically intractable. We can however compute
an empirical risk given a dataset Dt ∼ dpt. Secondly, we
often do not know the Bayes optimal models fp for each
dp ∈ P , but instead can obtain “approximations” f̂p, e.g.,
by training a model on a dataset Dp ∼ dp ∈ P . This gives
us our approximate convex mixture objective, where we let
Train(H, Dp) be some training function:

λ∗({f̂p}p∈P)

= arg min
λ∈∆P

1

|Dt|
∑

(x,y)∈Dt

L(
∑
p∈P

λpf̂p(x), y)

where f̂p = Train(H, Dp)

(MixMin)

Computing the gradient of the objective follows from
chain rule, and hence we can run entropic descent to
solve MixMin. Recall entropic descent is a variant of mirror
descent which handles the constraint of being in the sim-
plex. This gives us Algorithm 1, which we call MixMin for
‘Mixtures by Minimization’.

Cost We only need to evaluate fp(x) ∀x ∈ Dt once
and can reuse the outputs for subsequent calls to the gradi-
ent. Given this, the dominating cost with MixMin, as with
grid/random search based approaches to data mixing, is the
number of models needed to train (i.e., f̂p). MixMin re-
quires only as many models as sources, while the number
of models grid/random search approaches require scales ex-
ponentially (in the worst-case) with the number of sources.
Note once the outputs and proxy models are computed, the
per-iteration cost of MixMin is O(|P ||Dt|), which is inde-
pendent of model size.

On the use of weak proxy models In our experiments,
we found that proxy models f̂p trained with very small frac-
tions of total training compute achieved good results and
additional proxy model compute did not significantly im-
prove the quality of the final mixtures. This suggests that
MixMin can perform well when the proxy models f̂p have a
high loss and that the excess error of MixMin should be an-
alyzed beyond the risk of the proxy models f̂p. Specifically,
we empirically found that we could train with significantly
less data (1%) and still have similar MixMin performance.
Furthermore, we found the ensemble of the proxy mod-
els could be far less accurate than the model retrained on
the MixMin mixture weights, suggesting the proxy models
were far from Bayes optimal 3 but still led to good mix-
tures. We hope future work investigates and generalizes
these phenomenon.

5. Related Work
Some past work has considered optimizing a pretraining
data mixture for a specific downstream loss, i.e., task.
Hwang & Whang (2021) train many small models with dif-
ferent mixtures and learn to predict the task error of unseen
mixtures, and RegMix (Liu et al., 2024) later used a similar
oracle to find better mixtures (the best mixture if the oracle
is accurate). Similarly, Held et al. (2025) proposed optimiz-
ing the mixture given estimates of downstream performance
from different source datasets; they assumed data mixing
was a linear model (with constraints) in the mixture weights
and proposed mixtures by maximizing the performance of
the linear model. We note Liu et al. (2024) considered
modeling data mixing as a linear objective, but found their
non-linear models for predicting data mixing improved over
linear models. Finally there are the normal grid-search ap-
proaches (Blakeney et al., 2024), which random search is
known to improve (Bergstra & Bengio, 2012).

Another line of work has considered data mixing objectives
defined by just the sources and not a downstream loss: e.g.,
with the motivation of faster optimization or generalizing

3Being close to Bayes optimal would imply the ensemble was
close to retraining, a contradiction.

4

MixMin: Finding Data Mixtures via Convex Minimization

better across the sources. However, when evaluating on a
downstream objective (as is the focus of our paper) methods
here are known to not consistently improve over the natu-
ral or balanced distribution of data (Fan et al., 2023; Jiang
et al., 2024; Albalak et al., 2023; Xie et al., 2024): see Held
et al. (2025) for comparisons. Outside of language model-
ing, we note the natural distribution of data is the standard
data mixture used for transfer learning in chemistry (after
filtering data) (Salem et al., 2020; Li et al., 2022; Ye et al.,
2018). Another line of work considered data mixing for dis-
tributionally robust optimization (Thudi & Maddison, 2024),
which is distinct to downstream data mixing objective.

Given these past findings, we compare to RegMix and ran-
dom search in our experiments. However, compared to
MixMin, RegMix has significantly higher evaluation costs.

Our setting for Bi-Level optimization also presents sev-
eral challenges for previous approaches, including those
used for other hyperparameter optimizations. Firstly, the
inner-optimization is over an arbitrary function space (e.g.,
non-parametric models like XGBoost), and so lacks the para-
metric gradients needed for many methods (Ji et al., 2021;
Pedregosa, 2016). Alternative constraint based approaches
through KKT suffer similar issues given the non-parametric
space of the inner optimization (Shi et al., 2005). For many
model classes, one could parameterize the inner optimiza-
tion, but we then lose the necessary convexity for these
methods (e.g., Neural Networks).

6. Experiments
We compared MixMin to previous data mixing baselines for
language modeling and chemistry tasks. For language mod-
eling we further investigated the transferability of mixtures
found using cheap proxy models to more expensive train-
ing runs. For chemistry, we explored the performance of
MixMin as we increased the pool of surrogate data sources.
Experiments were run using A100 GPUs and AMD EPYC
7643 CPUs.

Our experiments support the following list of (weak) condi-
tions for when MixMin works:

1. The data sources do not have covariate shift (consider
changing the objective to remove covariate shifts)

2. The downstream task is close to/contained within a
mixture of our sources

3. Our final model class is very expressive

4. Our proxy model’s learnt some signal for each source
(e.g., even with very little data): consider iteratively
using more compute for the proxy models until stability
in the mixtures is reached

6.1. Pretraining Language Models

Data mixing is now a common step in pre-training
LLMs (Dubey et al., 2024; Li et al., 2024b). We investi-
gated how MixMin compared to other data mixing methods,
its compute efficiency, and how weights found at a smaller
scale of models transfers to training larger models 4.

6.1.1. EXPERIMENTAL SETUP

Datasets and Models We used the domains in SlimPa-
jama (cer, 2023) as sources for pre-training. For the down-
stream target, we considered several multiple-choice tasks
that models in the 160M − 410M scale are known to do
non-trivially at (Thrush et al., 2024), alongside another gen-
erative task: SciQ (Welbl et al., 2017), PIQA (Bisk et al.,
2020), ARC-Easy (Clark et al., 2018) and the first 10000
documents in OpenWebMath (Paster et al., 2023) 5. For
multiple-choice tasks we used MixMin to maximize the
log probability of the correct question and answer (Q+A)
sequence, i.e., treating these tasks as new pretraining do-
mains. Note that the optimal conditional of A given Q
distribution is a conditional of the joint distribution of Q+A,
so our objective subsumes the Q→ A prediction problem.
Alongside the objective loss, we also evaluated accuracy
and the conditional cross-entropy of the pre-trained models
for these tasks (i.e., multiple-choice performance). Open-
WebMath is a specialized pretraining dataset, and so the loss
for MixMin and evaluation was the negative log probability
of a sequence. Our experiments used the 160M and 410M
pythia models (Biderman et al., 2023) trained for 3.2B and
8.2B tokens respectively (chinchilla optimal (Hoffmann
et al., 2022)).

Data Filtering We included documents in SlimPajama
with at least 1024 tokens (using the Pythia tokenizer), and
scraped documents for each domain until adding the next
document would bring us over 3.2B tokens for each domain.

Hyperparameter Tuning We took the largest batch size
that fits on a single A100 gpu, which was 64 for the 160M -
pythia model and 32 for the 410M -pythia model for a con-
text length of 1024. For the 160M -pythia model we in-
creased the learning rate until training loss got worse on the
natural distribution of domains in SlimPajama: we started
from 1e− 4, 5e− 4, 1e− 3, 5e− 3, 1e− 2 and found loss
got worse at 1e− 2 so chose 5e− 3. For the 410M -pythia
model we evaluated learning rates 5e − 3 and 1e − 2 and
found 5e − 3 was better. Other hyperparameters are the
same as (Thrush et al., 2024). All hyperparemeters are fixed
throughout the language modeling experiments.

4p values from Welch’s t-test are shown in Appendix B.
5We chose 10000 documents for computational efficiency.

5

MixMin: Finding Data Mixtures via Convex Minimization

PIQA
(4.06)

ARC-Easy
(3.82)

SciQ
(3.28)

OpenMath
(3.65)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Na
tu

ra
l G

en
 L

os
s -

 M
eth

od
 G

en
 L

os
s

1% of Training Cost

Natural
MixMin
Balanced
Random Search
RegMix

1% 5% 10% 100%
Data Mixing Compute / Training Compute

0.3

0.2

0.1

0.0

0.1

0.2

Na
tu

ra
l G

en
 L

os
s -

 M
eth

od
 G

en
 L

os
s

PIQA

Natural (y=x)
MixMin
Balanced
Random Search
RegMix

Figure 3: MixMin consistently outperforms all baselines across the four target tasks using 1% of the final training run
compute (Left). We report improvement over the downstream generative loss of training on the natural distribution (which
is stated beside the task name): higher is better. Error bars indicate a 95% confidence interval. Furthermore, we find that
MixMin was robust to using less compute (Right), while RegMix and random search had their performance degrade
with less compute.

160M 410M
Model Size

0.62

0.64

0.66

0.68

Ac
cu

ra
cy

PIQA
MixMin 160M 1%
Balanced
Natural

160M 410M
Model Size

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Ac
cu

ra
cy

ARC Easy
MixMin 160M 1%
Balanced
Natural

160M 410M
Model Size

0.70

0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

SciQ
MixMin 160M 1%
Balanced
Natural

Figure 4: MixMin mixtures derived from small models continue to improve training for larger models as measured
by target accuracy (in most cases). We report accuracy with the errors bars representing a 95% confidence interval over 3
trials. MixMin weights were found using 1% the compute of the 160M model training run, which is 0.15% the compute of
the 410M training run.

Method Implementations We compared MixMin to the
baselines of balancing the domains, the natural distribution
of domains in SlimPajama, random search and RegMix (the
latter known to improve or perform on par as previous data
mixing methods). We split the target task into a random
80% training set, and 20% test set. The training set was
used for the MixMin optimization, and the evaluation of
loss for random search and RegMix. Results are reported
over 3 trials of random train-test splits.

We ran MixMin using η = 1.0 for 100 steps for all
the experiments. For RegMix, we adapted the code
available at https://github.com/sail-sg/
regmix/blob/main/regression_fitting/
regression.ipynb, changing the hard-coded natural
distribution to the SlimPajama natural distribution and
inputting our models’ results. We implemented random
search by sampling uniformly from the simplex and training
proxy models on those mixture. Recall MixMin requires a
proxy model for each domain, and to normalize evaluation

compute we ran random search with the same number of
proxy models (7). RegMix showed benefits by using many
(but cheap) proxy models (Liu et al., 2024), and so we
ablated the number of our cheapest proxy models to vary
compute for it; this however increased its evaluation costs
to the other baselines. All proxy models are trained with
the same hyperparameters specified earlier, and use the
160M pythia model architecture. To achieve X% compute
relative to a full training run of the 160M pythia model, we
trained each proxy model for 3.2(X/100)(1/7)B tokens
for MixMin and random search, and for RegMix train
7X proxy models where each proxy model trains for
3.2(1/700)B tokens (our lowest compute proxy models).

6.1.2. RESULTS

MixMin found good mixtures with 1% of train compute
In Figure 3 we show the generative loss results of MixMin,
random search, and RegMix where the total compute for
all the proxy models was 1% relative to training the final

6

https://github.com/sail-sg/regmix/blob/main/regression_fitting/regression.ipynb
https://github.com/sail-sg/regmix/blob/main/regression_fitting/regression.ipynb
https://github.com/sail-sg/regmix/blob/main/regression_fitting/regression.ipynb

MixMin: Finding Data Mixtures via Convex Minimization

160M 410M
Model Size

3.6

3.7

3.8

3.9

4.0

4.1

4.2
Ge

ne
ra

tiv
e L

os
s

PIQA
MixMin 160M 1%
Balanced
Natural

160M 410M
Model Size

3.5

3.6

3.7

3.8

3.9

4.0

Ge
ne

ra
tiv

e L
os

s

ARC Easy

MixMin 160M 1%
Balanced
Natural

160M 410M
Model Size

3.0

3.1

3.2

3.3

3.4

Ge
ne

ra
tiv

e L
os

s

SciQ
MixMin 160M 1%
Balanced
Natural

160M 410M
Model Size

3.3

3.4

3.5

3.6

Ge
ne

ra
tiv

e L
os

s

OpenWebMath
MixMin 160M 1%
Balanced
Natural

Figure 5: MixMin mixtures derived from small models continue to improve training for larger models as measured by
target generative loss (in all cases). We report generative loss with the errors bars representing a 95% confidence interval
over 3 trials (lower is better). MixMin weights were found using 1% the compute of the 160M model training run, which is
0.15% the compute of the 410M training run.

160M -pythia model for 3.2B tokens (Chinchilla optimal).
We compared the performance of these to a balanced distri-
bution and the natural distribution. We found MixMin con-
sistently improved generative loss over the baselines. We
also found MixMin consistently matched or improved the
predictive loss and accuracy over all the baseline methods
(Figure 8 in Appendix B).

MixMin was more cost effective than baselines In fig-
ure 3 (and Figure 9 in Appendix B for other tasks) we
compared the performance of MixMin, random search, and
RegMix as we vary the the total compute for all the proxy
models from 100%, 10%, 5%, 1% of the compute for train-
ing the final 160M -pythia model for 3.2B tokens (Chin-
chilla optimal). We found MixMin was robust to using less
compute, where as random search and RegMix benefitted
from increasing compute (but do not meet MixMin perfor-
mance even at the highest compute setting we tested). Note,
we did not include RegMix at 100% compute given the
significant evaluation overhead: 100 times the alternatives.

MixMin mixtures for smaller models improve training
of larger models Finally, we tested whether MixMin mix-
tures derived from smaller models were useful for training
larger models. We computed MixMin mixtures using pythia-
160M proxy models each trained with 0.14% the compute
of a full 3.2B token training run (for an overall cost of 1%).
We then trained a pythia-410M for 8.2B tokens on those
mixtures. Here we only compared to the balanced or natural
mixture, as our previous experiments showed random search
and RegMix found mixture comparable or worse than one of
those mixtures for our tasks. Accuracy results are presented
in Figure 4 with generative and predictive loss results pre-
sented in Figure 5 and Figure 12 (the latter in Appendix B).
For accuracy and predictive loss we found in most cases
MixMin’s performance improved over the baselines as we
increased scale, despite not refitting the MixMin weights.
Even in the cases where MixMin’s accuracy and predictive
loss did not strictly improve over baselines, the generative
loss always improved with MixMin.

6.2. Chemistry

We explored how MixMin could improve predicting prop-
erties of molecule libraries, in particular the endpoints of
an assay (a predictive task). Many assays have few posi-
tive samples and training on just that data can lead to only
noisy performance. Past work has remedied this by transfer
learning from a larger dataset, but had not considering opti-
mizing the data mixture after filtering (Salem et al., 2020;
Li et al., 2022; Sun et al., 2022; Ye et al., 2018). A common
default mixture is the natural distribution, and here we show
MixMin provided better mixtures than this, especially as
the diversity of the source datasets grows. We found similar
improvements over random search and RegMix. We hope
MixMin’s ability to scale helps future data curation efforts
for predictive drug screening.

6.2.1. EXPERIMENTAL SETUP

Datasets and Models We worked with the PCBA
dataset (Beaini et al., 2023) 6, which was a filtered scrape of
PubChem (Kim et al., 2016). We used the first 10 bioassays
as the target distributions, using subsets of all the bioassays
(removing the target) as sources. Our experiments used XG-
Boost on ECFP fingerprints of SMILES (Rogers & Hahn,
2010) to fit each assay, known to be a strong baseline (Yang
et al., 2019; Seidl et al., 2023) for this domain. We report AP
performance (average precision score, a variant of AUPR)
for our experiments.

Data Filtering We trained models over the first 100,000
molecules in PCBA. We further removed any assay with
no positive or negative instances among the first 100,000
molecules. For all assays (1328) the number after filtering
was 1281, for the first 100 assays this left 86, and the first 10
were all kept. We performed data mixing among the filtered
assays (excluding the target assay).

6The dataset can be found at https://polarishub.io/
datasets/graphium/pcba-1328-1564k-v1.

7

https://polarishub.io/datasets/graphium/pcba-1328-1564k-v1
https://polarishub.io/datasets/graphium/pcba-1328-1564k-v1

MixMin: Finding Data Mixtures via Convex Minimization

0 1 2 3 4 5 6 7 8 9
Assay

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Im

pr
ov

em
en

t o
ve

r B
as

eli
ne

Mixing 9 Surrogate Datasets
MixMin
Natural

0 1 2 3 4 5 6 7 8 9
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 85 Surrogate Datasets
MixMin
Natural

0 1 2 3 4 5 6 7 8 9
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 1279 Surrogate Datasets
MixMin
Natural

Figure 6: MixMin improved over using the natural distribution of data as we increased the number of surrogate
assays. We report AP scores for the first 10 assays in PCBA, with error bars representing a 95% confidence interval over 3
trials.

0 1 2 3 4 5 6 7 8 9
Assay

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 9 Surrogate Datasets
MixMin Retrain
MixMin Ensemble

0 1 2 3 4 5 6 7 8 9
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne
Mixing 85 Surrogate Datasets

MixMin Retrain
MixMin Ensemble

0 1 2 3 4 5 6 7 8 9
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 1279 Surrogate Datasets
MixMin Retrain
MixMin Ensemble

Figure 7: Retraining with the MixMin mixture performs better than using the MixMin weights to ensemble the proxy
models. We report AP scores with error bars representing a 95% confidence interval over 3 trials. This implies the proxy
models were far from Bayes optimal.

Method Implementation For every assay in PCBA, we
used a 64% − 16% − 20% train-validation-test split: an
original 80% − 20% train-test split, and further splitting
the train set into a 20% validation set. We trained proxy
models used for MixMin on just the train split, and trained
baseline models on the train and validation splits. The
baselines models represent the performance we get by just
training on the target, as to normalize improvement from
data mixing. Given a target assay, we used the proxy models
on the other assays in PCBA to run MixMin , using the train
set on the target task to fit the MixMin mixture weights
(leaving the validation and test set unseen). Finally, given
the MixMin mixture we retrained a new model on the train
sets from all the other assays. For the natural distribution
baseline, we trained on all the train sets from other assays as
is (no reweighting of sources). For all method we reported
the mean test AP score improvement (from 3 trials) over
the baseline of training on the target distribution, with 95%
confidence intervals.

Hyperparameter Tuning We selected hyperparameters
for each proxy and baseline model by doing a 5-fold cross-
validation on the train set. We grid search over all combi-
nations of n estimators ∈ [10, 50, 100] and max depth ∈
[4, 6, 8]. For the models trained over all the surrogate assays

(the final model trained on MixMin or natural mixtures) we
fixed the n estimators = 100 and max depth = 6.

6.2.2. RESULTS

MixMin’s advantage over the baselines increased with
the number of sources As shown in Figure 6, we ob-
served that MixMin performs mostly on par with the natural
distribution when working with the first 10 assays and im-
proved over natural as the number of assays to mix grew.
This suggests MixMin was able to find relevant data sources
amongst more diverse sets, and we note its absolute perfor-
mance grew while the performance of the natural mixture
decreased with the number of sources. We note in all cases
both MixMin and training on the natural distribution im-
proved over the baseline of training on the target assay.
Similar improvements over random search and RegMix are
presented in Figure 16 and Figure 17 respectively (in Ap-
pendix B).

Retraining with MixMin Mixture performed better than
ensembling proxy models An alternative approach to
training on MixMin weights, suggested by the reduction for
Bayes optimal models, is to ensemble the proxy models with
the MixMin weights. We present a comparison between this
and retraining with MixMin weights in Figure 7. Retraining

8

MixMin: Finding Data Mixtures via Convex Minimization

performed significantly better, suggesting the proxy models
were too noisy to lead to good ensembles. Specifically,
this implies the proxy models were far from Bayes optimal,
as the ensemble would have then also been near Bayes
optimal. The fact we were able to improve over the natural
distribution suggests MixMin did not need strong proxy
models for these sources and targets.

MixMin highlighted data sources with similar endpoint
measure All the target assays tested cytotoxicity, and the
majority of the top 4 data sources MixMin found for each
assay also tested cytotoxicity (Table 2 in Appendix B). More
specific protein inhibition assays were also included, poten-
tially providing insights into the compound’s mechanism of
action. However, an assay with no apparent connection to
the target assay was also identified. We hope future work
explores the full interpretability of MixMin weights for the
bioassays we tested on.

7. Conclusion
In this paper we formalized a bi-level data mixing objective
for mixing data sources to minimize risk on a downstream
objective. We showed that in the case of CE or MSE, this
objective reduces to a convex minimization as our model
classes become larger. We proposed using cheap proxy mod-
els trained on the individual source distributions to optimize
the convex objective, leading to a data mixing method we
call MixMin. Our experiments showed MixMin consistently
outperformed previous baselines across language modeling
and chemistry tasks, and was robust to using cheap proxy
models. We hope future work explores explaining when
and why MixMin can use cheap proxy model, or develops
alternative empirical approaches to optimizing the convex
objective for data mixing with large model classes.

Limitations Our reductions for data mixing were specific
to CE and MSE, and required there be no covariate shift
among the source distribution. While this covers generative
tasks, we hope future work explores extending these ideas
to other loss functions, and handles covariate shift. For
example, our framework does not currently allow us to do
data mixing for image classification, where covariate shift is
common among sources. Also, MixMin need not be the best
way to optimize the convex data mixing objective. Finally,
an open problem is pushing the limit of how cheap the proxy
model’s can be without degradation to performance.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
Resources used in preparing this research were provided in
part by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Insti-
tute. We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC),
RGPIN-2021-03445. Anvith Thudi is supported by a Vanier
Fellowship from NSERC.

Evianne Rovers acknowledges support given through the
Matthieu Schapira lab at the University of Toronto who re-
ceives funding from NSERC [Grant RGPIN-2019-04416],
CQDM (Quantum Leap-176), and MITACS accelerate
(IT13051). The Structural Genomics Consortium is a regis-
tered charity (no: 1097737) that receives funds from Bayer
AG, Boehringer Ingelheim, Bristol Myers Squibb, Genen-
tech, Genome Canada through Ontario Genomics Institute
[OGI-196], EU/EFPIA/OICR/McGill/KTH/Diamond Inno-
vative Medicines Initiative 2 Joint Undertaking [EUbOPEN
grant 875510], Janssen, Merck KGaA (aka EMD in Canada
and US), Pfizer, and Takeda.

We thank Chris Crebolder and the rest of the UofT Computer
Science sysadmin team for their help in making many of the
experiments in this paper possible. We would also like to
thank Marta Skreta, Leo Cotta, Ayoub El Hanchi, William
Held, and many others at the Vector Institute for discussions
contributing to this paper.

References
SlimPajama: A 627B token cleaned and

deduplicated version of RedPajama.
https://www.cerebras.net/blog/slimpajama-a-627b-
token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama-627B.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Albalak, A., Pan, L., Raffel, C., and Wang, W. Y. Efficient
online data mixing for language model pre-training. In R0-
FoMo: Robustness of Few-shot and Zero-shot Learning
in Large Foundation Models, 2023.

Beaini, D., Huang, S., Cunha, J. A., Li, Z., Moisescu-
Pareja, G., Dymov, O., Maddrell-Mander, S., McLean,
C., Wenkel, F., Müller, L., et al. Towards foundational
models for molecular learning on large-scale multi-task
datasets. arXiv preprint arXiv:2310.04292, 2023.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning

9

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

MixMin: Finding Data Mixtures via Convex Minimization

from different domains. Machine learning, 79:151–175,
2010.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of machine learning
research, 13(2), 2012.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Blakeney, C., Paul, M., Larsen, B. W., Owen, S., and Fran-
kle, J. Does your data spark joy? performance gains from
domain upsampling at the end of training. arXiv preprint
arXiv:2406.03476, 2024.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Duchi, J. C. Introductory lectures on stochastic optimization.
The mathematics of data, 25:99–186, 2018.

Everaert, D. and Potts, C. Gio: Gradient information opti-
mization for training dataset selection. ICLR, 2024.

Fan, S., Pagliardini, M., and Jaggi, M. Doge: Do-
main reweighting with generalization estimation. arXiv
preprint arXiv:2310.15393, 2023.

Held, W., Paranjape, B., Koura, P. S., Lewis, M., Zhang,
F., and Mihaylov, T. Optimizing pretraining data
mixtures with llm-estimated utility. arXiv preprint
arXiv:2501.11747, 2025.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Hwang, S.-H. and Whang, S. E. Regmix: Data
mixing augmentation for regression. arXiv preprint
arXiv:2106.03374, 2021.

Isik, B., Ponomareva, N., Hazimeh, H., Paparas, D., Vas-
silvitskii, S., and Koyejo, S. Scaling laws for down-
stream task performance of large language models. arXiv
preprint arXiv:2402.04177, 2024.

Jain, A., Montanari, A., and Sasoglu, E. Scaling laws for
learning with real and surrogate data. arXiv preprint
arXiv:2402.04376, 2024.

Ji, K., Yang, J., and Liang, Y. Bilevel optimization: Con-
vergence analysis and enhanced design. In International
conference on machine learning, pp. 4882–4892. PMLR,
2021.

Jiang, Y., Zhou, A., Feng, Z., Malladi, S., and Kolter, J. Z.
Adaptive data optimization: Dynamic sample selection
with scaling laws. arXiv preprint arXiv:2410.11820,
2024.

Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gin-
dulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., et al.
Pubchem substance and compound databases. Nucleic
acids research, 44(D1):D1202–D1213, 2016.

Li, H., Zhao, X., Li, S., Wan, F., Zhao, D., and Zeng, J.
Improving molecular property prediction through a task
similarity enhanced transfer learning strategy. Iscience,
25(10), 2022.

Li, J., Fang, A., Smyrnis, G., Ivgi, M., Jordan, M., Gadre,
S., Bansal, H., Guha, E., Keh, S., Arora, K., Garg, S.,
Xin, R., Muennighoff, N., Heckel, R., Mercat, J., Chen,
M., Gururangan, S., Wortsman, M., Albalak, A., Bitton,
Y., Nezhurina, M., Abbas, A., Hsieh, C.-Y., Ghosh, D.,
Gardner, J., Kilian, M., Zhang, H., Shao, R., Pratt, S.,
Sanyal, S., Ilharco, G., Daras, G., Marathe, K., Gokaslan,
A., Zhang, J., Chandu, K., Nguyen, T., Vasiljevic, I.,
Kakade, S., Song, S., Sanghavi, S., Faghri, F., Oh, S.,
Zettlemoyer, L., Lo, K., El-Nouby, A., Pouransari, H.,
Toshev, A., Wang, S., Groeneveld, D., Soldaini, L., Koh,
P. W., Jitsev, J., Kollar, T., Dimakis, A. G., Carmon, Y.,
Dave, A., Schmidt, L., and Shankar, V. Datacomp-lm: In
search of the next generation of training sets for language
models. arXiv, 2024a.

Li, J., Fang, A., Smyrnis, G., Ivgi, M., Jordan, M., Gadre, S.,
Bansal, H., Guha, E., Keh, S., Arora, K., et al. Datacomp-
lm: In search of the next generation of training sets for lan-
guage models. arXiv preprint arXiv:2406.11794, 2024b.

Liu, Q., Zheng, X., Muennighoff, N., Zeng, G., Dou, L.,
Pang, T., Jiang, J., and Lin, M. Regmix: Data mixture
as regression for language model pre-training. arXiv
preprint arXiv:2407.01492, 2024.

10

MixMin: Finding Data Mixtures via Convex Minimization

Paster, K., Santos, M. D., Azerbayev, Z., and Ba, J. Open-
webmath: An open dataset of high-quality mathematical
web text, 2023.

Pedregosa, F. Hyperparameter optimization with approxi-
mate gradient. In International conference on machine
learning, pp. 737–746. PMLR, 2016.

Pouget, A., Beyer, L., Bugliarello, E., Wang, X., Steiner,
A. P., Zhai, X., and Alabdulmohsin, I. No filter: Cul-
tural and socioeconomic diversityin contrastive vision-
language models. arXiv preprint arXiv:2405.13777,
2024.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Rogers, D. and Hahn, M. Extended-connectivity finger-
prints. Journal of chemical information and modeling, 50
(5):742–754, 2010.

Salem, M., Khormali, A., Arshadi, A. K., Webb, J., and
Yuan, J.-S. Transcreen: transfer learning on graph-based
anti-cancer virtual screening model. Big Data and Cogni-
tive Computing, 4(3):16, 2020.

Seidl, P., Vall, A., Hochreiter, S., and Klambauer, G. En-
hancing activity prediction models in drug discovery
with the ability to understand human language. In In-
ternational Conference on Machine Learning, pp. 30458–
30490. PMLR, 2023.

Shi, C., Lu, J., and Zhang, G. An extended kuhn–tucker
approach for linear bilevel programming. Applied Mathe-
matics and Computation, 162(1):51–63, 2005.

Sun, X., Zhu, J., Chen, B., You, H., and Xu, H. A feature
transferring workflow between data-poor compounds in
various tasks. Plos one, 17(3):e0266088, 2022.

Thrush, T., Potts, C., and Hashimoto, T. Improving pre-
training data using perplexity correlations. arXiv preprint
arXiv:2409.05816, 2024.

Thudi, A. and Maddison, C. J. Finding optimally robust
data mixtures via concave maximization. arXiv preprint
arXiv:2406.01477, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Welbl, J., Liu, N. F., and Gardner, M. Crowdsourcing
multiple choice science questions. In NUT@EMNLP,
2017.

Xiao, S., Liu, Z., Zhang, P., Muennighoff, N., Lian, D., and
Nie, J.-Y. C-pack: Packed resources for general chinese
embeddings. arXiv, 2024.

Xie, S. M., Santurkar, S., Ma, T., and Liang, P. Data se-
lection for language models via importance resampling.
NeurIPS, 2023.

Xie, S. M., Pham, H., Dong, X., Du, N., Liu, H., Lu, Y.,
Liang, P. S., Le, Q. V., Ma, T., and Yu, A. W. Doremi:
Optimizing data mixtures speeds up language model pre-
training. Advances in Neural Information Processing
Systems, 36, 2024.

Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao,
H., Guzman-Perez, A., Hopper, T., Kelley, B., Mathea,
M., et al. Analyzing learned molecular representations
for property prediction. Journal of chemical information
and modeling, 59(8):3370–3388, 2019.

Ye, Z., Yang, Y., Li, X., Cao, D., and Ouyang, D. An inte-
grated transfer learning and multitask learning approach
for pharmacokinetic parameter prediction. Molecular
pharmaceutics, 16(2):533–541, 2018.

11

MixMin: Finding Data Mixtures via Convex Minimization

A. Proofs
A.1. Theorem 3.1

Proof. Recall that the Bayes optimal model for conditional cross entropy is p(y|x) and for conditional MSE is Ey∼p(y|x)y.
In both cases, letting fλ be the Bayes optimal for the mixture dpλ =

∑
p∈P λpdp, and fp be the Bayes optimal for the

individual sources, we have for cross-entropy and ℓ22:

fλ =

∑
dp∈P λpfp(x)p(x)∑

dp′∈P λp′p′(x)

and in particular, when there is no covariate shift amongst the sources we have fλ =
∑

dp∈P λpfp(x).

Note that the Bayes optimal for unconditional CE is just p(x), and so similarly fλ(x) =
∑

dp∈P λpfp(x).

With this formula for fλ, we then have our Data Mixing objective reduces to just learning a linear model over fp(x).
Specifically plugging in fλ =

∑
dp∈P λpfp(x) into Data Mixing gives Equation 1.

A.2. Lemma 3.2

Proof. First note that, using the Lipschitz criterion with the condition on the hypothesis space and the definition of data
mixing, lettingH∗ contain the Bayes optimal for all mixtures, we have ∀λ ∈ ∆P that

|DMH(λ, dt)−DMH∗(λ, dt)| ≤ Cϵ.

Specifically, let fH,λ and fH∗,λ be the minimizer of the mixture λ in H and H∗ respectively. By definition of H∗, fH∗,λ

is Bayes optimal, and by the assumption in the lemma statement, ||fH,λ − fH∗,λ|| ≤ ϵ. Now note |DMH(λ, dt) −
DMH∗(λ, dt)| = |

∫
L(fH,λ(x), y)dt(x, y)−

∫
L(fH∗,λ(x), y)dt(x, y)| ≤ C||fH,λ−fH∗,λ|| by the Lipschitz assumption.

Combining the two inequalities we have |DMH(λ, dt)−DMH∗(λ, dt)| ≤ Cϵ which gives the desired inequality.

This relation will be enough for the proof, and hence weaker criteria in the lemma that ensure this relation will suffice.

Let λ̄ = argminλ∈∆P DMH(λ, dt) be the optimal data mixture weights and recall λ∗ = argminλ∈∆P DMH∗(λ, dt)
whereH∗ contains the Bayes optimal functions for all mixtures. Now note the left hand side of the inequality

DMH(λ∗, dt)− min
λ∈∆P

DMH(λ, dt) = DMH(λ∗, dt)−DMH∗(λ∗, dt) +DMH∗(λ∗, dt)−DMH(λ̄, dt).

The first difference is bounded by Cϵ1 by the earlier inequality for changing hypothesis spaces. Now bounding the second
difference we have

DMH∗(λ∗, dt)−DMH(λ̄, dt) = DMH∗(λ∗, dt)−DMH∗(λ̄, dt) +DMH∗(λ̄, dt)−DMH(λ̄, dt)

≤ DMH∗(λ̄, dt)−DMH(λ̄, dt) ≤ Cϵ1

where the first inequality came from the definition of λ∗, and the second from the inequality stated at the beginning of the
proof for changing hypothesis spaces.

Hence we conclude
DMH(λ∗, dt)− min

λ∈∆P
DMH(λ, dt) ≤ 2Cϵ1

B. Extra Tables and Figures

12

MixMin: Finding Data Mixtures via Convex Minimization

Target First Second Third Fourth

assayID-1 assayID-891 assayID-620 assayID-618 assayID-693
assayID-3 assayID-620 assayID-5 assayID-618 assayID-891
assayID-5 assayID-620 assayID-891 assayID-92 assayID-425
assayID-7 assayID-620 assayID-952 assayID-693 assayID-618
assayID-9 assayID-891 assayID-693 assayID-620 assayID-256
assayID-11 assayID-620 assayID-952 assayID-693 assayID-618
assayID-13 assayID-618 assayID-710 assayID-891 assayID-451
assayID-15 assayID-19 assayID-620 assayID-25 assayID-758
assayID-17 assayID-19 assayID-618 assayID-758 assayID-21
assayID-19 assayID-25 assayID-17 assayID-952 assayID-21

Table 1: The top 4 assays found by MixMin (over the 1328 assays in PCBA) for each target task. We list the PubChem
assayID corresponding to the assay in PCBA. Red indicated assays measuring cytotoxicity, green are phenotypic screens,
blue are specific protein binding/inhibition assays, and orange are other types of assays.

Target First Second Third Fourth

assayID-1 0.036705 0.036184 0.035904 0.030910
assayID-3 0.05026778 0.04660426 0.0414932 0.03289703
assayID-5 0.05026778 0.04660426 0.0414932 0.03289703
assayID-7 0.03170111 0.02936895 0.02839234 0.02707635
assayID-9 0.03645385 0.02978397 0.02941164 0.02894659

assayID-11 0.04995361 0.03905968 0.03367052 0.03212925
assayID-13 0.05764348 0.04289928 0.03077811 0.02817639
assayID-15 0.11996419 0.04302281 0.03967432 0.03457846
assayID-17 0.22989839 0.04496526 0.04188494 0.03894247
assayID-19 0.10650713 0.05704838 0.05019803 0.04435973

Table 2: The mixing weights for the top 4 assays found by MixMin (over the 1328 assays in PCBA) for each target task. We
list the PubChem assayID corresponding to the target assay in PCBA.

PIQA
(4.01)

ARC-Easy
(6.15)

SciQ
(6.84)

0.8

0.6

0.4

0.2

0.0

0.2

Na
tu

ra
l P

re
d

Lo
ss

 -
M

eth
od

 P
re

d
Lo

ss

1% of Training Cost

Natural
MixMin
Balanced
Random Search
RegMix

PIQA
(0.62)

ARC-Easy
(0.45)

SciQ
(0.71)

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

M
eth

od
 A

cc
ur

ac
y

- N
atu

ra
l A

cc
ur

ac
y

1% of Training Cost
Natural
MixMin
Balanced
Random Search
RegMix

Figure 8: In almost all cases MixMin improves or matches all baselines across the target tasks using 1% of the final training
run compute (Left). We report improvement over the predictive loss (left) and accuracy (right) of training on the natural
distribution, which is stated on the x-axis with the task name.

13

MixMin: Finding Data Mixtures via Convex Minimization

Baseline PIQA ARC-EASY SciQ Open WebMath

Random Search 0.006 0.011 0.019 0.839
RegMix 0.007 0.004 0.003 0.051
Balanced 0.008 0.013 0.006 0.027
Natural 0.025 0.206 0.375 0.0003

Table 3: p-values for a Welch’s t-test with the null hypothesis being MixMin performs the same as the baselines for the
1%-compute experiments presented in Figure 3 (generative loss) over the 3 trials used.

Baseline 1% 5% 10% 100%

Random Search 0.006 0.0003 0.233 0.043
RegMix 0.007 0.011 0.023 NA
Balanced 0.008 0.0003 0.017 0.002
Natural 0.025 0.004 0.224 0.018

Table 4: p-values for a Welch’s t-test with the null hypothesis being MixMin performs the same as the baselines on PIQA
for generative loss across compute budgets (as shown in Figure 3) over the 3 trials used.

Baseline PIQA ARC-EASY SciQ Open WebMath

Balanced 0.019 0.000 0.003 0.020
Natural 0.052 0.003 0.409 0.002

Table 5: p-values for a Welch’s t-test with the null hypothesis being MixMin performs the same as the baselines on generative
loss across tasks for the 410M models experiments shown in Figure 5.

1% 5% 10% 100%
Data Mixing Compute / Training Compute

0.4

0.3

0.2

0.1

0.0

0.1

Na
tu

ra
l G

en
 L

os
s -

 M
eth

od
 G

en
 L

os
s

ARC-Easy

Natural (y=x)
MixMin
Balanced
Random Search
RegMix

1% 5% 10% 100%
Data Mixing Compute / Training Compute

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

Na
tu

ra
l G

en
 L

os
s -

 M
eth

od
 G

en
 L

os
s

SciQ

Natural (y=x)
MixMin
Balanced
Random Search
RegMix

1% 5% 10% 100%
Data Mixing Compute / Training Compute

0.2

0.1

0.0

0.1

0.2

Na
tu

ra
l G

en
 L

os
s -

 M
eth

od
 G

en
 L

os
s

OpenMath

Natural (y=x)
MixMin
Balanced
Random Search
RegMix

Figure 9: MixMin consistently performed better than alternative methods on generative loss across compute budgets, and
was robust to using less compute. We note both Random Search and RegMix tend to improve with more compute. We report
improvement over the generative loss of training on the natural distribution.

1% 5% 10% 100%
Data Mixing Compute / Training Compute

0.3

0.2

0.1

0.0

0.1

0.2

Na
tu

ra
l P

re
d

Lo
ss

 -
M

eth
od

 P
re

d
Lo

ss

PIQA

Natural (y=x)
MixMin
Balanced
Random Search
RegMix

1% 5% 10% 100%
Data Mixing Compute / Training Compute

1.0

0.8

0.6

0.4

0.2

0.0

Na
tu

ra
l P

re
d

Lo
ss

 -
M

eth
od

 P
re

d
Lo

ss

ARC-Easy

Natural (y=x)
MixMin
Balanced
Random Search
RegMix

1% 5% 10% 100%
Data Mixing Compute / Training Compute

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Na
tu

ra
l P

re
d

Lo
ss

 -
M

eth
od

 P
re

d
Lo

ss

SciQ

Natural (y=x)
MixMin
Balanced
Random Search
RegMix

Figure 10: MixMin often performed better or on par to alternative methods on predictive loss across compute budgets, and
was robust to using less compute. We note both Random Search and RegMix tend to improve with more compute. We report
improvement over the predictive loss of training on the natural distribution.

14

MixMin: Finding Data Mixtures via Convex Minimization

1% 5% 10% 100%
Data Mixing Compute / Training Compute

0.04

0.02

0.00

0.02

0.04

0.06

M
eth

od
 A

cc
ur

ac
y

- N
atu

ra
l A

cc
ur

ac
y

PIQA
Natural (y=x)
MixMin
Balanced
Random Search
RegMix

1% 5% 10% 100%
Data Mixing Compute / Training Compute

0.08

0.06

0.04

0.02

0.00

0.02

0.04

M
eth

od
 A

cc
ur

ac
y

- N
atu

ra
l A

cc
ur

ac
y

ARC-Easy

Natural (y=x)
MixMin
Balanced
Random Search
RegMix

1% 5% 10% 100%
Data Mixing Compute / Training Compute

0.08

0.06

0.04

0.02

0.00

0.02

0.04

M
eth

od
 A

cc
ur

ac
y

- N
atu

ra
l A

cc
ur

ac
y

SciQ

Natural (y=x)
MixMin
Balanced
Random Search
RegMix

Figure 11: MixMin often performed better or on par to alternative methods on accuracy across compute budgets, and was
robust to using less compute. We note both Random Search and RegMix tend to improve with more compute. We report
improvement over the accuracy of training on the natural distribution.

160M 410M
Model Size

3.5

3.6

3.7

3.8

3.9

4.0

4.1

Pr
ed

ict
io

n
Lo

ss

PIQA
MixMin 160M 1%
Balanced
Natural

160M 410M
Model Size

6.0

6.2

6.4

6.6

6.8

7.0

Pr
ed

ict
io

n
Lo

ss

ARC Easy
MixMin 160M 1%
Balanced
Natural

160M 410M
Model Size

6.2

6.4

6.6

6.8

7.0

7.2

Pr
ed

ict
io

n
Lo

ss

SciQ

MixMin 160M 1%
Balanced
Natural

Figure 12: In most cases MixMin consistently improved predictive loss over the baselines as we scaled the models. We
report predictive loss relative to a pythia-160M model trained with the natural distribution of tokens (lower in the figures is
better). MixMin weights were found using 1% the compute of the 160M model training run, which is 0.15% the compute
of the 410M training run.

0 1 2 3 4 5 6

PI
QA

Ar
c E

as
y

Sc
iQ

Op
en

W
eb

M
ath

0.049 0.7 0.003 0.22 0.005 0.0028 0.022

0.37 0.58 0.0028 0.03 0.0093 0.0028 0.0029

0.45 0.34 0.026 0.085 0.039 0.026 0.026

0.15 0.13 0.11 0.13 0.21 0.11 0.17

MixMin 1% of Training Cost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

PI
QA

Ar
c E

as
y

Sc
iQ

Op
en

W
eb

M
ath

0.093 0.12 0.17 0.13 0.088 0.17 0.23

0.093 0.12 0.17 0.13 0.088 0.17 0.23

0.093 0.12 0.17 0.13 0.088 0.17 0.23

0.053 0.067 0.35 0.12 0.18 0.099 0.13

Random Search 1% of Training Cost

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6

PI
QA

Ar
c E

as
y

Sc
iQ

Op
en

W
eb

M
ath

0.23 0.11 0.32 0.02 0.041 0.27 0.014

0.028 0.35 0.42 0.055 0.065 0.034 0.044

0.028 0.35 0.42 0.055 0.065 0.034 0.044

0.51 0.16 0.21 0.022 0.04 0.025 0.028

RegMix 1% of Training Cost

0.1

0.2

0.3

0.4

0.5

Figure 13: The mixture weights found by MixMin, Random Search, and RegMix when using 1% the compute for a
pythia-160M training run on 3.2B tokens. Note the domains (x-axis) are “RedPajamaCommonCrawl”, “RedPajamaC4”,
“RedPajamaGithub”, “RedPajamaBook”, “RedPajamaArXiv” , “RedPajamaWikipedia”, “RedPajamaStackExchange” re-
spectively.

15

MixMin: Finding Data Mixtures via Convex Minimization

PIQA Arc Easy SciQ OpenWebMath
MixMin 410M Trained

PI
QA

Ar
c E

as
y

Sc
iQ

Op
en

W
eb

M
ath

Ev
alu

ate
d

3.7 3.7 3.8 4

3.6 3.5 3.5 3.8

3 3 3 3.2

3.5 3.6 3.4 3.2

Gen Loss Evaluation of MixMin

3.0

3.2

3.4

3.6

3.8

4.0

PIQA Arc Easy SciQ OpenWebMath
MixMin 410M Trained

PI
QA

Ar
c E

as
y

Sc
iQ

Ev
alu

ate
d

3.5 3.6 3.7 3.8

6.2 6 6 6.4

6.9 6.4 6.6 6.8

Pred Loss Evaluation of MixMin

4.0

4.5

5.0

5.5

6.0

6.5

PIQA Arc Easy SciQ OpenWebMath
MixMin 410M Trained

PI
QA

Ar
c E

as
y

Sc
iQ

Ev
alu

ate
d

0.68 0.67 0.66 0.64

0.49 0.51 0.49 0.46

0.76 0.74 0.76 0.76

Accuracy Evaluation of MixMin

0.50

0.55

0.60

0.65

0.70

0.75

Figure 14: We found the MixMin models for PIQA, Arc Easy, and SciQ perform similarly across tasks, however were
(almost) always best for their own task across metrics. We report the cross performance of MixMin for different tasks at the
410M parameter scale. The subfigures report generative loss, predictive loss, and accuracy respectively.

Natural Balanced
Baseline 410M Trained

PI
QA

Ar
c E

as
y

Sc
iQ

Op
en

W
eb

M
ath

Ev
alu

ate
d

3.9 4

3.6 3.8

3 3.2

3.4 3.3

Gen Loss Evaluation of Baseline

3.2

3.4

3.6

3.8

Natural Balanced
Baseline 410M Trained

PI
QA

Ar
c E

as
y

Sc
iQ

Ev
alu

ate
d

3.8 3.8

6.2 6.4

6.7 6.5

Pred Loss Evaluation of Baseline

4.0

4.5

5.0

5.5

6.0

6.5

Natural Balanced
Baseline 410M Trained

PI
QA

Ar
c E

as
y

Sc
iQ

Ev
alu

ate
d

0.65 0.64

0.49 0.47

0.76 0.78

Accuracy Evaluation of Baseline

0.50

0.55

0.60

0.65

0.70

0.75

Figure 15: We report the performance of training on the natural and balanced mixture for different tasks at the 410M
parameter scale. The subfigures report generative loss, predictive loss, and accuracy respectively. Comparing to Figure 14
we see both the natural and baseline mixture are matched or dominated in average performance across tasks by the
MixMin weights for PIQA, Arc Easy, and SciQ.

0 1 2 3 4 5 6 7 8 9
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 9 Surrogate Datasets
MixMin
Random Search

0 1 2 3 4 5 6 7 8 9
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 85 Surrogate Datasets
MixMin
Random Search

0 1 2
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 1279 Surrogate Datasets
MixMin
Random Search

Figure 16: MixMin improved over using random search as we increased the number of surrogate assays. We report
AP scores for the first 10 assays in PCBA, with error bars representing a 95% confidence interval over 3 trials. We only
report the first 3 assays for the 1279 sources setting.

16

MixMin: Finding Data Mixtures via Convex Minimization

0 1 2 3 4 5 6 7 8 9
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 9 Surrogate Datasets
MixMin
RegMix

0 1 2 3 4 5 6 7 8 9
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 85 Surrogate Datasets
MixMin
RegMix

0 1 2
Assay

0.0

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
em

en
t o

ve
r B

as
eli

ne

Mixing 1279 Surrogate Datasets
MixMin
RegMix

Figure 17: MixMin improved over using RegMix as we increased the number of surrogate assays. We report AP scores
for the first 10 assays in PCBA, with error bars representing a 95% confidence interval over 3 trials. We only report the first
3 assays for the 1279 sources setting.

PIQA
(4.06)

0.04

0.02

0.00

0.02

0.04

M
eth

od
 A

cc
ur

ac
y

- N
atu

ra
l A

cc
ur

ac
y

1% of Training Cost: 5 Trials
Natural
MixMin
Balanced
Random Search
RegMix

PIQA
(4.06)

0.2

0.1

0.0

0.1

0.2

Na
tu

ra
l G

en
 L

os
s -

 M
eth

od
 G

en
 L

os
s

1% of Training Cost: 5 Trials
Natural
MixMin
Balanced
Random Search
RegMix

PIQA
(4.06)

0.3

0.2

0.1

0.0

0.1

0.2

Na
tu

ra
l P

re
d

Lo
ss

 -
M

eth
od

 P
re

d
Lo

ss

1% of Training Cost: 5 Trials

Natural
MixMin
Balanced
Random Search
RegMix

Figure 18: MixMin often performed better or on par to alternative methods on accuracy, generative loss, and predictive loss
on PIQA for the 160M model using 1% compute for proxy models. Here we present results over 5 trials.

17

