
Under review as a conference paper at ICLR 2024

APPENDIX

A Related Works 14

B Additional Observations 15
B.1 Entropy Distributions . 15

B.2 Latent Space Visualizations . 15

B.3 Reliability Diagrams . 16

C Detailed Algorithm of AdapTable 16

D Further Experiments 18
D.1 Computational Efficiency . 18

D.2 Hyperparameter Sensitivity . 19

D.3 Efficacy of Label Distribution Handler . 19

E Dataset Details 19
E.1 Datasets . 19

E.2 Synthetic Corruptions . 20

F Baseline Details 21
F.1 Supervised Baselines . 21

F.2 Deep Tabular Learning Architectures . 21

F.3 Test-Time Adaptation Baselines . 22

G Hyperparameter Details 22
G.1 Supervised Baselines . 22

G.2 Test-Time Adaptation Baselines . 23

G.3 AdapTable . 23

H Limitations and Broader Impacts 23
H.1 Limitations . 23

H.2 Broader Impacts . 24

A RELATED WORKS

Deep Tabular Learning The tabular domain, distinct from image and language data, has seen
limited exploration in deep learning, primarily due to the absence of spatial and semantic relation-
ships that convolutional or recurrent neural networks rely on. Although attention-based architectures
like TabNet (Arik & Pfister, 2021), FT-Transformer (Gorishniy et al., 2021) have been introduced
for tabular data, they often require large datasets, resulting in computational overhead that sur-
passes performance gains. As a result, multi-layer perceptrons (MLPs) remain dominant in practical
applications.

Test-Time Adaptation In recent studies, a novel approach called test-time adaptation (TTA)
has emerged as a solution to address limitations found in traditional unsupervised domain adapta-

14

Under review as a conference paper at ICLR 2024

tion (UDA) methods (Ganin & Lempitsky, 2015; Wang et al., 2021b). Test-time adaptation strate-
gies (Wang et al., 2021a; Liu et al., 2021; Niu et al., 2023; Zhou et al., 2023), aim to adapt the
pre-trained model from a source domain to a target domain, without access to source data. While
these TTA methods have shown promising performance, the test time adaptation scheme for the
tabular domain still remains under-explored regime since the tabular domain poses unique challenges
due to its own nature. Therefore, there is a strong motivation to explore and develop TTA methods
tailored to the tabular realm.

Uncertainty Calibration Uncertainty calibration is a crucial technique for enhancing the reliability
of deep learning model outputs. It involves estimating the model’s confidence in its predictions by
examining the probabilities assigned to predicted classes. Conventional training methods often result
in unwarranted overconfidence in model outputs, prompting research into uncertainty calibration
methods, such as Platt scaling (Platt, 2000) and isotonic regression (Stylianou & Flournoy, 2002)
predate the era of deep learning, while more recent methods, including beta calibration (Kull et al.,
2017) and Dirichlet calibration (Kull et al., 2019) rooted in probability distributions, have emerged.
Temperature scaling, akin to Platt scaling but simpler, directly impacts uncertainty while keeping
model predictions intact.

Label Distribution Shift In the domain adaptation area, the assumption that there is no label
distribution shift can be risky, as such shifts can occur readily and significantly affect model per-
formance (Quinonero-Candela et al., 2008). Various approaches have been developed to tackle this
issue including ReMixMatch (Berthelot et al., 2020), online label adaptation (Wu et al., 2021), black
box shift estimation (BBSE) (Lipton et al., 2018). Recently, in the computer vision domain, some
works (Park et al., 2023; Zhou et al., 2023) have been proposed to consider label distribution shift
under the test-time adaptation setting. In our work, we leverage the model’s predictions and training
set statistics to adjust the output. Additionally, we integrate a label adapter to effectuate substantive
modifications to the output.

B ADDITIONAL OBSERVATIONS

B.1 ENTROPY DISTRIBUTIONS

To show the generalizability of the observation in Section 2.1, wherein prediction entropy of the model
consistently exhibits a strong bias toward the under-confident region, we additionally provide entropy
distribution histograms for test instances across six different datasets and three representative deep
tabular learning architectures. Here, we can observe distinct patterns between the upper four rows
(HELOC, ANES, DIABETES READMISSION, CMC) and the lower two rows (MFEAT-PIXEL,
DNA). In the upper four rows, the entropy is consistently high, indicating a skew towards the
under-confident region. However, in the lower two rows, this is not the case. This discrepancy arises
from the fact that the two datasets below are characterized by homogeneity in all columns, one
being a linearized image dataset (MFEAT-PIXEL) and the other a DNA string sequence dataset
(DNA). This comprehensive analysis showcases the unique characteristics of tabular data – biased
entropy distributions toward the under-confident region – compared to other domains. As discussed
in Section 2.1, applying entropy minimization with samples of high entropy often cause gradient
exploding and model collapse (Niu et al., 2023).

B.2 LATENT SPACE VISUALIZATIONS

We further visualize latent spaces for test instances using t-SNE across six different datasets and three
representative deep tabular learning architectures, to show the common behavior of the observation
in Section 2.1, wherein tabular data exhibits extremely complex decision boundary within the latent
space compared to that of other domains. Again, by comparing upper for rows with tabular dataset
and lower two rows with linearized image dataset (MFEAT-PIXEL) and homogeneous DNA string
sequence dataset (DNA), it is obvious that the decision boundary within the latent space of tabular
domain is particularly complex compared to other domains except for the case of DNA dataset with
TabNet model. As shown in Section 2.1, this also provides another indication of the limitations of
existing TTA methods (Sun et al., 2020; Gandelsman et al., 2022; Liu et al., 2021; Gandelsman et al.,
2022; Boudiaf et al., 2022; Zhou et al., 2023), which heavily rely on the cluster assumption.

15

Under review as a conference paper at ICLR 2024

Algorithm 1 AdapTable

1: Input: Pre-trained tabular classifier on the source domain F(·|✓) : RD ! RC , post-trained shift-
aware uncertainty calibrator G(·, ·|�), indicator function , quantile function Q, Softmax and L1

normalization functions �Softmax(·), �L1(·), tabular data in the source domain Ds = {(xs
i , y

s
i)}i,

current tabular batch in the target domain {xt
i}

N
i=1

2: Parameters: Smoothing factor ↵, Low/high quantiles qlow/qhigh

3: ps(y), T
�P|Ds|

i=1 [j=ys
i]
/|Ds|

�C
j=1

, 3maxj ps(y)j/2minj ps(y)j

4: if {xt
i}

N
i=1 is the first test batch then

5: poe
t (y)

�
1/C

�C
j=1

. Initialize online target label estimator
6: end if
7: for u = 1 to D do
8: stu

�
xt
iu � (

P|Ds|
i0=1 x

s
i0/|Ds|)u

�N
i=1

. Calculate shift information of u-th column
9: end for

10: for i = 1 to N do
11: pt(y|xt

i) �Softmax
�
F(xt

i|✓)
�

12: pde
t (y|xt

i) �L1

�
pt(y|xt

i)/ps(y)
�

. Predict debiased target label estimator
13: Ti G

�
F(xt

i|✓), st|�
�

. Determine per-sample temperature of xt
i

14: j⇤, j⇤⇤ argmax1jC pt(y|xt
i)j , argmax1jC,j 6=j⇤ pt(y|xt

i)j
15: ✏i 1/

�
�Softmax

�
F(xt

i|✓)/Ti

�
j⇤
� �Softmax

�
F(xt

i|✓)/Ti

�
j⇤⇤

�
. Define uncertainty of xt

i

16: end for
17: pt(y) = (1� ↵) ·

PN
i=1 p

de
t (y|xt

i)/N + ↵ · poe
t (y) . Estimate current target label distribution

18: for i = 1 to N do
19: if ✏i Q

�
{✏i0}Ni0=1, qlow

�
then

20: ci T
21: else if Q

�
{✏i0}Ni0=1, qlow

�
< ✏i < Q

�
{✏i0}Ni0=1, qhigh

�
then

22: ci 1 . Measure temperature ci using uncertainty ✏i
23: else
24: ci 1/T
25: end if
26: pt(y|xt

i)
0 �Softmax

�
ci · F(xt

i|✓)
�

. Adjust original probability with ci
27: p̂i(y) pt(y|xt

i)
0/2 + �L1

�
pt(y|xt

i)
0pt(y)/ps(y)

�
/2 . Perform self-ensembling

28: end for
29: poe

t (y) (1� ↵) ·
PN

i=1 p̂i(y)/N + ↵ · poe
t (y) . Update online target label estimator

30: Output: Final predictions of {p̂i(y)}Ni=1

B.3 RELIABILITY DIAGRAMS

We also provide further reliability diagrams across six different datasets and three representative
deep tabular learning architectures, to show that tabular data often exhibits both overconfident and
under-confident patterns compared to consistent overconfident behavior in image domain (Stylianou
& Flournoy, 2002), and under-confident behavior in graph domain (Wang et al., 2021c). In cases of
overconfident confidence is evident, whereas in HELOC, (CMC, TabNet), and (DNA, TabNet), under-
confident confidence is observed. This underscores the necessity for the proposition of uncertainty
calibrators tailored specifically to the tabular domain.

C DETAILED ALGORITHM OF ADAPTABLE

The overall procedure of the proposed AdapTable is minutely summarized in Algorithm 1. Given a pre-
trained tabular classifier F(·|✓) : RD ! RC on the source domain Ds = {(xs

i , y
s
i)}i, and current

tabular batch in the target domain {xt
i}

N
i=1, we first post-train shift-aware uncertainty calibrator

G(·, ·|�) by optimizing � using training set again after training F with loss function

L = LFL + �CALLCAL.

16

Under review as a conference paper at ICLR 2024

Figure 6: Computational efficiency comparison between test-time adaptation baselines and AdapT-
able. We report the average adaptation time calculated over all test instances in CMC dataset corrupted
by Gaussian noise.

Here, we calculate shift information of u-th column for 1 u D as

ssu =
�
xs
iu � (

|Ds|X

i0=1

xs
i0/|Ds|)u

�N
i=1

,

with �CAL = 0.1 denotes the weight of regularization loss. Given the original probability ps(y|xs
i) =

�Softmax
�
F(xs

i |✓)
�
, and calibrated prediction probability pi = �Softmax

�
F(xs

i |✓)/Ti

�
with per-sample

tempperature Ti = G
�
F(xs

i |✓), ss|�
�
, j⇤ = argmax1jC pij , and j⇤⇤ = argmax1jC,j 6=j⇤ pij ,

the focal loss LFL (Lin et al., 2017a) and the regularization loss LCAL (Wang et al., 2021c) are defined
as follows:

LFL(x
s
i , y

s
i) =

CX

j=1

[j=ys
i]

�
1� pij

��
log

�
pij

�
,

LCAL(x
s
i , y

s
i) = [j⇤=ys

i]

�
1� pij⇤ + pij⇤⇤

�
+ [j⇤ 6=ys

i]

�
pij⇤ � pij⇤⇤

�
.

Here, LCAL alienates pij⇤ and pij⇤⇤ for correctly predicted samples whereas it attracts them for the
other ones, and � = 2. For each epoch, we apply cosine annealing scheduler.

After post-training G, we calculate shift information of u-th column for 1 u D as stu =
�
xt
iu �

(
P|Ds|

i0=1 x
s
i0/|Ds|)u

�N
i=1

. Then, we predict per-sample temperature of xt
i as Ti = G

�
F(xt

i|✓), st|�
�

and define uncertainty ✏i of xt
i as the reciprocal of the margin of the calibrated probability like below:

✏i = 1/
�
�Softmax

�
F(xt

i|✓)/Ti

�
j⇤
� �Softmax

�
F(xt

i|✓)/Ti

�
j⇤⇤

�
.

With previously calculated online target label estimator, we predict the debiased target label estimator
pde
t (y|xt

i) and estimate the current target label distribution pt(y) with

pde
t (y|xt

i) = �L1

⇣
pt(y|xt

i)/ps(y)
⌘

pt(y) = (1� ↵) ·
NX

i=1

pde
t (y|xt

i)/N + ↵ · poe
t (y).

After that, we quantile relative uncertainty ✏i among {✏i0}Ni0=1 within current batch, and perform
temperature sharpening for certain samples, whereas we perform temperature smoothing for uncertain
samples with pt(y|xt

i)
0 = �Softmax

�
ci · F(xt

i|✓)
�
, where ci is defined as in Equation 1. Using Bayes’

theorem, we adjust the predicted probability of each instance xi as �L1

�
pt(y|xt

i)
0pt(y)/ps(y)

�
,

and using self-ensembling (Gao et al., 2023), we get the final prediction of p̂i(y) = pt(y|xt
i)

0/2 +
�L1

�
pt(y|xt

i)
0pt(y)/ps(y)

�
/2, and update online target label estimator as follows:

p̂i(y) = pt(y|xt
i)

0/2 + �L1

�
pt(y|xt

i)
0pt(y)/ps(y)

�
/2

poe
t (1� ↵) ·

NX

i=1

p̂i(y)/N + ↵ · poe
t .

17

Under review as a conference paper at ICLR 2024

Table 5: Post-training time analysis of uncertainty calibrator in AdapTable under different scales,
encompassing small-scale (MLP + CMC), medium-scale (FT-Transformer + HELOC), and large-scale
(TabNet + DIABETES READMISSION).

Setting Uncertainty Calibrator Training Time (s)

CMC, MLP 4.46
HELOC, FT-Transformer 9.27
DIABETES READMISSION, TabNet 281.16

Figure 7: Hyperparameter sensitivity analysis of the proposed AdapTable using MLP under HELOC
dataset with respect to smoothing factor ↵, low uncertainty quantile qlow, and high uncertainty quantile
qhigh.

Figure 8: Hyperparameter sensitivity analysis of TENT (Wang et al., 2021a) using MLP under
HELOC dataset with respect to learning rate �, number of adaptation steps n.

Figure 9: Jensen-Shannon Divergence between estimated target label distribution before and after
applying label distribution handler upon ANES and DIABETES READMISSION dataset.

D FURTHER EXPERIMENTS

D.1 COMPUTATIONAL EFFICIENCY

In order to show the efficiency of the proposed AdapTable, we perform a computational efficiency
comparison between test-time adaptation baselines and AdapTable in Figure 6. The averaged adapta-

18

Under review as a conference paper at ICLR 2024

Table 6: Number of total columns, number of numerical and categorical columns along with their
classes per datasets used.

Property HELOC ANES DIABETES READMISSION CMC MFEAT-PIXEL DNA

Columns 22 54 46 9 240 180
Numerical 20 8 12 2 240 0
Categorical 2 46 34 7 0 180
Classes 2 2 2 3 10 3

tion time is calculated by averaging adaptation time over all test instances in CMC dataset corrupted
by Gaussian noise. We find that the adaptation time of AdapTable ranks third among eight TTA
methods, by showcasing its computational tractability. Furthermore, we observe that our approach
requires significantly less adaptation time compared to TTA baselines such as TTT++ (Liu et al.,
2021), SAM (Foret et al., 2021), EATA (Niu et al., 2022), and SAR (Niu et al., 2023), despite
constructing shift-aware graph and incorporating a single forward pass for GNN with negligible
extra cost of adjusting output label estimation are required. This can be attributed to the fact that
the graph we generate places each column as a node, resulting in a graph of a very small scale –
typically ranging from tens to hundreds of nodes. This minimizes the cost of message passing in
GNN forward process, while other baselines iterate through multiple adaptation steps with forward
and backward processes, leading to increased computational expenses. Furthermore, we also provide
GNN post-training time of AdapTable under different scales, encompassing small-scale (CMC, MLP),
medium-scale (HELOC, FT-Transformer), and large-scale (DIABETES READMISSION, TabNet).
GNN post-training requires only a few seconds for small- and medium-scale settings, and notably, it
remains negligible, even in our largest experimental setting.

D.2 HYPERPARAMETER SENSITIVITY

To assess the robustness of AdapTable against hyperparameter configurations, we conduct an ex-
haustive hyperparameter sensitivity analysis covering all test-time parameters, including the smooth-
ing factor ↵, low uncertainty quantile qlow, and high uncertainty quantile qhigh. Specifically, in
our experiments utilizing MLP on HELOC dataset, we perform hyperparameter optimization
by varying one parameter while keeping the others fixed at the identified optimal setting, i.e.,
(↵, qlow, qhigh) = (0.1, 0.25, 0.75). Notably, as Figure 7 exhibits, our findings reveal that the adapta-
tion performance remains insensitive to alterations in all three types of hyperparameters, particularly
when varying qlow, demonstrating minimal performance fluctuations. Furthermore, for the smoothing
factor ↵ and high quantile qhigh, we pinpoint sweet spots at [0, 0.2] and [0.5, 0.6], respectively. This
observation underscores the adaptability of our approach, allowing flexible hyperparameter selection
and demonstrating generalizability across diverse test conditions. This stands in stark contrast to the
hyperparameter sensitivity exhibited by the tent, as depicted in Figure 8. Notably, regardless of an
extensive hyperparameter search in the tabular domain for the tent, the performance post-adaptation
fails to surpass the unadapted performance, as evidenced by our main table experiment results in
Table 2 and Table 3.

D.3 EFFICACY OF LABEL DISTRIBUTION HANDLER

Figure 9 analysis Jensen-Shannon Divergence value of each test batch between ground truth label
distribution and prediction, comparing before and after adaptation using label distribution handler
(LDH) for ANES (Studies, 2022) and DIABETES READMISSION (Clore et al., 2014) datasets,
further from Section 4.3. The figure consistently exhibits a decrease in divergence after adaptation,
which solidifies the efficacy of the label distribution handler 3.3.

E DATASET DETAILS

E.1 DATASETS

In our experiment, we verify our method across six different datasets. Among them, three datasets
(HELOC, ANES, and DIABETES READMISSION) include natural distribution shifts between training

19

Under review as a conference paper at ICLR 2024

and test data, while the other ones (CMC, MFEAT-PIXEL, and DNA) does not have such shifts,
and thus we synthetically inject noises (Section E.2) on them to mimic plausible distribution shift
scenarios. In our experiments, each dataset is partitioned as follows: 60% for training, 20% for
validation, and 20% for testing. For all datasets, the numerical features are normalized – subtraction
of mean and division by standard deviation, while categorical features are one-hot encoded. We find
that different encoding types do not play a significant role in terms of accuracy, as noted in (Grinsztajn
et al., 2022). Detailed specifications of each dataset are listed in Table 6

• HELOC: Home Equity Line of Credit (HELOC) (Brown et al., 2018) dataset is the dataset
to predict whether the applicant will repay their HELOC account within two years; which is
a line of credit typically offered by a bank as a percentage of home equity. Data is split with
respect to external risk estimation value; lower ones are used for test data.

• ANES: American National Election Studies (ANES) (Studies, 2022) provide classification
task of U.S. presidential election participation. Domain shift is given by the geographic
region of surveyees.

• DIABETES READMISSION: Diabetes Readmission (Clore et al., 2014) represents ten years
(1999-2008) of clinical care at 130 US hospitals and integrated delivery networks. Each row
concerns hospital records of patients diagnosed with diabetes, who underwent laboratory,
medications, and stayed up to 14 days. The goal is to determine the early readmission of the
patient within 30 days of discharge. Admission sources are different between train and test
data.

• CMC: Contraceptive Method Choice (CMC) is a subset of Contraceptive Prevalence Survey
conducted in Indonesia. The goal is to predict the current contraceptive method choice –
between no-use, long-term methods, or short-term methods, with respect to the woman’s
demographic and socio-economic characteristics. The train and test data were split with
respect to the most important column’s values. Since it contains both numerical and categor-
ical features, we obtained two different splits by selecting one most important column from
the numerical columns, and one from the categorical columns.

• MFEAT-PIXEL: Multiple Features Dataset – Pixel (MFEAT-PIXEL) is a handwritten digit
recognition dataset. Its goal is to classify handwritten numerals extracted from Dutch utility
maps. The input is digitized, and all the pixel values are in binary form, 0 corresponding to
black and 1 corresponding to white. The train and test data were split with respect to the
most important column’s values.

• DNA: Primate Splice-Junction Gene Sequences consist of splice junction of DNA, described
by 180 indicator variables. The goal is to recognize the 3 classes – 1. boundaries between
exons(retained after splicing), 2. introns(removed after splicing), or 3. none of the above.
The dataset stems from Irvine database, but with major differences including the processing
of symbolic variables representing the nucleotides, and the names of each example. The
train and test data were split with respect to the most important column’s values.

E.2 SYNTHETIC CORRUPTIONS

Let x = [x1, · · · , xD] be a single table row with D columns, where µi and �i denote the mean and
the standard deviation of the empirical marginal distribution of the i-th column calculated by the
training set. We inject four synthetic corruptions to mimic aleatoric uncertainty, and two natural-shift
oriented synthetic shifts to mimic natural distribution shifts.

• Gaussian Noise: For each column xi, we add a Gaussian noise ✏ with xi xi + ✏ · �i

independently, where ✏ ⇠ N (0, 0.12).
• Uniform Noise: For each column xi, we add a uniform noise ✏ with xi xi + ✏ · �i

independently, where ✏ ⇠ U(�0.1, 0.1).
• Random Missing: For each column xi, we mask and replace it by using a random mask
mi and a random sample x̄i with xi (1 � mi) · xi + mi · x̄i, where mi ⇠ Ber(0.2),
P (x̄i = k) =

Pns

i=j [xs
j,i=k]/ns for k 2 R. ns is the number of train instances, and xs

j,i

denotes the i-th column of the j-th train sample. We assume that we have knowledge of
which columns are missing.

20

Under review as a conference paper at ICLR 2024

• Random Column Missing: This is similar to the random missing corruption, except for the
fact that all test instances across multiple batches have the same common columns missing.
For each column xi, we mask and replace it with a random sample using a random mask
mi and a random sample x̄i with xi (1 � mi) · xi + mi · x̄i, where mi ⇠ Ber(0.2),
P (x̄i = k) =

Pns

i=j [xs
j,i=k]/ns for k 2 R. ns is the number of train instances, and xs

j,i

denotes the i-th column of the j-th train sample. We also assume that we have knowledge of
which columns are missing.

• Numerical Column Shift: This shift mimics natural domain shifts, we extract the most
important numerical column based on pre-trained XGBoost (Chen & Guestrin, 2016) and
sort all instances in the dataset according to the most important numerical column, and the
top 80% of the data is predominantly allocated to the training and validation sets, while the
lower 20% is primarily assigned to the test set.

• Categorical Column Shift: This shift also mimics natural domain shifts, we extract the
most important categorical column based on pre-trained XGBoost (Chen & Guestrin, 2016)
and split the train test dataset accordingly. Instances belonging to the category that is most
frequently represented within the top 80% are predominantly assigned to the training and
validation sets. Conversely, instances associated with the category that has the least frequent
occurrences within the lower 20% are mainly allocated to the test set.

F BASELINE DETAILS

F.1 SUPERVISED BASELINES

• K-NN: k-Nearest Neighbors (k-NN) is a widely used model in tabular learning, that measures
distance between data points using a chosen metric to identify its k-nearest neighbors, and
makes predictions through majority voting for classification, or weighted averaging for
regression. k is a user-defined hyperparameter, influencing the sensitivity of the model.

• LR: Logistic Regression (LR) is a linear classification algorithm for tabular data that
models the probability of an instance belonging to a particular class. Using a logistic
function to squash the linear combination of input features into a range of [0, 1]. With the
appropriate regularization techniques, it has shown its capability to be comparable with
SOTA architectures in the tabular domain.

• RF: Random Forest (RF) is an ensemble learning (bagging) algorithm that constructs
multiple decision trees to enhance accuracy and mitigate overfitting. It excels in handling
non-linear patterns, providing high accuracy and robustness against outliers.

• XGBOOST: Extreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016) is an ensemble
learning (boosting) algorithm building a sequence of weak learners, usually decision trees,
to correct errors of the previous model. It stands out for its high predictive performance,
ability to handle complex relationships and regularization features.

• CATBOOST: CatBoost (Dorogush et al., 2017), similar to XGBoost, is a boosting ensem-
ble algorithm. It efficiently handles categorical features without extensive pre-processing,
making it advantageous for real-world datasets. Its benefits include high performance, but it
comes at a computational cost. Additionally, parameter tuning may be necessary for optimal
results.

F.2 DEEP TABULAR LEARNING ARCHITECTURES

• MLP: Multi-layer perceptron (MLP) (Murtagh, 1991): is a foundational deep learning
architecture characterized by multiple layers of interconnected nodes, where each node
applies a non-linear activation function to a weighted sum of its inputs. In the tabular
domain, MLP is often employed as a default deep learning model, with each input feature
corresponding to a node in the input layer.

• TabNet: TabNet (Arik & Pfister, 2021) introduces a unique blend of decision trees and neural
networks. It utilizes an attention mechanism to selectively focus on informative features at
each decision step, making it particularly well-suited for handling tabular data with a mix of
categorical and continuous features.

21

Under review as a conference paper at ICLR 2024

Table 7: Hyperparameter search space of supervised baselines. # Neighbors denotes the number of
neighbors, # Estim denotes the number of estimators, Dep th denotes the maximum depth, and LR
denotes the learning rate, respectively.

Baseline Search Space

K-NN # Neighbors: {2 - 12}
RF # Estim: {50 - 200}, Depth: {2 - 12}
XGBOOST # Estim: {50 - 200}, Depth: {2 - 12}, LR: {0.01 - 1}, Gamma: {0 - 0.5}
CATBOOST # Estim: {50 - 200}, Depth: {5 - 40}

• FT-Transformer: FT-Transformer (Gorishniy et al., 2021), short for feature tokenizer along
with Transformer (Vaswani et al., 2017), represents a straightforward modification of the
Transformer architecture tailored for tabular data. In this model, the feature tokenizer
component plays a crucial role by converting all features, whether categorical or numerical,
into tokens. Subsequently, a series of Transformer layers are applied to these tokens within
the Transformer component, along with the added [CLS] token. The ultimate representation
of the [CLS] token in the final Transformer layer is then utilized for the prediction.

F.3 TEST-TIME ADAPTATION BASELINES

• PL: Pseudo-labeling (PL) (Lee, 2013) uses a pseudo-labeling strategy to update the model
weights during test-time.

• TTT++: Test-time training (TTT++) (Liu et al., 2021) tries to mitigate deterioration of
test-time adaptation performance through feature alignment strategies, regularizing the
adaptation, without the need to re-access source data.

• TENT: Test entropy minimization (Tent) (Wang et al., 2021a) updates the scale and bias
parameters within the batch normalization layer with entropy minimization during test-time,
with a given test batch.

• SAM: Sharpness-aware minimization (SAM) (Foret et al., 2021) although not a method
devised for test-time adaptation, has shown its effectiveness combined with TENT through
updating parameters that lie in neighborhoods having uniformly low loss.

• EATA: Efficient Anti-forgetting Test-time Adaptation (EATA) (Niu et al., 2022) points
out that samples with high entropy may lead to unreliable gradients that disrupt the model.
EATA filters these high-entropy samples along with utilizing a fisher regularizer to constrain
important model parameters during adaptation.

• SAR: Sharpness-aware and reliable optimization (SAR) (Niu et al., 2023) improves upon
SAM, armed with the observation – samples with large entropy leads to model collapse
during test-time, and filters the samples for adaptation with a pre-defined threshold.

• LAME: Laplacian adjusted maximum-likelihood estimation (LAME) (Boudiaf et al., 2022)
is a new approach towards test-time adaptation, adapting without parameter optimization,
but only corrects the output probabilities of a classifier rather than tweaking the model’s
inner parameters.

G HYPERPARAMETER DETAILS

G.1 SUPERVISED BASELINES

For k-nearest neighbors (K-NN), logistic regression (LR), random forest (RF), XGBOOST (Chen &
Guestrin, 2016), and CATBOOST (Dorogush et al., 2017), optimal parameters are searched for each
datasets using random search of 100 iterations, for each dataset. The search space for each method is
specified in Table 7.

22

Under review as a conference paper at ICLR 2024

Table 8: Hyperparameter search space of test-time adaptation baselines. Here, we only denote the
common hyperparameters, where method specific hyperparameters are specified in Section G.2.

Hyperparameter Search Space

Learning Rate {1e-3, 1e-4, 1e-5, 1e-6}
Adaptation Steps {1, 5, 10, 15, 20}
Episodic {True, False}

Table 9: Selected hyperparameters of test-time adaptation baselines. In this table we only denote the
common hyperparameters, where method specific hyperparameters are specified in text.

Baseline Learning Rate Adaptation Steps Episodic

PL 1e-4 1 True
TTT++ 1e-5 10 True
TENT 1e-4 1 True
SAM 1e-3 1 True
EATA 1e-5 10 True
SAR 1e-3 1 True
LAME N/A N/A N/A

G.2 TEST-TIME ADAPTATION BASELINES

Entropy minimization-based methods, namely TENT Wang et al. (2021a), SAM Foret et al. (2021),
and SAR Niu et al. (2023), require 2 main hyperparameters – learning rate, number of adaptation steps
per batch, and whether to reset the model after batch (i.e., episodic adaptation). Additionally, SAR Niu
et al. (2023) requires a threshold hyperparameter to filter samples with high entropy. For TENT, we
set the learning rate as 0.0001 with 1 adaptation step and episodic update. For SAM Foret et al. (2021)
and SAR Niu et al. (2023), the learning rate is 0.001 with 1 adaptation step and episodic update. For
PL Lee (2013), we set the learning rate as 0.0001 with 1 adaptation step and episodic updates. For
TTT++ (Liu et al., 2021), EATA (Niu et al., 2022) and LAME (Boudiaf et al., 2022), we find that the
author’s hyperparameter choices are optimal, as specified in their paper and official code, except for
their learning rate and adaptation steps. For TTT++ (Liu et al., 2021) and EATA (Niu et al., 2022), the
learning rate is set to 0.00001 with 10 adaptation steps per batch and episodic updates. LAME Boudiaf
et al. (2022) only corrects the output logits, thus not requiring hyperparameters related to gradient
updates. For all previous baselines, we find that their hyperparameter choice did not vary across
different architectures, namely MLP, TabNet (Arik & Pfister, 2021) and FT-Transformer (Gorishniy
et al., 2021). As noted in the main paper, all hyperparameters for the corresponding method and
backbone architecture pair are tuned with respect to numerical shift on CMC dataset from OpenML-
CC18 (Bischl et al., 2021). An overview of the hyperparameter search space, along with selected
hyperparameters of each method is provided in Table 8 and Table 9, respectively.

G.3 ADAPTABLE

AdapTable requires three important hyperparameters: smoothing factor ↵, and low/high uncertainty
quantiles qlow/qhigh. The parameters for each backbone architecture are described in Table 10.

H LIMITATIONS AND BROADER IMPACTS

H.1 LIMITATIONS

Similar to other test-time training (TTT) methods, AdapTable incorporates an additional training
procedure during the source model’s training phase. This contrasts with fully test-time adaptation
methods, which refrain from making assumptions during test-time execution. Specifically, AdapTable
necessitates an extra post-training step for shift-aware uncertainty calibrator to adjust the model’s
predictions. While fully test-time adaptation methods, such as SAR (Niu et al., 2023), are applicable,

23

Under review as a conference paper at ICLR 2024

Table 10: Selected hyperparameters of AdapTable. Three major hyperparameters – smoothing factor
↵, low quantile qlow, high quantile qhigh are specified below per architecture. The hyperparameters
were fixed throughout datasets.

Architecture ↵ qlow qhigh

MLP 0.1 0.25 0.75
TabNet 0.0 0.25 0.9
FT-Transformer 0.0 0.25 0.9

their performance improvements in the tabular domain are limited, often failing to address certain co-
variate/label shifts, as evidenced in our evaluations. AdapTable demonstrates substantial performance
gains in the majority of evaluation scenarios, although occasional shortcomings persist in specific
datasets and model specifications.

H.2 BROADER IMPACTS

Our research represents an initial effort to address the challenge of domain shift, a significant
impediment in the practical deployment of machine learning models for tabular data. Despite the
prevalence of tabular data in industrial applications, investigations into domain adaptation specific
to this data type have been comparatively limited, especially when contrasted with domains such as
computer vision, natural language processing, and speech processing.

Through comprehensive examinations, we have identified that the straightforward application of
TTA methodologies from other domains, particularly those relying on entropy minimization, which
currently constitutes the most prevalent form of TTA, encounters substantial challenges in the context
of tabular data. Notably, these challenges arise from the high uncertainty of prediction entropy for
tabular data, potentially leading to model collapse, as exemplified in SAR (Niu et al., 2023), and
the inadequacy of the cluster assumption within the latent space of models trained on tabular data.
Moreover, most TTA methodologies are tailored exclusively to deep learning models, an assumption
often overlooked in domains where deep learning models have surpassed traditional machine learning
approaches. However, this assumption cannot be dismissed in the tabular domain, where classical
machine learning methods, such as decision trees, form a competitive baseline.

In contrast, AdapTable, by refining only the output probabilities and circumventing noisy backpropa-
gation from high-entropy-prone data, avoids failure. Additionally, our novel shift-aware uncertainty
calibrator leverages the heterogeneous characteristics of columns, enabling our method to effectively
address domain shift. We posit that our work empowers future researchers to adeptly confront the
crucial challenge of mitigating domain shift in tabular data – an arena where the application of prior
methods from other domains is not straightforward due to the aforementioned issues.

24

Under review as a conference paper at ICLR 2024

Figure 10: Entropy distribution histograms for test instances across six different datasets and three
representative deep tabular learning architectures.

25

Under review as a conference paper at ICLR 2024

Figure 11: Latent space visualizations for test instances using t-SNE across six different datasets and
three representative deep tabular learning architectures.

26

Under review as a conference paper at ICLR 2024

Figure 12: Reliability diagrams for test instances across six different datasets and three representative
deep tabular learning architectures.

27

	Introduction
	Design Principles on Test-Time Adaptation for Tabular Data
	Failure of Existing Test-Time Adaptation Methods on Tabular Data
	Label Distribution Shift and Class Imbalance Problem

	AdapTable
	Test-Time Adaptation Setup for Tabular Data
	Shift-Aware Uncertainty Calibrator
	Label Distribution Handler

	Experiments
	Experimental Setup
	Main Results
	Further Analysis

	Conclusion
	Table des annexes
	Related Works
	Additional Observations
	Entropy Distributions
	Latent Space Visualizations
	Reliability Diagrams

	Detailed Algorithm of AdapTable
	Further Experiments
	Computational Efficiency
	Hyperparameter Sensitivity
	Efficacy of Label Distribution Handler

	Dataset Details
	Datasets
	Synthetic Corruptions

	Baseline Details
	Supervised Baselines
	Deep Tabular Learning Architectures
	Test-Time Adaptation Baselines

	Hyperparameter Details
	Supervised Baselines
	Test-Time Adaptation Baselines
	AdapTable

	Limitations and Broader Impacts
	Limitations
	Broader Impacts

