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A Graphical Models

(a) VAE (b) MONET (c) IODINE (d) GENESIS (e) GENESIS-V2

Figure 7: Graphical model of GENESIS-V2 compared to a standard VAE [37, 38], MONET [16],
IODINE [22], and GENESIS [17]. N denotes the number of refinement iterations in IODINE. GENESIS
and GENESIS-V2 capture correlations between object slots with an autoregressive prior.

B GENESIS-V2 Architecture Details

The GENESIS-V2 architecture consists of four main components: a deterministic backbone, the
attention and object pooling module, the component decoders, and an optional autoregressive prior
which are described in detail below.

Backbone GENESIS-V2 uses a UNet [62] encoder similar to the attention network in the re-
implementation of MONET in Engelcke et al. [17] with [64, 64, 128, 128, 128] filters in the encoder
and the reverse in the decoder. Each convolutional block decreases or increases the spatial resolution
by a factor of two and there are two hidden layers with 128 units each in between the encoder and the
decoder. The only difference to the UNet implementation in Engelcke et al. [17] is that the instance
normalisation (IN) layers [63] are replaced with group normalisation (GN) layers [64] to preserve
contrast information. The number of groups is set to eight in all such layers which is also referred to
as a GN8 layer. The output of this backbone encoder is a feature map e ∈ RH×W×De with De = 64
output channels and spatial dimensions that are equal to the height and width of the input image.

Attention and Object Pooling Following feature extraction, an attention head computes pixel-
wise semi-convolutional embeddings ζ with eight channels, i.e. Dζ = 8, as in Novotny et al. [40].
The attention head consists of a 3 × 3 Conv-GN8-ReLU block with 64 filters and a 1 × 1 semi-
convolutional layer. The pixel embeddings are clustered into K attention masks m1:K using the
IC-SBP. A Gaussian kernel ψG is used unless noted otherwise. A feature head consisting of a 3× 3
Conv-GN8-ReLU block with 64 filters and a 1× 1 convolution with 128 filters refines the encoder
output e to obtain a new feature map f ∈ RH×W×Df with Df = 128. Similar to Locatello et al.
[24], the attention masks m1:K are used to pool feature vectors from the feature map by multiplying
the feature map with an individual attention mask and summing across the spatial dimensions. Each
pooled feature vector is normalised by dividing by the sum of the attention mask values plus a small
epsilon value to avoid numerical instabilities. Finally, a posterior head uses layer normalisation
[65] followed by a fully-connected ReLU block with 128 units and a second fully-connected layer
to compute the sufficient statistics of the individual object latents z1:K with zk ∈ R64 from pooled
feature vector.

Component Decoders Following Greff et al. [22] and Locatello et al. [24], the object latents are
decoded by separate decoders with shared weights to parameterise the sufficient statistics of the
SGMM in Equation (1). Each decoded component has four channels per pixel. The first three
channels contain the RGB values and the fourth channel contains the unnormalised segmentation
logits which are normalised across scene components using a softmax operator. Again following
Locatello et al. [24], the first layer is a spatial broadcasting module as introduced in Watters et al. [66]
which is designed to facilitate the disentanglement of the independent factors of variation in a dataset.
An additional advantage of spatial broadcasting is that it requires a smaller number of parameters
than a fully-connected layer when upsampling a feature vector to a specific spatial resolution. The
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spatial broadcasting module is followed by four 5× 5, stride-2 deconvolutional GN8-ReLU layers
with 64 filters to retrieve the full image resolution before a final 1× 1 convolution which computes
the four output channels. The use of stride-2 deconvolutional layers should make the GENESIS-V2
decoder more flexible compared to the counterparts used in MONET-G and GENESIS, which broadcast
higher resolution and use stride-1 convolutions for decoding (see also [18].

Autoregressive Prior Identical to GENESIS [17], the autoregressive prior for scene generation is
implemented as an LSTM [67] followed by a fully-connected linear layer with 256 units to infer the
sufficient statistics of the prior distribution for each component.

C Kernel Initialisation

Assume a maximum of K scene components to be present in an image and that model is initialised
so that the pixel embeddings are equal to the relative pixel coordinates with the other dimensions
being zero at the beginning of training. For each initial mask to cover approximately the same area
of an image, further assume that the circular isocontours of the kernels are packed into an image in
a square fashion. Using linear relative pixel coordinates in [−1, 1] and dividing an image into K
equally sized squares, each square has a side-length of 2/

√
K. Let the mask value decrease to 0.5 at

the intersection of the square and the circular isocontour, i.e., at a distance of 1/
√
K from the centre

of the kernel as illustrated in Figure 8. Solving this for each kernel in Equation (3) leads to

ψ
(
0, 1/
√
K
)
= 0.5 ⇐⇒ σ−1G = K ln 2, σ−1L =

√
K ln 2, σ−1E = K/2 . (8)

Examples of the initial masks obtained when running the IC-SBP with the proposed initialisations
are illustrated in Figure 9.

Figure 8: Illustration of packing K = 4 cir-
cular kernels into a square image and linear
relative pixel coordinates in [−1, 1], resulting
in circular isocontours of radius 1/

√
K.
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(a) Gaussian kernel - ψG
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(b) Laplacian kernel - ψL
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(c) Epanechnikov kernel - ψE

Figure 9: Initial masks obtained when run-
ning the IC-SBP with different randomly sam-
pled seed scores, using the initialisations in
Equation (8) and K = 7.

D Datasets

We evaluate GENESIS-V2 on simulated images from ObjectsRoom [44] and ShapeStacks [45] as
well as real-world images from Sketchy [46] and APC [47]. ObjectsRoom and ShapeStacks are
well established in the context of this work and we follow the same preprocessing procedures as
used in Engelcke et al. [17] and Engelcke et al. [18]. As in these works, the default number of
object slots is set to K = 7 and K = 9 for ObjectsRoom and ShapeStacks, respectively, across all
models. This work is the first to train and evaluate models that aim to learn object representations
without supervision on Sketchy and APC. We therefore developed our own preprocessing and
training/validation/test splits, which are described in detail below. The exact splits that were used
will be released along with the code for reproducibility.
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Sketchy The Sketchy dataset [46] is designed for off-policy reinforcement learning (RL), providing
episodes showing a robotic arm performing different tasks that involve three differently coloured
shapes (blue, red, green) or a cloth. The dataset includes camera images from several viewpoints,
depth images, manipulator joint information, rewards, and other meta-data. The dataset is quite
considerable in size and takes about 5TB of storage in total. We ease the computational and storage
demands by only using a subset of this dataset. Specifically, we use the high-quality demonstrations
from the “lift-green” and “stack-green-on-red” tasks corresponding to a total of 395 episodes, 10%
of which are set aside as validation and test sets each. Sketchy also contains episodes from a task
that involves lifting a cloth and an even larger number of lower-quality demonstrations that offer a
wider coverage of the state space. We restrict ourselves to the high-quality episodes that involve the
manipulation of solid objects. The number of high-quality episodes alone is already considerable
and we want to evaluate whether the models can separate multiple foreground objects. From these
episodes, we use the images from the front-left and front-right cameras which show the arm and the
foreground objects without obstruction.

The raw images have a resolution of 600-by-960 pixels. To remove uninteresting pixels belonging to
the background, 144 pixels on the left and right are cropped away for both camera views, the top
71 and bottom 81 pixels are cropped away for the front-left view, and the top 91 and bottom 61 are
cropped away for the front-right view, resulting in a 448-by-672 crop. From this 448-by-672 crop,
seven square crops are extracted to obtain a variety of views for the models to learn from. The first
crop corresponds to the centre 448-by-448 pixels. For the other six crops, the top and bottom left,
centre, and right squares of size 352 are extracted. Finally, we resize these crops to a resolution of
128-by-128 to reduce the computational demands of training the models. This leads to a total of
337,498 training; 41,426 validation; and 41,426 test images. Examples of images obtained with this
preprocessing procedure are shown in Figure 10. The default number of object slots is set to K = 10
across all models to give them sufficient flexibility to discover different types of solutions.

(a) Front-left camera

(b) Front-left camera

Figure 10: 128-by-128 crops as used for training, extracted from the front-left and front-right cameras
of a single image from the Sketchy dataset [46]. Showing from left to right: centre, top-left, top-centre,
top-right, bottom-left, bottom-centre, and bottom-right crops.

APC For their entry to the 2016 Amazon Picking Challenge (APC), the MIT-Princeton team created
and released an object segmentation training set, showing a single challenge object either on a shelf
or in a tray [47]. The raw images are first resized so that the shorter image side has a length of 128
pixels. The centre 128-by-128 pixels are then extracted to remove uninteresting pixels belonging to
the background. Example images after processing are shown in Figure 11. For each object, there
exists a set of scenes showing the object in different poses on both the shelf and in the red tray. For
each scene, there are images taken from different camera viewpoints. We select 10% of the scenes at
random to be set aside for validation and testing each so that scenes between the training, validation,
and test sets do not overlap. The resulting training, validation, and test sets consist of 109,281; 13,644;
and 13,650 images, respectively. As for Sketchy, the default number of object slots is set to K = 10
to provide enough flexibility for models to discover different types of solutions.
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(a) Images

(b) Ground truth segmentation masks

Figure 11: Examples from the APC dataset [47] after cropping and resizing.

E Training Details

Models apart from SLOT-ATTENTION are trained with the protocol from Engelcke et al. [17] for
comparability, which minimises the GECO objective [56] using the Adam optimiser [68], a learning
rate of 10−4, a batch size of 32, and 500,000 training iterations. The Gaussian standard deviation σx
in Equation (1) is set to 0.7 and GECO reconstruction goal is set to a negative log-likelihood value
per pixel and per channel of 0.5655 for the simulated datasets and the APC dataset. For Sketchy,
a GECO goal of 0.5645 was found to lead to better segmentations and was used instead. As in
Engelcke et al. [17], the GECO hyperparameters are set to αg = 0.99, η = 10−5 when C ≤ E
and η = 10−4 otherwise. βg is initialised to 1.0 and clamped to a minimum value of 10−10. For
experiments with the auxiliary mask consistency loss in Equation (7), we found that an initial high
weighting of the mask loss inhibits the learning of good segmentations, so in these experiments βg is
initialised to 10−10 instead. We refer to MONET trained with GECO as MONET-G to avoid conflating
the results with the original settings from Burgess et al. [16]. SLOT-ATTENTION is trained using
the official reference implementation with default hyperparameters. Training on 64-by-64 images
from ObjectsRoom and ShapeStacks takes around two days with a single NVIDIA Titan RTX GPU.
Similarly, training on 128-by-128 images from Sketchy and APC takes around eight days.

F Additional results

Table 6 shows a set of ablations for GENESIS-V2 in terms of segmentation performance. A first set of
experiments is conducted with an independent prior, the three different distance kernels described
in Section 3.2, and semi-convolutional embeddings. The Gaussian kernel appears to perform most
robustly and is therefore selected for all other experiments. A second set of experiments is conducted
in which models are trained with an auto-regressive prior and either with a semi-convolutional or a
standard convolutional output layer for obtaining pixel embeddings. Both the auto-regressive prior
and the semi-convolutional operation improve segmentation performance.

Table 6: GENESIS-V2 ablations showing means and standard deviations from three seeds. Highlight-
ing follows an analogous scheme as in Table 1.

ObjectsRoom ShapeStacks

Auto-reg. prior Kernel Semi-conv. ARI-FG MSC-FG ARI-FG MSC-FG

No ψG Yes 0.79±0.01 0.47±0.17 0.79±0.01 0.67±0.00
No ψL Yes 0.74±0.08 0.48±0.20 0.79±0.01 0.67±0.01
No ψE Yes 0.78±0.01 0.34±0.08 0.78±0.01 0.66±0.01

Yes ψG Yes 0.84±0.01 0.58±0.03 0.81±0.00 0.68±0.01
Yes ψG No 0.79±0.05 0.59±0.02 0.60±0.38 0.56±0.21
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(e) GENESIS-V2

Figure 12: ObjectsRoom reconstructions and segmentations.
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(b) First random seed
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(c) Second random seed
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(d) Third random seed

Figure 13: Applying GENESIS-V2 several times to the same images from the ObjectsRoom dataset
with three different random seeds shows that the model produces similar reconstructions and seg-
mentations for each seed, but foreground objects are allocated to different slots as indicated by the
segmentation colours.
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(e) GENESIS-V2

Figure 14: ShapeStacks reconstructions and segmentations.
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(d) Third random seed

Figure 15: Applying GENESIS-V2 several times to the same images from the ShapeStacks dataset with
three different random seeds shows that the model produces similar reconstructions and segmentations
for each seed, but components are allocated to different slots as indicated by the segmentation colours.
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(e) GENESIS-V2

Figure 16: Sketchy reconstructions and segmentations.
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(e) GENESIS-V2

Figure 17: APC reconstructions and segmentations.
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(a) MONET-G

(b) GENESIS

(c) GENESIS-V2

Figure 18: Sketchy samples.

(a) MONET-G

(b) GENESIS

(c) GENESIS-V2

Figure 19: APC samples.
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G Potential Negative Societal Impacts

GENESIS-V2 is a generative model. Generative models can potentially be used spread disinfor-
mation by generating synthetic images for manipulative purposes. At this point in time, however,
GENESIS-V2 is only able to generate plausible images when training on simulated images with
limited visual complexity. A direct application of this method for malicious purposes is therefore
unlikely.

H Third-Party Assets

GENESIS-V2 is implemented using PyTorch [69]. In addition to various Python packages, we make
use of several third-party assets:

• Kabra et al. [44] (Apache-2.0 License): ObjectsRoom dataset,
• Groth et al. [45] (GPL-3.0 License): ShapeStacks dataset,
• Cabi et al. [46] (Apache-2.0 License): Sketchy dataset,
• Zeng et al. [47] (BSD-2-Clause License): APC dataset,
• Engelcke et al. [17, 18] (GPL-3.0 License): Implementation of GENESIS and MONET-G,
• Locatello et al. [24] (Apache-2.0 License): Implementation of SLOT-ATTENTION,
• Seitzer [60] (Apache-2.0 License): FID computation in PyTorch.

The datasets are publicly available under open-source licenses and consent was therefore not explicitly
requested. To the best of our knowledge, none of the datasets contain personally identifiable
information or offensive content.
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