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Abstract

Bilevel optimization problems involve two nested objectives, where an upper-level
objective depends on a solution to a lower-level problem. When the latter is non-
convex, multiple critical points may be present, leading to an ambiguous defini-
tion of the problem. In this paper, we introduce a key ingredient for resolving this
ambiguity through the concept of a selection map which allows one to choose a
particular solution to the lower-level problem. Using such maps, we define a class
of hierarchical games between two agents that resolve the ambiguity in bilevel
problems. This new class of games requires introducing new analytical tools in
Morse theory to extend implicit differentiation, a technique used in bilevel opti-
mization resulting from the implicit function theorem. In particular, we establish
the validity of such a method even when the latter theorem is inapplicable due
to degenerate critical points. Finally, we show that algorithms for solving bilevel
problems based on unrolled optimization solve these games up to approximation
errors due to finite computational power. A simple correction to these algorithms
is then proposed for removing these errors.

1 Introduction

Bilevel optimization has proven to be a major tool for solving machine learning problems that pos-
sess a nested structure such as hyper-parameter optimization [17], meta-learning [6], reinforcement
learning [23, 33], or dictionary learning [38]. Introduced in the field of economic game theory
in [49], a bilevel optimization problem can be understood as a game between a leader and a follower
each of which optimizes their own objective function but where the leader can anticipate follower’s
actions. In the context of machine learning, the leader typically optimizes a hyper-parameter over a
validation loss while the follower optimizes the model parameter on a training loss [37].

Bilevel optimization introduces many challenges. In particular, when multiple optimal solutions
are available to the follower, the leader would need to optimize a different objective depending on
the follower’s strategy to select an optimal solution. As a result, the bilevel problem becomes am-
biguously defined without knowing the follower’s strategy [35]. A large body of work on bilevel
programs for machine learning gets around these considerations by assuming the follower to have
a unique optimal choice, a situation that typically occurs when the follower’s objective is strongly
convex, leading to efficient and scalable algorithms [1, 2, 7, 14, 20, 32, 33, 47]. However, in many
machine learning applications, the strong convexity of the follower’s objective is an unrealistic as-
sumption. This is particularly the case in the context of deep learning, where the follower’s objective,
the training loss, can be highly non-convex in the parameters of the model and can have regions of
flat optima due to symmetries and other degeneracies [15, 30].

In the literature on mathematical optimization, the ambiguity in bilevel problems is often resolved by
making an additional assumption on the follower’s strategy for choosing their optimal solution. In
particular, two problems are often considered: optimistic and pessimistic bilevel programs, see [13].
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Both problems rely on two assumptions: (i) the follower is using a strategy for selecting a solution
to their problem that is either improving or degrading the leader’s objective and (ii) the leader knows
exactly what strategy the follower is using. These assumptions are strong from a game-theoretical
perspective and often unrealistic for machine learning problems such as hyper-parameter optimiza-
tion. Still, optimistic/pessimistic bilevel games are well defined and early works have proposed
several algorithms to solve them with strong convergence guarantees [55, 56, 57]. Yet, these algo-
rithms are often ill-suited to large-scale and high-dimensional problems arising in machine learning
applications as they rely on second-order optimization methods such as Newton’s method [21]. For
this reason, scalable first-order algorithms for such games have been proposed recently [34, 35].

However, many of the best-performing approaches for hyper-parameter optimization rely neither
on an optimistic nor a pessimistic formulation of the bilevel problem [50]. Instead, they often rely
on algorithms initially designed for bilevel problems with strongly convex lower objectives even
though the convexity assumption does not hold [37]. Consequently, these algorithms are solving a
seemingly ill-defined bilevel program due to the ambiguity in the way the follower selects their solu-
tion. However, their ability to provide models with good empirical performance raises the question
of whether these algorithms are solving another class of well-defined hierarchical problems beyond
optimistic and pessimistic bilevel programs that are still relevant for machine learning.

In this work, we answer the above question by introducing Bilevel Games with Selection (BGS), a
class of games between two agents: a leader and a follower, where the leader uses a mechanism for
anticipating the solution of the follower without knowing the exact follower’s strategy. We define
such a mechanism using the notion of a selection, which is simply a map for selecting a particular
solution to the follower’s objective given the current state of the game. In particular, BGS recovers
a usual bilevel program when the follower’s objective admits a unique solution. By playing a BGS,
the agents seek an equilibrium point for which each of their objectives ceases to vary. The equilibria
are completely determined by the selection thus resulting in a well-defined problem.

When the selection is differentiable, the equilibrium point can be characterized by a first-order op-
timality condition which enables gradient-based approximations. More precisely, we show that
implicit differentiation [42], which, a priori, is only valid when the critical points of the follower’s
objective are non-degenerate, remains applicable for solving BGS even when these critical points
are degenerate. To this end, we consider a general construction of the selection as the limit of a
gradient flow of the follower’s objective and prove the differentiability of such a selection near local
minimizers, provided the follower’s objective satisfies a generalization of the Morse-Bott property
[4, 16]. We then characterize the differential of the selection as a solution to a linear system thus
extending implicit differentiation to degenerate critical points. Finally, we leverage this characteri-
zation to show that popular algorithms based on iterative differentiation (ITD) [5] find fixed points
approximating the BGS’s equilibria up to approximation errors. We then introduce a simple correc-
tive term to these algorithms based on implicit differentiation to remove these errors.

2 Related Work

Iterative/Unrolled optimization (ITD) is a class of methods approximating the lower-level solu-
tion map by a differentiable function obtained through successive gradient updates [5]. When the
lower-level objective is strongly convex, these algorithms solve a well-defined bilevel problem up to
an error that is controlled by increasing the computational budget for the approximate solution [25].
Our analysis suggests a simple algorithmic correction to these approaches which can result in solu-
tions to a bilevel game with a constant budget for the approximate solution.

Approximate Implicit Differentiation (AID) is a class of methods approximating the variations
of the lower-level solution map using the Implicit Function theorem [18, 19, 42, 43]. The non-
degeneracy requirement under which the latter theorem holds restricts the applicability of AID to,
essentially, strongly convex lower-level objectives. These algorithms admit fixed points that match
the solutions to the bilevel problem [19, 23, 24, 25]. As such, they typically require a smaller
computational budget than ITD [2, 25]. Recently, [8, 10, 9] extended AID to non-smooth objectives
while still requiring non-degenerate critical points. The present work is complementary to these
works as it extends AID to smooth objectives that have possibly degenerate critical points.

Optimistic and pessimistic bilevel optimization. When the lower-level objective is non-convex,
the ambiguity of the problem arising from the multiplicity of the lower-level solutions can be re-
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solved by optimizing the upper-level objective over all such possible solutions [53, 58]. The opti-
mistic and pessimistic problems arise when either minimizing or maximizing the upper-level over all
such lower-level solutions. Early works proposed to solve these problems using exact penalization
[57], second-order optimization [55, 56] or smoothing method [54]. However, these approaches are
hard to scale to the high dimensional problems arising in machine learning. More recently, [35, 34]
considered first-order methods based on unrolled optimization or interior-point methods for solving
optimistic bilevel problems and provided approximation guarantees. However, as shown in [50],
most practical applications to bilevel optimization rely on a formulation that goes beyond optimistic
or pessimistic formulations. The present work departs from these approaches and instead introduces
a bilevel game that is more tractable to solve. We show that popular bilevel algorithms, such as
unrolled optimization, yield approximations of these games.

3 Non-Convex Bilevel Optimization with Selection

Notations. Define X = Rp and Y = Rd for some positive integers p and d. We consider two real
valued functions f and g defined on X×Y and assume g to be twice-continuously differentiable.

3.1 Background on Bilevel Optimization

A bilevel program is an optimization problem where an upper-level objective f defined over a set
X × Y of variables (x, y) is optimized in the first variable x under the constraint that the second
variable y is optimal for a lower-level objective y 7→ g(x, y) depending on the upper-variable x.
When g(x, .) admits a unique minimizer denoted by y?(x), which is the case if y 7→ g(x, y) is
strongly convex, the bilevel problem is well-defined and can be expressed as:

min
x∈X

f(x, y?(x)), y?(x) := arg min
y∈Y

g(x, y). (BP)

When g is non-convex, the set of minimizers T (x):= arg miny g(x, y) may contain more than one
element making (BP) ambiguous. A possible approach for resolving the ambiguity is to adopt a
game-theoretical point of view, where a lower-level agent uses a particular strategy for selecting a
solution in T (x). For instance, in pessimistic bilevel games, the lower agent chooses a minimizer of
g(x, .) that maximizes f(x, .) while the upper agent minimizes the resulting worst-case loss F in x:

(UL): min
x∈X

F (x), and (LL): F (x) := max
y∈Y

f(x, y) s.t. y ∈ T (x). (pessimistic-BG)

Similarly, an optimistic bilevel game can be obtained by replacing maximization with minimization
so that both agents cooperate. While these approaches are highly relevant from a game-theoretical
point of view, many machine learning applications do not rely on a pessimistic/optimistic bilevel
formulation. For instance, for hyper-parameter optimization, the lower agent may have access to
training data, but it should not have access to the validation data processed (used in f ) by the upper
agent. Instead, a popular approach consists of applying algorithms designed for bilevel programs
that admit unique solutions for the lower problems, even though this assumption may not hold in
practice [37]. In the next section, we introduce a class of games that allow characterizing the equi-
librium points obtained by these popular algorithms while resolving the ambiguity of non-convex
bilevel problems and bypassing the limitations of pessimistic/optimistic bilevel formulations.

3.2 Bilevel Games with Selection (BGS)

We introduce a new class of nested games for bilevel optimization with two agents, a leader and
a follower. The follower minimizes the lower-level objective g w.r.t. a variable y in Y . Similarly,
the leader minimizes the upper-level objective f w.r.t. a variable x ∈ X while anticipating the fol-
lower’s solution. More precisely, the leader has access to a selection map: φ : X×Y → Y to choose
a unique critical point φ(x, y) of y 7→ g(x, y) given the current state of the game (x, y) ∈ X×Y
thus allowing the leader to anticipate the follower’s solution. Typically, the selection φ(x, y) repre-
sents the critical point that is selected by an optimization process of g(x, .) starting from an initial
condition y (e.g., the limit of a gradient flow for a gradient descent algorithm). The Bilevel Game
with Selection (BGS) is therefore defined as the following interdependent optimization problems:

(UL): min
x∈X
Lφ(x, y) := f(x, φ(x, y)), (LL): min

y∈Y
g(x, y). (BGS)
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Figure 1: Left: Heatmap of the lower-level objective g(x, y). The local minimizers of y 7→ g(x, y) are
represented by the ’critical lines’ in blue. The selection map φ(x, y) is defined by following the vector field
∂yg(x, y), in black. Right: Iterates (xk, yk) (in red) obtained by playing a BGS. The follower finds the next
update yk by optimizing y 7→ g(xk, y) starting from previous iterate yk−1. The leader finds the next update xk
by optimizing the upper-level objective f along the ’critical lines’ (iterates in green).

Given a selection map φ, the game (BGS) is well-defined and does not suffer from the ambiguity
problem in (BP). The explicit dependence of φ(x, y) on the initialization y might seem unnecessary
at first, as one could simply fix y to some value y0 and consider only the dependence on the vari-
able x. However, such a dependence on the variable y allows performing warm-start [50], where
the lower-level problem is optimized starting from a previous state of the game, thus resulting in
computational savings Figure 1. We provide below a formal definition for the selection map.
Definition 1 (Selection map). Given a continuously differentiable function g : X × Y → R, the
map φ : X ×Y → Y is a selection if it satisfies the following properties for any pair (x, y) ∈ X ×Y:

1. Criticality: The element y′ = φ(x, y) is a critical point of g(x, .), i.e. ∂yg(x, y′) = 0.

2. Self-consistency: If y is a critical point of g(x, .) i.e. ∂yg(x, y) = 0, then φ(x, y) = y.

Criticality ensures the leader possesses a hierarchical advantage in that they know what are the
optimal choices accessible to the follower. Self-consistency implies that the leader makes a guess
that is not contradicting the current choice y of the follower. Both properties ensure the leader can
rationally anticipate the follower’s actions from the current state of the game (x, y). We will see in
Section 4, under mild assumptions on g, that it is always possible to define a selection φ as the limit
of a continuous-time gradient flow of y 7→ g(x, y) initialized at y. Moreover, as we discuss later in
Section 5, the selection does not need to be explicitly constructed for solving (BGS) in practice. It
can be simply related to the implicit bias of the algorithm used for solving the follower’s problem.

Connection to (BP). When the lower-level objective y 7→ g(x, y) admits a unique minimizer
y?(x), it is easy to check that there exists a unique selection map φ satisfies φ(x, y)=y?(x). Hence,
(BGS) recovers the bilevel problem in (BP) as a particular case.

Connection to (pessimistic-BG) or the optimistic variant. Key differences between (BGS) and
pessimistic or optimistic games is that (i) the follower has never access to the upper function f
with (BGS), which matches practical hyper-parameter optimization applications where f relies on a
validation dataset, whereas g relies on a distinct training set; (ii) the leader in (pessimistic-BG) does
not take into account the strategy used by the follower, whereas the leader in (BGS) makes more
rational choices by guessing the strategy of the follower through the selection map φ.

First-order equilibrium conditions. The agents can play the game (BGS) by successively taking
actions (xk, yk) to improve their own objectives x 7→ Lφ(x, yk−1) and y 7→ g(xk, y), by hoping the
strategy will reach an equilibrium pair (x∗, y∗) Figure 1(Right). In the case where f , g and φ are
differentiable at (x∗, y∗), the equilibrium pair is characterized by a first-order stationary condition:

∂xLφ(x?, y?) = ∂xf(x?, y?) + ∂xφ(x?, y?)∂yf(x?, y?) = 0, ∂yg(x?, y?) = 0. (SC)

When g is smooth and strongly convex in y, the implicit function theorem [28, Theorem 5.9] ensures
that φ is differentiable and provides an expression of ∂xφ(x?, y?) as a solution to a linear system
which key for implicit differentiation. This allows to devise efficient algorithms using estimates of
the gradient ∂xLφ, see, e.g., [2]. However, extensions of the implicit function theorem, such as the
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Figure 2: Two examples of functions g with different behaviors of the gradient flow under perturbations of
x. In both figures, the green surface represents a function y 7→ g(x0, y) with y ∈ R2 resembling a Mexican
hat which has a manifold of (degenerate) local minimizers (in dark green). The blue surfaces represent de-
formed versions of the Mexican hat function when the parameter x is slightly perturbed x1≈x0. Depending
on the deformation, the resulting function y 7→g(x1, y) can either preserve the same type of critical points as
the unperturbed function, i.e. local minimizers remain local minimizers (Left), or change their type, i.e.: local
minimizers can become saddle-points (Right). Left: the selection behaves smoothly as a function of the defor-
mation. Right: the selection is discontinuous since the gradient flow is pushed away from φ(x0, y0) which is
deformed into a saddle point.

constant rank theorem [29, Theorem 4.12], for cases where g has possibly degenerate critical points
require strong assumptions on g which are unrealistic in machine learning. In the next section, we
provide new analytical tools for extending implicit differentiation by studying the differentiability
of a family of selection maps corresponding to a large class of functions g. The resulting expression
will be key for devising first-order methods to solve (BGS), as discussed in Section 5.

4 Selection Based on Gradient Flows for Parameteric Morse-Bott Functions

In this section, we extend implicit differentiation to a class of functions with possibly degenerate
critical points. To this end, we consider a particular selection φ(x, y) obtained as the limit of a
gradient flow (φt(x, y))t≥0 of g(x, .) initialized at y. We then study the differentiability w.r.t. x of
the selection by analyzing the dynamics of such a gradient flow. For general non-convex functions,
the selection might be non-differentiable since a small perturbation to the parameter x can change the
geometry of the critical points of g, causing the perturbed flow to move away from the non-perturbed
one (see Figure 2). We are therefore interested in functions g preserving the local geometry near
critical points as x varies. In Section 4.1, we introduce such a class of functions called parametric
Morse-Bott functions, which covers many practical machine learning models. We then show, in
Section 4.2, that the selection resulting from such a function is differentiable near local minima.

4.1 Parameteric Morse-Bott Functions

We introduce parametric Morse-Bott functions, a class of parametric functions g : X ×Y → R with
parameter x in X extending the more familiar notion of Morse-Bott functions (Appendix A.1, [16])
to account for the effect of the parameter x on the geometry of critical points.
Definition 2 (Parametric Morse-Bott function.). Let g : X × Y be a real-valued twice continu-
ousely differentiable function and define the set of augmented critical points M as follows:

M := {(x, y) ∈ X × Y | ∂yg(x, y) = 0} (1)

Let (x0, y0) ∈M. We say that g is Morse-Bott at y0 w.r.t. x0, if there exists an open neighbordhood
V of (x0, y0) s.t. the intersectionM∩V is a C2-connected sub-manifold of X×Y of dimension:

dim(M∩V) = dim(X ) + dim
(
Ker(∂2yyg(x0, y0))

)
.

g is a parametric Morse-Bott function if for any (x0, y0)∈M, g is Morse-Bott at y0 w.r.t. x0.

The functions in Definition 2 satisfy a condition that is stronger than simply satisfying the Morse-
Bott property at any parameter value x (Definition 3 of Appendix A.1). Indeed, we show in Propo-
sition 7 of Appendix A.2 that, for any x0 ∈ X , the function y 7→ g(x0, y) is a Morse-Bott function,
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meaning that the critical set C(x0) of y 7→ g(x0, .) near a critical point y0 is locally a C2 con-
nected sub-manifold of Y of dimension equal to the dimension of the null-space of the Hessian
∂2yyg(x0, y0). For conciseness, we introduce the following assumption which ensures g satisfies the
condition of Definition 2 as well as possesses continuous third-order derivatives.
Assumption 1 (Parameteric Morse-Bott property). The function g is at least three-times contin-
uously differentiable and is a parameteric Morse-Bott function as defined in Definition 2.

Examples of parametric Morse-Bott function. A notable class of parametric Morse-Bott func-
tions is the one containing all twice-continuously differentiable functions that are strongly convex
or, more generally, possess only non-degenerate critical points in the second variable as shown in
Proposition 8 of Appendix A.2. Note that parametric Morse-Bott functions need not be convex and
can have multiple (possibly degenerate) local minima, saddle-points, and local maxima.

Another class of functions, this time with possibly degenerate critical points, are those that can be ex-
pressed as a composition of some Morse-Bott function h and a family (τx)x∈X of diffeomorphisms
on Y parameterized by x, i.e. g(x, y)=h(τx(y)). This particular form is relevant in generative
modeling where the diffeomorphisms are defined using normalizing flows of parameter x [44].

The condition in Definition 2 ensures that the degree of freedom of the augmented critical set M
is exactly determined by the degree of freedom of the parameter x and the degree of degeneracy of
the Hessian at a critical point y. This condition is precisely what guarantees the stability of the local
shape of critical points when the parameter x varies as we formalize through the next theorem.
Theorem 1 (Morse-Bott lemma with parameters). Let g be a function satisfying Assumption 1.
Let (x0, y0) in M be an augmented critical point of g. Denote by K the null space of the Hes-
sian A0:=∂2yyg(x0, y0) and by K⊥ its orthogonal complement in Y . Let J0 be a diagonal matrix
with diagonal element given by the sign of the non-zero eigenvalues of A0. Then, there exists open
neighborhoods U and V of (x0, 0K, 0K⊥) and (x0, y0) in X×K×K⊥ and X×Y , and a diffeomor-
phism ψ : U → V preserving the first variable, i.e. ψ(x, r, w)=(x, y) for any (x, r, w) ∈ U , with
ψ(x0, 0K, 0K⊥)=(x0, y0) such that g admits the representation:

g(ψ(x, r, w)) = g(ψ(x, 0K, 0K⊥)) +
1

2
w>J0w, ∀(x, r, w) ∈ U .

Theorem 1, which is proven in Appendix A.3, shows that, near an augmented critical point (x0, y0),
g looks like a quadratic function up to an additive term that depends only on the parameter x. More-
over, slightly varying the parameter x does not change the quadratic function and thus preserves the
local shape near critical points. Theorem 1 is an extension of the Morse-Bott lemma [16, Theorem
2.10] to the case when there is a dependence on a parameter x. It can also be seen as an extension
of the Morse lemma with parameters [16, Theorem 4] which allows dependence to a parameter x
but requires the critical points to be non-degenerate (invertible matrix A0). To our knowledge, The-
orem 1 is the first result in the literature providing a decomposition of parametric functions with
degenerate critical points into the sum of a quadratic non-degenerate term and a singular term de-
pending only on the parameter x. We present now a corollary of Theorem 1 which is a strengthened
version of the standard Łojasiewicz inequality [36] that will be essential for our subsequent analysis.
Proposition 1 (Locally Uniform Łojasiewicz gradient inequality). Let g be a function satisfying
Assumption 1 and let (x0, y0) be in M the augmented critical set defined in Definition 2. Then,
there exists an open neighborhood U of (x0, y0) and a positive number µ > 0 such that y 7→ g(x, y)
is constant on the setM∩U with some common value G(x) := g(x, y) and the following holds:

µ|g(x, y)−G(x)| ≤ 1

2
‖∂yg(x, y)‖2, ∀(x, y) ∈ U .

Proposition 1, which is proven in Appendix A.3, ensures that the Łojasiewicz gradient inequality
holds uniformly on (x, y) near any augmented critical point (x0, y0). This result will be essential
in Section 4.2 for defining a selection φ obtained as limits of gradient flows and to obtain a lo-
cally uniform control of these flows in the parameter x. This in turn will allow us to obtain the
differentiability of the selection in the parameter x whenever φ(x, y) is a local minimum.

4.2 Smoothness of Selections Based on Gradient Flows of a Parametric Morse-Bott Function

We consider a construction for the selection φ in Definition 1 as a limit of a continuous-time gradient
flow of g. More precisely, we define a continuous-time trajectory (φt(x, y))t≥0 in Y initialized at
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φ0(x, y) = y and driven by the differential equation:
dφt(x, y)

dt
= −∂yg(x, φt(x, y)). (GF)

Provided φt(x, y) converges towards some element φ(x, y) as t→+∞, we can expect such a limit to
satisfy both conditions of Definition 1, therefore constituting a valid selection. However, for general
non-convex functions, φt(x, y) might not always converge [36]. To guarantee the existence and
convergence of the flow, we make the following assumptions on the function g.
Assumption 2 (Smoothness). There existsL>0 such that y 7→∂yg(x, y) isL-Lipschitz for any x∈X .
Assumption 3 (Coercivity). For any x ∈ X , it holds that g(x, y)→ +∞ as ‖y‖ → +∞.

The smoothness assumption in Assumption 2 is standard and guarantees the existence of the flow by
the Cauchy-Lipschitz theorem. The coercivity condition in Assumption 3 guarantees that φt(x, y)
cannot escape to infinity. It can be easily enforced by adding a small `2-penalty to a non-negative
loss (such as cross-entropy or mean-squared loss) which is already a common practice in machine
learning. These assumptions, along with Assumption 1 ensure that the limit φ(x, y) always exists as
we summarize in the following proposition, which is proven in Appendix B.
Proposition 2. Under Assumptions 1 to 3, and for any (x, y) ∈ X × Y , the gradient flow (GF)
always converges towards a critical point φ(x, y) of y 7→ g(x, y) and the map (x, y) 7→ φ(x, y) is a
selection map as defined in Definition 1. We call φ the flow selection relatively to g.

Proposition 2 is a consequence of a general result that holds for functions satisfying a Łojasiewicz
gradient inequality [3, 40] which is the case here by Proposition 1. From now on, we restrict our
attention to the selection φ defined in Proposition 2. Even though φ satisfies the implicit equation
∂yg(x, φ(x, y)) = 0, we cannot rely anymore on the implicit function theorem for studying the
differentiability of φ(x, y) in x since g can have degenerate critical points. Instead, we propose
to characterize the differentiability of φ by studying the limit of Ut(x, y) := ∂xφt(x, y) which is
formally driven by a linear differential equation of the form:

−dUt(x, y)

dt
= ∂2xyg(x, φt(x, y)) + Ut(x, y)∂2yyg(x, φt(x, y)). (2)

Had we known in advance that φ(x, y) is differentiable in x, the limit U∞(x, y) of Ut(x, y) as
t → +∞, whenever defined, would be a promising candidate for the differential of φ(x, y) in x.
Such a limit is indeed expected to satisfy the following linear equation:

0 = ∂2xyg(x, φ(x, y)) + U∞(x, y)∂2yyg(x, φ(x, y)). (3)

A first challenge is to ensure that Ut does not diverge. For critical points φ(x, y) that are not local
minima, it is easy to see that the Hessian ∂2yyg(x, φt(x, y)) must have a negative eigenvalue for
t large enough, therefore causing the system (2) to diverge. Intuitively, unless φ(x, y) is a local
minimum, there is no reason to expect φ(x, y) to be differentiable or even continuous in x, simply
because φ(x, y) would be an unstable fixed-point of the flow φt(x, y), so that any change in x might
cause a large variation in φ(x, y). The possible non-differentiability of φ(x, y) for critical points
that are not local minima is not problematic in practice, since for almost all initial conditions y of
the flow φt(x, y), the limit φ(x, y) is guaranteed to be a local minimizer [41]. In addition, we show
in Proposition 13 of Appendix B.3 that if φ(x0, y) is a local minimum, then φ(x, y) must also be a
local minimum in a neighborhood of x0.

Nevertheless, even for local minima, if the Hessian ∂2yyg(x, φ(x, y)) is non-invertible, (3) might
never hold if ∂2xyg(x, φ(x, y)) does not belong to the image of the Hessian. However, we show in
Proposition 6 of Appendix A.2 that, for any pair (x, y) of critical points, ∂2xyg(x, y) must always
belong to the span of the Hessian ∂2yyg(x, y) as soon as g satisfies Assumption 1, therefore ensuring
that (3) admits a solution. The following theorem, which is proven in Appendix C, establishes the
differentiability of φ at local minima and shows that ∂xφ is exactly given by the limit U∞.
Theorem 2 (Degenerate implicit differentiation.). Let g be a function satisfying Assumptions 1
to 3 so that the flow selection φ is well-defined. Let (x0, y0) be in X×Y . If φ(x0, y0) is a local
minimizer of y 7→ g(x0, y), then there exists a neighborhood U of x0 on which x 7→ φ(x, y0)
is differentiable with differential ∂xφ(x, y0)=U∞(x, y0). Moreover, if y0 is a local minimizer of
y 7→g(x0, y), then, denoting by † the pseudo inverse operator, ∂xφ(x0, y0) is exactly given by:

∂xφ(x0, y0)=− ∂xyg(x0, y0)(∂yyg(x0, y0))
†
. (4)
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The expression in (4) is very similar to the one that would arise by application of the implicit
function theorem to a strongly convex function g. However, the proof technique does not rely
on such a theorem which would not be applicable here. The key technical challenges in proving
the above result are: (i) showing that φ(x, y) must be continuous at x0 and (ii) controlling the error
‖Ut(x, y)− U∞(x, y)‖ locally uniformly in x. The result follows by the application of classical uni-
form convergence results [46, Theorem 7.17]. The continuity of φ is established in Proposition 12 of
Appendix B.3 and relies on a stability analysis of the flow φt performed in Appendix B.2. The uni-
form convergence of Ut towards U∞ is shown in Proposition 17 of Appendix C and relies on a local
uniform convergence of the flow φt towards φ which is proven in Proposition 14 of Appendix B.4.
It is worth noting that, even though we identified ∂xφ to be U∞, the latter is not fully characterized
by (3) as it might contain a non-zero component in the null-space of the Hessian. However, when
(x0, y0) is an augmented critical pair of g, such a component vanishes, and ∂xφ(x0, y0) is exactly
determined by the minimal norm solution in (4). The latter fact has practical implications when
designing algorithms for solving (BGS) as we discuss next.

5 Algorithms

5.1 Unrolled Optimization for BGS

Unrolled optimization constructs a map ϕT (x, y) approximating a critical point of the function
y 7→ g(x, y) for any fixed x by applying a finite number T > 0 of gradient updates starting from
some initial condition y. By convention, we set ϕ0(x, y)=y. Hence, ϕT can be understood as an
approximation to the selection map defined in Section 4.2. We emphasize that ϕT is not a selec-
tion (Definition 1) since ϕT (x, y) is not a critical point of g in general. Nevertheless, it provides
a tractable approximation to critical points which is key for constructing practical algorithms for
bilevel optimization. The gradient of ϕT (x, y) w.r.t. x is then obtained by differentiating through
the optimization steps and used to optimize the approximate upper-level objective:

LT (x, y) := f(x, ϕT (x, y)).

Given the k-th upper-level iterate xk and an initial condition ỹk for the unrolled optimization, these
approaches compute an approximation yk=ϕT (xk–1, ỹk) and find an update direction dk for the
upper-level variable x by differentiating LT (x, ỹk) in x at the current iterate xk–1. The following
iterate xk is obtained by applying an update procedure, such as xk=xk–1−γdk for positive small
enough step-size γ. In Algorithm 1, we present several variants of these schemes, including a simple
correction allowing them to solve (BGS) instead of an approximation.

The initial condition ỹk is often com-
puted using a warm-start procedure
ỹk=IM (xk–1, yk–1). The simplest
procedure is to set ỹk=yk–1 in which
case I0(x, y)=y. However, it is not
uncommon to perform M>0 opti-
mization steps to minimize the objec-
tive y 7→g(xk–1, y) starting from yk–1.
By doing so, gradient unrolling stops
at ỹk and ignores the dependence of
ỹk on yk–1, resulting in Truncated un-
rolled optimization [47]. Algorithm 1
summarizes these approaches when
the binary variable AddCorrection is
set to False. To characterize the limit
points of Algorithm 1, we make the
following assumptions on IM , ϕT .

Algorithm 1 BGS-Opt(x0, y0)

1: Inputs: x0, y0,
2: Parameters: K, T , M , γ AddCorrection
3: for k ∈ {1, ...,K + 1} do
4: ỹk ← IM (xk–1, yk–1). # Warm-start.
5: yk←ϕT (xk–1, ỹk) # Unrolled optimization.
6: dk ← ∂xLT (xk–1, ỹk)
7: if AddCorrection= True then
8: vk ← ∂yLT (xk–1, ỹk)

9: ξk≈− (∂yyg(xk–1, yk))
†
vk # Approx. solver

10: dk ← dk+∂xyg(xk–1, yk)ξk # Grad. correction
11: end if
12: xk ← xk–1 − γdk # Updating x
13: end for
14: Return (xK , yK).

Assumption 4. For any non-negative integers M,T ≥ 0, the maps IM and ϕT are continuous
on X × Y and take values in Y , with ϕT being continuously differentiable. Moreover, for any
(x, y) ∈ X × Y s.t. ∂yg(x, y)=0 and M,T ≥ 0, there exists a matrix D such that:

IM (x, y) = ϕT (x, y) = y, ∂xϕT (x, y) = ∂2xyg(x, y)D, ∂yϕT (x, y) = I + ∂2yyg(x, y)D.
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Finally, for any (x, y)∈X×Y , and M,T ≥ 0 s.t. T + M > 0, the equality y=ϕT (x, IM (x, y))
implies that y is a critical point of g, i.e. ∂yg(x, y) = 0.
Assumption 5. ϕT converges to a selection φ and ∂xϕT converges uniformly near local minima.

Assumption 4 is satisfied by many mappings used in practice such as T -steps of the gradient de-
scent or proximal point algorithms, whenever g is twice-continuousely differentiable and L-smooth
as shown in Proposition 19 of Appendix D. Assumption 5 is a discrete-time version of the uniform
convergence result in Proposition 17 of Appendix C but that we directly assume here for simplicity.
Under these assumptions we show that Algorithm 1 can find equilibria of (BGS) up to an approxi-
mation error resulting from the fact that ϕT is not an exact selection.
Proposition 3. Let M,T be non-negative numbers s.t. M + T > 0 and let (xk, yk) be the iterates
of Algorithm 1 using the maps IM and ϕT and without any correction, i.e. AddCorrection=False.
If (xk, yk) converges to a limit point (x?T , y

?
T ) then, under Assumption 4:

∂xLT (x?T , y
?
T ) = 0, ∂yg(x?T , y

?
T ) = 0.

Let E be the set of limit points (x?T , y
?
T ) for T ≥ 0. If E is bounded and y?T is a local minimum

of g(x?T , .) for any T ≥ 0, then, under Assumptions 4 and 5, the elements of E are approximate
equilibria for (BGS):

lim sup
T
‖∂xLφ(x?T , y

?
T )‖ = 0, ∂yg(x?T , y

?
T ) = 0, (∀T > 0).

Proposition 3 shows that unrolled optimization algorithms approximately solve (BGS) in the limit
where the number of unrolling steps T of the ϕT goes to infinity. This result is consistent with the
ones obtained in [25] for the case where g is strongly convex and illustrates the high computational
cost for solving (BGS) without correcting for the bias introduced by unrolling. Next, we show how
to get rid of such a bias in light of Theorem 2.

5.2 Implicit Gradient Correction

We propose to correct the bias of unrolling by exploiting the expression of the gradient ∂xφ provided
in Theorem 2. The key idea is to obtain an expression for ∂xLφ(x, y) in terms of LT and the
second-order derivatives of g which holds for any local minimizer y of y 7→ g(x, y) as shown by the
proposition below.
Proposition 4. Let φ be the selection defined in Section 4.2 and (x, y) ∈ X × Y be s.t. y is a local
minimum of y 7→ g(x, y). Then, under Assumptions 1 to 4, ∂xLφ(x, y) is given by the equation:

∂xLφ(x, y) := ∂xLT (x, y)− ∂2xyg(x, y)
(
∂2yyg(x, y)

)†
∂yLT (x, y).

Proposition 4, which is proven in Appendix D, suggests a simple correction for the gradient esti-
mate dk in Algorithm 1. By doing so, the corrected algorithm would be performing an approximate
gradient descent on each of the upper-level and lower-level objectives, suggesting that the algorithm
may recover equilibrium points of (BGS) without having to increase the computation budget for the
unrolling as we show later in Proposition 5. A simple way to proceed would to compute ck satisfy-
ing the approximate equation ck≈ − Bk(Ak)†vk, where Ak=∂2yyg(xk–1, yk), Bk:=∂2xyg(xk–1, yk)
and vk=∂yLT (xk–1, ỹk). More concretely, ck can be computed by setting ck=Bkξk where ξk ap-
proximates the minimum norm solution to the least squares problem:

ξk ≈ arg min
ξ
‖ξ‖2, s.t. ξ ∈ arg min

ξ
‖Akξ + vk‖2, (5)

Approximate solution to (5). It is possible to solve (5) approximately using an iterative procedure
by constructing N iterates ξt starting from ξ0 = 0 and performing (conjugate) gradient descent on
the quadratic objective. This can be implemented efficiently using only Hessian vector products
with the Hessian Ak [37]. The constrained problem (5) can also be expressed as an unconstrained
one by re-parametrizing ξ = Akz:

ξk ≈ Akz?k, s.t. z?k ∈ arg min
z

∥∥A2
kz + vk

∥∥2. (6)

Eq. (6) has the advantage that z?k solves an unconstrained problem. As such, it is more amenable to
applying a warm-start strategy, which can yield efficient approximation zk to z?k by exploiting pre-
viously computed approximation zk−1 to z?k−1 [2]. This strategy can be achieved using a standard
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iterative algorithm P for approximately solving the least-squares problems, such as a fixed num-
ber of conjugate gradient iterations, that takes as input the matrix Ak, vector vk and initialization
zk−1 ≈ z?k−1 and returns the next iterate zk ≈ z?k . More formally we view P as a continuous map of
(A, v, z) 7→ P(A, v, z) returning a vector z′ and such that the only fixed points are exact solutions to
the least square problem minz

∥∥A2z + v
∥∥2. We refer to Appendix D.1 for examples of such maps.

We can then define the iterates zk and ξk as follows:

ξk = Akzk, zk = P(Ak, vk, zk−1). (7)

The corrected algorithm is obtained by setting the variable AddCorrection=True in Algorithm 1
and computing the ξk using any approximate solver including, in particular, the ones based on a
warm-start strategy as in (7). The following proposition, with proof in Appendix D, shows that the
proposed correction indeed yields equilibrium points of (BGS).
Proposition 5. Let (xk, yk) be the iterates obtained using Algorithm 1 with AddCorrection=True
and T + M > 0 and assume that ξk are computed using (7). If (xk, yk, zk)k≥0 converges to a
limit point (x?, y?, z?), then y? is a critical point of y 7→ g(x?, y) and if, in addition, y? is a local
minimizer, then (x∗, y∗) must be an equilibrium of (BGS) satisfying (SC):

∂xLφ(x?, y?) = 0 and ∂yg(x?, y?) = 0

Proposition 5 shows that the proposed correction allows to recover equilibria of (BGS) without hav-
ing to increase the number of iterations T of the unrolled algorithm. This is by contrast with Propo-
sition 3 where T must increase to infinity, which would be impractical. We discuss in Appendix D.2
how different choices for the parameters T and M recover known algorithms. In particular, that
Algorithm 1 with correction allows interpolating between two families of algorithms: (ITD) and
(AID) while still recovering the correct equilibria. Numerical results illustrating the benefits of the
correction are presented in Appendix E.

6 Discussion

We have introduced a bilevel game that resolves the ambiguity in bilevel optimization with non-
convex objectives using the notion of selection maps. We have shown that many algorithms for
bilevel optimization approximately solve these games up to a bias due to finite computational power.
Our study of the differentiability properties of the selection maps has resulted in practical procedures
for correcting such a bias and required the development of new analytical tools. This study opens
the way for several avenues of research to understand the tradeoff between unrolling and implicit
gradient correction for designing efficient algorithms. In future work, studying these algorithms in
a non-smooth and stochastic setting would also be of great theoretical and practical interest.

Funding This project was supported by ANR 3IA MIAI@Grenoble Alpes (ANR-19-P3IA-0003).
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A Morse-Bott Lemma with Parameters

A.1 Background on Morse-Bott Functions

We recall the definition of classical Morse-Bott functions [4, 16], which we extend in Section 4.1 to
the case where there is a dependence on some additional parameter x in X .
Definition 3 (Morse-Bott function). Let h : Y → R be a real-valued twice continuousely differen-
tiable function. Define Ch to be the set of critical points of h and consider y0 ∈ Ch. We say that h
is Morse-Bott at y0, if there exists a open neighbordhood V of y0 such that Ch ∩ V is a connected
sub-manifold of Y of dimension dim

(
Ker(∂2yyh(y0))

)
. We say that h is a Morse-Bott function if for

any y0 ∈ Ch, h is Morse-Bott at y0.

Morse-Bott functions were introduced in the context of differential topology to analyze the geometry
of a manifold by studying the properties of differentiable functions defined on that manifold [4].
Their main property is that all their critical points that are connected have the same type (same
number of positive and negative eigenvalues for the Hessian), a fact expressed by the Morse-Bott
lemma [16, Theorem 2.10] that we generalize to the parametric setting in Theorem 1. Morse-Bott
functions form a generic class of functions [39], meaning that any smooth function can always be
slightly perturbed to become a smooth Morse-Bott function. Hence, in principle, requiring that
y 7→ g(x, y) is a Morse-Bott function for any parameter x ∈ X is essentially a mild assumption.
The Morse-Bott property allows characterizing the geometry of critical points of g(x, .) for any x
and ensures that the selection map φ is well-defined [11, Chapter 15]. However, this condition does
not provide any information about how the set of critical points evolves as the parameter x varies,
which is crucial for the study of smoothness of the selection φ. This is precisely why we introduced
parametric Morse-Bott functions in Section 4.1.

A.2 Properties of Parameteric Morse-Bott Functions.

In this section, we describe some elementary properties of parametric Morse-Bott functions. In
particular, Proposition 6 shows that ∂2xyg(x, y) belongs to the range of ∂2yyg(x, y) whenever (x, y)
is an augmented critical point of g, i.e. ∂yg(x, y) = 0. Proposition 7 shows that any parametric
Morse-Bott function g satisfies a pointwise Morse-Bott property in the sense of Definition 3. Finally,
Proposition 8 and Lemma 1 provide examples of functions that satisfy the parametric Morse-Bott
property. RecallM the set of augmented critical points of g:

M = {(x, y) ∈ X × Y|∂yg(x, y) = 0}. (8)

Proposition 6 (Exact least square solution). Let g be a parametric Morse-Bott function. Let
(x0, y0) be an element inM defined in (8) and define the matrices A := ∂2yyg(x0, y0) and B :=

∂2xyg(x0, y0). Then, B is in the range of A, i.e. there exists a matrix U such that B=UA.

Proof. Recall thatM is the set of augmented critical points of g. Since g is a parametric Morse-Bott
function, there exists a neighborhood U of (x0, y0) such that the augmented critical setM∩ U is
a C2 manifold of dimension dM= dim(X ) + dim(Ker(∂2yyg(x0, y0))). We know thatM∩ U is
characterized locally by the equation ∂yg(x0, y0) = 0, hence the tangent space TM(x0,y0) ofM∩U
at point (x0, y0) consist of the set of directions (u, v) ∈ X × Y for which ∂yg(x0 + εu, y0 + εv) =
O(ε2). In other words TM(x0,y0) is the set of vectors (u, v) ∈ X × Y of M∩ U satisfying the
equation:

u>∂2xyg(x0, y0) + v>∂2yyg(x0, y0)=u>B + v>A=0.

Since M ∩ U is of dimension dM, the tangent space TM(x0,y0) must also have dimension dM.
Therefore, by the rank theorem, it must hold that the matrix D = (B,A) has a rank equal to
dim(X ) + dim(Y) − dM = rank(A). On the other hand, we know that 0>B + v>A = v>A ∈
Range(A) for any v ∈ Y , so that Range(A) ⊂ Range(D). The two subspaces having the same
dimension, the inclusion implies equality (Range(A) = Range(D)). Henceforth, there must exist
a matrix U such that B can be written as B=UA.

Proposition 7 (Pointwise Morse-Bott property). Let g be a parametric Morse-Bott function. Then
for any x ∈ X , the function y 7→ g(x, y) is a Morse-Bott function in the following sense: For any
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x0 and any critical point y0 of g(x0, .), there exists an open neighborhood V of y0 so that Cx,y0 :=
{y ∈ Y|∂yg(x0, y) = 0} ∩ V is a connected sub-manifold of dimension equal to the dimension of
the null space of the Hessian ∂2yyg(x, y0).

Proof. Let (x0, y0) be in X × Y such that ∂yg(x0, y0) = 0. Then, since g is a parameteric Morse-
Bott function, there exists a neighborhood U of (x0, y0) such that the augmented critical setM∩U
is a C2 manifold of dimension dM= dim(X ) + dim(Ker(∂2yyg(x0, y0))). On the other hand, we
know thatM∩U is characterized locally by the equation ∂yg(x, y) = 0, hence the tangent vectors
(u, v) ∈ X × Y ofM∩U at (x0, y0) must satisfy the equation:

u>∂2xyg(x0, y0) + v>∂2yyg(x0, y0)=0.

For simplicity, we denote by B = ∂2xyg(x0, y0) and A = ∂2yyg(x0, y0). By Proposition 6, we know
that B can be written in the form B = UA for some matrix. Hence, the tangent space of M at
(x0, y0) consists in vectors (u, v) ∈ X × Y satisfying(

u>U + v
)
A = 0.

In particular, for any u ∈ X , we can set v = −u>U which ensures that (u, v) is in the tangent space
ofM at (x0, y0). Now consider the sub-manifold {x0}×Y , its tangent space at (x0, y0) is {0}×Y .
For any element (x, y) ∈ X × Y , we have the decomposition (x, y)=(x,−x>U) + (0, y + x>U)
where the first tuple belongs to the tangent space ofM and the second one belongs to the tangent
space of {x0} × Y at (x0, y0). Hence, the tangent space of X ×Y is generated by the both separate
tangent spaces which means that both manifolds intersect transversally and that {x0} × C := (M∩
U) ∩ ({x0} × Y) is a sub-manifold of dimension dim

(
Ker

(
∂2yyg(x0, y0)

))
[29, Theorem 6.30].

For a small enough open connected neighborhood V of y0, we can ensure that C ∩ V is a connected
sub-manifold of Y . This precisely means that y 7→ g(x0, y) is Morse-Bott at the point y0 which
concludes the proof.

Proposition 8 (Morse functions with parameters). Let g : X × Y be a three-times continuously
differentiable function such that for any (x, y) ∈ X ×Y for which ∂yg(x, y) = 0, the Hessian matrix
∂2yyg(x, y) is invertible. Then g is a parametric Morse-Bott function.

Proof. Let (x0, y0) ∈ X × Y be such that y0 is a critical point of g(x0, .) ( i.e. ∂yg(x0, y0)=0).
Since, by assumption, the Hessian is invertible, we can apply the implicit function theorem which
guarantees the existence of a function x 7→ y(x) defined in a neighborhood U of x0 and taking
values in a neighborhood V of y0, such that y(x0) = y0 and y(x) is the unique critical point of
g(x, .) on V , i.e.:

∂yg(x, y(x)) = 0, ∀x ∈ U .
Moreover, x 7→ y(x) is twice continuously differentiable. This ensures thatM the set of augmented
critical points of g satisfies:

M∩ (U × V) = {(x, y(x)) ∈ X × Y|x ∈ U} := S.
We only need to show thatM∩(U × V) is a manifold of dimension dim(X ). For this, we will apply
the regular level set theorem [29, Corollary 5.14] to the function G : (x, y) 7→ ∂yg(x, y) defined
on U × V . The pre-image of 0 by G is exactly equal toM∩ (U × V). Moreover, for any (x, y) ∈
M ∩ (U × V), we have that dG(x, y) is of maximal rank since ∂2yyg(x, y) is invertible. Hence, by
application of the regular level set theorem theorem to the twice continuously differentiable (C2)
function G, it follows thatM∩ (U × V) = G−1({0}) is a C2 sub-manifold of X ×Y of dimension
dim(ker(dG(x, y))) = dim(X ). We have shown thatM∩ (U × V) is sub-manifold of dimension
dim(X ), which proves the result.

Lemma 1. Let h be a smooth Morse-Bott function defined on Y . Let T : X × Y → Y be a smooth
function, such that y 7→ T (x, y) = τx(y) is a diffeomorphism on Y for any x ∈ X . Then the
function g(x, y) = h(τx(y)) is a parametric Morse-Bott function.

Proof. Consider the function G : (x, y) 7→ ∂yg(x, y). We have the following equivalence

(x, y) ∈ G−1({0}) ⇐⇒ ∂yh(τx(h))∂yτx(y) = 0 ⇐⇒ τx(y) ∈ ∂yh−1({0}).
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Consider the map T : (x, y) 7→ τx(y), then we have shown that G−1({0}) = T −1
(
∂yh
−1({0})

)
.

Let (x0, y0) ∈ X ×Y be an augmented critical point of g. Set ỹ = T (x0, y0) which is a critical point
of h. Since h is, by assumption, Morse-Bott at ỹ, then there exists an open neighborhood Ṽ of ỹ
such that ∂yh−1({0})∩Ṽ is a sub-manifold of dimension dim(Ker(∂2yyh(ỹ))). By continuity of T ,
we can always find open connected neighborhoods U and V of (x0, y0) so that V ′:=T (U ×V) ⊂ Ṽ .
Moreover, since for any x T (x, .) is a diffeomorphism, it must be that V ′ is an open set. Therefore,
S := ∂yh

−1({0}) ∩ V ′ must be a sub-manifold as of dimension dim(Ker(∂2yyh(ỹ))). It remains
to show that T −1(S) is a sub-manifold. To see this, it suffice to note that the differential of T is
surjective which ensures that T is transverse to S and that T −1(S) is a sub-manifold [29, Theorem
6.30]. Moreover, the dimension of such manifold is equal to dim(X ) + dim(ker(∂2yyh(ỹ))) =

dim(X ) + dim(ker(∂2yyg(x0, y0))).

A.3 Proof of the Morse-Bott Lemma with Parameters

In this section, we provide a proof of the Morse-Bott lemma with parameters introduced in Theo-
rem 1. We then introduces two results in Proposition 9 and Corollary 1 which are consequences of
Theorem 1. Proposition 9 shows that near an augmented critical point (x0, y0), the Hessian matrices
of nearby augmented critical points are all similar. This result illustrates that the geometry near a
critical point is preserved when the parameter x is perturbed. Proposition 9 will be used later in
Proposition 16 of Appendix C to show that the pseudo-inverse of the Hessian matrices of critical
points near a local minimum are uniformly bounded. Finally, Corollary 1 shows that near any aug-
mented critical point (x0, y0) the function y 7→ g(x, y) can be expressed as a slight deformation
of y 7→ g(x0, y). This result, along with the stability result in Appendix B.2 of the gradient flow
to deformations will be key to prove the continuity of the selection map x 7→ φ(x, y) near local
minima.

Proof of Theorem 1. Let x0 ∈ X and y0 be a critical point of g(x0, .). Denote by K the null space
of the Hessian A0 = ∂2yyg(x0, y0) and by K⊥ its orthogonal complement in Y . The function
g(x0, .) is a Morse-Bott function by Proposition 7, therefore by the Morse-Bott lemma [16, Theorem
2.10], there exists three open neighborhoods O, O⊥ and V of 0 ∈ K, 0 ∈ K⊥ and y0 ∈ Y and a
diffeomorphism s : O ×O⊥ → V s.t. s(0, 0) = y0 and for any r, w ∈ O ×O⊥ it holds that:

g(x0, s(r, w)) = g(x0, y0) +
1

2
w>J0w,∀r, w ∈ O ×O⊥.

where J0 is an invertible diagonal matrix whose diagonal elements are equal to the sign of the
non-zero eigenvalues of the Hessian ∂2yyg(x0, y0). By convention J0=0 in case the Hessian
∂2yyg(x0, y0) = 0. Since, the function h(x, r, w) := g(x, s(r, w)) is such that ∂wh(x0, 0, 0) = 0 and
the partial Hessian ∂2wwh(x0, 0, 0) = J0 is invertible, we are in position to apply the Morse lemma
with parameters [16, Theorem 4]. The lemma ensures that O and O⊥ can be chosen small enough
so that there exits open neighborhoods B and O⊥1 of x0 ∈ X and 0 ∈ K⊥ and a diffeomorphism τ
from B ×O×O⊥1 to B ×O×O⊥ such that τ(x0, 0, 0)=(x0, 0, 0) and decomposing h locally into
a quadratic component and a singular one. More precisely, for any (x, r, w) ∈ B × O × O⊥1 , the
map r satisfies τ(x, r, w)=(x, r, w′) for some w′ ∈ O⊥ and the following equation holds:

h(τ(x, r, w)) = h(τ(x, r, 0)) +
1

2
w>J0w. (9)

It remains to show that ξ 7→ h(τ(x, r, 0)) is in fact constant for (x, r) in an open neighborhood of
(x0, 0) ∈ X ×O. To this end, define the sets A, B and C as follows:

A := {(x, y) ∈ B × V | ∂yg(x, y) = 0},
B := {(x, r, w) | (x, r) ∈ B ×O, ∂rh(τ(x, r, w)) = 0},
C := {(x, r, 0) | (x, r) ∈ B ×O, ∂rh(τ(x, r, 0)) = 0}.

Then by (9), it holds that B = C. Moreover, A and B are homeomorphic. Indeed to see this, we
introduce the notation s̃(x, r, w) := (x, s(r, w)) which defines a diffeomorphism from B×O×O⊥
to B × V . Hence, g ◦ s̃ ◦ τ = h ◦ τ . This ensures s̃ ◦ τ(B)=A, which means precisely that
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A and B are homeomorphic since s̃ ◦ τ is a homeomorphism. Moreover, by definition of g as
a parametric Morse-Bott function, we also know that A is a sub-manifold of X × Y of dimension
dim(X )+dim

(
Ker

(
∂2yyg(x0, y0)

))
provided the neighborhoodsB and V are small enough. Hence,

we can deduce that B and C must also be sub-manifolds of the same dimension. In particular, C
is a sub-manifold of B × O × {0} which is of dimension dim(X ) + dim

(
Ker

(
∂2yyg(x0, y0)

))
.

Therefore, C is an open sub-manifold of B × O × {0}. Hence, since (x0, 0, 0) ∈ C, there must
exists an open connected neighborhood B1×O1×{0} of (x0, 0, 0) in B×O×{0} that is contained
in C. Hence, we deduce that for any (x, r) ∈ B1 ×O1, the function h satisfies ∂rh(τ(x, r, 0)) = 0
so that h(τ(x, r, 0)) = h(τ(x, 0, 0)) on such neighborhood. Finally, we have shown that there exits

g ◦ s̃ ◦ τ(x, r, w) = g ◦ s̃ ◦ τ(x, 0, 0) +
1

2
w>J0w.

We conclude the proof by setting ψ(x, r, w) = s̃ ◦ τ(x, r, w) which is the desired diffeomorphism.

Proposition 9. Let g be a real-valued function such that Assumption 1 holds. Consider an aug-
mented critical point (x0, y0)∈M, withM defined in (8). Then there exists a neighborhood V of
(x0, y0) and a continuous map (x, y) 7→ P (x, y) defined on V with values in Rd×d such that:

• P (x, y) is invertible for any (x, y) ∈ V with singular values contained in an interval
[σmin, σmax] for some positive constants σmin and σmax.

• For any augmented critical point (x, y) ∈ V , the Hessian of g is given by:

∂2yyg(x, y) = P (x, y)>∂2yyg(x0, y0)P (x, y).

Proof. Denote by K the null space of the Hessian A0 = ∂2yyg(x0, y0) and by K⊥ its orthogonal
complement in Y . Let J0 be a diagonal matrix with diagonal elements given by the sign of the
non-zero eigenvalues of A0. Since g satisfies Assumption 1, we apply Theorem 1 which ensures the
existence of a diffeomorphism ψ defined on an open neighborhood U of (x0, 0, 0) ∈ X × K × K⊥
with values in an open neighborhood V of (x0, y0) in X × Y , s.t. ψ(x0, 0, 0) = (x0, y0) and for all
(x, r, w) ∈ U , ψ satisfies ψ(x, r, w)=(x, y) and

g(ψ(x, r, w)) = g(ψ(x, 0, 0)) +
1

2
w>J0w, (10)

= g(ψ(x, 0, 0)) +
1

2
(r>w>)J̃0

(
r
w

)
,

where we defined J̃0 to be the matrix of dimension d× d given by:

J̃0 =

(
0 0
0 J0

)
.

Since ψ is a diffeomorphism satisfying ψ(x, r, w) = (x, y), we can equivalently write (10) as:

g(x, y) = g(ψ(x, 0, 0)) +
1

2
ψ−12,3(x, y)>J̃0ψ

−1
2,3(x, y), ∀(x, y) ∈ V, (11)

where ψ−12,3(x, y) are last two components of ψ−1(x, y) (i.e. ψ−1(x, y) = (x, ψ1
2,3(x, y))). By

differentiating (11) w.r.t. y we obtain:

∂yg(x, y) = ∂yψ
−1
2,3(x, y)J̃0ψ

−1
2,3(x, y). (12)

∂yψ
−1
2,3(x, y) must be invertible since (∂xψ

−1, ∂yψ
−1) is invertible and of the form:(

∂xψ
−1

∂yψ
−1

)
=

(
I ∂xψ

−1
2,3

0 ∂yψ
−1
2,3

)
.

Therefore, if y is a critical point of g(x, .), then (12) implies that J̃0ψ−12,3(x, y) = 0. Let (x, y) be an
augmented critical point of g, ε > 0 and u be vector in Y , then the following holds:

1

ε
∂yg(x, y + εu) =

(
∂yψ

−1
2,3(x, y + εu)

)>
J̃0

(
1

ε
ψ−13 (x, y + εu)− ψ−12,3(x, y)

)
.
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Hence, by taking the limit when ε approaches 0, it follows that:

∂2yyg(x, y) =
(
∂yψ

−1
2,3(x, y)

)>
J̃0∂yψ

−1
2,3(x, y).

Define P0 := ∂yψ
−1
2,3(x0, y0)∂yψ

−1
2,3(x0, y0)> which is invertible. Then, we can write:

∂2yyg(x, y) = ∂yψ
−1
2,3(x, y)>P−10 P0J̃0P0P

−1
0 ∂yψ

−1
2,3(x, y)

= ∂yψ
−1
2,3(x, y)>P−10 ∂yψ

−1
2,3(x0, y0)A0∂yψ

−1
2,3(x0, y0)>P−10 ∂yψ

−1
2,3(x, y)

= P (x, y)>∂2yyg(x0, y0)P (x, y),

where we defined P (x, y)=∂yψ
−1
2,3(x0, y0)>P−10 ∂yψ

−1
2,3(x, y). The matrix P (x, y) is invertible for

any (x, y) ∈ V and the map (x, y) 7→ P (x, y) is continuous. Hence, by considering compact neigh-
borhood of (x0, y0) contained in V , we can ensure that the singular values of P (x, y) are contained
in an interval [σmin, σmax] where σmin and σmax are positive numbers. Further considering the
restriction of such map on an open neighborhood V ′ ⊂ K of (x0, y0) yields the desired result.

Corollary 1. Let g be a real-valued function such that Assumption 1 holds. Consider an augmented
critical point (x0, y0)∈M, withM defined in (8). Then, there exists a open neighborhoods B and
V of x0 and y0 in X and Y and a continuously differentiable map τ from B × V to V such that:

• For any x ∈ B, the map τx : y 7→ τ(x, y) is a diffeomorphism from V to itself satisfying
τx0

(y) = y for any y ∈ V . Moreover, (x, y) 7→ τ−1x (y) is continuous.

• For any (x, y) ∈ B × V , the function g satisfies g(x, y)=g(x0, τ(x, y)) + C(x), where
x 7→ C(x) is a function independent of y.

• There exists positive numbers ` and L s.t for any (x, y) ∈ B × V:

`2I ≤ ∂yτ(x, y)>∂yτ(x, y) ≤ (L′)2I. (13)

Proof. We use the notations of Theorem 1 whereK is the null subspace of the Hessian ∂2yyg(x0, y0)

and K⊥ its orthogonal complement in Y . By Theorem 1 g satisfies:

g(ψ(x, r, w)) = g(ψ(x, 0, 0)) +
1

2
ȳ>J0ȳ,

with ψ and J0 being the diffeomorphism and matrix defined in Theorem 1. Recall that ψ is defined
on an open neighborhood B × O × O⊥ of (x0, 0, 0) ∈ X × K × K⊥ and whose image by ψ is an
open neighborhood B × V of (x0, y0). Hence, we can write:

g(ψ(x, r, w)) = C(x) + g(ψ(x0, r, w)),

with C(x) := g(ψ(x, 0, 0)) − g(ψ(x0, 0, 0)). We also know that ψ preserves x, meaning that
ψ(x, r, w)=(x, y). Hence, we can define (x, r, w) 7→ τ̃x(r, w) ∈ Y , s.t. ψ(x, r, w)=(x, τ̃x(r, w)).
For any x ∈ B, (r, w) 7→ τ̃x(r, w) defines a diffeomorphism fromO×O⊥ onto its image. Moreover,
its image must be equal to V . Indeed, since ψ(B×O×O⊥) = B×V , it follows that for any (x, y) ∈
B × V , there exists (r, w) ∈ O ×O⊥ such that ψ(x, r, w) = (x, τ̃x(r, w)) = (x, y). In particular, if
(x, y) ∈ B × V and (r, w) = τ̃−1x (y), we can write ψ(x0, r, w)=(x0, τ̃x0

(r, w))=(x0, τ̃x0
τ̃−1x (y)).

Therefore, the following expression holds for any (x, y) ∈ B × V:

g(x, y) = C(x) + g(x0, τ(x, y)),

where we defined τ(x, y)=τ̃x0
◦ τ̃−1x (y). For any x ∈ B, the map τx : y 7→ τ(x, y) is a dif-

feomorphism satisfying τ(x0, y)=y. Moreover, (x, r, w) 7→ τ̃x(r, w) and (x, y) 7→ τ̃−1x (y) are
continuously differentiable since ψ is a diffeomorphism. As a result, τ is continuously differen-
tiable as well and (x, y) 7→ τ−1x (y) is continuously differentiable. Finally, since ∂yτ(x, y) is jointly
continuous in x and y and ∂yψx(y) is invertible, then, provided that B and V are small enough, there
must exist two positive numbers ` and L′ such that for any (x, y) ∈ B × V:

`2I ≤ ∂yψ(y)>∂yψ(y) ≤ (L′)2I.
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Proof of Proposition 1 . RecallM = {(x, y) ∈ X × Y|∂yg(x, y) = 0} the set of augmented criti-
cal points of g and let (x0, y0) be inM. First, since Assumption 1 holds, we know by Proposition 7
that g(x0, .) is a Morse-Bott function. Hence, by [16, Theorem 1], it follows that g(x0, .) satisfies a
Łojasiewicz inequality near y0. In other words, there exists a neighborhood V of y0 and a positive
constant µ′ > 0 such that:

µ′|g(x0, y)− g(x0, y0)| ≤ 1

2
‖∂yg(x0, y)‖2, ∀y ∈ V.

By Corollary 1, there exists a continuous function τ defined on an open neighborhood B × V of
(x0, y0) whose image is V and for which g(x, y)=g(x0, τ(x, y))+C(x) for any (x, y) ∈ B × V ,
where C(x) is a function of x independent of y. Moreover, for any x ∈ B, y 7→ τ(x, y) is a diffeo-
morphism from V to itself whose inverse is written as τ−1(x, y) by an abuse of notion. In particular,
for y=τ−1(x, y0) we set G(x):=g(x, τ−1(x, y0)) = g(x0, y0) + C(x). Note that τ−1(x, y0) is
critical point of g(x, .) since ∂yg(x, τ−1(x, y0))∂yτ

−1(x, y0)=∂yg(x0, y0) = 0 and ∂yτ−1(x, y0)
is invertible. Hence, the following holds for any (x, y) ∈ B × V .

µ′|g(x, y)−G(x)| = µ′|g(x0, τ(x, y))− g(x0, y0)| ≤ 1

2
‖∂yg(x0, τ(x, y)‖2. (14)

Moreover, by construction of τ , we know that ∂yτ(x, y) satisfies (13) for any (x, y) ∈ B × V .
Therefore, we deduce that:

‖∂yg(x, y)‖2 = ‖∂yg(x0, τ(x, y))∂yτ(x, y)‖2 ≥ `2‖∂yg(x0, τ(x, y))‖2,

Finally, combining the above inequality with (14), we get that, for any (x, y) ∈ B × V:

`2µ′|g(x, y)−G(x)| ≤ 1

2
‖∂yg(x, y)‖2, ∀(x, y) ∈ U .

The result follows by setting µ = `2µ′ > 0 and U = B × V .

B Asymptotic Properties of Gradient Flows

B.1 Convergence of the gradient flow.

Recall that the gradient flow φt(x, y) satisfies the differential equation

dφt(x, y)

dt
= −∂yg(x, φt(x, y)), φ0(x, y) = y.

The next proposition shows that the gradient flow φt(x, y) converges towards a well-defined selec-
tion map φ(x, y).

Proposition 10 (Convergence of φt.). Let x, y be in X ×Y . Under Assumptions 1 to 3, (t, x, y) 7→
φt(x, y) is continuous and for any (x, y) ∈ X × Y , φt(x, y) converges towards a unique critical
point φ(x, y) of y 7→ g(x, y) as t goes to +∞.

Proof. First, Assumption 2 ensures that the gradient flow φt(x, y) is uniquely defined at all
times t [12]. φt(x, y) is jointly continuous in (t, x, y) by Cauchy-Lipschitz theorem. Moreover,
t 7→ φt(x, y) remains bounded thanks to Assumption 3. Otherwise, there exists a subsequence
φtn(x, y) such that g(x, φtn(x, y)) diverges to +∞. This contradicts the fact that g(x, φtn(x, y)) is
decreasing since φt(x, y) is a gradient flow of g. Hence, we deduce that φt(x, y) must have at least
one accumulation point y?. Moreover, y? must be a critical point of g(x, .). To see this, note that
g(x, φt(x, y)) is a decreasing function in time and is lower-bounded. Hence, it admits a finite limit
l. Moreover, by differentiating g(x, φt(x, y)) is time, it follows that:

d

dt
g(x, φt(x, y)) = −‖∂yg(x, φt(x, y))‖2

This implies that
∫ +∞
0
‖∂yg(x, φs(x, y))‖2 ds = g(x, y) − l is finite. Since, g is L-smooth by

Assumption 2, this is only possible if ∂yg(x, φs(x, y)) converges to 0. In particular, by continuity of
∂yg(x, y), it follows that ∂yg(x, y?) = 0. We only need to show that y? is the unique accumulation
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point of φt(x, y). To show this, we apply Proposition 1, which implies, in particular, that g satisfies
a Łojasiewicz inequality in a neighborhood V of y?:

µ|g(x, y)−G(x)| ≤ ‖∂yg(x, y)‖2,∀y ∈ V.

We can therefore apply [40, Theorem 2.7] which ensure that y? is the unique accumulation point
of φt(x, y) and that φt(x, y) converges towards y?. We can therefore defined the map φ(x, y) =
limt→∞ φt(x, y) which constitues a selection.

B.2 Stability of the Gradient Flow Near Local Minima

In this section, we provide a general result establishing the stability of gradient flows to perturba-
tions. This result shows that deforming a gradient flow by a family of diffeomorphisms yields tra-
jectories that are not too far from the unperturbed flow. We will use this result later in Appendix B.3
in conjunction with the formulation of y 7→ g(x, y) as a perturbation of y 7→ g(x0, y) provided in
Corollary 1 to prove that the gradient flow φt(x, y) remain stable as the parameter x varies.

Proposition 11 (Stability near local minima). Let h be a real valued differentiable function defined
on Y and y0 be a local minimizer of h. We assume that h satisfies the Łojasiewicz inequality near
y0, meaning that there exists µ > 0 and R > 0 s.t.:

µ(h(y)− h(y0)) ≤ 1

2
‖∂yh(y)‖2, ∀y ∈ B(y0, R). (15)

Let V be an open neighborhood of y0, R′ > 0 such that B(y0, 2R
′) ⊂ V and P a family of

diffeomorphisms defined from V to itself and satisfying:

1. For any τ∈P , the pre-image yψ:=ψ−1(y0) of y0 by ψ belongs to B(y0, R
′).

2. There exists positive numbers ` and L′ s.t. for any τ ∈ P and any y ∈ V:

`2I ≤ ∂yτ(y)>∂yτ(y) ≤ (L′)2I. (16)

For some τ ∈ P , consider a maximal solution (zt) of the following ODE:

żt = −∂yh(τ(zt))∂zτ(zt), z0 ∈ B(yτ , R
′). (17)

Then, there exists 0 < C ≤ R′, such that for any 0 < ε ≤ C, there exists 0 < η ≤ ε
2 with the

following property:

For any τ ∈ P and any z0 s.t. ‖z0 − yτ‖ ≤ η:

1. The solution zt to (17) is well-defined at all times t ≥ 0.

2. For all t ≥ 0, it holds that ‖zt − yτ‖ ≤ ε.

Proof. The proof is inspired from the the abstract stability result in [31]. We know that y0 is a local
minimizer of h, therefore there exists R” > 0 such that for any y satisfying ‖y − y0‖ ≤ R”, it holds
that L(y) := h(y)− h(y0) ≥ 0. Moreover, by (15), we also have that:

2µL(y) ≤ ‖∂yL(y)‖2, ∀y ∈ B(y0, R). (18)

Take ε < 1
L′ min(R,R”, L′R′) := C. To simplify subsequent calculations, we will choose y close

enough to y0 so that 2`−1
√

2
µL(y)

1
2 ≤ ε, where µ is the positive constant appearing in (20) and ` is

the positive constant in (16). This is possible by continuity of L which that there exists 0 < η ≤ ε
2

for which any y ∈ B(y0, L
′η) satisfies:

L(y)
1
2 ≤ 1

2
`

√
µ

2
ε. (19)
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Consider now τ ∈ P . Equation (16) implies that τ is L′-Lipschitz on B(y0, 2R
′). Moreover, for

any z in B(yτ , η), it holds that z ∈ B(y0, 2R
′) since η ≤ R′ and yτ ∈ B(y0, R

′) by definition of
yτ . Therefore, we can write the following inequality:

‖τ(z)− y0‖ = ‖τ(z)− τ(yτ )‖ ≤ L′‖z − yτ‖ ≤ L′η,

We have shown that τ(z) ∈ B(y0, L
′η) for any z ∈ B(yτ , η), so that (19) holds for τ(z):

L(τ(z))
1
2 ≤ 1

2
`

√
µ

2
ε, ∀z ∈ B(yτ , η),

Additionally, by (20) and using that `2‖∂yL(τ(z))‖2 ≤ ‖∇L ◦ τ(z)‖2 by (16), it holds for any
ε < C that:

0 ≤ 2µL(τ(z)) ≤ ‖∂yL(τ(z))‖2 ≤ `−2‖∇L ◦ τ(z)‖2, ∀z ∈ B(yτ , ε), (20)

From now on, we fix τ , and consider zt to the ODE (17) with initial condition z0 ∈ B(yτ , η). Define
T = {t ∈ R+|.‖zs − yτ‖ < C ∀s ∈ [0, t)}which is not empty by construction since ‖z0 − yτ‖ <
C s 7→ zs is continuous. Hence, t1 := sup T is positive. We will show that t1 = +∞. We will also
consider the time until which L(τ(zt)) remains positive: t+ := sup{t ∈ R+|L(τ(zs)) > 0∀s ∈
[0, t)}. We may assume that L(τ(z0)) > 0 so that t+ > 0 by continuity of the solution zt. The
case where L(τ(z0)) = 0 will be treated separately. Denote by t+1 := min(t1, t

+) so that, for any
t ∈ [0, t+1 ) the following holds:

−dL(τ(zt))
1
2

dt
=

1

2
L(τ(zt))

− 1
2 ‖∇L ◦ τ(zt)‖2 ≥ `

√
µ

2
‖∇L ◦ (τ(zt))‖,

where the first equality follows by differentiating zt in time and using the ODE equation (17), while
the last inequality uses the inequality (20) which holds since ‖zt − yτ‖ < C. Integrating between 0
and t ∈ [0, t+1 ), we get:

L(τ(z0))
1
2 − L(τ(zt))

1
2 ≥ `

√
µ

2

∫ t

0

‖∇L ◦ τ(zs)‖ ds.

Since ‖z0 − yτ‖ ≤ η and using (19), it holds that L(z0)
1
2 ≤ `

2

√
µ
2 ε. We can therefore deduce that∫ t

0
‖∇L ◦ τ(zs)‖ ds ≤ ε

2 . This allows to write for all t ∈ [0, t+1 )

‖zt − yτ‖ ≤‖zt − z0‖+ ‖z0 − yτ‖, (21)

≤
∫ t

0

‖∇L ◦ τ(zs)‖ds+ η ≤ ε.

We distinguish two cases depending on whether t+ < t1 or t1 ≤ t+.

Case 1: t+ < t1 or. In this case we have t+1 = t+ < +∞. This case also accounts for when
L ◦ τ(z0)=0 which implies that t+ = 0 < t1. If t+=0, then ‖zt+ − yτ‖ ≤ ε by construction.
Otherwise, we still have that ‖zt+ − yτ‖ ≤ ε by (21) and the continuity of zt at t+. Moreover, by
definition of t+, it must also hold that L◦ τ(zt+) = 0. We only need to show that∇L◦ τ(zt+) = 0.
By contradiction, if∇L◦τ(zt+) 6= 0, then we would have L◦τ(zt++s) < 0 for s > 0 small enough.
However, since t+ < t1, then t+ + s < t1 for s small enough, so that ‖zt++s − yτ‖ < C. The latter
means that L ◦ τ(zt++s) ≥ 0 since y0 is a local minimizer of L. This contradicts L ◦ (zt++s) < 0.
Therefore∇L◦ τ(zt+)=0 which implies that τ(zt+) is a critical point of y 7→ L(y) so that zt = zt+
for any t ≥ t+. This directly means that ‖zt − yτ‖ ≤ ε for any t ≥ 0, hence t1 = +∞.

Case 2: t+ ≥ t1. In this case, t+1 = t1. If by contradiction we had t1 < +∞, then we would
directly get ‖zt1 − yτ‖ ≤ ε by continuity of t at t1 and maximality of the solution zt. However, by
defintion of t1, we also have ‖zt1 − yτ‖ = C. This contradicts the condition ε < C and therefore
means that t1 = +∞. Hence, it holds that ‖zt − yτ‖ ≤ ε for any t ≥ 0 and that the solution zt is
well-defined at all times.
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B.3 Continuity of the Flow Selection

Proposition 12 shows that x 7→ φ(x, y) is continuous at x0 whenever φ(x0, y) is a local minimum
of g(x0, .). Proposition 13 shows that, near x0, φ(x, y) are local minima as well provided φ(x0, y)
is a local minimum of g(x0, .).
Proposition 12 (Continuity near local minima). Let x0 ∈ X and y ∈ Y . Let g be such that
Assumptions 1 to 3 hold. Assume that y0 = φ(x0, y) is a local minimizer of y 7→ g(x0, y). Then, for
any ε > 0 small enough, there exists T > 0 and η > 0, s.t.:

‖φt(x, y)− φ(x0, y)‖ ≤ ε, ∀t ≥ T, ∀x ∈ B(x0, η).

In particular, x 7→ φ(x, y) is continuous at φ(x0, y).

Proof. We will apply Proposition 11 to the function h(y) = g(x0, y) and the well-chosen family P
of local diffeomorphisms on Y . By application of Corollary 1, there exists a open neighborhoods B
and V of x0 and y0 in X and Y and a continuously differentiable map τ from B × V to V such that
y 7→ τ(x, y) is a diffeomorphism from V onto itself and for which g satisfies for any (x, y) ∈ B×V:

g(x, y) = g(x0, τ(x, y)) + C(x).

For simplicity, we write τx : y 7→ τ(x, y) by an abuse of notations. We know, by Corollary 1, that
x 7→ τ−1x (y0) is continuous and converges to τ−1x0

(y0) = y0. Hence, by restricting x to a smaller
neighborhood B′ ⊂ B, we can ensure that τ−1x (y0) belongs to B(y0, R

′) with R′ small enough so
that B(y0, 2R

′) ⊂ V . Consider now the family of diffeomorphisms P

P = {V 3 y 7→ τ(x, y) ∈ V|x ∈ B′}.

We have constructed P satisfying the conditions of Proposition 11. Moreover, by Proposition 1, the
function h(y):=g(x0, y) satisfies a Łojasiewicz inequality in an open neighborhood V ′ of y0:

µ|h(y)−G(x0)| ≤ ‖∂yh(y)‖2,∀y ∈ V ′.

We can always choose the neighborhood V ′ to be an open ball B(y0, R) of radius R > 0 centered
in y0. Therefore, we have shown so far that h and P satisfy the conditions of Proposition 11.

For any τ ∈ P , consider the ODE:

zt = −∂yg(x, τ(zt)), z0 ∈ B(y0, R
′).

Following the notation in Proposition 11, we define yτ := τ−1(y0) for any τ ∈ P . We apply
Proposition 11 which ensures stability of zt. More precisely, there exists a positive constant C
smaller than R′ so that for any 0 < ε < C, the solution zt is well-defined at all times and satisfies
‖zt − yτ‖ ≤ ε for any t ≥ 0, provided that the initial condition z0 satisfies ‖z0 − yτ‖ ≤ η for some
positive η < ε

2 that is independent of the choice of τ is P:

∀τ ∈ P : ‖z0 − yτ‖ ≤ η =⇒ ‖zt − yτ‖ ≤ ε. (22)

We will apply this result to a particular choice for z0. From now on, we fix 0 < ε < C and let
0 < η ≤ ε

2 be as in Proposition 11. Using Proposition 10, we know that φt(x0, y) converges to
y0 = φ(x0, y), hence there exits T > 0 s.t. ‖φT (x0, y)− y0‖ ≤ η

3 . Moreover, since the maps
x 7→ φT (x, y) and x 7→ yτx are continuous at x0 with yτx0

=y0, there exits η′ satisfying 0 < η′ such
that B(x0, η

′) ⊂ B′ and ‖φT (x, y)− φT (x0, y)‖ ≤ η
3 and ‖yτx − y0‖ ≤

η
3 for any x ∈ B(x0, η

′).
Therefore:

‖φT (x, y)− yτx‖ ≤ ‖φT (x, y)− φT (x0, y)‖+ ‖φT (x0, y)− y0‖+ ‖y0 − yτx‖ ≤ η.

For any x ∈ B(x0, η
′), by choosing z0 = φT (x, y), we have that ‖z0 − yτx‖ ≤ η. Therefore, we

deduce by (22) that ‖zt − yτx‖ ≤ ε and subsequently that

‖zt − y0‖ ≤ ‖zt − yτx‖+ ‖yτx − y0‖ ≤ ε+
η

3
≤ 7

6
ε,

since we imposed that η < ε
2 . Recall now that zt satisfies the ODE:

żt = −∂yg(x0, τx(zt))∂zτx(zt).
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By definition of τx, we have g(x, y) = g(x0, τx(y)) for any y ∈ B(y0, 2R
′) ⊂ V . In particular, as

we have shown that ‖zt − y0‖ ≤ 7
6ε < 2R′, it follows that zt satisfies the ODE:

żt = −∂yg(x, zt) = −∂yg(x0, τx(zt))∂zτx(zt).

By Cauchy-Lipschtz theorem, the solution of the above ODE is unique. Moreover, since we know
that φT+t(x, y) is a solution to the above ODE, then we deduce that zt = φT+t(x, y). We have
shown that for any ε < C, there exists T > 0 and η′ such that:

‖φt(x, y)− y0‖ ≤
7

6
ε, ∀t ≥ T, ∀x ∈ B(x0, η

′). (23)

Since φt(x, y) converges towards φ(x, y) by Proposition 10, taking the limit t→∞ in (23), we
obtain:

‖φ(x, y)− y0‖ ≤
7

6
ε,∀x ∈ B(x0, η

′).

The above inequality imply in particular that x 7→ φ(x, y) is continuous at x0.

Proposition 13 (Stability of local minimizers). Let x0 ∈ X and y ∈ Y and g be such that Assump-
tions 1 to 3 hold. Assume that y0 = φ(x0, y) is a local minimizer of y 7→ g(x0, y). Then, for any x1
in a neighborhood of x0, φ(x1, y) is a local minimizer of g(x1, .).

Proof. By assumption, y0 := φ(x0, y) is a local minimizer of g(x0, .) ensuring that ∂2yyg(x0, y0) is
positive semi-definite. Moreover, by Corollary 1, there exists a neighborhoodB(x0, η)×B(y0, 2R

′)
of (x0, y0) such that for any augmented critical point (x1, y1) ∈ M ∩ B(x0, η) × B(y0, 2R

′),
the Hessian ∂2yyg(x1, y1) is similar to ∂2yyg(x0, y0). Hence, for any (x1, y1) ∈ M ∩ B(x0, η) ×
B(y0, 2R

′), ∂2yyg(x1, y1) must be positive semi-definite so that y1 is a local minimizer of g(x1, .).

We can then apply Proposition 12 which ensures that x 7→ φ(x, y) is continuous at x0. Therefore,
there exists η′ < η so that, for any x1 ∈ B(x0, η

′), y1 := φ(x1, y) belongs to B(y0, 2R
′). As a

result, y1 must be a local minimizer of g(x1, .) since the augmented critical point (x1, y1) belongs
toM∩B(x0, η)×B(y0, 2R

′).

B.4 Uniform Convergence of the Gradient Flow

The result bellow shows that the gradient flow φt(x, y) converges locally uniformly in x near x0 at an
exponential rate, whenever φ(x0, y) is a local minimum. It relies on the locally uniform convergence
result in Proposition 12 and the locally uniform Łojasiewicz inequality in Proposition 1.
Proposition 14. Let x0 ∈ X and y ∈ Y and g be such that Assumptions 1 to 3 hold. Assume that
y0 := φ(x0, y) is a local minimum. Then there exists positive constants η, T , µ and C such that:

‖φt(x, y)− φ(x, y)‖ ≤ Ce−tµ, ∀t ≥ T, x ∈ B(x0, η).

A fortiori, φ(x, y) is continuous on B(x0, η).

Proof. Proposition 1 ensures the existence of ε > 0 and η > 0 be such that the following inequality
holds:

µ|g(x, y′)−G(x)| ≤ 1

2
‖∂yg(x, y′)‖2, ∀x, y′ ∈ B(x0, η

′)×B(y0, ε). (24)

By Proposition 12 and for ε>0 small enough, there exists T>0 and η′ > η>0 for which:

‖φt(x, y)− y0‖ ≤ ε, ∀t ≥ T, ∀x ∈ B(x0, η
′).

Therefore, choosing y′=φt(x, y) in (24) implies:

µ|g(x, φt(x, y))−G(x)| ≤ 1

2
‖∂yg(x, φt(x, y))‖2, ∀x ∈ B(x0, η). (25)

Note thatG(x) is the common value of g(x, y) when y is a critical point of g(x, .) inB(y0, ε). In par-
ticular, since φ(x, y) ∈ B(y0, ε), it holds that G(x) = g(x, φ(x, y)). Moreover, by Proposition 13,
φ(x, y) is a local minimum for y 7→ g(x, y). Hence, we must have g(x, φt(x, y))−G(x) ≥ 0. We
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may assume that the inequality is strict otherwise the φt(x, y) would be a fixed point and we would
have φt(x, y) = φ(x, y). The following inequality holds for any t ≥ T :

‖φt(x, y)− φ(x, y)‖ ≤
∫ +∞

t

‖∂yg(x, φs(x, y))‖ds ≤ − 2

µ

∫ +∞

t

Ḣ(s) ds =
2

µ
H(t).

where we introduced H(t) = (g(x, φt(x, y))−G(x))
1
2 . Thus, we only need to study the evolution

of H(t) in time. Computing the derivatives of H(t) and using the inequality in (25) yields

Ḣ(t) = −1

2
H(t)−1‖∂yg(x, φt(x, y))‖2 ≤ −µH(t).

By integrating the above inequality, it follows that H(t) ≤ H(T )e−µ(t−T ). Moreover, using the
smoothness of y 7→ g(x, y), we know that

H(T ) ≤
√
L

2
‖φT (x, y)− φ(x, y)‖ ≤

√
L

2
ε,∀x ∈ B(x0, η).

Finally, we have shown that ‖φt(x, y)−φ(x, y)‖ ≤
√

L
µ εe
−(t−T )µ for any x ∈ B(x0, η) and t≥T .

Since φt are continuous in x and converge uniformly in x on B(x0, η), then their limit must be
continuous on B(x0, η).

C Differentiability of the Flow Selection

In this section, we study the differentiability of x 7→φ(x, y) through the evolution of ∂xφt(x, y). The
following result establishes that ∂xφt(x, y) is well-defined and satisfies a linear differential equation.
Proposition 15. Assume g is twice continuously differentiable and satisfies Assumption 2. Then,
(x, t) 7→ φt(x, y) is continuously differentiable with ∂xφt(x, y) := Ut(x, y) satisfying the differen-
tial equation:

U̇t(x, y) = −Bt(x, y)−At(x, y)Ut(x, y), (26)

where Bt and At are given by:

Bt(x, y) = ∂2xyg(x, φt(x, y)), At(x, y) = ∂2yyg(x, φt(x, y)).

Proof. The differentiability of the flow φt(x, y) in x follows by the application of Cauchy-Lipschitz
theorem. It suffices to differentiate the equation defining the flow w.r.t. to obtain (26).

Note that, by Proposition 10 and continuity of ∂2xyg(x, y) and ∂2yyg(x, y), the matrices At(x, y) and
Bt(x, y) must converge to the following matrices A∞ and B∞ for any (x, y) ∈ X × Y:

A∞(x, y) := ∂2yyg(x, φ(x, y)), B∞(x, y) := ∂2xyg(x, φ(x, y))

The following proposition shows that the pseudo-inverse of A∞(x, y) remain bounded near x0 pro-
vided that φ(x0, y) is a local minimum.
Proposition 16. Let (x0, y) be in X × Y and set y0 and g be such that Assumptions 1 to 3 hold.
Assume that y0:=φ(x0, y) is a local minimum of g(x0, .). Then there exists an open neighborhood
U of x0 and a positive constant λ > 0 such that:

λ‖A∞(x, y)‖op ≤ 1, ∀x ∈ U ,

where A∞(x, y) = ∂2yyg(x, φ(x, y)).

Proof. We apply Proposition 9 which ensures the existence of an open neighborhood V of (x0, y0)
for which:

∂2yyg(x, y) = P (x, y)>∂2yyg(x0, y0)P (x, y).

where (x, y) 7→ P (x, y) is continuous map with values in Rd×d, and P (x, y) is invertible for any
(x, y) ∈ V with singular values in [σmin, σmax] for σmin > 0 and σmax < +∞. Moreover, since
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y0 := φ(x0, y) is a local minimum of g(x0, .), we know, by Proposition 12, that x 7→ φ(x, y) is
continuous at x0. Hence, there exists a neighborhood U of x0 for which (x, φ(x, y)) ∈ V for any
x ∈ U . Therefore, it follows that:

A∞(x, y) = P (x, φ(x, y))>∂2yyg(x0, y0)P (x, φ(x, y)), ∀x ∈ U .

In particular, it follows that:

A∞(x, y)† = P (x, φ(x, y))−1∂2yyg(x0, y0)†P (x, φ(x, y))−>.

Hence, we easily deduce that the operator norm of A∞(x, y)† satisfies:∥∥A∞(x, y)†
∥∥
op
≤ σ−2min

∥∥∂2yyg(x0, y0)†
∥∥
op
.

The result follows by setting λ = σ2
min

∥∥∂2yyg(x0, y0)†
∥∥−1
op

.

We will need to introduce the following matrix U?(x, y) defined as:

U?(x, y) := −(A∞(x, y))
†
B∞(x, y).

The following proposition shows, under mild conditions, that Ut(x, y) converges towards a limiting
element U∞(x, y) satisfying the equation: A∞U∞ = A∞U

?.
Proposition 17. Let (x0, y) be in X × Y and set y0 and g be such that Assumptions 1 to 3 hold.
Assume that y0:=φ(x0, y) is a local minimum of g(x0, .). Then there exists η > 0 such that, for any
x ∈ B(x0, η), Ut(x, y) converges towards an element U∞(x, y) satisfying

A∞(x, y)U∞(x, y)=A∞(x, y)U?(x, y).

In paticular, if y is a critical point of y 7→ g(x, .) then U∞(x, y) := U?(x, y). Moreover, there exists
a time T > 0 and constants C > 0, µ such that for any x ∈ B(x0, η) and t ≥ T :

‖Ut(x, y)− U∞(x, y)‖ ≤Ce−µt,

Proof. For simplicity, we omit the dependence on (x, y) as they remain fixed. Let P be a projection
matrix that commutes with A∞, i.e. : PA∞ = A∞P . We will choose P to be either P∞ = A∞A

†
∞

or P = I − P∞. Define Vt = P (Ut − U?). By differentiating in time, it is easy to see that Vt
satisfies:

V̇t = B̃t − PAtVt. (27)

where B̃t := P (B∞ −Bt + (A∞ −At)U?). Denote by (s, t) 7→ Rts the resolvant of the linear
system (27), i.e. the squared matrix satisfying dRt

s

dt = −PAtRts for t ≥ s and Rss = I . Standard
results for linear differential equations [45, Chapter 2] ensure that Rts is always invertible at any
time and that Vt can be expressed in terms of Rts as follows:

Vt = −Rt0PU? +

∫ t

0

RtsB̃s ds.

Controlling ‖Rts‖op:

We will show the following inequality:

log
(∥∥Rts∥∥op) ≤ ∫ t

s

(−λP + ‖A∞ −Au‖) du, (28)

where ‖.‖op refers to the operator norm and λP is the smallest eigenvalue of PA∞P . To achieve

this, we define Lt = 1
2‖R

t
su‖

2 for t ≥ s and u a vector in Y . We then differentiate Lt in time to get:

L̇t = −〈Rtsu, PAtRtsu〉 = −〈Rtsu, PA∞Rtsu〉+ 〈Rtsu, P (A∞ −At)Rtsu〉,
= −〈Rtsu, PA∞PRtsu〉+ 〈Rtsu, P (A∞ −At)Rtsu〉,

≤ 2
(
−λP + ‖A∞ −At‖op

)
Lt,
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where we used that PA∞P=P 2A∞=PA∞ since P and A∞ commute. We also used elementary
properties of the trace of product of matrices to get the last inequality. By integrating the above
inequality, we obtain:

1

2

∥∥Rtsu∥∥2Lt ≤1

2
‖Rssu‖

2
e2

∫ t
s (−λP+‖A∞−Au‖op) du,

≤1

2
‖u‖2e2

∫ t
s (−λP+‖A∞−Au‖op) du,

where we used that Rss = I . The desired bound on ‖Rts‖op follows by taking the supremum over u
in the unit ball.

Controlling ‖B∞ −Bt‖op and ‖A∞ −At‖op:

By Proposition 14, there exists η > 0 and T > 0 such that:

‖φt(x, y)− φ(x, y)‖ ≤ Ce−tµ, ∀t ≥ T, x ∈ B(x0, η).

Moreover, since φ(x, y) is continuous at x0 by Proposition 12, we can always choose η small enough
so that φ(x, y) remains bounded. Hence, there exists a compact set K containing φt(x, y) for any
t ≥ T and x ∈ B(x0, η). Denote by |K| its diameter. By continuity of φt(x, y), we can also take
K large enough so that φt(x, y) ∈ K for any 0 ≤ t ≤ T and x ∈ B(x0, η). Since g is three-times
continuity differentiable by Assumption 1, there exists a positive constant L s.t. for all x ∈ B(x0, η)
and y, y′ ∈ K: ∥∥∂2xyg(x, y)− ∂2xyg(x, y′)

∥∥
op
, ≤ L‖y − y′‖,∥∥∂2yyg(x, y)− ∂2yyg(x, y′)

∥∥
op
≤ L‖y − y′‖.

As a result, we can write

max
(
‖B∞ −Bt‖op, ‖A∞ −At‖op

)
≤ L‖φ(x, y)− φt(x, y)‖ ≤ ct. (29)

where, we defined ct to be:

ct =

{
LCe−tµ, t ≥ T,
2L|K|, t < T.

Controlling Vt: For simplicity define Ct =
∫ t
0
cu du ≤ C∞ := 2L|K|T + LCe−Tµ/µ. We will

first control the error term
∫ t
0
RtsB̃s ds. For t > T , the following holds:

∫ t

0

∥∥∥RtsB̃s∥∥∥
op

ds ≤
∫ t

0

∥∥Rts∥∥op(‖B∞ −Bt‖+ ‖A∞ −At‖‖U?‖∞) ds, (30)

≤
∫ t

0

e
∫ t
s
−λP+cu du

(
1 + ‖U‖?op

)
cs ds,

≤eC∞
(

1 + ‖U‖?op
)∫ t

0

cse
−(t−s)λP ds,

where we used elementary linear algebra inequalities for the first line and (28) and (29) for the
second line. We need to control ‖U?(x, y)‖op=

∥∥A∞(x, y)†B∞(x, y)
∥∥
op

. To achieve this, we use
Proposition 16 which ensures that

∥∥A∞(x, y)†
∥∥
op
≤ λ−1 for some positive λ provided x is close

enough to x0. Thus, we can choose η small enough so that
∥∥A∞(x, y)†

∥∥
op
≤ λ−1 for any x ∈

B(x0, η). Moreover, by Proposition 14, we know that x 7→ φ(x, y) is continuous on B(x0, η)
provided η is small enough. Therefore, we can ensure that B∞(x, y) is bounded by some value
Bmax on B(x0, η). Hence, we deduce that ‖U?(x, y)‖op ≤ M = λ−1Bmax for any x ∈ B(x0, η).
We can finally write the upper-bound bellow:∫ t

0

∥∥∥RtsB̃s∥∥∥
op

ds ≤eC∞(1 +M)

∫ t

0

cse
−(t−s)λP ds︸ ︷︷ ︸
Et

. (31)

We distinguish two cases depending on the choice of P :
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• Case P = A∞A
†
∞.

In the case where A∞(x0, y)=0, then by Proposition 9 and for η > 0 small enough, it holds that
A∞(x, y) = 0 for any x ∈ B(x0, η). In this case, the dynamics is trivial. Instead, if A∞(x0, y)6=0,
then by Proposition 9 and for η > 0 small enough,A∞(x, y) 6= 0 for any x ∈ B(x0, η). In this case,
we know that ‖A∞(x, y)‖op is the inverse of the smallest positive eigenvalue of A∞(x, y) which is
also equal to λP by definition. Moreover, by Proposition 16, there exists η > 0 small enough and
λ > 0 such that λ‖A∞(x, y)‖op ≤ 1 for any x ∈ B(x0, η). We then deduce that λ < λP . Hence,
for t ≥ T , we have:

Et =cT

∫ T

0

e−λ(t−s) + LC

∫ t

T

e−λ(t−s)−(s−T )µ,

=
cT
λ
e−λ(t−T ) +

LC

λ− µ

(
e−µ(t−T ) − e−λ(t−T )

)
.

By abuse of notation, we still write 1
λ−µ

(
e−µ(t−T ) − e−λ(t−T )

)
even when when λ = µ, to refer

to the limit (t − T )e−λ(t−T ) when µ approaches λ. By introducing µ̃ = 1
2 min(λ, µ), we get the

simpler bound:

Et ≤
(cT + LC)

µ̃
e−µ̃(t−T ).

On the other hand, recalling the upper-bound on ‖Rts‖op we deduce that ‖Rt0‖op ≤ eC∞−λP t.
Hence, we can write for any t ≥ T :

‖Vt‖ ≤eC∞(1 +M)

(
e−λP t +

cT + LC

µ̃
e−µ̃(t−T )

)
,

≤eC∞(1 +M)

(
1 +

cT + LC

µ̃
eµ̃T
)
e−µ̃t.

Hence, Vt converges towards 0 at an exponential rate.

• Case P = I −A∞A†∞.

In this case, λP = 0 and PU? = −PA†∞B∞ = 0. Therefore, Vt simplifies to Vt=
∫ t
0
RtsB̃s ds. We

will simply show that such integral is absolutely convergent. To achieve this, we consider t ≥ T and
compute Et:

Et =

∫ t

0

cs ds =

∫ T

0

cs ds+

∫ t

T

cs ds,

=TcT + LC

∫ t

T

e−µ(s−T ) ds,

=TcT +
LC

µ

(
1− e−µ(t−T )

)
≤ TcT +

LC

µ
:= E∞.

Hence, Et converges to a finite quantity E∞. Using (31), we deduce that
∫ t
0
RtsB̃s ds is absolutely

convergent so that Vt converges to an element V∞. Moreover, we have:

‖Vt − V∞‖ ≤
∫ ∞
t

∥∥∥RtsB̃s∥∥∥ds ≤eC∞(1 +M)(E∞ − Et),

≤CeC∞
L

µ
(1 +M)e−µ(t−T ).

Hence, we have shown that there exists η > 0 small enough such that for any x ∈ B(x0, η), Ut(x, y)
converges to an element U∞(x, y) satisfying A∞(x, y)U∞(x, y) = A∞(x, y)U?(x, y). Moreover,
the there exists a time T and positive constants C ′ and µ′ such that:

‖Ut(x, y)− U∞(x, y)‖ ≤ C ′e−µ
′t,∀t ≥ T, ∀x ∈ B(x0, η).
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Proof of Theorem 2. By Proposition 10, we have that φt(x, y) converges to φ(x, y). Moreover,
since φ(x0, y) is a local minimizer of g(x0, .), Proposition 12 ensures that φ(x, y) is continuous at
x0. Finally, we know by Proposition 15 that φt(x, y) is differentiable in x and by Proposition 17
that ∂xφt(x, y) := Ut(x, y) converges uniformly towards U∞(x, y). Therefore, by [46, Theorem
7.17], we conclude that φ(x, y) is differentiable in a neighborhood of x0 with differential given by
∂xφ(x, y) = U∞(x, y). If in addition, y is a local minimizer, then, by Proposition 17, ∂xφ(x, y)=−
∂xyg(x, y)(∂yyg(x, y))

†.

D Limits Points of Bilevel Optimization Algorithms

Proposition 18. Let g be a real-valued function on X × Y such that Assumption 2 holds. Consider
the mapsϕT and IM defined in (33) and let T andM be non-negative integers, such that T+M > 0.
Let (x, y) ∈ X × Y such that ϕT (x, IM (x, y)) = y. Then, ∂yg(x, y) = 0.

Proof. Let us fix (x, y) ∈ X × Y and consider the iterates yT = ϕT (x, y). We will show that yT
satisfy a sufficient decrease condition for some positive constant a:

g(x, yT+1) +
L

2

∥∥yT − yT+1
∥∥2 ≤ g(x, yT ). (32)

To see this, we can use the smoothness of g to write:

g(x, yT+1)− g(x, yT ) ≤ −d>HT d+
L

2
‖HT d‖2,

where d = ∂yg(x, yT ) and we write HT=HT (x, y) by abuse of notation. Hence, it follows that:

g(x, yT+1)− g(x, yT ) +
L

2

∥∥yT+1 − yT
∥∥2 ≤ −d>(HT − LH2

T

)
d ≤ 0,

where we used that HT ≤ 1
LI . Similarly, we obtain a sufficient decrease condition for the iter-

ates defined by IM . Consider now T and M , such that T + M > 0, and let (x, y) be such that
ϕT (x, IM (x, y))=y. Consider the iterates yk=Ik(x, y) for m ≤M , and yk=ϕt(x, y

M ) for t ≤ T .
Then the iterates yk define a non-increasing sequence g(x, yk). Moreover, since yT+M = y0 = y,
it must be that g(x, yk) = g(x, y). The sufficient decrease condition in (32) implies that the iterates
are all constant yk = y0. In particular, if M > 0, this implies that HM (x, y)∂yg(x, y) = 0 so
that ∂yg(x, y) = 0 since HM (x, y) is invertible. On the other hand, if M = 0, then the condition
T+M > 0 implies that T > 0, so that y = y1 = y−HT (x, y)∂yg(x, y). Similarly, sinceHT (x, y),
we deduce that ∂yg(x, y) = 0.

Proposition 19 (Properties of the maps ϕT and IM ). Let g be a function satisfying Assumption 2
with a smoothness constant L. Consider ϕT (x, y) and IM (x, y) defined by the following recursion
which holds for any x, y ∈ X × Y:

ϕT+1(x, y) = ϕT (x, y)−HT (x, y)(∂yg(x, ϕT (x, y))), ϕ0(x, y) = y (33)

IM+1(x, y) = IM (x, y)−H ′M (x, y)(∂yg(x, IM (x, y))), I0(x, y) = y,

where HT (x, y) and H ′M (x, y) are positive symmetric matrices satisfying H ′M (x, y) ≤ 1
LI and

HT (x, y) ≤ 1
LI for any (x, y) ∈ X × Y and non-negative integers T,M . Moreover, assume that

HT (x, y) is continuously differentiable. Then ϕT and IM satisfy Assumption 4.

Proof. It is clear that for any (x, y) ∈ X × Y , s.t. y is a critical point of g(x, .), we have that
IM (x, y) = ϕT (x, y) = y. Moreover, if T,M are such that T + M > 0 and (x, y) ∈ X × Y
satisfy ϕT (x, IM (x, y)) = y, then Proposition 18 ensures that ∂yg(x, y)=0. It remains to obtain an
expression for ∂xϕT and ∂yϕT in terms of second-order derivatives of g. We proceed by recursion.
For T = 0, by setting D = 0, we have that:

∂xϕ0(x, y) = 0 = ∂2xyg(x, y)D, ∂yϕ0(x, y) = I = I + ∂2xyg(x, y)D.

Let (x, y) be an augmented critical point of g. Assume now that for some T ≥ 0, there exists a
matrix DT , such that:

∂xϕT (x, y) = ∂2xyg(x, y)DT , ∂yϕT (x, y) = I + ∂2yyg(x, y)DT . (34)
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Differentiating the expression of ϕT+1(x, y) w.r.t. x and y yields:

∂xϕT+1(x, y) =∂xϕT (x, y)−
(
∂xyg(x, ϕT (x, y)) + ∂xϕT (x, y)∂2yyg(x, ϕT (x, y))

)
HT (x, y)

− ∂xHT (x, y)∂yg(x, ϕT (x, y)).

=∂xyg(x, y)
(
DT −

(
I +DT∂

2
yyg(x, y)

)
HT (x, y)

)
= ∂xyg(x, y)DT+1,

Where we defined DT+1(x, y)=DT −
(
I +DT∂

2
yyg(x, y)

)
HT (x, y). In the above expression, the

last line follows by recalling that ϕT (x, y)=0 and ∂xHT (x, y)∂yg(x, ϕT (x, y)) = 0 since (x, y) is
an augmented critical point of g and by using the recursion assumption on ∂xϕT (x, y).

Similarly, for ∂yϕT+1(x, y), the following holds:

∂yϕT+1(x, y) =∂yϕT (x, y)− ∂yϕT (x, y)∂2yyg(x, ϕT (x, y))HT (x, y)

− ∂yHT (x, y)∂yg(x, ϕT (x, y)),

=I + ∂2yyg(x, y)
(
DT −

(
I +DT∂

2
yyg(x, y)

)
HT (x, y)

)
= I + ∂2yyg(x, y)DT+1.

Hence, by recursion, ϕT (x, y) satisfies the equation (34) for any T ≥ 0. We have shown that ϕT
and IM satisfy Assumption 4.

Proof of Proposition 3. Fix T ≥ and consider the iterates (xk, yk) of Algorithm 1 using ϕT . By
assumption (xk, yk)k≥0 converges to an element (x?T , y

?
T ) in X ×Y . By continuity of the maps ϕT ,

IM and ∂xLT , we have that:

y?T = lim
k
yk = lim

k
ϕT (xk−1, IM (xk−1, yk−1)) = ϕT (x?T , IM (x?T , y

?
T )),

lim
k
∂xLT (xk−1, IM (xk−1, yk−1)) = ∂xLT (x?T , IM (x?T , y

?
T )) := d?.

By Assumption 4, the first equation implies that y?T is a critical point of g(x?T , .) (i.e. ∂yg(x?T , y
?
T ) =

0). Moreover, taking the limit in the update equation xk = xk−1 − γdk yields d? = 0. Hence, we
also have that ∂xLT (x?T , IM (x?T , y

?
T )) = 0. Finally, recall that IM (x?T , y

?
T )=y?T by Assumption 4

since (x?T , y
?
T ) is an augmented critical point of g. Thus we have shown that:

∂xLT (x?T , y
?
T ) = 0, ∂yg(x?T , y

?
T ).

Assume now that y?T is a local minimum of g(x?T , .) and that (x?T , y
?
T )T≥0 is bounded. Hence,

there exists a subsequence of (x?T , y
?
T )T≥0 converging towards an accumulation point (x?, y?). By

abuse of notation, we denote (x?T , y
?
T )T≥0 such subsequence. By continuity of the Hessian of g, it

follows that y? must also be a local minimum of g(x?, .). We can now use Assumption 5 which
ensures that ϕT converges to a selection φ. Moreover, since ∂xϕT converges uniformly near local
minima, it follows by [46, Theorem 7.17] that φ(x, y) is differentiable w.r.t. x near (x?, y?) and that
∂xϕT (x, y) converges uniformly near (x?, y?) towards ∂xφ(x, y). Hence, we can write for T large
enough:

∂xLφ(x?T , y
?
T ) =∂xLT (x?T , y

?
T ) + (∂xφ(x?T , y

?
T )− ∂xϕT (x?T , y

?
T ))∂yf(x?T , y

?
T ),

=(∂xφ(x?T , y
?
T )− ∂xϕT (x?T , y

?
T ))∂yf(x?T , y

?
T ).

By uniform convergence of ∂xϕT (x, y) to ∂xφ(x, y) and recalling that (x?T , y
?
T ) is bounded, we de-

duce that ‖∂xLφ(x?T , y
?
T )‖ converges to 0. In particular, this holds true for a subsequence satisfying

lim supT ‖∂xLφ(x?T , y
?
T )‖= limT ‖∂xLφ(x?T , y

?
T )‖, which proves the desired result.

Proof of Proposition 4. Let (x, y) ∈ X × Y be such that y is a local minimum of g(x, .). Define d
to be:

d = ∂xLT (x, y)− ∂2xyg(x, y)
(
∂2yyg(x, y)

)†
∂yLT (x, y).

By Theorem 2, x 7→ φ(x, y) is differentiable at x and since y is a critical point of g(x, .), the
differential of φ(x, y) is given by ∂xφ(x, y) = −∂2xyg(x, y)

(
∂2yyg(x, y)

)†
. Hence, d is equal to:

d = ∂xLT (x, y) + ∂xφ(x, y)∂yLT (x, y).
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Using the definition of LT and recalling that ϕT satisfies Assumption 4, the following holds:

d = ∂xf(x, ϕT (x, y)) + ∂xϕT (x, y)∂yf(x, ϕT (x, y)) + ∂xφ(x, y)∂yϕT (x, y)∂yf(x, ϕT (x, y)),

= ∂xf(x, y) + (∂xϕT (x, y) + ∂xφ(x, y)∂yϕT (x, y))∂yf(x, y),

= ∂xf(x, y) +
(
∂2xyg(x, y)D + ∂xφ(x, y)

(
I + ∂2yyg(x, y)D

))
∂yf(x, y),

= ∂xf(x, y) + ∂xφ(x, y)∂yf(x, y) +
(
∂2xyg(x, y) + ∂xφ(x, y)∂2yyg(x, y)

)
D∂yf(x, y),

= ∂xLφ(x, y) +
(
∂2xyg(x, y) + ∂xφ(x, y)∂2yyg(x, y)

)
D∂yf(x, y).

The last term of the above equation vanishes, since by definition of ∂xφ(x, y), it holds that
∂2xyg(x, y) + ∂xφ(x, y)∂2yyg(x, y) = 0. Therefore, we have shown that d = ∂xLφ(x, y), which
concludes the proof.

Proof of Proposition 5. By continuity of the maps ϕT and IM and since (xk, yk, zk) →
(x?, y?, z?), it holds that y? = ϕT (x?, IM (x?, y?)). Hence, by Assumption 4, it follows that
y? must be a critical point of y 7→ g(x?, y?), i.e. ∂yg(x?, y?)=0. Moreover, we have that
ỹk = IM (xk, yk) −→

k
IM (x?, y?) = y? by continuity of IM and the condition in Assumption 4.

Since f and ϕT are continuously differentiable we get that uk, vk −→
k
∂xLT (x?, y?), ∂yLT (x?, y?).

Moreover, recalling that LT (x, y)=f(x, ϕT (x, y)), by application of the chain rule and using that
ϕT (x?, y?)=y? it follows that:

uk −→
k
u? := ∂xf(x?, y?) + ∂xϕT (x?, y?)∂yf(x?, y?),

vk −→
k
v? := ∂yϕT (x?, y?)∂yf(x?, y?).

By continuity of the higher-order derivatives of g, it holds that:

∂2yyg(xk, yk+1) −→
k
A∗ := ∂2yyg(x?, y?),

∂2xyg(xk, yk+1) −→
k
B∗ := ∂2xyg(x?, y?).

Recall that zk is given by the update equation zk = P(Ak, vk, zk−1), where P is a continuous map
for which z = P(A, v, z) if and only if z ∈ arg minz

∥∥A2z + v
∥∥2. By continuity of P , it follows

that z? satisfies:

z? = P(A?, v?, z?).

Therefore, z? minimizes z 7→
∥∥(A?)2z + v?

∥∥2 and satisfies the fixed point equation (A?)3z? +

A?v?=0 so that A?z? = −(A?)†v?. Moreover, recall that ξk=Akzk, hence ξk converges towards
ξ? := A?z?. Therefore, ξ?= − (A?)†v?. Taking the limit as k goes to +∞, we get that dk defined
in Algorithm 1 converges towards d? defined by:

d? : = u? +B?ξ?,

= u? −B?(A?)†v?.

By Proposition 4, it is easy to see that d? = ∂xLφ(x?, y?). Finally, recalling the update equation
xk+1=xk − γdk and that xk −→

k
x?, we directly deduce that dk −→

k
0, so that d? = 0. This shows

that (x?, y?) is an equilibrium point of (BGS) and satisfies (SC).

D.1 Warm-start Strategy

In this section, we provide simple examples for the map P(A, v, z) to find approximate solutions
minimizing Q(z) := 1

2

∥∥A2z + v
∥∥2, where A is a symmetric matrix in Rd×d satisfying A ≤ LI ,

with L being the smoothness constant of g in Assumption 2. The algorithm P can be as simple
as N -step of conjugate gradient descent on Q with a step-size α ≤ 1

L4 where L is the smoothness
constant of g in Assumption 2. More formally, P(A, v, z)=zN where zN is the N iterate of the
following recursion:

zn+1 = zn − α∂zQ(zn), z0 = z. (35)
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Algorithm T M Correction
ITD [5] T > 0 M = 0 False
Corrected ITD T > 0 M = 0 True
Truncated ITD [47] T > 0 M > 0 False
Corrected Truncated ITD T > 0 M > 0 True
AID [42] T = 0 T > 0 True

Table 1: Recovering bilevel optimization algorithms from Algorithm 1.

It is clear that P(A, v, z) is continuous in its arguments. Moreover, using a similar argument as
in Proposition 18, one can prove that whenever z is a fixed point of P(A, v, z), then z must be a
critical point of Q and therefore satisfies the equation A3z + Av = 0. The update equation in (35)
depends however on the step-size α which needs to be smaller than 1

L4 . to avoid the dependence on
such step-size, A more efficient choice for the map P which does not require using a step-size, is to
perform N conjugate gradient iterations on Q starting from an initial condition z.

D.2 Recovering Existing Algorithms

Table 1 below summarizes how to recover well-known gradient-based algorithms for bilevel opti-
mization from Algorithm 1. Hence, Algorithm 1 recovers the most popular bilevel optimization
algorithms but also introduces a corrected version to them to ensure that they recover the equilibria
of (BGS).

E Experiments

To illustrate the effect of the corrective term introduced in Section 5 , we consider two sets of
experiments: a synthetic problem for which the optimal solutions can be computed in closed form
and a dataset distillation task on Cifar10 [27] using a ResNet18 architecture [22].

E.1 Synthetic Problem

Motivated by the instrumental variable regression problem [48] which solves a bilevel problem with
quadratic objectives for both levels, we consider lower and upper-level objectives of the form:

f(x, y) :=
1

2
x>Afx+ C>f y

g(x, y) :=
1

2
y>Agy + y>Bgx

where Af and Ag are symmetric positive matrices of size dx×dx and dy×dy , Bg is a dy×dx matrix
and Cf is a dy vector with dx=2000 and dy=1000. To allow for multiple solutions to the LL
objective, we choose Ag to be non-invertible with a null-space of dimension 100 while we choose
Af to be invertible for simplicity. Furthermore, to ensure that f admits a finite minimum value we
choose Bg to be of the form AgU for some randomly sampled matrix U . We construct the matrices
Af and Ag so that the highest eigenvalues of Af and Ag are smaller than 1 and their conditioning
is equal to 10. Here, we define the conditioning of a matrix to be the ratio between the highest and
smallest non-zero eigenvalues. For a given x, the minimizers of g are of the form:

y = −A†gBgx+ (I −AgA†g)y0,

where y0 is any vector in Rdy . Replacing the optimal y in the UL objective results in the expression
which holds for any y0 ∈ Rdy .

1

2
x>Afx− C>f A†gBgx+ C>f (I −AgA†g)y0.

At this point, it is easy to check that either maximizing or minimizing the above objective over y0
results in an infinite value of the objective whenever C>f (I − AgA†g) is non-zero. This implies that
the optimistic and pessimistic formulations of the bilevel problem result in an infinite optimal loss.
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Figure 3: (left) Evolution of the distance of the UL iterate xk to the equilibrium x? vs time (in
seconds). (right) evolution of the norm of approximate gradient dk vs time in seconds. In all cases,
algorithms are run until convergence, i.e. ‖dk‖ converges to 0.

However, the (BGS) has a well-defined solution. To see this, it is possible to define a selection of
the form φ(x, y)=−A†gBgx+ (I −AgA†g)y which corresponds to the limit of a gradient flow of g
initialized at y. The upper objective of (BGS) is therefore given by:

Lφ(x, y) =
1

2
x>Afx− C>f A†gBgx+ C>f (I −AgA†g)y.

Instead of optimizing Lφ(x, y) over x and y which would result in an infinite loss, (BGS) opti-
mizes Lφ(x, y) over x only, while y is optimized for f(x, y), thus seeking an equilibrium (x?, y?)
satisfying (SC) which can be expressed in closed form as

x? := A−1f B>g A
†
gCf , y? := −A†gBgx+ (I −AgA†g)y0

where y0 is any vector in Rdy . Hence, while there exist multiple equilibria, they all have the same
value for x? and yield a finite objective.

We solve the above problem using Algorithm 1 either using the correction or not. When using the
correction, we compute the approximate solution ξk to the linear system (5) using the following
update rule:

ξk = ξk−1 − β(∂yyg(xk−1, yk)ξk−1 + vk) (36)

where β = 0.9 is a positive step-size. For the lower-level problem, we use T steps of gradient
descent with a step-size α = 0.9 while we set the upper-level step-size to γ = 1.. We then set the
warm-start parameter value M to 0 and vary T .

Results. We consider the distance of the iterate xk to the optimal equilibrium x? as measured by
the metric induced by Af :

‖xk − x?‖2Af
:=

1

2
(xk − x?)>Af (xk − x?)

Figure 3 (left) shows the evolution of ‖xk − x?‖2Af
as a function of time (in seconds) for different

algorithmic choices, while Figure 3(right) shows the evolution of the approximate upper-level gra-
dient dk used in Algorithm 1. We first observe that, without correction, and when using a small
number of unrolled iterations (T ≤ 10), the algorithm does not converge towards x?, (the distance
to the iterate is larger than 103). Instead, the algorithm reaches a different equilibrium as suggested
by the evolution of the gradient approximation dk towards 0 (Figure 3-(right)). As the number of un-
rolling steps T increases, the algorithm takes more time to converge as suggested by Figure 3-(right)
(green trace T = 1000). However, the limit gets closer to the equilibrium x? (Figure 3-(right), green
trace). This confirms our first convergence result in Proposition 3 stating that unrolled optimization
finds an approximate solution to (BGS).

When using the correction, Algorithm 1 is able to recover the equilibrium x? while still using a small
number of unrolling steps T ≤ 10 and requiring less time to converge. This observation supports
the result in Proposition 5.
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Figure 4: Evolution in time of the training and test accuracy of a ResNet18 model on Cifar10
dataset. Each iteration corresponds to the accuracy of the model with parameter yk trained on a
synthetic dataset of 100 points xk to minimize the LL objective. The synthetic points xk are learned
by minimizing the training error when using the running model yk.

E.2 Dataset Distillation on Cifar10

We consider the task of learning a small synthetic dataset so that a classifier trained on such a dataset
achieves a small error on a training set. More formally, we consider a classification problem with
C classes using a model with parameters y and a training dataset Dtr = {(ξi, ci)} consisting of N
i.i.d. samples ξi and corresponding labels ci. The goal is to learn a synthetic dataset of FC points,
where F is a positive integer, such that each class c contains F representative samples. We can
collect the synthetic points into a vector x to be learned and denote by Dx the synthetic dataset. For
a given dataset D, denote by LD(y) the cross-entropy loss of a model with parameters y evaluated
on D. The bi-level formulation of the distillation task consists in optimizing a lower-level objective
g(x, y) = LDx

(y) to learn the model parameters y that best predicts the classes of the synthetic
dataset. The upper-level objective g(x, y) = LDtr

(y) evaluates the optimal model on the training
set and optimizes the synthetic samples.

Setup . We consider a setup similar to [52] for distilling Cifar10 [27] on 100 synthetic points.
We set F=10, thus requiring 10 synthetic points for each of the C=10 classes of Cifar10. We then
use ResNet18 [22] as a classifier and apply Algorithm 1 to learn the optimal synthetic points. For the
lower level, we use gradient descent with 1 unrolled iteration (i.e. T = 1, M = 0) and a step-size of
α=0.001. For the upper level, we use Adam optimizer [26], with the default parameters, a step-size
of γ = 0.01 and a batch-size of 1024. When using the corrective term, we use the update equation
(36) with a step-size β = 0.0001.

Results. Figure 4 shows the evolution of the training and test accuracy of the model as a function of
time in two settings, either with or without correction. While the training accuracy for both versions
of the algorithm is similar, the corrective term yields an improved final test accuracy (54.19% vs
48.6%). Note that these accuracies are of the same order as those obtained in [51] suggesting that
distilling Cifar10 in only 100 samples is not sufficient to capture all variability in the dataset. While
the additional correction increases the computational cost per iteration, it provides a better gradient
estimate which results in a faster/better performance overall.
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