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Abstract

Single-index models are a class of functions given by an unknown univariate
“link” function applied to an unknown one-dimensional projection of the input.
These models are particularly relevant in high dimension, when the data might
present low-dimensional structure that learning algorithms should adapt to. While
several statistical aspects of this model, such as the sample complexity of recov-
ering the relevant (one-dimensional) subspace, are well-understood, they rely on
tailored algorithms that exploit the specific structure of the target function. In this
work, we introduce a natural class of shallow neural networks and study its ability
to learn single-index models via gradient flow. More precisely, we consider shal-
low networks in which biases of the neurons are frozen at random initialization.
We show that the corresponding optimization landscape is benign, which in turn
leads to generalization guarantees that match the near-optimal sample complexity
of dedicated semi-parametric methods.

1 Introduction

High-dimensional learning with both computational and statistical guarantees, which is particularly
relevant given the current scaling trends, remains an outstanding challenge. One important question
which has received considerable attention is on understanding the advantages of using non-linear
learning models, such as neural networks, over more mature (from a theoretical standpoint) coun-
terparts, such as kernel methods [56, 57, 84, 22]. Perhaps surprisingly, the question remains largely
open even for shallow neural networks.

While approximation benefits of shallow neural networks over non-adaptive kernels have been
known for decades [9, 69], another important piece of the theoretical puzzle was provided by [5],
whose analysis hinted at an inherent statistical advantage of neural networks for extracting infor-
mation from high-dimensional data with a “hidden” low-dimensional structure. Providing computa-
tional guarantees, the remaining piece of this puzzle, is still mostly unresolved.

Several computational hardness results for learning functions that can be efficiently approximated
by shallow neural networks have been established in the literature [30, 41, 28, 78, 20], ruling out
positive results in the general setting. On the other hand, progress has been made on the positive
side [1, 2, 73] by focusing on function classes with strong structural properties, thereby showcasing
the adaptive representation learning capabilities of neural networks.

This work aligns with the latter effort, and focuses on the class of single-index models. Single-
index models are high-dimensional functions F : Rd → R of the form F∗(x) = f∗(⟨θ∗, x⟩),
where both the univariate “link” function f∗ : R → R and relevant (one-dimensional) subspace
θ∗ ∈ Sd−1 are unknown. These models have been extensively studied in the statistics literature [45,
48, 26, 46, 33], leading to dedicated algorithmic procedures, and can be provably approximated with
shallow neural networks without incurring in a curse-of-dimensionality [5]. In contrast, the analysis
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of neural network learning using gradient-based methods has focused on the so-called “Teacher-
Student” setup [43, 39, 85, 86, 10], where the link function f∗ is assumed to be known and used as
the activation function for the student.

The mix of a high-dimensional parametric component (the hidden direction) with a non-parametric
one in low dimension (the link function) in single-index models naturally suggests a shallow neu-
ral network architecture where the inner weights are shared and “active”, while the biases are
“lazy” [23]. We instantiate such an architecture by freezing the biases at random initialization,
and analyze gradient descent on the free parameters in the continuous-time limit.

Our main results establish that as soon as the width N of the network is larger than a quantity
which depends solely on smoothness properties of the (univariate) link function f∗, gradient flow
recovers the unknown direction θ∗ with near optimal sample complexity O(ds), where s is the so-
called information-exponent of the link function [10] (at least when s ≥ 3, see Theorem 6.1 for the
formal result), and approximates the univariate link function f∗ near-optimally (see Corollary 6.4).
The information exponent roughly captures the signal strength, which here refers to the alignment
between the network direction θ and the hidden direction θ∗, at typical initializations.

The success of gradient flow relies on the benign optimization landscape of the empirical loss,
though the presence of degenerate saddles necessitates a careful analysis leveraging uniform con-
vergence of the empirical landscape [60, 35]. We show that gradient flow over our proposed neural
network architecture solves two distinct problems—univariate non-parametric kernel ridge regres-
sion and non-convex optimization in high dimension—simultaneously and efficiently, cementing its
role as a versatile algorithm for high-dimensional learning. We illustrate our theoretical results with
experiments in Section A.

2 Related Work

Single-index and multi-index models. A useful modeling assumption in high-dimensional re-
gression is that the regression function F (x) = E[y|x] only depends on one or a few direc-
tions. This leads to the single-index model F (x) = f∗(⟨θ∗, x⟩), and multi-index model F (x) =
f∗(⟨θ∗1 , x⟩, . . . , ⟨θ∗k, x⟩), with k typically much smaller than the dimension. Such models have a
long history in the statistics literature and different methods exist for various estimation problems,
including projection pursuit [36, 47], slicing [52], gradient-based estimators [53], and moment-based
estimators [26]. When the function f∗ is also to be estimated, we face a semi-parametric problem
involving parameter recovery of θ∗ and non-parametric estimation of f∗. Our work is closely re-
lated to [33], which also characterizes the population landscape of certain objectives by leveraging
Gaussian data. Multi-index models are also studied in [5] in the context of shallow neural net-
works, where it is shown that certain models of infinite-width shallow networks can adapt to such
low-dimensional structure, though no tractable algorithms are introduced.

The works [8, 19, 66] show that certain neural networks trained close to initialization can learn
certain sparse polynomials which take the form of multi-index models, but such networks do not
directly aim to learn target directions. Recently, [1] studied the learnability of functions on the
hypercube by shallow neural networks with stochastic gradient descent and introduces the merged
staircase property, which provides necessary and sufficient conditions for learnability with linear
sample complexity n = O(d). While they learn a broader class of functions (including multi-index
model) for a more efficient sample complexity regime (O(d) vs O(ds)), their setup is restricted to
simple discrete data distributions, while our work captures the regime of semi-parametric estima-
tion by considering Gaussian data without the sparsity requirements on F implied by their merged
staircase property.

Concurrently to our work, [4] and [27] studied the learnability of certain single and multi-index mod-
els on Gaussian data with shallow networks, by performing a single gradient step on the first layer
before fitting the second layer. While the single step is sufficient to provide a separation from kernel
methods in these works, we show that optimizing both layers jointly until convergence (for a more
simplistic architecture) can significantly improve the rates, by fully decoupling the non-parametric
learning part from the high-dimensional inference of the hidden direction. Finally, recently [64]
studied the ability of shallow neural networks to learn certain single and multi-index models, show-
ing in particular that SGD-trained ReLU networks can learn single-index functions with monotonic
index function (corresponding in our setting to s = 1) with linear (up to logarithmic factors) sam-
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ple complexity. Our results therefore extend such positive guarantees to a broader class of index
functions with arbitrary information exponent.

Teacher–student models. In the context of neural networks, several works have considered the
teacher–student setting [34], where the target function F takes the form of a neural network with the
same activation as the network used for learning [43, 39, 85, 77, 86, 10, 82]. In this case the problem
does not involve non-parametric estimation as in our setup, but this line of work often involves
studying optimization landscapes similar to ours for estimating hidden directions. In particular,
the population landscape appearing in [10] is similar to ours, based on Hermite coefficients of link
functions. The follow-up work [11] extends this to multiple student neuron directions, but still
focuses on parametric rather than non-parametric statistical problems.

Kernels and random features. In order to obtain non-parametric estimation guarantees for learn-
ing the target function f∗ of the single-index model, our work builds on the kernel methods literature
for approximation and non-parametric regression [76, 13, 7], their links with neural networks [24, 5],
and in particular on random feature approximation [70, 6, 72, 61].

Non-convex and non-smooth optimization landscapes. There is a vast literature studying
tractable non-convex optimization landscapes, arising from high-dimensional statistics and statis-
tical physics [59, 58, 37, 12, 79, 17, 39, 71, 55]. A particular aspect of our setup is that the opti-
mization landscape does not have the strict saddle property, which is often leveraged to establish
global convergence [50]. [60, 35] study concentration properties of the empirical landscape to the
population one for non-convex problems including generalized linear models. Our results rely on
similar concentration analyses, but depart from these previous work by also allowing optimization
of the link function, and by supporting the non-smoothness arising from ReLU activations. On the
algorithmic side, we consider gradient flows on non-convex and non-smooth landscapes, which re-
quire careful technical treatment, but have been studied by previous works [32, 29, 49]. We refer the
interested reader to Appendix F for more details on this technical issue.

3 Preliminaries

We focus on regression problems under a single-index model with Gaussian input data. Specifically,
we assume d-dimensional inputs x ∼ γd := N (0, Id), and labels

y = F ∗(x) + ξ = f∗(⟨θ∗, x⟩) + ξ ,

where θ∗ ∈ Sd−1 and ξ ∼ N (0, σ2) is an independent, additive Gaussian noise. The normalization
θ∗ ∈ Sd−1 is to ensure that both f∗ and θ∗ are identifiable.

Shallow networks and random features. We consider learning algorithms based on shallow neu-
ral networks of the form

G(x; c, θ) = c⊤Φ(⟨θ, x⟩) = 1√
N

N∑
i=1

ciϕ(εi⟨θ, x⟩ − bi) ,

with θ ∈ Sd−1, where ϕ(u) = max{0, u} is the ReLU activation, bi ∼ N (0, τ2) (we assume τ >
1) are random “bias” scalars that are frozen throughout training, and εi are random signs with
Rademacher distribution (i.e., uniform over {±1}), independent from bi, and also frozen during
training. The resulting vector of random features is thus Φ(u) = 1√

N
(ϕ(εiu− bi))i∈[N ].

The choice of ReLU activation is motivated by its popularity among practitioners. As we shall
see, the fact that ϕ is non-smooth introduces some technical challenges, but its piece-wise linear
structure enables dedicated arguments both in terms of approximation as well as in the study of the
optimization landscape. In Appendix G we discuss how our main results are affected when replacing
the ReLU by a smooth activation, especially when choosing it such that ϕ′ is Lipschitz.

Empirical risk minimization. The supervised learning task is to estimate F ∗ (and therefore both
f∗ and θ∗) from samples {(xi, yi)}i=1...n. We will focus on mean-squared error with Tychonov
regularisation, determined by the following losses.
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Definition 3.1 (Population risk). We define the ℓ2-regularized population loss by

L(c, θ) = E
x,y

[(y −G(x; c, θ))2] + λ∥c∥2 = E
x∼γd

[(F ∗(x)−G(x; c, θ))2] + σ2 + λ∥c∥2 .

Definition 3.2 (Empirical risk). We define the ℓ2-regularized empirical loss by

Ln(c, θ) =
1

n

n∑
i=1

(
c⊤Φ(⟨θ, xi⟩)− yi

)2
+ λ∥c∥2 . (1)

Hermite decomposition. Given that our data is normally distributed, we consider the family
of (normalized) Hermite polynomials {hj}j∈N, which form an orthonormal basis of L2(γ), the
space of squared-integrable function under the Gaussian measure γ := N (0, 1). We will denote
by f∗ =

∑
j αjhj the Hermite decomposition of the target link function, which we assume is in

L2(γ) henceforth.

We apply the following useful properties of Hermite polynomials [67, Chapter 11.2]:

h′j =
√
jhj−1 and ⟨hj(⟨θ, ·⟩), hj′(⟨θ′, ·⟩)⟩γd = δj,j′⟨θ, θ′⟩j ,

where ⟨·, ·⟩γd is the inner product in L2(γd) and δ the Kronecker delta. We will assume throughout
that ∥f∗∥2γ =

∑
j α

2
j , ∥f ′∗∥2γ =

∑
j jα

2
j , and ∥f ′′∗ ∥2γ =

∑
j j(j − 1)α2

j are all finite (see As-
sumption 5.2). We will also consider the weighted Sobolev space H2(γ), which contains functions
f =

∑
j αjhj ∈ L2(γ) such that

∑
j j

2|αj |2 <∞.

Random features to Hermite coefficients. To precisely characterize the landscape of L(c, θ), we
introduce notation to represent each random feature function in terms of Hermite polynomials hj .
We define the linear integral operator T : L2(γ) → RN by

(T f)i := ⟨f, ϕϵibi⟩γ :=
1√
N

E
z∼γ

[f(z)ϕ(εiz − bi)] , i ∈ [N ] . (2)

Note that T has rank N almost surely.

The operator T has an adjoint T ∗ : RN → L2(γ) defined as (T ∗c)(u) = 1√
N

∑N
i=1 ciϕ(εiu−bi) =

c⊤Φ(u). Finally, for any j ∈ N, let Tj ∈ RN defined as Tj = T hj . We can then write down the
Hermite expansion of the student network:

G(x; c, θ) = c⊤Φ(⟨θ, x⟩) =
∑
j≥0

⟨c, Tj⟩hj(⟨θ, x⟩).

Denoting m = ⟨θ, θ∗⟩, the regularized population objective can be expressed as

L(c, θ) =
∑
j

α2
j +

∑
j

⟨c, Tj⟩2 − 2
∑
j

αj⟨c, Tj⟩mj + λ∥c∥2, (3)

where the term
∑
j α

2
j is a constant that can be ignored. Let Q := T T ∗ ∈ RN×N be a feature

covariance matrix and Qλ = Q + λI . Note that Qλ is positive definite for λ > 0. We define the
regularized projection P̂λ = Σ̂(Σ̂ + λI)−1 onto the random feature space for Σ̂ = T ∗T . Observe
that (P̂λf)(u) = c∗⊤Φ(u), where c∗ ∈ RN is the solution to the following objective:

min
c∈RN

∥∥f − c⊤Φ
∥∥2
γ
+ λ∥c∥22 . (4)

Geometry on the sphere. Because the direction θ is constrained to lie on the sphere, our opti-
mization algorithms rely on spherical (Riemannian) gradients, which are defined as follows:

∇Sd−1

θ L(c, θ) = Πθ⊥∇θL(c, θ) ,

where Πθ⊥v = v − ⟨θ, v⟩θ. We say that (c, θ) is a critical point of L if ∇Sd−1

θ L(c, θ) = 0 and
∇cL(c, θ) = 0.
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4 Univariate Approximation using Random Features

Before addressing the high-dimensionality of the learning problem, we first focus on the non-
parametric approximation aspects of the univariate link function. As usual, we start by deriving
approximation rates of the infinitely-wide model, given by a RKHS, and then establish approxima-
tion rates for our random feature model.

Univariate RKHS. If we fix the direction θ, learning c alone may be seen as a random feature
model [70] that approximates a kernel method with the following kernel.

κ(u, v) = Eb∼γτ ,ε∼Rad[ϕ(εu− b)ϕ(εv − b)] , u, v ∈ R , (5)

where γτ = N (0, τ2) is the Gaussian measure on R with mean zero and variance τ2, and ε is a
random sign with a Rademacher distribution. The kernel κ corresponds to an RKHS H, given by

H :=

{
f : R → R | f(u) = 1√

2

∫
[c+(b)ϕ(u− b) + c−(b)ϕ(−u− b)] dγτ (b), c+, c− ∈ L2(γτ )

}
.

The following lemma characterizes the corresponding RKHS norm ∥ · ∥H, and follows from The-
orem B.8, by noting that κ(u, v) = ⟨ψ(u), ψ(v)⟩L2(γτ )2 , with ψ(u) = 1√

2
(ϕ(u − ·), ϕ(−u − ·)).

Lemma 4.1 (RKHS norm). The RKHS norm in H is given by

∥f∥2H = inf

{
∥c+∥2γτ + ∥c−∥2γτ ; f(u) =

1√
2

∫
[c+(b)ϕ(u− b) + c−(b)ϕ(−u− b)] dγτ (b)

}
.

(6)

The choice of ReLU for the activation function gives us more explicit control over the RKHS norm,
based on Sobolev representations, as already exploited by several works [68, 5, 75].
Lemma 4.2 (RKHS norm bound). Let f ∈ H2(γ) ∩ C2(R) and τ > 1. If f and f ′ both have
polynomial growth and

∫ |f ′′(t)|2
γτ (t)

dt <∞, then f ∈ H with

∥f∥2H ≤ 6τ

(∫
|f ′′(t)|2

γτ (t)
dt+ ∥f∥2γ + 6∥f ′∥2γ + 2⟨f, f ′′⟩γ

)
. (7)

The proof is in Appendix C.1.

RKHS approximation properties. Let A(f, λ) be the (regularized) L2 approximation error for
functions in the space H with respect to the target function f and measure γ. Formally,

A(f, λ) := min
g∈H

∥f − g∥2γ + λ∥g∥2H .

We will now show that the approximation error of the RKHS corresponding to an infinite number
of random features can be bounded in terms of the regularization λ and the γ-norm of the second
derivative of the target function. For that purpose, we consider the following ‘source’ condition to
ensure a polynomial approximation error in λ.
Assumption 4.3 (Containment in L4(γ)). Let F = {f ∈ H2(γ) | f ′′ ∈ L4(γ)}. We assume f ∈ F
and define K := inf

{
B ≥ 1 | ∥f ′′∥L4(γ) ≤ B∥f ′′∥L2(γ)

}
.

Assumption 4.3 provides a sufficient condition for approximating f with functions in the RKHS.
The family of approximants {hM ∈ H | M > 0} we use in Lemma 4.4 are exactly equal to f on
[−M,M ] and are linear outside of [−M,M ]. The L4 assumption on f ′′ ensures control over the
RKHS norm of hM . Note that by Jensen’s inequality, L4(γ) ⊂ L2(γ), so K is always well-defined
for f ′′ ∈ L4(γ). Sigmoidal functions, compactly supported smooth functions, and, more generally,
functions with polynomial growth satisfy Assumption 4.3.
Lemma 4.4 (RKHS approximation error). Let λ ∈ (0, 1) and f ∈ F . Then, there exists a universal
constant C > 0 such that

A(f, λ) ≤ C
(
τ1+β∥f ′′∥24 · λβ + λC2

f

)
, (8)

where β = 1−1/τ2

3+1/τ2 and Cf = max{∥f∥γ , ∥f ′∥γ , ∥f ′′∥γ}.

5



The proof appears in Appendix C.2. This lemma allows us to control the RKHS approximation
error of a target function in terms of their Hermite decompositions. The main technical difficulty is
that the RKHS integral operator Σ does not diagonalise in the Hermite basis; we address this with
a dedicated argument exploiting the RKHS Sobolev representation of Lemma 4.2. The assumption
that f ′′ ∈ L4(γ) (Assumption 4.3) is sufficient for our purposes but not necessary for polynomial-
in-λ approximation rates. In Section H, we show that the ReLU function ϕ(t) = max(0, t), which
is Lipschitz but not in H2(γ), as the target satisfies A(ϕ, λ) ≲ τ2λ2/3 using a direct argument.
Extending the class of functions approximable by H with polynomial-in-λ rate is an interesting
future direction.

Random feature approximation. We now consider (finite) random feature approximations to
functions in the RKHS. Lemma C.2 shows that the best possible loss of a linear combination of
sufficiently many finite features is bounded above by the best approximation with infinitely many
features with high probability. More specifically, as long as N ≳ λ−1, the random feature ap-
proximation error behaves like the RKHS approximation error. The proof leverages the ‘degrees of
freedom’ of the kernel and closely tracks [6].

5 Population Landscape under Frozen Random Biases

To understand optimization and generalization properties of gradient flow on the empirical loss
Ln(c, θ), we first the study optimization landscape of the population loss L(c, θ). We characterize
the critical points of the population loss and show that gradient flow on a shallow neural network
of sufficient width N converges only when its direction vector θ is either parallel or orthogonal to
the target direction θ∗. Importantly, the sufficient number of random features N depends on the
ℓ2-regularization parameter λ ∈ (0, 1), but not on the input dimension d. In Section 6, we further
show that sufficiently large n, the number of training samples, guarantees similar properties for the
empirical landscape and thus has favorable generalization properties for most initializations.

One of the main measures of complexity for the target link function f∗ is its information exponent
(see e.g., [10]), defined as follows.
Definition 5.1 (Information exponent). Let f : R → R be any function such that f ∈ L2(γ).
The information exponent of f , which we denote by s, is the index of the first non-zero Hermite
coefficient. That is, s := min{j ∈ N : αj ̸= 0}.

We make the following regularity assumptions on the target link function f∗ to ensure small approx-
imation error by random features, and benign population and empirical landscape.
Assumption 5.2 (Regularity of f∗). We consider f∗ ∈ L2(γ), with f∗ =

∑
j αjhj . Assume 1)

f∗ is Lipschitz, 2)
∑
j j

4|αj |2 < ∞, and 3) f ′′∗ (z) :=
∑
j

√
(j + 2)(j + 1)αj+2hj(z) is in L4(γ)

(Assumption 4.3)

We also suppose w.l.o.g. that f∗ is normalized so that ∥f∗∥γ = 1. To analyze the critical points of
L(c, θ), we introduce the projected population loss L̄(θ), which can be seen as a semiparametric
least squares (SLS) objective [48].

L̄(θ) := min
c
L(c, θ) .

Theorem 5.3 (Critical points of the population loss). Assume f∗ satisfies Assumption 5.2 and has
information exponent s ≥ 1. For τ > 1, and δ ∈ (0, 1), there exists λ∗ ≤ 1 depending only on τ
and the target link function f∗ and a universal constant C > 0 such that if

λ < λ∗ and N ≥ C

λ
log

(
1

λδ

)
(9)

then with probability 1−δ over the random biases bj and signs εj , j = 1 . . . N , the set of first-order
critical points Ω := {(c, θ) : ∇Sd−1

θ L(c, θ) = 0, ∇cL(c, θ) = 0} satisfies:

1. (orientation relative to θ∗) if (c, θ) ∈ Ω, then either θ ∈ {±θ∗} or ⟨θ, θ∗⟩ = 0.

2. (existence and uniqueness of c) if ∇Sd−1

θ L̄(θ) = 0, then there exists a unique c ∈ RN such
that (c, θ) ∈ Ω.
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Theorem 5.3 thus establishes a benign optimization landscape in the population limit, rejoining
several known non-convex objectives with similar behavior, such as tensor decomposition [40] or
matrix completion [38]. Importantly, this optimization landscape has the same topology as the one
that arises from using the Hermite basis, the tailored choice for data generated by a single-index
model in Gaussian space [33, Theorem 5], instead of random scalar features. We view this as an
interesting robustness property of shallow neural networks, at least in the regime where biases are
randomly frozen.

6 Empirical Landscape and Generalization Guarantees

Section 5 shows that the population landscape has a relatively simple structure given N = Ωd(1)
random features. We now study the optimization properties of its finite-sample counterpart.

We consider the estimator F̂ (x) := f̂(⟨x, θ̂⟩), where (f̂ , θ̂) are obtained by running gradient flow on
c and θ to minimize Ln(c, θ). Such strategy appears to be reasonable in light of the properties of the
population landscape, since its local minimizers are also global and correspond to f̃ = P̂λf

∗ and
θ̃ = θ∗ (Theorem 5.3). For a sufficiently large sample size n, one expects the empirical landscapeLn
to concentrate around its expectation L and inherit its benign optimization properties. However, the
presence of a degenerate saddle at (c,m) = (0, 0) for m = ⟨θ, θ∗⟩ flattens the landscape around the
“equator” {θ : ⟨θ, θ∗⟩ = 0}. Thus, more samples are required to ensure that gradient flow escapes
from the equatorial region despite its dangerously close random initialization |⟨θ0, θ∗⟩| = Θ(1/

√
d).

Prior works have obtained sample complexity of n = O(ds), where we recall that s is the informa-
tion exponent of the target function f∗, for recovering θ∗ either by employing a learning algorithm
that explicitly learns individual Hermite polynomials [33] or by assuming that f∗ is known a priori
[10].1 The intuition behind this sample complexity is roughly as follows.

• The empirical optimization landscape (when regarded as a function only of the direction θ) near
the equator (|m| ≪ 1) is of the form L(θ) ≍ ms.

• In order to certify that the optimization algorithm does not converge to a suboptimal critical point
(i.e., ∥∇L(θ)∥ ≤ ϵ) on the equator, one requires that m ≥ ϵ1/(s−1).

• A uniform gradient convergence bound of the form ∥∇L(θ) − ∇Ln(θ)∥ = O(
√
d/n) and the

fact that m = Θ(1/
√
d) at initialization together imply that n = O(ds) samples are sufficient to

escape from the “influence” of the equator.

In order to repurpose these arguments to our setting, the relative scaling of the top-layer weights c
relative to the direction vector θ is crucial, as has also been observed in the literature on lazy-vs-rich
regimes [23, 84] in the context of overparametrized neural networks.

We consider an idealized version of Gradient Descent over the empirical loss Ln in the infinitesi-
mally small learning rate regime. This results in a gradient flow ODE of the form:

ċ(t) = −ζ(t)∇cLn(c, θ)

θ̇(t) = −∇Sd−1

θ Ln(c, θ) , (10)

where ζ is the relative scale between c and θ, and ∇Sd−1

θ is the Riemannian gradient.

Specifically, we study a setting where ζ(t) = 1(t > T0) for an appropriately chosen time T0.
This choice produces a two-stage gradient-flow. During the first phase, up until time T0, we only
optimize the first-layer parameter θ from a random initialization. In the second phase, the parameters
c and θ are jointly optimized. Additionally, the first phase only utilizes a small fraction N0

N ≪ 1
of the random features employed in the second phase. Our procedure implements this by randomly
initializing c(0) ∈ RN as a sparse vector with N0 non-zero components. The overall approach is
described in Procedure 1.

1Actually, in [10] the authors obtain a slightly improved sample complexity of Õ(ds−1) for s ≥ 3 by
directly analyzing SGD with fixed step-size, as well as a matching lower bound (for SGD in the small step-size
regime) up to polylogarithmic factors.
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Our main result, proved in Appendix E, establishes that this gradient flow efficiently finds an ap-
proximate minimizer of the population loss, with an error (explicitly quantified as a function of n)
that reveals the fundamental role of the information exponent s of f∗. On top of the regularity con-
ditions on the target link function of Assumption 5.2, the upper bound on λ, and the lower bound on
N from Eq. (9) of Theorem 5.3, the main result imposes a (compatible) upper bound on N and an
appropriate choice of initial norm (ρ) and sparsity (N0/N ) for c(0). In this section, we are interested
in behavior as n, d, and N grow asymptotically and hence treat the target function f∗ and terms de-
rived from it (including Hermite coefficients αj and information exponent s), along with the bias
parameter τ and regularity parameter β, as constants and omit them from asymptotic notation.
Theorem 6.1 (Gradient flow finds approximate minimizers). For δ ∈ (0, 1/4) and f∗ satisfying
Assumption 5.2, suppose the following are true: (i) λ = O(1) and λ = Ω(

√
∆crit), where ∆crit :=

max{
√

d+N
n , (d

2

n )2s/(2s−1)}, (ii) n = Ω̃(max{ (d+N)ds−1

λ4 , d
(s+3)/2

λ2 }), (iii) N = Ω( 1λ log 1
λδ ) &

N = Õ(λ∆−1
crit), (iv) N0 = Θ(log( 1δ )), (v) ρ = Θ(

√
NN

−(2+s)/2
0 (τ2 + λN/N0)

−1), (vi) T0 =

Θ̃(ds/2−1), and (vii) T1 = Θ̃( λ
4n

d+N ). Then, if we run Procedure 1 for T = T0 + T1 time steps with
the above parameters, with probability at least 1

2 − δ we have

1− |⟨θT , θ∗⟩| = Õ

(
λ−4 max

{
d+N

n
,
d4

n2

})
. (11)

The empirical gradient flow therefore escapes the influence of the degenerate saddle with sample
complexity n = Θ̃(ds) when λ = Θ(1) and s > 2. This is an instance of gradient flow successfully
optimizing a non-convex objective without the strict saddle property as soon as s > 2, building from
the simpler optimization landscapes of [33, 10]. This is in contrast, for example, with spiked tensor
recovery problems [12] where the signal strength is substantially weaker, leading to complexity in
the optimization landscape. This sample complexity nearly matches the tight lower bound n≫ ds−1

of [10], obtained in the case s > 2 and applies to SGD rather than batch gradient descent, as is our
case. For s ∈ {1, 2}, the sample complexity becomes d2 and d2.5, respectively, but we note that
these may be improved to ds when using a smooth activation (see Appendix G). For s = 2, this is
comparable to [27], which requires Ω(d2) samples, but still above the n≫ d log d of [10].

We emphasize that the “near-optimality” of our sample complexity n = Θ̃(ds) only pertains to
gradient-based methods in small learning rate regimes [10]. In fact, alternative methods have been
shown to achieve a better sample complexity of Õ(d⌈s/2⌉) in the setting where f∗ is a certain degree-
s polynomial with information exponent s [19], leveraging tensor factorization tools. We leave it as
an interesting open question to further understand the nature of this gap.

We note that the dependence on d + N in the recovery guarantee can likely be improved to d
using a more refined norm-based landscape concentration analysis. We also remark that if we chose
the number of random features N = Θ( 1λ log 1

λδ ), then the requirement λ = Ω(
√
∆crit) for large

enough sample size n imposes λ ≫ n−1/5. This lower bound on λ guarantees that critical points
near initialization can be escaped, but may slow down learning. Nevertheless, this is sufficient to
obtain an excess risk that vanishes with n, with a rate independent of d, as we now show.
Corollary 6.2 (Excess risk of Algorithm 1). Under the assumptions of Theorem 6.1, and further
assuming n ≳ d3, an appropriate choice of λ yields an excess risk guarantee of the form

∥F̂ − F ∗∥2γd = Õ

((
d

n

) β
β+4

+

(
1

n

) β
β+5

)
, (12)

where β is defined as in Lemma 4.4.

This result indicates that the joint training is consistent, with excess risk that vanishes with a rate
with explicit dependence on the ambient dimension d and the non-parametric exponent β. However,

it requires a regularisation strength λ = Θ
(
max

{(
1
n

) 1
β+5 ,

(
d
n

) 1
β+4

})
to ensure enough gradient

concentration, which happens to be larger than the optimal regularisation of the univariate kernel
ridge regression associated with learning f∗. We are thus ‘over-regularising’ as a consequence of
the joint training, resulting in a slower rate than what would be dictated by estimating θ∗ and f∗
separately. A simple mechanism to break this inefficiency is by considering a fine-tuning step of the
second-layer terms.

8



Procedure 1 Gradient Flow
Require: N0, ρ, T0, T1, N , and λ.

Initialize θ(0) ∼ Unif(Sd−1), c(0) ∼ Unif({c ∈ RN ; ∥c∥2 = ρ; ∥c∥0 = N0}).
Run Gradient Flow (10) with ζ(t) = 1(t > T0) up to time T = T0 + T1.
Set θ̂ = θ(T ), ĉ = c(T ).

Procedure 2 Fine-Tuning

Require: θ̂ from Procedure 1, and λn′ .
Set ĉ = argminc L

′
n′(c, θ̂) as in (13).

Fine-tuning the second layer. After running Algorithm 1, we may include a final fine-tuning
phase of training for second layer weights c alone, using a separate training sample (x′i, y

′
i), i =

1, . . . , n′ and a possibly different regularization parameter λn′ . More precisely, we set

ĉ = argmin
c

{
L′
n′(c, θ̂) :=

1

n′

n′∑
i=1

(c⊤Φ(⟨θ̂, x′i⟩)− y′i)
2 + λn′∥c∥2

}
, (13)

where θ̂ denotes the output of the previous gradient descent phase. Note that this is a strongly convex
optimization problem, and can thus be optimized efficiently using gradient methods or by solving
a linear system. While this may not be needed in practice, we use a different training sample for
technical reasons, namely to break the dependence between the data and the kernel, which depends
on the initial training sample through θ̂. We note that such sample splitting strategies are commonly
used in other contexts in the statistics literature (e.g., [15, 21]). We obtain the following guarantee.

Proposition 6.3 (Excess risk of fine-tuning). Let δ ∈ (0, 1/4). Let m = ⟨θ∗, θ̂⟩, where θ̂ is
obtained from the previous gradient descent phase, and let ĉ be the ridge regression estimator
obtained from a fresh dataset D′ of n′ samples, N random features, and regularization parame-
ter λn′ := (σ2τ2/∥f ′′∗ ∥2γn′)1/(β+1), and let F̂ (x) = ĉ⊤Φ(⟨θ̂, x⟩). Assume

n′ ≳ max
{
σ2τ2/∥f ′′∗ ∥2γ , (∥f ′′∗ ∥2γ/σ2τ2)1/β , ∥f∗∥2∞/(σ2τ2)β/(β+1)

}
, and

N ≳ Cτ
(
n′∥f ′′∗ ∥2γ/σ2τ2

) 1
β+1 log

(
n′1/(β+1)δ−1

)
.

Then with probability at least 1− δ over the random features, we have

E
D′
[∥F̂ − F ∗∥2γd |θ̂] ≲ ∥f ′′∗ ∥

2
β+1
γ

(
σ2τ2

n′

) β
β+1

+ ∥f ′∗∥2γ(1− |m|) , (14)

where the expectation is over the n′ fresh samples, and is conditioned on the previously obtained θ̂.

Decoupling the regularization parameters of the two phases (along with number of random fea-
tures N ) allows us to keep a large λ in the first phase, leading to fast recovery as per Theorem 6.1,
while obtaining vanishing excess risk through a decreasing λn′ . This is illustrated in the result on
the excess risk for Algorithm 2.
Corollary 6.4 (Excess risk of Algorithm 2). Let δ ∈ (0, 1/4). As in Theorem 6.1, let µs =
⟨hs,Σhs⟩ > 0, and let f∗ satisfy Assumption 5.2. Let λ = Θ(1), and assume the following on
the sample sizes and number of random features for the first phase (n,N,N0) and fine-tuning phase
(n′, N ′):

N = N0 = Θ

(
1

λ
log

1

λδ

)
, n = Ω̃

(
max{ds, d(s+3)/2}

)
, N ′ = Ω̃

(
n′

1
β+1

)
.

and let ρ be as in Theorem 6.1. With probability at least 1/2 − 2δ over the initial n samples,
initialization, random features, we have

E
D′
[∥F̂ − Fθ∗∥2γd ] ≤ Õ

(
max

{
d

n
,
d4

n2

}
+

(
1

n′

) β
β+1

)
, (15)

where the constants in Õ do not depend on d other than through logarithmic factors.
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Comparing Corollaries 6.2 and 6.4, we observe that the fine-tuning stage recovers the optimal sample
complexity, where the non-parametric rate is fully independent of the ambient dimension d, while in
Corollary 6.2 there is still a dependence in the constants. We make the following additional remarks:

• The time-scale separation schedule for ζ in Theorem 6.1 is sufficient but possibly not necessary.
The analysis of vanilla dynamics (ζ(t) ≡ 1) is challenging, since during the initial phase of
training there may be adverse interaction between c and θ, which under naive analysis lead to
sub-optimal sample complexity of n ≥ O(d2s). Observe that this separate analysis of ‘weak’ and
‘strong’ recovery phases of learning appears in most contemporary related work [27, 1, 4, 10, 11].

• The time discretization to turn Procedure 1 into a proper algorithm should follow from standard
time discretization arguments, although the case where ϕ = ReLU requires special care due to
the non-smoothness of the loss (see Appendix F for further discussion). In such setting, such
discretization arguments do not hold for vanilla gradient descent in the worst-case [51], although
these may be recovered by appropriately smoothing the objective prior to computing the gradient,
or by using instead a smooth activation function (see Appendix G).

7 Conclusion

This work studies the ability of shallow neural networks to learn single-index models with gradi-
ent descent. Our main results are positive, and demonstrate their ability to solve a semi-parametric
problem with nearly optimal guarantees. Interestingly, this success story combines elements from
the feature-learning regime, i.e., the ability to efficiently identify the hidden direction in high-
dimensions under a non-convex objective, with ingredients from the lazy-regime. Our technical
analysis leverages tools from high-dimensional probability (such as uniform gradient concentration)
and RKHS approximation, and complements the growing body of theoretical work on the efficacy of
gradient methods for non-convex objectives. We have followed the standard approach of first estab-
lishing benign topological properties of the population loss, and then extending them to the empirical
loss. There are nonetheless several unanswered questions that our work has not addressed.

Weaker regularity and discrete-time analysis. Our approximation rate for ReLU as the target
(see Appendix H) suggests that the polynomial-in-λ approximation rate may be extended to func-
tion classes beyond F ⊂ H2(γ), such as Lipschitz functions with smooth tail behavior. Thus,
it would be interesting to extend our empirical landscape concentration results to such functions
satisfying weaker regularity assumptions, which currently rely on certain polynomial decay of the
Hermite coefficients (see Assumption 5.2). Additionally, by using a smooth activation function (see
Appendix G), our GF dynamics can be discretized and turned into GD with analogous sample and
time complexity. In that context, a natural goal is to compare quantitatively the differences between
GD with multiple passes over the training data and SGD by adapting tools from [10, 11].

Trainable biases and untied directions. Our proposed neural network architecture is non-standard,
in the sense that its biases are frozen at initialization and all neurons share the same inner weight.
For the purposes of learning single-index models, removing these restrictions would not bring any
statistical benefits. However, it would be interesting to extend our analysis to the general setting
where the first layer weights are not tied and biases are not frozen.

Extension to multi-index models. Multi-index models are natural extensions in which the hidden
direction θ∗ is replaced by a hidden low-dimensional subspace. Typically, multi-index models enjoy
similar statistical guarantees as single-index models [33, 5], and thus a natural question is whether
the same algorithmic tools developed here extend to the multi-index setting.

Gradient dynamics without warm-start. An unsatisfactory aspect of our results is the requirement
that the algorithm starts by only optimizing θ for t < T0. It would be interesting to understand
whether the vanilla dynamics can also succeed provably.

Acknowledgments. We are thankful to Enric Boix-Adserà, Alex Damian, Cédric Gerbelot, Daniel
Hsu, Jason Lee, Theodor Misiakiewicz, Matus Telgarsky, Eric Vanden-Eijnden, and Denny Wu for
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A Numerical Experiments

In this section, we illustrate our results by running Algorithm 1 on a simple synthetic dataset. We
consider a piecewise linear target link function f∗ that is compactly supported, illustrated in Figure 1,
and data generated by the model described in Section 3, with σ = 0.001. To understand behavior
when varying the information exponent s, we also consider teachers fs∗ = f∗−

∑
j<s < f∗, hj > hj

with the low-order Hermite components are removed. We initialize the direction θ randomly on the
sphere, and the parameters ck i.i.d. with variance 1. We run gradient descent on the empirical loss
for 10 000 iterations using a step-size that is 100 times larger on θ than on c, with projections of θ on
the sphere after each step, and with ℓ2 regularization on c. We start optimizing c only after 500 steps
to simulate the warm-start phase. We show the loss obtained on 10K held-out test samples. For fine-
tuning (denoted “ridge” in the plots), we re-optimize the output layer c exactly on the training data
using ridge regression with a possibly different regularization parameter λ′, We fixN = 100 random
features, and optimize hyperparameters (λ, λ′, and the step-size) on the test data. All experiments
were run on CPUs. Each experiment was repeated 10 times, and the figures report either the mean
and standard deviation over the 10 runs, or the best performing model out of the 10 runs.

Our experiment results are shown in Figure 2. For s ≥ 3, only some of the 10 runs were successful
in recovering the target direction, and we thus show the best performing run for such curves (indeed,
our theory suggests that there may be a non-negligible probability of failure). We observe that
full recovery (|m| → 1) requires more samples when the dimension d increases, while the excess
risk curves have approximately the same rate for large enough n, regardless of the dimension or
information exponent, as predicted by our theory. The bottom plots for d = 50 suggest that s = 3
requires more samples than smaller s for perfect recovery, while the remaining curves are somewhat
comparable. This similarity between s = 1 and s = 2 is reminiscent of the situation in [10], where
the rates for these two cases only differ by a logarithmic factor, and suggests that it may be possible
to improve the O(ds) rates in our results for s ≥ 2.

4 2 0 2 4
u

1.0

0.5

0.0

0.5

1.0

f *
(u

)

Figure 1: Piecewise linear teacher link function f∗.
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Figure 2: Excess risk ∥F̂ −F ∗∥2γd with final ridge/fine-tuning step (left), and correlation |m| (right)
as a function of sample size n.

B Additional Preliminaries and Concentration Bounds

We introduce several well-known concentration bounds that we apply throughout the appendix. Bor-
rowing notation from [83], we first introduce notation of sub-gaussian and sub-exponential random
variables, vectors, and matrices.

Definition B.1. A real-valued random variable z is γ2-sub-gaussian ∥z∥ψ2
:= inf{t > 0 :

E[exp(z2/t2)] ≤ 2} ≤ γ. Likewise, a random vector x ∈ Rd is γ2-sub-gaussian and we denote
∥x∥ψ2

≤ γ if ∥w · x∥ψ2
≤ γ for any fixed w ∈ Sd−1.

Definition B.2. A real-valued random variable y is γ-sub-exponential ∥y∥ψ1
:= inf{t > 0 :

E[exp(|y| /t)] ≤ 2} ≤ γ. Likewise, a random vector u ∈ Rd is γ-sub-exponential and we de-
note ∥u∥ψ1

≤ γ if ∥w · u∥ψ1
≤ γ for any fixed w ∈ Sd−1.

We note several key properties of sub-gaussian and sub-exponential random variables that we re-
peatedly rely on.

Fact B.3. Let z1, . . . , zN and y1, . . . , yN be sub-gaussian and sub-exponential random variables
respectively. Then the following hold for some universal constant C.
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1. Centering preserves sub-gaussianity and sub-exponentiality: ∥z1 − E[z1]∥ψ2
≤ C ∥z1∥ψ2

and ∥y1 − E[y1]∥ψ1
≤ C ∥y1∥ψ2

[83, Lemma 2.6.8 and Exercise 2.7.10].

2. Products of sub-gaussian random variables are sub-exponential: z1z2 is sub-exponential
and ∥z1z2∥ψ1

≤ ∥z1∥ψ2
∥z2∥ψ2

[83, Lemma 2.7.7].

3. Sums of independent sub-gaussian random variables are sub-gaussian. If z1, . . . , zN are
independent, then, ∥∥∥∥∥

N∑
i=1

zi

∥∥∥∥∥
2

ψ2

≤ C

n∑
i=1

∥zi∥2ψ2

[83, Proposition 2.6.1].

4. Sums of pairs of sub-exponential random variables are sub-exponential. ∥y1 + y2∥ψ1
≤

C(∥y1∥ψ1
+ ∥y2∥ψ1

) [60, Lemma 2].

5. Lipschitz functions preserve sub-gaussianity. For Lipschitz-continuous f : R → R,
∥f(z1)− E[f(z1)]∥ψ2

≤ CLip(f) ∥z1∥ψ2
.

6. If β is a bounded random variable with |β| ≤ s, then ∥β(z1 − E[z1])∥ψ2
≤ Cs ∥z1∥ψ2

[60, Lemma 1].

Theorem B.4 (Bernstein’s inequality, [83, Corollary 2.8.3]). For independent, mean-zero, sub-
exponential random variables x1, . . . , xn and any t ≥ 0,

P

[∣∣∣∣∣ 1n
n∑
i=1

xi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−Cnmin

(
t2

K2
,
t

K

))
for universal C and K = maxi ∥xi∥ψ1

.

We also include several basic facts about ϵ-covers, which are useful in several proofs.
Definition B.5. For some compact S ⊂ Rd, Nϵ ⊆ S is an ϵ-covering if for all x ∈ S, there exists
x̃ ∈ Nϵ such that ∥x− x̃∥ ≤ ϵ.

Fact B.6 ([83, Corollary 4.2.13, Lemma 4.4.1]). For all ϵ ∈ (0, 1], there exists an ϵ-net Nϵ for Sd−1

with |Nϵ| ≤ ( 3ϵ )
d. Moreover, for any a ∈ Rd,

∥a∥ ≤ 1

1− ϵ
max
x∈Nϵ

⟨a, x⟩.

Lemma B.7 (Anticoncentration on the unit sphere). Let d ∈ N. Let θ ∈ Sd−1 be any fixed unit
vector and let u be a random vector drawn uniformly from Sd−1. Then, for any ϵ > 0,

P[⟨θ, u⟩ ≤ ϵ] ≤ 4
√
dϵ .

Proof. We show this using an elementary argument. Let ϵ ∈ [0, 1]. Define

G(ϵ) :=

∫ ϵ

0

(1− t2)(d−1)/2dt ≤ ϵ .

By Gautschi’s inequality [31, Eq. 5.6.4] for the Gamma function, we have

G(1) =

√
π

2
· Γ((d+ 1)/2)

Γ((d+ 2)/2)
≥

√
π

4
· 1√

d
.

Thus we have the following anti-concentration bound on Sd−1.

P[|⟨θ, u⟩| ≤ ϵ] = G(ϵ)/G(1) ≤ 4√
π
·
√
dϵ .
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Finally, we recall the following result on reproducing kernel Hilbert spaces, which describes the
RKHS for kernels defined from explicit features maps.

Theorem B.8 ([74, §2.1]). Let ψ : X → F be a mapping into a Hilbert space F , and for x, x′ ∈
X , define the kernel κ(x, x′) = ⟨ψ(x), ψ(x′)⟩F . The RKHS H of κ consists of functions of the
form f(x) = ⟨g, ψ(x)⟩F , and for any f ∈ H, the RKHS norm of f is defined by

∥f∥2H := inf
{
∥g∥2F : g ∈ F s.t. f = ⟨g, ψ(·)⟩F

}
.

C Proofs of Section 4

C.1 Proof of Lemma 4.2

Claim C.1 (RKHS Sobolev representation). Let f ∈ H2(γ) ∩ C2(R) be a function such that
limt→−∞ f(t) = limt→−∞ f ′(t) = 0 and

∫∞
−∞(f ′′(u)2/γτ (u))du <∞. Then,

f(t) =

∫ ∞

−∞

f ′′(u)

γτ (u)
ϕ(t− u)dγτ (u) . (16)

Moreover, the RKHS norm of f is upper bounded as follows.

∥f∥2H ≤
∫ ∞

−∞

f ′′(u)2

γτ (u)
du .

Proof of Claim C.1. By the Fundamental Theorem of Calculus and Fubini’s Theorem,

f(t) =

∫ t

−∞
f ′(w)dw =

∫ ∞

−∞
f ′(w)1[w ≤ t]dw =

∫ ∞

−∞

(∫ ∞

−∞
f ′′(u)1[u ≤ w]du

)
1[w ≤ t]dw

=

∫ ∞

−∞
f ′′(u)

(∫ ∞

−∞
1[u ≤ w]1[w ≤ t]dw

)
du

=

∫ ∞

−∞
f ′′(u)ϕ(t− u)du

=

∫ ∞

−∞

f ′′(u)

γτ (u)
ϕ(t− u)dγτ (u) .

The upper bound on the RKHS norm follows from the above representation and Lemma 4.1.

Lemma 4.2 (RKHS norm bound). Let f ∈ H2(γ) ∩ C2(R) and τ > 1. If f and f ′ both have
polynomial growth and

∫ |f ′′(t)|2
γτ (t)

dt <∞, then f ∈ H with

∥f∥2H ≤ 6τ

(∫
|f ′′(t)|2

γτ (t)
dt+ ∥f∥2γ + 6∥f ′∥2γ + 2⟨f, f ′′⟩γ

)
. (7)

Proof of Lemma 4.2. For general f , the boundary conditions of Claim C.1, i.e., limt→−∞ f(t) =
limt→−∞ f ′(t) = 0, do not hold. However, we can reduce to the case considered in Claim C.1
by decomposing f into 2 parts, i.e., f = f1 + f2, where f1(t) and f2(−t) individually satisfy the
assumptions of Claim C.1.

Let φ(t) =
∫ t
−∞ γ(u)du. We decompose

f = f · φ+ f · (1− φ) := f1 + f2 .

For any t ∈ R, 0 ≤ φ(t) ≤ 1, and since we assume f has polynomial growth, limt→−∞ f1(t) =
limt→−∞ f ′1(t) = 0 and limt→∞ f2(t) = limt→∞ f ′2(t) = 0. By Lemma 4.1, it holds that

∥f∥2H ≤
∫ ((

f ′′1 (t)

γτ (t)

)2

+

(
f ′′2 (t)

γτ (t)

)2
)
dγτ (t) =

∫
f ′′1 (t)

2 + f ′′2 (t)
2

γτ (t)
dt . (17)
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To upper bound the RHS of Eq. (17) in terms of f and its derivatives, we derive explicit expressions
for f ′′1 and f ′′2 . Since φ′(t) = γ(t) and φ′′(t) = −tγ(t), we have

f ′′1 (t) = f ′′(t) · φ(t) + 2f ′(t) · γ(t)− f · (tγ(t))
f ′′2 (t) = f ′′(t) · (1− φ(t))− 2f ′(t) · γ(t) + f · (tγ(t)) .

Using the elementary inequality (a1 + a2 + a3)
2 ≤ 3(a21 + a22 + a23) (from Cauchy-Schwarz) and

the fact that 0 ≤ φ(t) ≤ 1 and 0 ≤ γ(t) ≤ 1 for all t ∈ R,∫
f ′′1 (t)

2

γτ (t)
dt ≤

∫
3

γτ (t)

(
f ′′(t)2 + 4f ′(t)2γ(t)2 + f(t)2(tγ(t))2

)
dt

≤ 3

(∫
f ′′(t)2

γτ (t)
dt+ 4τ

∫
f ′(t)2dγ(t) + τ

∫
f(t)2t2dγ(t)

)
= 3

(∫
f ′′(t)2

γτ (t)
dt+ 4τ∥f ′∥2γ + τ∥f · t∥2γ

)
.

The same upper bound holds for f2. Thus, from Eq. (17) and the fact that τ > 1, we have

∥f∥2H ≤ 6τ

(∫
|f ′′(t)|2

γτ (t)
dt+ 4∥f ′∥2γ + ∥f · t∥2γ

)
.

It remains to upper bound ∥f · t∥γ purely in terms of f and its higher-order derivatives. Using
integration by parts, we have that for any differentiable F : R → R with polynomial growth,∫

tF (t)γ(t)dt = −F (u)γ(u)
∣∣∞
u=−∞ +

∫
F ′(t)γ(t)dt =

∫
F ′(t)γ(t)dt . (18)

Hence, by the assumption that f, f ′ have polynomial growth and applying the identity Eq. (18)
twice, we have

∥f · t∥2γ =

∫
t · (tf(t)2)γ(t)dt =

∫
(tf(t)2)′γ(t)dt = ∥f∥2γ + 2

∫
t · (f(t)f ′(t)) γ(t)dt

= ∥f∥2γ + 2

∫
(f ′(t)2 + f(t)f ′′(t))γ(t)dt

= ∥f∥2γ + 2⟨f, f ′′⟩γ + 2∥f ′∥2γ ,

In conclusion, we have

∥f∥2H ≤ 6τ

(∫
|f ′′(t)|2

γτ (t)
dt+ ∥f∥2γ + 6∥f ′∥2γ + 2⟨f, f ′′⟩γ

)
. (19)

C.2 Proof of Lemma 4.4

Lemma 4.4 (RKHS approximation error). Let λ ∈ (0, 1) and f ∈ F . Then, there exists a universal
constant C > 0 such that

A(f, λ) ≤ C
(
τ1+β∥f ′′∥24 · λβ + λC2

f

)
, (8)

where β = 1−1/τ2

3+1/τ2 and Cf = max{∥f∥γ , ∥f ′∥γ , ∥f ′′∥γ}.

Proof. We first prove the result for f ∈ C2(R) and then extend it to general f ∈ H2(γ) s.t.
f ′′ ∈ L4(γ) using a density argument. Define the λ-regularized approximation error of h ∈ H by

E(h) = ∥f − h∥2γ + λ∥h∥2H ,

and recall that A(f, λ) = minh∈H E(h).
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We approximate f with a single-parameter family of functions {hM |M > 0}, defined by h′′M (t) =
f ′′(t) · 1[|t| ≤M ]. By the Fundamental Theorem of Calculus, we have

hM (t) =


f(t) if |t| ≤M

f(M) + f ′(M)t if t > M

f(−M) + f ′(−M)t if t < −M .

Thus, hM matches f exactly on [−M,M ] and is linear with slope f ′(M) (resp. f ′(−M)) for t ≥M
(resp. t ≤ −M ). We first show that hM ∈ H, which implies A(f, λ) ≤ infM>0 E(hM ), and then
show that for an explicit choice of M , E(hM ) has the desired upper bound.

For any finite M > 0, hM satisfies the assumptions of Lemma 4.2; both f and f ′ have polynomial
growth (linear and zero growth, respectively) and

∫
R
h′′M (u)2/γτ (u) =

∫
|u|≤M

f ′′(u)2/γτ (u) ≤ ∥f ′′∥2γ/(γτ (M)γ(M)) <∞ .

Hence,

∥hM∥2H ≤ 6τ

(∫ ∞

−∞

hM
′′(u)2

γτ (u)
du+ ∥hM∥2γ + 6∥h′M∥2γ + 2⟨hM , h′′M ⟩γ

)
≤ 6τ

(∫ M

−M

f ′′(u)2

γτ (u)γ(u)
dγ(u) + ∥hM∥2γ + 6∥h′M∥2γ + 2∥f∥γ∥f ′′∥γ

)
≤ 6τ

( ∥f ′′∥2γ
γτ (M)γ(M)

+ 2(∥f∥2γ + ∥rM∥2γ) + 12(∥f ′∥2γ + ∥r′M∥2γ) + ∥f∥2γ + ∥f ′′∥2γ
)
,

(20)

where rM = f − hM and we used the triangle inequality and 2ab ≤ a2 + b2 in Eq. (20). Note that
since τ > 1, the first term of Eq. (20) is upper bounded by ≲ τ2∥f ′′∥2γe(τ

2+1)M2/(2τ2).

We now upper bound ∥rM∥γ and ∥r′M∥γ . Note that both rM and its derivative r′M are identically
zero on [−M,M ] and that r′′M (t) = f ′′(t) for |t| > M . Thus, for t > M (same holds for t > −M),

r′M (t) =

∫ t

M

r′′M (u)du =

∫ t

M

f ′′(u)du , and rM (t) =

∫ t

M

r′M (u)du .

Next, we decompose ∥r′M∥2γ into two terms, the positive part ∥r′M∥2γ,+ and the negative part
∥r′M∥2γ,−. That is,

∥r′M∥2γ =

∫ ∞

−∞
r′M (u)2du =

∫ ∞

0

r′M (u)2du+

∫ 0

−∞
r′M (u)2du := ∥r′M∥2γ,+ + ∥r′M∥2γ,− .

We show an upper bound for ∥r′M∥2γ,+ with the understanding that the same upper bound applies to
∥r′M∥2γ,−. By repeated applications of Fubini’s Theorem and an upper bound on the complementary
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error function erfc(t) =
∫∞
t
e−u

2/2du ≤ 2e−t
2/2 [18, Theorem 1],

∥r′M∥2γ,+ =

∫
r′M (t)2γ(t)dt

=

∫ (∫ ∞

M

f ′′(u)1[0 ≤ u ≤ t]du

∫ ∞

M

f ′′(w)1[0 ≤ w ≤ t]dw

)
γ(t)dt

≤
∫ ∞

M

∫ ∞

M

|f ′′(u)||f ′′(w)|
(∫

1[0 ≤ u ≤ t]1[0 ≤ w ≤ t]γ(t)dt

)
dudw

≤
∫ ∞

M

∫ ∞

M

|f ′′(u)||f ′′(w)|γ(max{u,w})dudw [18, Theorem 1]

≤
√
8π

(∫ ∞

M

|f ′′(u)|γ√2(u)du

)2

≲

(∫ ∞

M

γ2(u)
4/3du

)3/2

·
(∫

(f ′′(u)γ2(u))
4du

)1/2

[Hölder’s inequality]

≲ γ√3(M)3/2 · ∥f ′′∥24 . (21)

An upper bound on ∥rM∥2γ,+ follows from similar calculations.

∥rM∥2γ,+ =

∫
R+

r2M (t)γ(t)dt

=

∫ ∞

M

∫ ∞

M

r′M (u)r′M (w)

(∫
R+

1[0 ≤ u ≤ t] · 1[0 ≤ w ≤ t]γ(t)dt

)
dudw

≤ 2

∫ ∞

M

∫ ∞

M

r′M (u)r′M (w)γ(max{u,w})dudw

≤ 2

∫ ∞

M

∫ ∞

M

(∫ ∞

M

|f ′′(ũ)|1[0 ≤ ũ ≤ u]dũ

)(∫ ∞

M

|f ′′(w̃)|1[0 ≤ w̃ ≤ w]dw̃

)
· γ(max{u,w})dudw

≤ 2

∫ ∞

M

∫ ∞

M

|f ′′(ũ)||f ′′(w̃)|
(∫ ∫

1[0 ≤ ũ ≤ u]1[0 ≤ w̃ ≤ w]γ(max{u,w})dudw
)
dũdw̃

≲
∫ ∞

M

∫ ∞

M

|f ′′(ũ)||f ′′(w̃)|
(∫

1[0 ≤ ũ ≤ u]γ√2(u)du

)(∫
1[0 ≤ w̃ ≤ w]γ√2(w))dw

)
dũdw̃

≲

(∫ ∞

M

|f ′′(ũ)|γ√2(ũ)dũ

)2

≲

(∫ ∞

M

γ2(ũ)
4/3dũ

)3/2

·
(∫

(f ′′(ũ)γ2(ũ))
4dũ

)1/2

≲ γ√3(M)3/2 · ∥f ′′∥24 ,

Putting everything together in Eq. (20),

∥hM∥2H ≲ τ
( ∥f ′′∥2γ
γτ (M)γ(M)

+ (∥f∥2γ + ∥rM∥2γ) + (∥f ′∥2γ + ∥r′M∥2γ) + ∥f∥2γ + ∥f ′′∥2γ
)

≲ τ
(
τ∥f ′′∥2γ · e

1+τ2

2τ2 ·M2

+ ∥f∥2γ + ∥f ′∥2γ + ∥f ′′∥2γ + ∥f ′′∥24 · e−
M2

4

)
.

Thus,
E(hM ) = ∥rM∥2γ + λ∥hM∥2H

≲ ∥f ′′∥24 · e−
M2

4 + λτ
(
τ∥f ′′∥2γ · e

1+τ2

2τ2 ·M2

+ ∥f∥2γ + ∥f ′∥2γ + ∥f ′′∥2γ + ∥f ′′∥24 · e−
M2

4

)
≲ (1 + λτ)∥f ′′∥24 · e−

M2

4 + λτ
(
τ∥f ′′∥2γ · e

1+τ2

2τ2 ·M2

+ ∥f∥2γ + ∥f ′∥2γ + ∥f ′′∥2γ
)

≲ τ∥f ′′∥24 · e−
M2

4 + λτ
(
τ∥f ′′∥2γ · e

1+τ2

2τ2 ·M2

+ ∥f∥2γ + ∥f ′∥2γ + ∥f ′′∥2γ
)
, (22)
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where we used the fact that τ > max{1, λτ} in Eq. (22).

It remains to balance the terms in Eq. (22) by choosing an appropriate value for M > 0. We choose

M by balancing τ∥f ′′∥24 · e−
M2

4 and λτ2∥f ′′∥2γ · e
1+τ2

2τ2 ·M2

.

τ∥f ′′∥24 · e−
M2

4 = λτ2∥f ′′∥2γ · e
1+τ2

2τ2 ·M2

⇒M2 =
4τ2

1 + 3τ2
log
( ∥f ′′∥24
λτ∥f ′′∥2γ

)
.

Let β = 1− 1+τ2

2τ2 · 4τ2

1+3τ2 = τ2−1
1+3τ2 = 1−1/τ2

3+1/τ2 . Plugging the above value of M into Eq. (22),

E(hM ) ≲ τ1+β∥f ′′∥24(λ∥f ′′∥2γ/∥f ′′∥24)β + λC2
f ≤ τ1+β∥f ′′∥24λβ + λC2

f ,

where Cf = max{∥f∥γ , ∥f ′∥γ , ∥f ′′∥γ}.

Finally, let us use a density argument to extend the result to general f ∈ H2(γ) such that f ′′ ∈
L4(γ). We can consider a sequence fρ = Uρf with ρ → 1, where Uρ is the Ornstein-Uhlenbeck
semigroup given by Uρf(x) = Ez[f(ρx+

√
1− ρ2z)]. We verify that fρ ∈ C2(R) for any ρ < 1.

Moreover, from f ′ρ = ρUρ[f
′], f ′′ρ = ρ2Uρ[f

′′] and the fact that the semigroup is strongly continuous
in Lp(γ) for any p ≥ 1, we obtain that fρ → f , f ′ρ → f ′ and f ′′ρ → f ′′ in L2(γ) as well as in L4(γ),
as ρ→ 1. As a result,

A(f, λ) ≤ ∥f − fρ∥2γ +A(fρ, λ)

≤ ∥f − fρ∥2γ + Cτ1+β∥f ′′ρ ∥24λβ + λC2
fρ → Cτ1+β∥f ′′∥24λβ + λC2

f (as ρ→ 1) .

C.3 Random feature approximation

Lemma C.2 (Random features approximation, adapted from [6, Prop 1]). Let δ ∈ (0, 1), τ > 1,
Σ̂ = T ∗T , and let P̂λ = Σ̂(Σ̂ + λI)−1 be the regularized projection onto the random feature
space Ĥ. There exists a universal constant C > 0 such that if N ≥ C

λ log 1
λδ , then with probability

at least 1− δ, for any f ∈ L2(γ) with E[f ] = 0, the following holds.

∥(I − P̂λ)f∥2γ ≤ 4A(f, λ) . (23)

Proof. The lemma follows from Lemmas C.3 and C.4. Note that the zero-mean assumption E[f ] =
0 is necessary to obtain a tight enough bound of these degrees of freedom.

Before stating and proving the two supporting lemmas, we introduce several terms are used to study
the similarity of a finite random feature model to its infinite counterpart. Let κ̂(u, v) be the random
empirical kernel associated with N random features:

κ̂(u, v) =
1

N

N∑
i=1

ϕεibi (u)ϕ
εi
bi
(v) , (24)

where ϕεb(u) := ϕ(εu − b), bi, εi are i.i.d. random variables drawn from γτ ⊗ Rad. Its associated
integral operator in L2(γ) is given by Σ̂.

In the following, we consider Σ the integral operator corresponding to the kernel κ:

Σf(u) =

∫
f(v)κ(u, v)dγ(v) .

By a technical lemma adapted from [6], the approximation error of the random feature model is
controlled via the regularization parameter λ > 0.
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Lemma C.3 (Random features approximation, adapted from [6]). Let δ ∈ (0, 1), and let P be the
orthogonal projection operator on span{hj , j ≥ 1} in L2(γ). Define

dmax(λ) := sup
b∈R,ε∈{±1}

⟨Pϕεb, (PΣP+ λI)−1Pϕεb⟩γ . (25)

There exists a constant C > 0 such that if N ≥ Cdmax(λ) log(dmax(λ)/δ), we have, with probabil-
ity at least 1− δ, for any f ∈ L2(γ),

∥(I − P̂λ)Pf∥2γ ≤ 4A(Pf, λ) . (26)

Proof. Assume for now that f ∈ H and denote f̃ := Pf . Note that we have

∥(I − P̂λ)f̃∥2γ = ∥(I − Σ̂(Σ̂ + λI)−1)f̃∥2γ
= ∥((Σ̂ + λI)− Σ̂)(Σ̂ + λI)−1f̃∥2γ
= ∥λ(Σ̂ + λI)−1f̃∥2γ
= λ2⟨f̃ , (Σ̂ + λI)−2f̃⟩γ
≤ λ⟨f̃ , (Σ̂ + λI)−1f̃⟩γ = λ⟨f,P(Σ̂ + λI)−1Pf⟩γ
= λ⟨f,P(PΣ̂P+ λI)−1Pf⟩γ = λ⟨f̃ , (PΣ̂P+ λI)−1f̃⟩γ ,

where the last line uses the fact that P is a projection operator. Note that PΣ̂P is the integral operator
of the random feature kernel with features Pϕεibi . We now apply [6] to this projected kernel to
control random feature approximation. From the proof of [6, Prop. 1], the following holds with
probability 1− δ (see [6, end of p.37]): for any g ∈ L2(γ),

⟨g, (PΣ̂P+ λI)−1g⟩γ ≤ 4⟨g, (PΣP+ λI)−1g⟩γ ,

as long as N ≥ Cdmax(λ) log(dmax(λ)/δ). Now note that we have

λ⟨Pf, (PΣP+ λI)−1Pf⟩γ = λ⟨Pf, (Σ + λI)−1Pf⟩γ = A(Pf, λ),

where the last equality follows from [7, Lemma 7.2]. Thus, we have proved the result for f ∈ H.
Given that (23) does not require f to be in H, we may conclude by limiting arguments that the result
holds for any f in the closure of H, which includes L2(γ), since the kernel is universal, given that
its associated RKHS is a weighted Sobolev Space, which is dense in L2(γ).

Lemma C.4 (Degrees of freedom). We have dmax(λ) ≤ C/λ, for an absolute constant C > 0.

Proof. Recall that dmax(λ) := supb∈R,ε∈{±1}⟨Pϕεb, (PΣP + λI)−1Pϕεb⟩γ . We consider two cases
separately.

If b ≥ 0, then we have |ϕεb(u)| ≤ |u| for all u, thus

⟨Pϕεb, (PΣP+ λI)−1Pϕεb⟩γ ≤ 1

λ
∥Pϕεb∥

2
γ ≤ 1

λ
∥ϕεb∥

2
γ ≤ C

λ
,

with C = 2
∫∞
0
u2γ(u)du.

If b ≤ 0, we may write
ϕεb(u) = ϕ−ε−b(u) + g(u),

with g(u) = ϵu − b a linear function, using the relation max(0, u) = u + max(0,−u). Then we
have

⟨Pϕεb, (PΣP+ λI)−1Pϕεb⟩γ ≤ 1

λ
∥Pϕεb∥

2
γ

≤ 2

λ
(
∥∥ϕ−ε−b

∥∥2
γ
+ ∥Pg∥2γ) ≤

4C

λ
,

with the same constant C as in the previous case, since both ϕ−ε−b and Pg(u) = (g − E[g])(u) = εu
are controlled by u 7→ |u| in absolute value.
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D Proofs for Section 5

D.1 Exact expression of first-order critical points

We first derive critical point equations for the regularized population loss.

Claim D.1 (Critical point equations). Let (αj)j∈N be the Hermite coefficients of f∗ ∈ L2(γ), let
m ∈ [−1, 1], and let gm, ḡm ∈ L2(γ) be defined by

gm(z) :=

∞∑
j=s

αjm
jhj(z) , ḡm(z) :=

∞∑
j=s

αjjm
j−1hj(z) . (27)

Then, denoting m = ⟨θ∗, θ⟩, we have

L̄(θ) = −⟨P̂λgm, gm⟩γ + (1 + σ2) = −∥gm∥2γ + ⟨(I − P̂λ)gm, gm⟩γ + (1 + σ2) . (28)

Furthermore, the critical points of L(c, θ) satisfy the following equations:

c = Q−1
λ

∞∑
j=s

αjm
jTj ,

0 = −
∞∑
j=s

α2
jjm

2j−1 + ⟨(I − P̂λ)gm, ḡm⟩γ .

We prove Claim D.1 in Appendix D.3 by analyzing the population gradient and relating the crit-
ical points of L̄(θ) to those of L(c, θ). Note that the function gm corresponds to the minimizer
of ∥f∗(⟨θ∗, ·⟩)− g(⟨θ, ·⟩)∥γd , which is essentially the optimal function we may learn from fitting
the second layer c with no regularization when θ is fixed.

D.2 Proof of Theorem 5.3

The intuition behind Theorem 5.3 is as follows. We first observe that for fixed θ ∈ Sd−1 and λ > 0,
the population loss L(c, θ) is strictly convex in c. Hence, if (c, θ) is a critical point of L(c, θ), then
L(c, θ) = L̄(θ). Since ∇Sd−1

θ L(c, θ) = 0, it follows that θ must also be a critical point of the
projected population loss L̄(θ). Now consider the idealized (and impossible) setting in which N is
large enough to exactly express any function in L2(γ) and there is no ℓ2 regularization (i.e., λ = 0).
Then, the projected population loss is

L̄(θ) = min
g∈L2(γ)

∥f∗(⟨θ∗, ·⟩)− g(⟨θ, ·⟩)∥2γd + σ2 = −
∞∑
j=s

α2
jm

2j + (1 + σ2) ,

wherem = ⟨θ∗, θ⟩. L̄(θ) in the ideal case is strictly decreasing in |m| ∈ (0, 1]. Using the expression
for L̄(θ) in Eq. (28), we observe that by setting λ > 0 sufficiently small (andN proportional to 1/λ),
the projection P̂λ onto the subspace Ĥ spanned by random features approximates the identity map
in the operator norm, thereby preserving the strict monotonicity of L̄(θ) with respect to |m|. We
formalize this intuition in the following proof.

We first establish the following lemma (proved in Section D.4) which controls the approximation
error for the functions gm defined in (27).

Lemma D.2 (Uniform approximation error for gm). Under the regularity assumptions on f∗ (As-
sumption 5.2), there exists a universal constant C > 0 and a constant K̃ ≥ 1 depending only on f∗
and not on m, such that for all |m| ≤ 1,

A(gm, λ) ≤ C(τ1+βK̃2∥g′′m∥2γλβ + λC2
gm) , (29)

where β = 1−1/τ2

3+1/τ2 and Cgm = max{∥gm∥γ , ∥g′m∥γ , ∥g′′m∥γ}.
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Proof of Theorem 5.3. For (c, θ) to be a critical point of L, it must satisfy ∇Sd−1

θ L(c, θ) = 0 and
∇cL(θ, c) = 0. By Claim D.1, for any m = ⟨θ∗, θ⟩ ∈ [−1, 1], there is a unique c ∈ RN such that
∇cL(θ, c) = 0 and ∇Sd−1

θ L(c, θ) = 0 if and only if θ ∈ {−θ∗, θ∗}, or
∞∑
j=s

α2
jjm

2j−1 = ⟨(I − P̂λ)gm, ḡm⟩γ . (30)

We show that the latter condition is true only if m = 0 by deriving a contradiction whenever
m ̸= 0. Note that by the regularity assumption on f∗ (Assumption 5.2), it also holds that
∥f ′∗∥γ , ∥f ′′∗ ∥γ < ∞. We contradict the equality in (30) with probability at least 1 − δ over the
randomly sampled biases b1, . . . , bN and signs. Let K̃ ≥ 1 be the constant from Lemma D.2 and
Cf∗ = max{∥f∗∥γ , ∥f ′∗∥γ , ∥f ′′∗ ∥γ}. Define the threshold for λ by

λ∗ :=

(
4
√
Cτ1+βK̃C2

f∗

α2
ss

)−2/β

. (31)

If λ < λ∗ and N ≥ C
λ log 1

λδ , then with probability greater than 1− δ it holds∣∣∣⟨(I − P̂λ)gm, ḡm⟩γ
∣∣∣ ≤ ∥(I − P̂λ)gm∥γ∥ḡm∥γ

≤ 2
√
A(gm, λ)∥ḡm∥γ [Lemma C.2]

≤ 2
√
C(τ1+βK̃2∥g′′m∥2γλβ + λC2

gm)∥ḡm∥γ [Lemma D.2]

≤ 2λβ/2Cgm
√
2Cτ1+βK̃∥ḡm∥γ

≤ 4λβ/2 |m|2s−1
√
Cτ1+βK̃C2

f∗ [Lemma D.8]

< α2
ss |m|2s−1 ≤

∞∑
j=0

α2
jj |m|2j−1

=

∣∣∣∣∣∣
∞∑
j=0

α2
jjm

2j−1

∣∣∣∣∣∣ , [Eq (31)] ,

which contradicts (30). Therefore, the existence of critical points satisfying m /∈ {−1, 0, 1} is ruled
out with probability at least 1− δ over the random features.

Remark D.3 (Robust version of Theorem 5.3). The proof of Theorem 5.3 in fact implies a stronger
result. It implies that if ∥∇Sd−1

L̄(θ)∥ ≈ 0, i.e., if θ is nearly a critical point for the projected
population loss L̄, then |m| ≈ 0 or |m| ≈ 1. This is formally stated in Lemma E.9.

D.3 First-order critical points of the population loss and proof of Claim D.1

To characterize the critical points of L(c, θ) for fixed random features and prove Claim D.1, we
derive exact expressions for L and its gradients. We observe that the population loss depends on the
student direction θ only via its angle to the teacher direction θ∗.
Proposition D.4. The ℓ2-regularized population loss is given by

L(c, θ) = 1 + c⊤Qλc− 2⟨c,
∞∑
j=s

αjm
jTj⟩+ σ2 . (32)

Proof. Recall the decomposition c⊤Φ(z) =
∑∞
j=0⟨Tj , c⟩hj(z). Straightforward calculation gives

L(c, θ) = ∥(f(⟨θ∗, ·⟩) + ξ)− c⊤Φ(⟨θ, ·⟩)∥2γd + λ∥c∥2

= ∥f∥2γ + ∥c⊤Φ∥2γ − 2⟨f(⟨θ∗, ·⟩), c⊤Φ(⟨θ, ·⟩)⟩γd + σ2 + λ∥c∥2

= 1 +

∞∑
j=0

⟨Tj , c⟩2 − 2

∞∑
j=s

⟨Tj , c⟩αj⟨θ, θ∗⟩j + σ2 + λ ∥c∥2

= 1 + c⊤Qλc− 2⟨c,
∞∑
j=s

αjm
jTj⟩+ σ2 .
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Eq. (32) gives us an expression for gradients with respect to θ ∈ Sd−1 and c ∈ RN .

Corollary D.5 (Gradient of population loss). The (non-spherical) gradient with respect to the stu-
dent direction θ ∈ Sd−1 and c ∈ RN are given by

∇θL = −

 ∞∑
j=s

⟨Tj , c⟩jαjmj−1

 θ∗ and ∇cL = 2

Qλc− ∞∑
j=s

αjm
jTj

 . (33)

Recall that the criticality of θ depends on the spherical gradient being zero, not the standard one.
Since the gradient ∇θL is colinear with θ∗, we stipulate necessary and sufficent conditions for θ to
be critical.

Corollary D.6 (Projection onto the sphere). ∇Sd−1

θ L = 0 if and only if either (i) θ = θ∗ (i.e.,
m = 1) or (ii)

∑∞
j=s⟨Tj , c⟩jαjmj−1 = 0.

Identifying the critical values of θ is sufficient because the unique critical point for c exists as the
solution to a linear system. To elaborate, Qλ ∈ RN×N is non-singular for λ > 0, so if θ ∈ Sd−1 is
fixed, then c is given as the solution to a linear system of equations: c = Q−1

λ (
∑
j αjm

jTj).

By Proposition D.4, L(c, θ) is strictly convex with respect to c ∈ RN for any fixed θ ∈ Sd−1. Hence,
if (c, θ) is a critical point of L, then θ must be a critical point of L̄.

Lemma D.7 (Critical points of the projected population loss). Recall that gm(z) =∑∞
j=s αjm

jhj(z). Then, the projected population loss L̄ is given by

L̄(θ) = −
∑
j,j′

αjαj′m
j+j′⟨hj , P̂λhj′⟩γ + (1 + σ2) (34)

= −⟨gm, P̂λgm⟩γ + (1 + σ2) .

Furthermore, critical points of L̄ satisfy the following equation.∑
j,j′

αjαj′(j + j′)mj+j′−1⟨hj , Pλhj′⟩γ = 0 . (35)

Proof of Lemma D.7. Because T is full-rank, let T = UΛV be its SVD for some U ∈ RN×N ,
diagonal Λ ∈ RN×N , and V : L2(µ) → RN . Then, Tj = UΛVhj , Qλ = U⊤(Λ2 + λIN )U , and
Q−1
λ = U⊤(Λ2 + λIN )−1U . Similarly, P̂λ = V∗Λ(Λ2 + λIN )−1ΛV . As a result,

⟨Tj , Q−1
λ Tj′⟩ = ⟨hj ,V∗Λ(Λ2 + λIN )−1ΛVhj′⟩γ = ⟨hj , P̂λhj′⟩γ .

Now we plug in c = Q−1
λ (
∑
j αjm

jTj) into Eq. (32). Then, we have

L̄(θ)− (1 + σ2) = −

〈∑
j

αjm
jTj , Q−1

λ

∑
j′

αj′m
j′Tj′

〉

= −
∑
j,j′

αjαj′m
jmj′

〈
Tj , Q−1

λ

∑
j′

Tj′
〉

= −
∑
j,j′

αjαj′m
jmj′⟨hj , P̂λhj′⟩γ .

Differentiating L̄(θ) with respect to m = ⟨θ, θ∗⟩, we obtain the following critical point equation.∑
j,j′

αjαj′(j + j′)mj+j′−1⟨hj , Pλhj′⟩γ = 0 .
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Claim D.1 (Critical point equations). Let (αj)j∈N be the Hermite coefficients of f∗ ∈ L2(γ), let
m ∈ [−1, 1], and let gm, ḡm ∈ L2(γ) be defined by

gm(z) :=

∞∑
j=s

αjm
jhj(z) , ḡm(z) :=

∞∑
j=s

αjjm
j−1hj(z) . (27)

Then, denoting m = ⟨θ∗, θ⟩, we have

L̄(θ) = −⟨P̂λgm, gm⟩γ + (1 + σ2) = −∥gm∥2γ + ⟨(I − P̂λ)gm, gm⟩γ + (1 + σ2) . (28)

Furthermore, the critical points of L(c, θ) satisfy the following equations:

c = Q−1
λ

∞∑
j=s

αjm
jTj ,

0 = −
∞∑
j=s

α2
jjm

2j−1 + ⟨(I − P̂λ)gm, ḡm⟩γ .

Proof of Claim D.1. As discussed above (c, θ) is a critical point of L if and only if θ is a critical
point of L̄ and c = Q−1

λ (
∑
j αjm

jTj). By applying Lemma D.7, we separate the diagonal and
off-diagonal terms to rewrite Eq. (35) as

0 =
∑
j

α2
j (2j)m

2j−1 − 2⟨(I − P̂λ)gm, ḡm⟩γ .

Dividing both sides by 2 gives the claim.

D.4 Proof of Lemma D.2

Lemma D.2 (Uniform approximation error for gm). Under the regularity assumptions on f∗ (As-
sumption 5.2), there exists a universal constant C > 0 and a constant K̃ ≥ 1 depending only on f∗
and not on m, such that for all |m| ≤ 1,

A(gm, λ) ≤ C(τ1+βK̃2∥g′′m∥2γλβ + λC2
gm) , (29)

where β = 1−1/τ2

3+1/τ2 and Cgm = max{∥gm∥γ , ∥g′m∥γ , ∥g′′m∥γ}.

Proof. For simplicity, we denote the Lp(γ) norms by ∥ · ∥p. For any ρ ∈ [0, 1], we define the noise
operator Uρ by

Uρf(x) = Ez∼γ [f(ρx+
√

1− ρ2z)]

This is a reparametrisation of the Ornstein-Uhlenbeck semigroup,2 and we have from [67, Prop
11.33] that Uρhj = ρjhj . In other words, the Hermite polynomials are eigenfunctions of the semi-
group. As a consequence, we have from (27) that gm = Umf∗.

Let us verify that if f ′′∗ ∈ L4(γ) and K = ∥f ′′∗ ∥4/∥f ′′∗ ∥2, then there exists a constant K̃ ≥ 1,
depending only on f∗ and not m, such that ∥g′′m∥4 ≤ K̃∥g′′m∥2 for any m ∈ [−1, 1]. If f ′′∗ ≡ 0, then
g′′m ≡ 0 for any m, and thus K̃ = 1. Otherwise, let s̃ denote the information exponent of f ′′∗ ̸= 0.
That is, if s ≥ 2, then s̃ = s − 2, and if s = 1, then s̃ = s2 − 2 where s2 is the second non-zero
harmonic of f∗. For |m| ≤ 1/

√
3, we have

g′′m = m2Um[f ′′∗ ] = m2U√
1/3
Um

√
3[f

′′
∗ ] .

2The Ornstein–Uhlenbeck semigroup Pt is given by Ptf(x) =
∫
f(e−tx+

√
1− e−2tz)dγ(z) . We thus

have Pt = Ue−t
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Since |m
√
3| ≤ 1, we have∥∥Um√

3[f
′′
∗ ]
∥∥2
2
=

∞∑
j=s̃

(j + 2)(j + 1)α2
j+2(m

√
3)2j ≤ (m

√
3)2s̃

∞∑
j=s̃

(j + 2)(j + 1)α2
j+2 = (m

√
3)2s̃∥f ′′∗ ∥22 .

By Nelson’s Gaussian hypercontractivity [65] (reproduced in [67, Theorem 11.23]),

∥g′′m∥4 = m2
∥∥∥U√

1/3

(
Um

√
3[f

′′
∗ ]
)∥∥∥

4
≤ m2∥Um√

3[f
′′
∗ ]∥2 ≤ |m|s̃+2 · 3s̃/2∥f ′′∗ ∥2

Since ∥g′′m∥2 ≥ |m|s̃+2
√

(s̃+ 2)(s̃+ 1)|αs̃+2|, we obtain that

sup
|m|≤1/

√
3

∥g′′m∥4
∥g′′m∥2

≤ 3s̃/2√
(s̃+ 2)(s̃+ 1)|αs̃+2|

· ∥f ′′∗ ∥2 .

Let us now consider m ≥ 1/
√
3. Since Uρ is an averaging operator for all ρ ≤ 1, from Jensen’s

inequality (reproduced in [67, Proposition 11.15]) it holds that ∥Uρf∥p ≤ ∥f∥p for any p ≥ 1. We
thus have

∥g′′m∥4 ≤ m2∥f ′′∗ ∥4 .

and ∥g′′m∥2 ≥ 3−(s̃+2)/2
√

(s̃+ 2)(s̃+ 1)|αs̃+2|, therefore

sup
|m|≥1/

√
3

∥g′′m∥4
∥g′′m∥2

≤ 3(s̃+2)/2∥f ′′∗ ∥4√
(s̃+ 2)(s̃+ 1)|αs̃+2|

≤ 3(s̃+2)/2K∥f ′′∗ ∥2√
(s̃+ 2)(s̃+ 1)|αs̃+2|

.

Hence, we set

K̃ =
3(s̃+2)/2∥f ′′∗ ∥ ·max{K, 1/3}√

(s̃+ 2)(s̃+ 1)|αs̃+2|
=

3s/2K∥f ′′∗ ∥√
(s̃+ 2)(s̃+ 1)|αs̃+2|

.

By Lemma 4.4, we therefore have

∀ m ∈ [−1, 1], A(gm, λ) ≤ C(τ1+βK̃2∥g′′m∥2γλβ + C2
gmλ) , (36)

where β = 1−1/τ2

3+1/τ2 , C > 0 is a universal constant, and Cgm = max{∥gm∥γ , ∥g′m∥γ , ∥g′′m∥γ}.

D.5 Other lemmas for the proof of Theorem 5.3

Lemma D.8 (γ-norm of gm and ḡm). Let f ∈ H2(γ) be such that f ′, f ′′ ∈ L2(γ) and let s ≥ 1 be
its information exponent. Furthermore, let f∗ =

∑
j αjhj be the Hermite expansion of f∗, and let

gm and ḡm be defined as in Theorem 5.3. Then,
∥gm∥2γ ≤ ∥f∗∥2γm2s,

∥g′′m∥2γ ≤ ∥f ′′∗ ∥2γm2s,

∥ḡm∥2γ ≤
(
∥f ′′∗ ∥2γ + ∥f ′∗∥2γ

)
m2(s−1) .

Proof. By definition of gm and Holder’s inequality,

∥gm∥2γ =

∞∑
j=s

α2
jm

2j ≤ ∥α∥22 max
j≥s

m2j = ∥f∗∥2γm
2s,

∥g′′m∥2γ =

∞∑
j=2

j(j − 1) · α2
jm

2j ≤

 ∞∑
j=2

j(j − 1)α2
j

max
j≥s

m2j = ∥f ′′∗ ∥
2
γm

2s,

∥ḡm∥2γ =

∞∑
j=1

j2α2
jm

2(j−1) =

∞∑
j=s

j(j − 1)α2
jm

2(j−1) +

∞∑
j=s

jα2
jm

2(j−1) ≤ m2(s−1)
(
∥f ′′∗ ∥

2
γ + ∥f ′∗∥

2
γ

)
.
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Corollary D.9. Let f ∈ H2(γ) be a function satisfying assumptions of Lemma D.8, let gm and ḡm
be defined as in Theorem 5.3, and let Cgm = max{∥gm∥, ∥g′m∥γ , ∥g′′m∥γ}. Then,

C2
gm ≤

∞∑
j=s

j2α2
jm

2j ≤ 2C2
gm and Cgm∥ḡm∥γ ≤

√
2

∞∑
j=s

j2α2
jm

2j−1 .

Proof. The first inequality follows from the following.

C2
gm ≤

∞∑
j=s

j2α2
jm

2j = ∥g′′m∥2γ + ∥g′m∥2γ ≤ 2C2
gm .

The proof of the second inequality is via straightforward algebraic manipulation.

Cgm∥g̃m∥γ ≤

 ∞∑
j=s

j2α2
jm

2j

1/2 ∞∑
j=s

j2α2
jm

2(j−1)

1/2

=

s̃−1∑
j=s

j2α2
jm

2j +

∞∑
j=s̃

j2α2
jm

2j

1/2s̃−1∑
j=s

j2α2
jm

2(j−1) +

∞∑
j=s̃

j2α2
jm

2(j−1)

1/2

=

( s̃−1∑
j=s

j2α2
j |m|2j−1

)2
+
( s̃−1∑
j=s

j2α2
jm

2j
)( ∞∑

j=s̃

j2α2
jm

2(j−1)
)
+
( ∞∑
j=s̃

j2α2
j |m|2j−1

)21/2

=

( s̃−1∑
j=s

j2α2
j |m|2j−1

)2
+
( s̃−1∑
j=s

j2α2
j |m|2j−1

)( ∞∑
j=s̃

j2α2
j |m|2j−1

)
+
( ∞∑
j=s̃

j2α2
j |m|2j−1

)21/2

≤

(( s̃−1∑
j=s

j2α2
j |m|2j−1

)2
+
( s̃−1∑
j=s

j2α2
j |m|2j−1

)2
+
( ∞∑
j=s̃

j2α2
j |m|2j−1

)2
+
( ∞∑
j=s̃

j2α2
j |m|2j−1

)2)1/2

≤

(
2
( s̃−1∑
j=s

j2α2
j |m|2j−1

)2
+ 2
( ∞∑
j=s̃

j2α2
j |m|2j−1

)2)1/2

≤
√
2

∞∑
j=s

j2α2
j |m|2j−1

.

where we used the inequalities ab ≤ a2+b2, and
√
a2 + b2 ≤ a+bwhich apply to any a, b ≥ 0.

E Proofs for Section 6

E.1 Proof of Theorem 6.1

Theorem 6.1 (Gradient flow finds approximate minimizers). For δ ∈ (0, 1/4) and f∗ satisfying
Assumption 5.2, suppose the following are true: (i) λ = O(1) and λ = Ω(

√
∆crit), where ∆crit :=

max{
√

d+N
n , (d

2

n )2s/(2s−1)}, (ii) n = Ω̃(max{ (d+N)ds−1

λ4 , d
(s+3)/2

λ2 }), (iii) N = Ω( 1λ log 1
λδ ) &

N = Õ(λ∆−1
crit), (iv) N0 = Θ(log( 1δ )), (v) ρ = Θ(

√
NN

−(2+s)/2
0 (τ2 + λN/N0)

−1), (vi) T0 =

Θ̃(ds/2−1), and (vii) T1 = Θ̃( λ
4n

d+N ). Then, if we run Procedure 1 for T = T0 + T1 time steps with
the above parameters, with probability at least 1

2 − δ we have

1− |⟨θT , θ∗⟩| = Õ

(
λ−4 max

{
d+N

n
,
d4

n2

})
. (11)

Proof. The proof of this theorem has two separate parts: we first prove that our gradient flow pro-
cedure escapes the neighborhood of the equator, and then show that it converges to a neighborhood
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of the north pole. Define the set of approximate-first-order critical points of the empirical landscape
in the sublevel set Ln(c, θ) ≤ ν.

Ωn(ϵθ, ϵc, ν) := {(c, θ); ∥∇θLn(c, θ)∥ ≤ ϵθ, ∥∇cLn(c, θ)∥ ≤ ϵc;Ln(c, θ) ≤ ν}

Recall from Theorem 5.3 that the structure of critical points of the population landscape
Ω∞(0, 0,∞) has two distinct components: the equator E = {θ; ⟨θ, θ∗⟩ = 0} and the poles θ = ±θ∗,
leading to

Ω∞(0, 0,∞) = Ω∞(0, 0, 0) = {(0, θ); θ ∈ E}︸ ︷︷ ︸
:=Ωb

∞

⊔ {(zc∗, zθ∗); z = {−1,+1}}︸ ︷︷ ︸
:=Ωg

∞

,

with c∗ = P̂λf∗. One would expect that for n sufficiently large, these topological properties should
be transferred to the empirical landscape. This intuition is indeed correct, and relies on the following
uniform convergence result, proved in Appendix E.2.

Lemma E.1 (Uniform convergence of the empirical landscape). Let d, n,N ∈ N be such that d ≤ n,
let D = max{d,N}, let δ ∈ (0, 1/4), r ≥ 1, and let σ2 > 0, τ2 > 1 be the variance of label noise
and random feature biases, respectively. Under Assumption 5.2, there exists a universal constant
C0 > 0 such that the following holds with probability at least 1 − δ over the samples and random
features.

sup
θ∈Sd−1,∥c∥≤r

∥∇θLn(c, θ)−∇θL(c, θ)∥ ≤ Cf∗Cr
2 ·max

(√
D log(nN/δ)

n
,
(d log(nN/δ))2

n

)

sup
θ∈Sd−1,∥c∥≤r

∥∇cLn(c, θ)−∇cL(c, θ)∥ ≤ C2r ·
√
D log(n/δ)

n
,

where C = C0 ·max{Lip(f∗), τ
√
log(1/δ), σ}, and Cf∗ = max{∥f (1)∗ ∥γ , . . . , ∥f (4)∗ ∥γ , 1}.

Equipped with this uniform gradient concentration, we can first establish the analogous classification
of first-order critical points for the empirical landscape (proof in Section E.3):

Lemma E.2 (Local sharpness of the empirical landscape). Let d, n ∈ N be such that d ≤ n,
let δ ∈ (0, 1/4), let s̃ ∈ N be such that s̃ ≥ s, where s ≥ 1 is the information exponent of
f∗, let λ ∈ (0, λ∗s̃) where λ∗s̃ ≤ 1 depends only on s̃, f∗, and τ , and let N ∈ N be such that
N ≥ C0

λ log 1
λδ , where C0 > 0 is a universal constant. Furthermore, let D = max{d,N} and let

ϵ ∈ (0, 1) be such that ϵ ≤ λ−2
√
d/n. Then, there exists a universal constant C1 > 0 such that for

C = C1 ·max{Lip(f∗), τ
√
log(1/δ), σ} and ∆ = max

{√
D log(n/δ)

n , (d log(n/δ))
2

n

}
the following

holds with probability at least 1− δ over the samples and random features.

Ωn(ϵ, ϵ) = Ωbad
n ⊔ Ωgood

n ,where (37)

Ωbad
n ⊂

{
(c, θ)

∣∣∣∣∣ |m| ≤
(
C2C

7

λ2
·∆
) 1

2s̃−1

∧ ∥c∥ ≤ C3

λ

}
,

Ωgood
n ⊂

{
(c, θ)

∣∣∣∣∣ 1− |m| ≤ C3C
14

λ4
·∆2 ∧ ∥c∥ ≤ C3

λ

}
,

and C2 = Cf∗/s̃α
2
s̃ and C3 = (22s̃−1C2)

2 in the above display. Moreover,

min
(c,θ)∈Ωbad

n

Ln(c, θ) ≥ σ2 + ∥f∗∥2γ − 2max{∥f∗∥2γC2
2C

14, C8} ·∆crit/λ
2 , (38)

where

∆crit = max
{√D log(n/δ)

n
,
(d2 log2(n/δ)

n

) 2s̃
2s̃−1

}
. (39)

We consider the gradient flow procedure of Algorithm 1, that we restate here for convenience:

We establish the following fact, proved in Appendix E.4:
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Procedure 3 Gradient Flow with time-scale scheduling (Restated)

Require: N0, ρ, T0, T1
Initialise θ(0) ∼ Unif(Sd−1), c(0) ∼ Unif({c ∈ RN ; ∥c∥2 = ρ; ∥c∥0 = N0}).
Run Gradient Flow (10) with ζ(t) = 1(t > T0) up to time T = T0 + T1.

Lemma E.3 (Gradient flow escapes the equator). Assume
∑
j(j+A)

kα2
j ≤ C forA ≤ s and k ≤ 3.

With probability at least 1/2−2δ over the initial condition, the draw of the data, and the draw of the
random features, if n = Ω̃(max{λ−4(d+N)ds−1, λ−2d(s+3)/2}) and N = Θ

(
λ−1 log(λ−1δ−1)

)
then the first phase of gradient flow with a randomly initialised c(0) ∼ Unif{c ∈ ρSN−1; ∥c∥0 =

N0} with ρ = Θ(
√
NN

−(2+s)/2
0 (τ2 + λN/N0)

−1) and N0 = Θ
(
log 1

δ

)
escapes the equator in

time T0 = Õ
(
ds/2−1

)
.

Therefore, for any ϵ > 0, Gradient Flow converges to an ϵ-approximate first-order critical point at
energy lower than Bcrit = Θ̃

(
λ−2∆crit

)
in time Õ(ϵ−2) = Õ(λ

4n
D ), since gradient flow is a descent

curve under our settings (see Appendix F), and therefore satisfies

Ln(c(T ), θ(T ))− Ln(c(0)) = −
∫ T

0

∥∇Ln(c(t), θ(t))∥2dt . (40)

By Lemma E.2, such critical points can only be in Ωgood
n , which yields the result.

E.2 Proof of Lemma E.1

Lemma E.1 (Uniform convergence of the empirical landscape). Let d, n,N ∈ N be such that d ≤ n,
let D = max{d,N}, let δ ∈ (0, 1/4), r ≥ 1, and let σ2 > 0, τ2 > 1 be the variance of label noise
and random feature biases, respectively. Under Assumption 5.2, there exists a universal constant
C0 > 0 such that the following holds with probability at least 1 − δ over the samples and random
features.

sup
θ∈Sd−1,∥c∥≤r

∥∇θLn(c, θ)−∇θL(c, θ)∥ ≤ Cf∗Cr
2 ·max

(√
D log(nN/δ)

n
,
(d log(nN/δ))2

n

)

sup
θ∈Sd−1,∥c∥≤r

∥∇cLn(c, θ)−∇cL(c, θ)∥ ≤ C2r ·
√
D log(n/δ)

n
,

where C = C0 ·max{Lip(f∗), τ
√
log(1/δ), σ}, and Cf∗ = max{∥f (1)∗ ∥γ , . . . , ∥f (4)∗ ∥γ , 1}.

Proof. Recall the empirical loss of equation (1) for c ∈ RN and θ ∈ Sd−1:

Ln(c, θ) =
1

n

n∑
i=1

ℓ(c, θ;xi, yi) + λ∥c∥2 ,

where
ℓ(c, θ;x, y) =

(
c⊤Φ(⟨x, θ⟩)− y

)2
.

Uniform convergence of ∇θLn. Our proof tracks closely the argument in [33, Section G.1] and
[60, Theorem 1], but takes additional steps to handle the non-Lipschitzness of the sample gradient
around 0. For simplicity, we write C = max{Lip(f∗), τ

√
log(1/δ), σ}, i.e., omit the universal

constant C0 > 0, with the understanding that C0 is implicitly determined by accounting for all
occurrences of ≲ in our analysis. We also repeatedly use the following elementary fact: If C1, C2 ≥
1, then C1 + C2 ≤ 2max{C1, C2} ≤ 2C1C2. We first recall basic concentration properties of
standard Gaussian random variables.

Fact E.4 (Niceness of Gaussian random variables). Let δ ∈ (0, 1/4), N ∈ N, and let b1, . . . , bN be
i.i.d. random variables drawn from N (0, τ2). Then, there exists a universal constant C ′ > 0 such
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that the following two events hold simultaneously with probability at least 1− δ.

max
j

|bj | ≤ C ′τ
√
log(N/δ) ,∑

j

b2j ≤ Nτ2 + C ′τ2 max
{
log(1/δ),

√
N log(1/δ)

}
.

Corollary E.5 (ℓ2-norm of random features). Let δ ∈ (0, 1/4) and let b1, . . . , bN be i.i.d. random
variables drawn from N (0, τ2). Then, there exists a universal constant C ′ > 0 such that the
following holds for all z ∈ R with probability at least 1− δ over the random features,

∥Φ(z)∥ ≤ |z|+ C ′τ(1 +
√

log(1/δ)/N) ≤ |z|+ 2C ′τ
√

log(1/δ) .

Proof. Let C1 = max{C, 1}, where C > 0 is the constant from Fact E.4. Then, with probability at
least 1− δ over the random features,

∥Φ(z)∥ =

√√√√ 1

N

N∑
j=1

ϕ(ζjz − bj)2

≤

√√√√ 1

N

N∑
j=1

(ζjz − bj)2

=

√√√√z2 − 2z

N

N∑
j=1

ζjbj +
1

N

N∑
j=1

b2j

≤
√
z2 + 2|z|C2τ

√
log(1/δ)/N + τ2(1 + C1 max{log(1/δ)/N,

√
log(1/δ)/N})

≤ |z|+max{C2
2 , 2C1} · τ(1 +

√
log(1/δ)/N)) .

Fix c ∈ RN such that ∥c∥ ≤ r. For x ∼ N (0, Id) consider the random vector corresponding to the
samplewise gradient with respect to θ ∈ Sd−1.

∇θℓ (c, θ;x, f∗(⟨x, θ∗⟩)) = (c⊤Φ′(⟨θ, x⟩))
(
c⊤Φ(⟨θ, x⟩)− f∗(⟨x, θ∗⟩)− ξ

)
x .

The tail of this random vector is subexponential, as stated in the following lemma.

Lemma E.6 (Sub-exponential gradients). Let f∗ : R → R be a Lipschitz function, let δ ∈ (0, 1/4),
let r ≥ 1, and let τ2 > 1 be the variance of random feature biases. Then, there exists a universal
constant C ′ > 0 such that the following holds with probability at least 1 − δ over the random
features.

∥∇θℓ (c, θ;x, f∗(⟨x, θ∗⟩) + ξ)∥ψ1
≤ C ′∥c∥(Lip(f∗) + σ + ∥c∥τ(1 +

√
log(1/δ)/N)) ≤ 2C ′Cr2 ,

(41)

where C = max{Lip(f∗), τ
√
log(1/δ), σ}.

Proof of Lemma E.6. Define W = c⊤Φ(⟨θ, x⟩)− f∗(⟨θ∗, x⟩)− ξ. Using Fact B.3,

∥∇θℓ (c, θ;x, f∗(⟨x, θ∗⟩))∥ψ1
≤ sup
v∈Sd−1

∥∥(c⊤Φ′(⟨θ, x⟩))W ⟨v, x⟩
∥∥
ψ1

≤
∥∥(c⊤Φ′(⟨θ, x⟩))W

∥∥
ψ2

≤ ∥c∥ ∥W∥ψ2
,

where the last inequality follows from the Cauchy-Schwartz inequality ∥c∥1 ≤
√
N∥c∥2 and the

fact that Φ′(y) ∈ {0, 1/
√
N}N . Now denote the (correlated) Gaussian variables by Z = ⟨θ, x⟩ and
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Z∗ = ⟨θ∗, x⟩. Recalling Fact B.3 and our assumption that E[f∗(Z)] = 0,

∥W∥ψ2
≤
∥∥c⊤Φ(Z)∥∥

ψ2
+ ∥f∗(Z∗)∥ψ2

+ ∥ξ∥ψ2

≤
∥∥c⊤Φ(Z)− E[c⊤Φ(Z)]

∥∥
ψ2

+
∥∥E[c⊤Φ(Z)]∥∥

ψ2
+ ∥f∗(Z∗)∥ψ2

+ ∥ξ∥ψ2

≲ ∥c∥+ |E[c⊤Φ(Z)]|+ Lip(f∗) + σ

≤ ∥c∥(1 + ∥E[Φ(Z)]∥) + Lip(f∗) + σ .

By Corollary E.5, the following holds with probability at least 1− δ over the random features.

∥E[Φ(Z)]∥ ≤ E[∥Φ(Z)∥] ≲ τ(1 +
√

log(1/δ)/N) .

We now prove the uniform convergence of ∇θLn(c, θ). Let ϵθ, ϵc < 1 be small positive integers. To
make things concrete, we set ϵθ = 1/(4n2N) and ϵc = r/n2. We consider ϵ-nets of θ ∈ Sd−1 and
c ∈ RN with ∥c∥ ≤ r. We denote these sets by Nθ and Nc respectively. By Fact B.6, there exist
such sets with |Nθ| ≤ (3/ϵθ)

d and |Nc| ≤ (3r/ϵc)
N . We use these ϵ-nets to decompose gradient

error into three terms, which we bound individually. We abuse notation and denote by θ̃ the element
in Nθ closest to θ in the ℓ2 norm and c̃ the closest element in Nc to c. Then, the gradient deviation
term can be decomposed into

sup
θ∈Sd−1,∥c∥≤r

∥∇θLn(c, θ)−∇θL(c, θ)∥ ≤ sup
θ∈Sd−1,∥c∥≤r

∥∥∥∇θLn(c, θ)−∇θLn(c̃, θ̃)
∥∥∥

+ sup
θ̃∈Nθ,c̃∈Nc

∥∥∥∇θLn(c̃, θ̃)−∇θL(c̃, θ̃)
∥∥∥

+ sup
θ∈Sd−1,∥c∥≤r

∥∥∥∇θL(c, θ)−∇θL(c̃, θ̃)
∥∥∥ .

As mentioned previously, bounding the first term (with high probability) requires some care due to
the non-differentiability of ReLU at the origin. The other two terms can be bounded using standard
techniques. We first look at the sample gradient ∇θℓ(c, θ;xi, yi) := ∇θ(yi − c⊤Φ(⟨xi, θ⟩))2 to
bound the “worst-case” discretization error incurred by discontinuities in the sample gradient. Then,
we show that with high probability over the samples, for any θ ∈ Sd−1 and c, this “worst-case”
discretization error occurs only for a few samples xi. Thus, the contribution from the worst-case
discretization error get averaged out in ∇θLn(c, θ) − ∇θLn(c̃, θ̃) = 1

n

∑n
i=1(∇θℓ(c, θ;xi, yi) −

∇θℓ(c̃, θ̃;xi, yi)).

For simplicity, we set ReLU′(0) = 0.3 Note that Φ′(z) ∈ {0, 1/
√
N}N , so ∥Φ′(z)∥2 ≤ 1 for any

z ∈ R. By Corollary E.5, the sample gradient and an upper bound for its ℓ2 norm is given by

∇θℓi(c, θ;xi, yi) = −(c⊤Φ′(⟨xi, θ⟩))(yi − c⊤Φ(⟨xi, θ⟩))xi .

∥∇θℓi(c, θ;xi, yi)∥ ≤ ∥c∥
(
Lip(f∗)∥xi∥+ ∥c∥(∥xi∥+ C ′τ

√
log(1/δ))

)
∥xi∥ ≲ Cr2(∥xi∥2 + ∥xi∥) .

When discretizing Sd−1, the “best-case” is when Φ′(⟨xi, θ⟩) = Φ′(⟨xi, θ̃⟩) in which case the dis-
cretization error is 1-Lipschitz in θ − θ̃. On the other hand, the discretization error is not Lipschitz
when Φ′(⟨xi, θ⟩) ̸= Φ′(⟨xi, θ̃⟩), i.e., when the ReLU’ sign patterns change after projecting θ onto
Nθ. The “worst-case” discretization error corresponding to this case is upper bounded by

∥∇θℓi(c, θ;xi, yi)−∇θℓi(c, θ̃;xi, yi)∥ ≤ ∥∇θℓi(c, θ;xi, yi)∥+ ∥∇θℓi(c, θ̃;xi, yi)∥ ≲ Cr2(∥xi∥2 + ∥xi∥) .

We now show that for any fixed θ̃ ∈ Sd−1, bottom-layer weights b1, . . . , bN and signs ε1, . . . , εN ,
with high probability only a small fraction of the sample gradients ∇θℓi change ReLU’ sign patterns
Φ′(⟨xi, θ̃)) within a ball of radius ϵθ from θ̃. As a consequence, the worst-case discretization error,

3The particular value of ReLU′(0) does not matter for our proof it is [0, 1]. In practice, however, the
particular value assigned to ReLU′(0) may have non-trivial implications [14].
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which comes from the non-differentiability of ReLU, does not accumulate too much for the averaged
gradient ∇θLn(c, θ)−∇θLn(c, θ̃). To this end, fix an arbitrary θ ∈ Sd−1 and letZθ,i be the indicator
that projecting θ on to the ϵ-net Nθ changes the sign pattern for xi. Formally,

Zθ,i = 1

[
∃θ, j ∈ [N ] s.t. ∥θ̃ − θ∥ ≤ ϵθ, sign(εj⟨θ̃, xi⟩ − bj) ̸= sign(εj⟨θ, xi⟩ − bj)

]
.

By the union bound (over j ∈ [N ]) and basic properties of Gaussian random variables,

E[Zθ,i] ≤ N P[∃θ s.t. ∥θ̃ − θ∥ ≤ ϵθ, sign(ε1⟨θ̃, xi⟩ − b1) ̸= sign(ε1⟨θ, xi⟩ − b1)]

≤ N P[|⟨θ̃, xi⟩ − b1| ≤ ∥xi∥ ϵθ]
= N P[|⟨θ̃, xi/ ∥xi∥⟩ − b1/ ∥xi∥ | ≤ ϵθ]

≤ N E
t
[P[|⟨θ̃, u⟩ − b1/t| ≤ ϵθ|t]] (denoting t = ∥xi∥ and u = xi/ ∥xi∥)

≤ N P[|⟨θ̃, u⟩| ≤ ϵθ] ,

where u is a random vector drawn uniformly from Sd−1, and we used the fact that u and r are
independent, along with the fact that the density of ⟨θ̃, u⟩ is peaked around 0. The last line can be
upper bounded by the surface area of an ϵ-thick strip around the equator in Sd−1. This is given by
the following anticoncentration bound from Section B.

Lemma B.7 (Anticoncentration on the unit sphere). Let d ∈ N. Let θ ∈ Sd−1 be any fixed unit
vector and let u be a random vector drawn uniformly from Sd−1. Then, for any ϵ > 0,

P[⟨θ, u⟩ ≤ ϵ] ≤ 4
√
dϵ .

By Lemma B.7, if ϵθ = 1/(4n2N), then E[Zθ,i] ≤ 1/n and thus
∑n
i=1 E[Zθ,i] ≤ 1. By the

independence of the samples xi and a Chernoff bound, it holds that the probability that at least
q ≥ 6 inputs xi satisfy the above event is upper bounded by 2−q [63, Theorem 4.4]. As a result,
with probability at least 1 − (3/ϵθ)

d · 2−q , no more than q inputs can change sign pattern for each
fixed θ̃. It suffices to set q = 4d log(1/(ϵθδ)) ≲ d log(nN/δ).

We assume that this event holds and establish the first inequality with the help of the ϵ-nets. We
assume without loss of generality that for fixed θ̃, the inputs that may change ReLU signs for any θ
in an ϵθ-ball of θ̃ are contained in x1, . . . , xq . Recall that for any given θ and c, we denote by θ̃ and
c̃ the closest elements in the ϵ-nets.∥∥∥∇θLn(c, θ)−∇θLn(c̃, θ̃)

∥∥∥
≤ 1

n

n∑
i=1

∥∥∥∇θℓ(c, θ;xi, yi)−∇θℓ(c̃, θ̃;xi, yi)
∥∥∥

≤ 1

n

n∑
i=1

(
∥∇θℓ(c, θ;xi, yi)−∇θℓ(c̃, θ;xi, yi)∥+

∥∥∥∇θℓ(c̃, θ;xi, yi)−∇θℓ(c̃, θ̃;xi, yi)
∥∥∥)

We first bound the terms involving differences between c and c̃. Note that by Fact E.4, maxi |ξi| ≲
σ
√

log(n/δ) and maxi ∥xi∥ ≲
√
d log(n/δ) with probability at least 1 − δ/6. Thus, we consider

events for which these conditions hold.

∥∇θℓ(c, θ;x, y)−∇θℓ(c̃, θ;x, y)∥
=
∥∥(c⊤Φ′(⟨θ, x⟩)(c⊤Φ(⟨θ, x⟩)− y)x− (c̃⊤Φ′(⟨θ, x⟩)(c̃⊤Φ(⟨θ, x⟩)− y)x

∥∥
≤
∥∥(c⊤Φ′(⟨θ, x⟩)((c− c̃)⊤Φ(⟨θ, x⟩)x

∥∥+ ∥∥(c− c̃)⊤Φ′(⟨θ, x⟩)(c̃⊤Φ(⟨θ, x⟩)− f∗(⟨x, θ∗⟩ − ξ))x
∥∥

≤ ∥c∥ϵc∥Φ(⟨θ, x⟩)∥∥x∥+ ϵc (∥c∥∥Φ(⟨θ, x⟩)∥+ Lip(f∗)∥x∥+ |ξ|) ∥x∥
≲ ϵc∥x∥ (∥c∥(∥x∥+ C) + C∥x∥+ |ξ|)
≲ Crϵc

(
∥x∥2 + ∥x∥(1 + |ξ|/σ)

)
≲ Crϵc

(
∥x∥2 + ∥x∥

√
log(n/δ)

)
. (42)
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Next, we consider the first q terms of the differences between θ and θ̃. For some i ∈ [ℓ]∥∥∥∇θℓ(c̃, θ;xi, yi)−∇θℓ(c̃, θ̃;xi, yi)
∥∥∥

≤
∥∥∥(c̃⊤Φ′(⟨θ, xi⟩)(c̃⊤Φ(⟨θ, xi⟩)− yi)xi − (c̃⊤Φ′(⟨θ̃, xi⟩)(c̃⊤Φ(⟨θ̃, xi⟩)− yi)xi

∥∥∥
≤ 2 sup

c̃,θ

∥∥(c̃⊤Φ′(⟨θ, xi⟩)(c̃⊤Φ(⟨θ, xi⟩)− yi)xi
∥∥

≤ 2 sup
c̃,θ

∥c̃∥ (∥c̃∥ ∥Φ(⟨θ, xi⟩)∥+ Lip(f∗)∥xi∥+ |ξi|) ∥xi∥

≲ sup
c̃

(∥∥c̃2∥∥(∥xi∥+ τ(1 +
√
log(4/δ)/N)

)
+ ∥c̃∥ (Lip(f∗)∥xi∥+ |ξi|)

)
∥xi∥

≲ r(r + Lip(f∗))∥xi∥2 +
(
r2τ(1 +

√
log(4/δ)/N) + r|ξi|

)
∥xi∥

≲ Cr2(∥xi∥2 + ∥xi∥(1 + |ξi|/σ))

≲ Cr2(∥xi∥2 + ∥xi∥
√

log(n/δ)) . (43)

Finally, we bound the remaining n− q terms.∥∥∥∇θℓ(c̃, θ;xi, yi)−∇θℓ(c̃, θ̃;xi, yi)
∥∥∥ =

∥∥∥c̃⊤Φ′(⟨θ, xi⟩)
(
c̃⊤(Φ(⟨θ, xi⟩)− Φ(⟨θ̃, xi⟩))

)
xi

∥∥∥
≤ r2ϵθ∥xi∥2 .

As a result, with probability at least 1− δ/3,∥∥∥∇θLn(c, θ)−∇θLn(c̃, θ̃)
∥∥∥ ≲ Cr2∥xi∥

((ϵc
r
+
q

n

)
(∥xi∥+

√
log(n/δ)) + ϵθ∥xi∥

)
≲ Cr2 · (d log(n/δ))

2

n
.

where we set q = 4d log(1/(ϵθδ)) and recall that ϵc = r/n2, ϵθ = 1/(4n2N).

We now bound the second term
∥∥∥∇θLn(c̃, θ̃)−∇θL(c̃, θ̃)

∥∥∥ using a standard concentration argument

over the (1/2)-net on Sd−1, which we denote by N1/2. By Fact B.6,

sup
θ̃∈Nθ,c̃∈Nc

∥∥∥∇θLn(c̃, θ̃)−∇θL(c̃, θ̃)
∥∥∥ ≤ 2 sup

v∈N1/2,

θ̃∈Nθ,c̃∈Nc

⟨v,∇θLn(c̃, θ̃)−∇θL(c̃, θ̃)⟩. (44)

By Lemma E.6, the ψ1-norm of a sample gradient is bounded by ∥∇θℓ(c̃, θ̃;xi, yi)∥ψ1
≲

Cr2, where we recall that C = max{Lip(f∗), τ
√

log(1/δ), σ, 1}. Since ∇θLn(c̃, θ̃) =
1
n

∑
i∇θℓ(c̃, θ̃;xi, yi) and ∇θL(c̃, θ̃) = E[∇θℓ(c̃, θ̃;x, y)], and v ∈ Sd−1, the right-hand side of

equation (B.6) is the supremum of averaged sub-exponential random variables. Hence, the term can
be bounded with by combining a union bound and Bernstein’s inequality (Theorem B.4). Recall that
D = max{d,N}. For sufficiently large universal constants C0, C1 > 0, the following holds.

P

[
2 sup
θ̃,c̃,v

⟨v,∇θLn(c̃, θ̃)−∇θL(c̃, θ̃)⟩ ≥ C0 · Cr2 ·
√
D log(nN/δ)

n

]

≤ 6d
(

3

ϵθ

)d(
3r

ϵc

)N
exp

(
−C1 · n · D log(nN/δ)

n

)
≤ exp

(
d log

(
18

ϵθ

)
+N log

(
3r

ϵc

)
− C1 ·D log(nN/δ)

)
≤ δ

3
,

where we used the assumption d ≤ n in the last inequality.
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We now bound third term. Note that this term involves only populational quantities, so discontinuity
of the sample gradients is not an issue here.∥∥∥∇θL(c, θ)−∇θL(c̃, θ̃)

∥∥∥ ≤
∥∥∥∇θL(c, θ)−∇θL(c, θ̃)

∥∥∥+ ∥∥∥∇θL(c, θ̃)−∇θL(c̃, θ̃)
∥∥∥

=
∥∥∥∇θL(c, θ)−∇θL(c, θ̃)

∥∥∥+ ∥∥∥E[∇θℓ(c, θ̃;x, y)−∇θℓ(c̃, θ̃;x, y)]
∥∥∥ .

We upper bound the two terms individually. By Eq. (42), the second term is bounded as follows.∥∥∥E[∇θℓ(c, θ̃;x, y)−∇θℓ(c̃, θ̃;x, y)]
∥∥∥ ≲ Crϵc · d

√
log(n/δ) ≲ Cr2

√
log(n/δ)/n .

For the first term, we use our regularity assumption on the target f∗ (Assumption 5.2), specifically
the existence of continuous higher-order derivatives. Let f∗(z) =

∑∞
j=0 αjhj(z) and c⊤Φ(z) =∑∞

j=0 βj(c)hj(z), be the Hermite expansion of the target and ReLU network, respectively. Define
the univariate function g : [−1, 1] → R by

g(m; c) =

∞∑
j=0

αjβj(c)m
j .

Straightforward algebraic manipulation using orthonormality of the Hermite basis gives the follow-
ing expression of the gradient with respect to θ ∈ Sd−1.

∇θL(θ) = g′(⟨θ∗, θ⟩; c)θ∗ .

The following observation gives an upper bound on the Lipschitz constant of g′(m; c), which de-
pends only on ∥c∥ and is thus constant if r is fixed.

|g′′(m; c)| ≤
∞∑
j=2

j(j − 1)|αj ||βj(c)| ≤

 ∞∑
j=1

j2(j − 1)2α2
j

1/2 ∞∑
j=0

βj(c)
2

1/2

≤

 ∞∑
j=1

j2(j − 1)2α2
j

1/2

∥c⊤Φ(z)∥γ

≤

 ∞∑
j=1

j2(j − 1)2α2
j

1/2

Cr .

Lemma E.7 gives a simple expression for
∑
j j

2(j − 1)2α2
j . Its proof can be found in Section E.8.

Lemma E.7. Let f : R → R be function such that its derivatives f (1), . . . , f (4) are all in L2(γ).
Let f(z) =

∑∞
j=0 αjhj(z) be the Hermite expansion of f . Then,

∞∑
j=1

j2(j − 1)2α2
j = ∥f (4)∥2γ + 4∥f (3)∥2γ + 2∥f (2)∥2γ .

Let Cf∗ = max{∥f (1)∥γ , . . . , ∥f (4)∥γ , 1}, which is well-defined thanks to our regularity assump-
tion on the target link function (Assumption 5.2). Then,∥∥∥∇θL(c, θ)−∇θL(c, θ̃)

∥∥∥ = |g′(⟨θ∗, θ⟩)− g′(⟨θ∗, θ̃⟩)| ≤ sup
m∈[−1,1]

|g′′(m)|∥θ − θ̃∥ ≲ Cf∗Crϵθ .

Putting everything together, we have that with probability at least 1− δ,

sup
θ,∥c∥≤r

∥∇θLn(c, θ)−∇θL(c, θ)∥ ≤ Cf∗Cr
2 ·max

(√
D log(nN/δ)

n
,
(d log(nN/δ))2

n

)
.
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Uniform convergence of ∇cLn. The proof is similar to the one for ∇θLn.

Lemma E.8 (∇cℓ is sub-exponential). There exists a universal constant C0 > 0 such that under the
same assumptions as Lemma E.6, with probability at least 1− δ over the random features,

∥∇cℓ(c, θ;x, f∗(⟨θ∗, x⟩) + ξ))∥ψ1
≤ C2r ,

where we recall that C = C0 ·max{Lip(f∗), τ
√
log(1/δ), σ, 1}.

Proof of Lemma E.8. We first let

∇cℓ(c, θ;x, f∗(⟨x, θ∗⟩) + ξ) = 2Φ(⟨x, θ⟩)
(
c⊤Φ(⟨x, θ⟩)− f∗(⟨x, θ∗⟩)− ξ

)
:= 2Y2(Y3 − Y1) ,

where Y1 = f∗(⟨x, θ∗⟩) + ξ, Y2 = Φ(⟨x, θ⟩) and Y3 = c⊤Φ(⟨x, θ⟩). Following the proof of
Lemma E.6, observe that those are sub-Gaussian random vectors, satisfying ∥Y1∥ψ2

≲ Lip(f∗) +

σ ≲ C, ∥Y2∥ψ2
≲ τ

√
log(1/δ) ≲ C, and ∥Y3∥ψ2

≲ Cr. Using again that the product of two
sub-gaussian variables is sub-exponential and that the sum of two sub-exponential variables is sub-
exponential (Fact B.3), we obtain the desired result.

Let ϵθ = 1/(n2) and ϵc = r/n2 and let Nθ and Nc be ϵθ and ϵc-nets of Sd−1 and BNr , respectively.
Also, denote by θ̃ and c̃ the closest element in Nθ and Nc to θ ∈ Sd−1 and c ∈ BNr . Then,

sup
θ∈Sd−1,∥c∥≤r

∥∇cLn(c, θ)−∇cL(c, θ)∥ ≤ sup
θ∈Sd−1,∥c∥≤r

∥∥∥∇cLn(c, θ)−∇cLn(c̃, θ̃)
∥∥∥

+ sup
θ̃∈Nθ,c̃∈Nc

∥∥∥∇cLn(c̃, θ̃)−∇cL(c̃, θ̃)
∥∥∥

+ sup
θ∈Sd−1,∥c∥≤r

∥∥∥∇cL(c, θ)−∇cL(c̃, θ̃)
∥∥∥ .

We bound the first and third terms by bounding the discretization error for each samplewise gradient.
First observe that
∥∇cℓ(c, θ;x, y)−∇cℓ(c̃, θ̃;x, y)∥ ≤ ∥∇cℓ(c, θ;x, y)−∇cℓ(c̃, θ;x, y)∥+ ∥∇cℓ(c̃, θ;x, y)−∇cℓ(c̃, θ̃;x, y)∥ .

We bound the first term on the RHS as follows.
∥∇cℓ(c, θ;x, y)−∇cℓ(c̃, θ;x, y)∥ ≤ ∥Φ(⟨θ, x⟩)∥

∣∣(c̃− c)⊤Φ(⟨θ, x⟩)
∣∣

≤ ϵc∥Φ(⟨θ, x⟩)∥2

≲ Cϵc∥x∥2 .

On the other hand,
∥∇cℓ(c̃, θ;x, y)−∇cℓ(c̃, θ̃;x, y)∥ ≤ ∥Φ(⟨θ, x⟩)∥|c̃⊤(Φ(⟨θ, x⟩)− Φ(⟨θ̃, x⟩))|

+ ∥Φ(⟨θ, x⟩)− Φ(⟨θ̃, x⟩)∥|c̃⊤Φ(⟨θ̃, x⟩))|
≲ Cϵθ∥c̃∥∥x∥ .

Thus,
∥∇cL(c, θ)−∇cL(c̃, θ̃)∥ = ∥E[∇cℓ(c, θ;x, y)−∇cℓ(c̃, θ̃;x, y)]∥

≤ E[∥∇cℓ(c, θ;x, y)−∇cℓ(c̃, θ̃;x, y)∥]
≲ C(ϵc + ϵθr)d .

∥∇cLn(c, θ)−∇cLn(c̃, θ)∥ =

∥∥∥∥∥ 1n
n∑
i=1

∇cℓ(c, θ;xi, yi)−∇cℓ(c̃, θ̃;xi, yi)

∥∥∥∥∥
=

1

n

n∑
i=1

∥∥∥∇cℓ(c, θ;xi, yi)−∇cℓ(c̃, θ̃;xi, yi)
∥∥∥

≲ C · ϵc sup
i

∥xi∥2 + ϵθr sup
i

∥xi∥

≲ C(ϵc + ϵθr) · d log(n/δ) .
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Taking ϵc = r/n2 and ϵθ = 1/n2, we observe that with probability 1− (2/3)δ,

max
{∥∥∥∇cLn(c, θ)−∇cLn(c̃, θ̃)

∥∥∥ ,∥∥∥∇cL(c, θ)−∇cL(c̃, θ̃)
∥∥∥} ≲ Cr · log(n/δ)

n
.

Note that the above upper bound is much smaller than Cr
√
d log(n/δ)/n. This indicates that

most of the gradient deviation comes from the sub-exponential concentration of ∥∇cLn(c̃, θ̃) −
∇cL(c̃, θ̃)∥. The bound on this term is given by Bernstein’s inequality (Theorem B.4) and the union
bound over Nθ ×Nc. Recall that D = max{d,N}. Then,

P

[
sup
θ̃,c̃

∥∥∥∇cLn(c̃, θ̃)−∇cL(c̃, θ̃)
∥∥∥ ≥ C2r ·

√
D log(n/δ)

n

]

≤ 6d
(

3

ϵθ

)d(
3r

ϵc

)N
exp

(
−C1 · n · D log(n/δ)

n

)
≤ exp

(
d log

(
18

ϵθ

)
+N log

(
3r

ϵc

)
− C1 ·D log(n/δ)

)
≤ δ

3
.

E.3 Proof of Lemma E.2

Lemma E.2 (Local sharpness of the empirical landscape). Let d, n ∈ N be such that d ≤ n,
let δ ∈ (0, 1/4), let s̃ ∈ N be such that s̃ ≥ s, where s ≥ 1 is the information exponent of
f∗, let λ ∈ (0, λ∗s̃) where λ∗s̃ ≤ 1 depends only on s̃, f∗, and τ , and let N ∈ N be such that
N ≥ C0

λ log 1
λδ , where C0 > 0 is a universal constant. Furthermore, let D = max{d,N} and let

ϵ ∈ (0, 1) be such that ϵ ≤ λ−2
√
d/n. Then, there exists a universal constant C1 > 0 such that for

C = C1 ·max{Lip(f∗), τ
√
log(1/δ), σ} and ∆ = max

{√
D log(n/δ)

n , (d log(n/δ))
2

n

}
the following

holds with probability at least 1− δ over the samples and random features.

Ωn(ϵ, ϵ) = Ωbad
n ⊔ Ωgood

n ,where (37)

Ωbad
n ⊂

{
(c, θ)

∣∣∣∣∣ |m| ≤
(
C2C

7

λ2
·∆
) 1

2s̃−1

∧ ∥c∥ ≤ C3

λ

}
,

Ωgood
n ⊂

{
(c, θ)

∣∣∣∣∣ 1− |m| ≤ C3C
14

λ4
·∆2 ∧ ∥c∥ ≤ C3

λ

}
,

and C2 = Cf∗/s̃α
2
s̃ and C3 = (22s̃−1C2)

2 in the above display. Moreover,

min
(c,θ)∈Ωbad

n

Ln(c, θ) ≥ σ2 + ∥f∗∥2γ − 2max{∥f∗∥2γC2
2C

14, C8} ·∆crit/λ
2 , (38)

where

∆crit = max
{√D log(n/δ)

n
,
(d2 log2(n/δ)

n

) 2s̃
2s̃−1

}
. (39)

The main idea behind the proof of Lemma E.2 is that the set of near-critical points of L(c, θ), which
we denote here by Ω and define as the set of (c, θ) for which ∥∇L(c, θ)∥ ≈ 0, can be partitioned
into two disjoint sets Ωbad and Ωgood, where Ωbad is the set of points close to the equator (meaning
|⟨θ∗, θ⟩| ≈ 0) and Ωgood is the set of points close to the poles (meaning |⟨θ∗, θ⟩| ≈ 1). Once this is
established, the result follows from uniform convergence of the empirical landscape. To elaborate,
with high probability over the samples and random features, any near-critical point of the empirical
loss Ln(c, θ) is a near-critical point of the population loss L(c, θ) and vice versa by Lemma E.1.
Thus, if (c, θ) is a near-critical point of the empirical loss Ln(c, θ), then it is a near-critical point of
L(c, θ) as well, so topological properties of L(c, θ) dictate that either |⟨θ∗, θ⟩| ≈ 0 or ≈ 1.
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The key observation Ω = Ωbad ∪ Ωgood follows from Lemma E.9 and E.11. Lemma E.9 states that
for near-critical points of the projected population loss L̄(θ), a robust version of Theorem D.7 holds.
That is, if ∥∇Sd−1

θ L̄(θ)∥ ≈ 0, then |⟨θ∗, θ⟩| ≈ 0 or |⟨θ∗, θ⟩| ≈ 1. Lemma E.11 states that if (c, θ) is
a near-critical point of L(c, θ), then θ is a near-critical point of the projected population loss L̄(θ).
That is, if ∥∇cL(c, θ)∥ ≈ 0 and ∥∇Sd−1

θ L(c, θ)∥ ≈ 0, then ∥∇θL̄(θ)∥ ≈ 0. The formal proof is as
follows.

Proof of Lemma E.2. Let ϵ ≤ λ−2
√
d/n and let (c, θ) ∈ RN×Sd−1 be an ϵ-approximate first-order

critical point of the empirical loss Ln. We first show that with probability at least 1 − δ over the
samples and random features,

∥c∥ ≲ (Lip(f∗) + σ)τ log(1/δ)/λ ≲ C3/λ .

By definition, Ln can be expressed as

Ln(c, θ) = c⊤Q̂λ(θ)c− 2⟨c, Ŷ (θ)⟩+ Cdata , (45)

where Cdata > 0 is some constant independent of c and θ, and

Q̂λ(θ) =
1

n

n∑
i=1

Φ(⟨xi, θ⟩)Φ⊤(⟨xi, θ⟩) + λI , Ŷ (θ) =
1

n

n∑
i=1

(f∗(⟨xi, θ∗⟩)+ξi)Φ(⟨xi, θ⟩) .

Using the fact that ∇cLn(c, θ) = Q̂λ(θ)c − Ŷ (θ), ∥∇cLn(c, θ)∥ ≤ ϵ, and Q̂−1
λ (θ) ⪯ λ−1I uni-

formly in θ, we obtain

∥c∥ ≤ ∥Q̂−1
λ (θ)∥

(
ϵ+ ∥Ŷ (θ)∥

)
≤ λ−1

(
ϵ+ ∥Ŷ (θ)∥

)
≤ λ−1

(
ϵ+ sup

θ∈Sd−1

∥Ŷ (θ)∥
)
.

Thus, it suffices to show that supθ ∥Ŷ (θ)∥ is upper bounded with high probability over the samples
and random features. We achieve this using an ϵ-net argument over Sd−1 and Bernstein’s inequality.
Let N1/2 be a 1/2-net of Sd−1 and define the random vector Y (θ)

Y (θ) = (f∗(⟨x, θ∗⟩)+ξ)Φ(⟨x, θ⟩) ∈ RN ,

where x ∼ N (0, Id) and ξ ∼ N (0, σ2).

For any fixed θ ∈ Sd−1, Y (θ) is subexponentially distributed with norm ∥Y (θ)∥ψ1
≲ (Lip(f∗) +

σ) ∥Φ(z)∥ψ2
≲ (Lip(f∗)+σ)τ

√
log(1/δ) (see Corollary E.5). Hence, ∥Ŷ (θ)∥ concentrates around

its expectation which is upper bounded as follows. Denote by m = ⟨θ∗, θ⟩ and let z, z′ be m-
correlated Gaussian random variables. Then,

E[∥Y (θ)∥] = E
z,z′

[|f∗(z) + ξ|∥Φ(z′)∥]

≤ E
z,z′

[|f∗(z)||∥Φ(z′)∥] + σ E
z′
[∥Φ(z′)∥]

≲ E
z,z′

[Lip(f∗)|z|(|z′|+ τ
√

log(1/δ))] + στ
√

log(1/δ) [Lemma E.5]

≲ Lip(f∗)(1 + τ
√
log(1/δ)) + στ

√
log(1/δ)

≲ (Lip(f∗) + σ)τ
√
log(1/δ) ,

where we used the fact that τ
√

log(1/δ) > 1 in the last line.

By Bernstein’s inequality (Theorem B.4) and the union bound over N1/2, the following holds with
probability at least 1− δ.

sup
θ∈Sd−1

∥Ŷ (θ)∥ ≤ 2 sup
θ̃∈N1/2

∥Ŷ (θ̃)∥ ≲ (Lip(f∗) + σ)τ
√
log(1/δ)(1 +

√
d log(1/δ)/n)

≲ (Lip(f∗) + σ)τ log(1/δ) ,

42



where we used the assumption d ≤ n for the last inequality.

Thus, we may set r ≲ (Lip(f∗) + σ)τ log(1/δ)/λ ≲ C3/λ for the upper bound on ∥c∥ in
Lemma E.1. Recalling the notation C = max{Lip(f∗), σ, τ

√
log(1/δ)} and using the assump-

tion ϵ ≤ λ−1
√
D/n, we have

∥∇cL(c, θ)∥ ≤ ∥∇cL(c, θ)−∇cLn(c, θ)∥+ ∥∇cLn(c, θ)∥

≲ C2r

√
D log(n/δ)

n
+ ϵ

≲
C5

λ

√
D log(n/δ)

n
. (46)

and

∥∇Sd−1

θ L(c, θ)∥ ≤ ∥∇Sd−1

θ L(c, θ)−∇Sd−1

θ Ln(c, θ)∥+ ∥∇Sd−1

θ Ln(c, θ)∥

≤ ∥∇θL(c, θ)−∇θLn(c, θ)∥+ ∥∇Sd−1

θ Ln(c, θ)∥

≲ Cf∗Cr
2 ·max

{√
D log(n/δ)

n
,
(d log(n/δ))2

n

}
+ ϵ

≲
Cf∗C

7

λ2
·max

{√
D log(n/δ)

n
,
(d log(n/δ))2

n

}
, (47)

where Cf∗ = max{∥f (1)∥γ , . . . , ∥f (4)∥γ}.

Let ϵ̃c = C1(C
5/λ)

√
D log(n/δ)/n and ϵ̃θ = C1(Cf∗C

7/λ2) ·
max{

√
D log(n/δ)/n, d2 log2(n/δ)/n}, where C1 > 0 is an appropriately chosen universal

constant for Eq. (46) and (47). Then, the above inequalities can be expressed as

∥∇cL(c, θ)∥ ≤ ϵ̃c and ∥∇Sd−1

θ L(c, θ)∥ ≤ ϵ̃θ .

Since we assumed N ≥ C
λ log 1

λδ , the conditions of Lemma E.11 are satisfied. Hence,

∥∇Sd−1

θ L̄(θ)∥ ≲ Cf∗(τ/λ)ϵ̃c + ϵθ ≲
Cf∗C

7

λ2
·max

{√
D log(n/δ)

n
,
(d log(n/δ))2

n

}
. (48)

As a result, by Lemma E.9, which applies since λ < λ∗ and N ≥ C
λ log 1

λδ , either one of the
following must be true.

|m| ≲

(
Cf∗C

7

λ2s̃α2
s̃

·max

{√
D log(n/δ)

n
,
(d log(n/δ))2

n

}) 1
2s̃−1

, or

1− |m| ≲
(
22s̃−1

s̃α2
s̃

)2 C2
f∗
C14

λ4
·max

{√
D log(n/δ)

n
,
(d log(n/δ))2

n

}2

,

where we recall from Lemma E.9 that s is the information exponent of f∗ and s̃ ∈ N is any number
satisfying s̃ ≥ s. Hence, Eq. (37) is established.

Let us now prove (38). By Lemma E.13, for any (c, θ) ∈ Ωbad
n ,

|Ln(c, θ)− L(c, θ)| ≲ C8

λ2
·
√
D log(n/δ)

n
.
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Denoting ∆ = max{
√

D log(n/δ)
n , d

2 log2(n/δ)
n }, and using the fact that C > 1 and 2s̃

2s̃−1 ≤ 2,

min
Ωbad

n

Ln(c, θ) ≥ min
Ωbad

n

L(c, θ)− C8

λ2
·
√
D log(n/δ)

n

≥ σ2 + ∥f∗∥2γ · min
m∈Ωbad

n

(1−m2s̃)− C8

λ2
·
√
D log(n/δ)

n

≥ σ2 + ∥f∗∥2γ
(
1−

(
C2C

7∆

λ2

) 2s̃
2s̃−1

)
− C8

λ2
·
√
D log(n/δ)

n

≥ σ2 + ∥f∗∥2γ − 2max{∥f∗∥2γC2
2C

14, C8} · ∆crit

λ2
, (49)

where C2 = Cf∗/(s̃α
2
s̃) and

∆crit = max
{√D log(n/δ)

n
,
(d2 log2(n/δ)

n

) 2s̃
2s̃−1

}
.

This concludes the proof of the lemma.

Lemma E.9 (Near-criticality of L̄(θ)). Let δ ∈ (0, 1/4), τ > 1, β = 1−1/τ2

3+1/τ2 , λ ∈ (0, 1), and
let Cf∗ = max{∥f∗∥γ , ∥f ′∗∥γ , ∥f ′′∗ ∥γ}. There exist C1 > 0 depending only on f∗ and τ , and a
universal constant C2 > 0 such that for any s̃ ≥ s, where s ≥ 1 is the information exponent of f∗, if

C1λ
β/2 < min{s̃α2

s̃, C
2
f∗/s̃} and N ≥ C2

λ
log

1

λδ
,

then with probability at least 1−δ, the following holds for the projected loss L̄. If ∥∇Sd−1

θ L̄(θ)∥ ≤ ϵ,
then m = ⟨θ∗, θ⟩ satisfies either

|m| ≤
(

2ϵ

s̃α2
s̃

) 1
2s̃−1

or 1− |m| ≤
(
22s̃−1

s̃α2
s̃

)2

· ϵ2 .

Remark E.10 (Choice of s̃). Lemma E.9 gives us freedom over the choice of s̃ provided s̃ ≥ s,
where s is the information exponent of the target link function f∗. If we fix s̃ = s, then the upper
bound on C1λ

β/2 depends only on f∗ and τ . Indeed, the choice s̃ = s implies the tightest upper
bound on |m| since its exponent is 1/(2s̃ − 1). Yet, extra freedom over the choice of s̃ allows us
to apply Lemma E.9 to more general settings. For example, when the target, which we denote by
fn, potentially changes with respect to n, but converges to some limit f∗ in L2(γ) as n → ∞. In
this case, the information exponent sn of fn is not necessarily the same as that of f∗ nor do the
Hermite coefficients match exactly. However, we can ensure that if fn is sufficiently close to f∗, then
|αs(fn)− αs(f∗)| ≥ |αs(f∗)|/2 and thus apply Lemma E.9 to fn using quantities related to f∗.

Proof of Lemma E.9. We use the representation of the restricted population loss L̄(θ) from
Lemma D.7 Eq. (34), the notation ρm = 2⟨P̂λgm, ḡm⟩, and the definition of the Riemannian gradient
to obtain

∇Sd−1

θ L̄(θ) = ∇θL̄(θ)− ⟨∇θL̄(θ), θ⟩θ = −ρm(θ∗ −mθ) . (50)

This yields an exact representation of the magnitude of the Riemannian gradient ∥∇Sd−1

θ L̄(θ)∥2 =
ρ2m(1 − m2) that depends only on m ∈ [−1, 1]. Following the proof of Theorem 5.3 for upper
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bounding
∣∣∣⟨(I − P̂λ)gm, ḡm⟩γ

∣∣∣, we observe that∣∣∣⟨(I − P̂λ)gm, ḡm⟩γ
∣∣∣ ≤ ∥(I − P̂λ)gm∥γ∥ḡm∥γ

≤ 2
√
A(gm, λ)∥ḡm∥γ [Lemma C.2]

≤ 2
√
C(τ1+βK̃2∥g′′m∥2γλβ + λC2

gm)∥ḡm∥γ [Lemma D.2]

≤ 2λβ/2Cgm
√
2Cτ1+βK̃∥ḡm∥γ

≤ 4λβ/2
√
Cτ1+βK̃ ·

∞∑
j=s

j2α2
jm

2j−1 [Corollary D.9]

≤ C ′λβ/2 ·
∞∑
j=s

j2α2
jm

2j−1 , (51)

where C ′ = 4
√
Cτ1+βK̃. Denoting Cf∗ = max{∥f∗∥γ , ∥f ′∗∥γ , ∥f ′′∗ ∥γ}, we observe that

∞∑
j=s̃

j2α2
jm

2j−1 ≤ |m|2s̃−1
∞∑
j=s̃

j2α2
j = |m|2s̃−1

(∥f ′′∗ ∥2γ + ∥f ′′∗ ∥2γ) ≤ 2C2
f∗ |m|2s̃−1

,

Thus, for λ satisfying 2C ′C2
f∗
λβ/2 ≤ min{s̃α2

s̃, C
2
f∗
/s̃}, we have

|ρm| ≥ 2 |⟨gm, ḡm⟩γ | − 2|⟨(I − P̂λ)gm, ḡm⟩γ |

≥ 2

∞∑
j=s

jα2
j |m|2j−1 − C ′λβ/2

( s̃∑
j=s

j2α2
j |m|2j−1

+

∞∑
j=s̃

j2α2
j |m|2j−1

)

≥ 2

∞∑
j=s

jα2
j |m|2j−1 −

s̃∑
j=s

jα2
j |m|2j−1 − C ′λβ/2

∞∑
j=s̃

j2α2
j |m|2j−1

≥ 2

∞∑
j=s̃

jα2
j |m|2j−1 − 2C ′C2

f∗λ
β/2 |m|2s̃−1

≥ s̃α2
s̃ |m|s̃−1

.

We now assume that ∥∇Sd−1

θ L̄(θ)∥ = |ρm|
√
1−m2 ≤ ϵ and retrieve the claimed bounds on |m|.

If |m| ≤ 1/2, then |ρm| ≤
√
4/3ϵ. Hence, our lower bound on |ρm| implies that

|m| ≤
(

2ϵ

s̃α2
s̃

) 1
2s̃−1

.

If |m| > 1/2, then |ρm| ≥ (1/2)2s̃−1s̃α2
s̃, thus

1− |m| ≤ ϵ2

|ρm|2(1 + |m|)
≤
(
22s̃−1

s̃α2
s̃

)2

· ϵ2 .

Lemma E.11 (Near-criticality of L and L̄). There exists a universal constant C > 0 such that for
any δ ∈ (0, 1) and N ∈ N satisfying N ≥ C log(1/δ), the following holds with probability at
least 1 − δ over the random biases. For any (c, θ) ∈ RN × Sd−1 such that ∥∇Sd−1

θ L(c, θ)∥ ≤ ϵθ
and ∥∇cL(c, θ)∥ ≤ ϵc, it holds∥∥∥∇Sd−1

θ L̄(θ)
∥∥∥ ≤ 2ms−1

√
1−m2τϵc
λ

√
∥f ′′∗ ∥2γ + ∥f ′∗∥2γ + ϵθ ≲ Cf∗(τ/λ)ϵc + ϵθ ,

where Cf∗ = max{∥f ′∗∥γ , ∥f ′′∗ ∥γ}.
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Proof of Lemma E.11. Recall from Corollary D.5 that

∇cL(c, θ) = 2(Qλc−
∑
j

αjm
jTj) and ∇θL(c, θ) = −⟨c,

∑
j

jαjm
j−1Tj⟩θ∗ .

Define cθ = argminc L(c, θ), so that L̄(θ) = L(cθ, θ). We first show that if ∥∇cL(c, θ)∥ ≤ ϵc,
then c and cθ are nearby. Because ∇cL(cθ, θ) = 0 and Qλ ⪰ λIN ,

∥∇cL(c, θ)∥ = ∥∇cL(c, θ)−∇cL(cθ, θ)∥ = 2 ∥Qλ(c− cθ)∥ ≥ 2λ ∥c− cθ∥ .

Thus, ∥c− cθ∥ ≤ ϵc
2λ . We now recall the Riemannian gradient for θ,

∇Sd−1

θ L(c, θ) = −⟨c,
∑
j

jαjm
j−1Tj⟩θ∗ + ⟨c,

∑
j

jαjm
jTj⟩θ,

and use it to bound the norm of the projected gradient.∥∥∥∇Sd−1

θ L̄(θ)
∥∥∥ ≤

∥∥∥∇Sd−1

θ L(c, θ)
∥∥∥+ ∥∥∥∇Sd−1

θ L(cθ, θ)−∇Sd−1

θ L(c, θ)
∥∥∥

≤ ϵθ +
∥∥∥− ⟨cθ − c,

∑
j

jαjm
j−1Tj⟩θ∗ + ⟨cθ − c,

∑
j

jαjm
jTj⟩θ

∥∥∥
= ϵθ +

√
1−m2

∣∣∣⟨cθ − c,
∑
j

jαjm
j−1Tj⟩

∣∣∣
≤ ϵθ +

√
1−m2 ∥cθ − c∥

∥∥∥∑
j

jαjm
j−1Tj

∥∥∥
≤ ϵθ +

ϵc
2λ

√
1−m2

∥∥∥∑
j

jαjm
j−1Tj

∥∥∥ .
We conclude by employing Lemmas D.8 and E.12 to obtain a bound on the final term that holds
with probability at least 1− δ.∥∥∥∑

j

jαjm
j−1Tj

∥∥∥2 =
∥∥∥T ∑

j

jαjm
j−1hj

∥∥∥2
=
∥∥∥Σ̂1/2

∑
j

jαjm
j−1hj

∥∥∥2 ≤ ∥Σ̂∥op
∥∥∥∑

j

jαjm
j−1hj

∥∥∥2
γ

≤ Tr(Σ̂) ∥ḡm∥2γ ≤
(
1

2
+ τ2

)
(∥f ′′∗ ∥2γ + ∥f ′∗∥2γ)m2(s−1) .

Lemma E.12. There exists a universal constant C > 0 such that for any τ > 1 and δ ∈ (0, 1), if
N ≥ C log(1/δ), then ∥Σ̂∥op ≤ Tr(Σ̂) ≤ τ2 + 1/2 with probability at least 1− δ.

Proof of Lemma E.12. By definition of Σ̂, Tr(Σ̂) = 1
N

∑N
i=1

∥∥ϕεibi∥∥2γ , with ϕεb(u) = ϕ(εu − b).

We compute the expectation of ∥ϕεb∥
2
γ for b ∼ γτ and ε ∼ Rad, show that it is sub-exponential,

and conclude that Tr(Σ̂) concentrates around its expectation. The computation of the expectation
depends on elementary properties of the Gaussian distribution.

E
ε∼Rad
b∼γτ

[
∥ϕεb∥

2
γ

]
=

1

2
E

b∼γτ
z∼γ

[
ϕ(z − b)2

]
+

1

2
E

b∼γτ
z∼γ

[
ϕ(−z − b)2

]
= E
u∼N (0,1+τ2)

[
ϕ(u)2

]
=

1

2
(1 + τ2).

Note that
∥∥ϕ1b∥∥γ and

∥∥ϕ−1
b

∥∥ are C1τ
2-subgaussian random variables for some constant C1 because

b is τ2-subgaussian, and ∥ϕεb∥γ for fixed ε is a 1-Lipschitz function of b: | ∥ϕεb∥γ − ∥ϕεb′∥γ | ≤
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∥ϕεb − ϕεb′∥γ ≤ |b− b′|. Thus, ∥ϕεb∥γ = 1+ε
2

∥∥ϕ1b∥∥γ+ 1−ε
2

∥∥ϕ−1
b

∥∥
γ

isC ′τ2-subgaussian by Fact B.3.

As a result, ∥ϕεb∥
2
γ is C ′τ2-subexponential, and Tr(Σ̂) is Cτ2

N -subexponential. Then,

P
[
Tr(Σ̂) ≥ E

[
Tr(Σ̂)

]
+

1

2
τ2
]
≤ exp

(
− τ2/2

C2 · τ2/N

)
= exp

(
− N

C2

)
.

We conclude by selecting a sufficiently large N .

Moreover, the empirical loss uniformly concentrated for (c, θ) ∈ BN (r)×Sd−1, as quantified in the
following lemma, following the same strategy as our previous gradient concentration:
Lemma E.13 (Uniform convergence of empirical loss). Let d, n,N ∈ N be such d ≤ n, let D =
max{d,N}, let δ ∈ (0, 1/4), r ≥ 1, and let σ2 > 0 τ2 > 1. Then, there exists a universal constant
C0 > 0 such that with probability at least 1− δ over samples and random features,

sup
θ∈Sd−1,∥c∥≤r

|Ln(c, θ)− L(c, θ)| ≤ C2r2
√
D log(n/δ)

n
,

where C = C0 ·max{Lip(f∗), τ
√
log(1/δ), σ}.

Proof of Lemma E.13. We use the same ϵ-net proof as that of Lemma E.1 to prove that this bound
holds. As before, we first bound the sub-exponential norm of ℓ(c, θ;x, y) = (c⊤Φ(⟨x, θ⟩)− y)2.

Lemma E.14. Let f∗ : R → R be a Lipschitz function, let δ ∈ (0, 1/4), let r ≥ 1, and let τ2 > 1.
Then there exists a universal constant C ′ > 0 such that the following holds with probability at least
1− δ over the random features.

∥ℓ(c, θ;x, f∗(⟨x, θ∗⟩) + ξ)∥ψ1
≤ C ′C2r2 ,

where C = max{Lip(f∗), τ
√

log(1/δ), σ}.

Proof of Lemma E.14. By Fact B.3, it suffices to bound
∥∥c⊤Φ(⟨x, θ⟩)− f∗(⟨x, θ∗⟩)− ξ

∥∥
ψ2

. Note
that this quantity identically equals ∥W∥ψ2

for the random variable W defined in the proof of
Lemma E.6. Thus, with probability at least 1− δ,

∥W∥ψ2
≲ rτ

(
1 +

√
log(1/δ)/N

)
+ Lip(f∗) + σ ≲ Cr .

We consider two ϵ-nets Nθ and Nc of radii ϵθ and ϵc covering Sd−1 and BNr respectively. We again
denote by θ̃ and c̃ the closest elements in the nets to θ and c. Then,

sup
θ,c

|Ln(c, θ)− L(c, θ)| ≤ sup
θ,c

∣∣∣Ln(c, θ)− Ln(c̃, θ̃)
∣∣∣+ sup

θ̃,c̃

∣∣∣Ln(c̃, θ̃)− L(c̃, θ̃)
∣∣∣+ sup

θ,c

∣∣∣L(c, θ)− L(c̃, θ̃)
∣∣∣ .

We bound the first and last terms by considering the discretization error of samplewise loss.∣∣∣ℓ(c, θ;x, y)− ℓ(c̃, θ̃;x, y)
∣∣∣ = ∣∣∣∣(c̃⊤Φ(⟨x, θ̃⟩)− y

)2
−
(
c⊤Φ(⟨x, θ⟩)− y

)2∣∣∣∣
=
∣∣∣c̃⊤Φ(⟨x, θ̃⟩)− c⊤Φ(⟨x, θ⟩)

∣∣∣ ∣∣∣c̃⊤Φ(⟨x, θ̃⟩) + c⊤Φ(⟨x, θ⟩)− 2y
∣∣∣ .

We bound the first factor, relying on the event of Corollary E.5 with probability at least 1− (δ/6).∣∣∣c̃⊤Φ(⟨x, θ̃⟩)− c⊤Φ(⟨x, θ⟩)
∣∣∣ ≤ ∣∣∣c̃⊤ (Φ(⟨x, θ̃⟩)− Φ(⟨x, θ⟩)

)∣∣∣+ ∣∣(c̃− c)⊤Φ(⟨x, θ⟩)
∣∣

≤ r
∣∣∣⟨x, θ̃ − θ⟩

∣∣∣+ ϵc ∥Φ(⟨x, θ⟩)∥

≲ rϵθ ∥x∥+ ϵc

(
∥x∥+ τ

√
log(1/δ)

)
≲ (rϵθ + ϵc) ∥x∥+ ϵcτ

√
log(1/δ) .
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We use the same event to bound the second factor.∣∣∣c̃⊤Φ(⟨x, θ̃⟩) + c⊤Φ(⟨x, θ⟩)− 2y
∣∣∣ ≲ (r + Lip(f∗)) ∥x∥+ rτ

√
log(1/δ) + |ξ|

≲ rC(∥x∥+ 1 + |ξ|/σ) ,

where C = max{Lip(f∗), τ
√
log(1/δ), σ}, as defined in the Lemma statement.

Hence, by taking ϵc = rϵθ = r/n, we have∣∣∣ℓ(c, θ;x, y)− ℓ(c̃, θ̃;x, y)
∣∣∣ ≲ 1

n

(
r2C∥x∥2 + (r2C2 + r2C)∥x∥+ r2C2 + r∥x∥|ξ|/σ + r2C2|ξ|/σ

)
≲
r2C2

n

(
∥x∥2 + ∥x∥(1 + |ξ|/σ) + 1

)
.

By applying Fact E.4 on all ξi and the fact that ∥xi∥2 ≲ d log(n/δ) for all i with overwhelming
probability, we conclude that with probability at least 1− δ/3

sup
θ,c

∣∣∣Ln(c, θ)− Ln(c̃, θ̃)
∣∣∣ ≲ C2r2 · d log(n/δ)

n
.

Likewise, bounds on the expectations of |ξ| and ∥x∥ similarly give

sup
θ,c

∣∣∣L(c, θ)− L(c̃, θ̃)
∣∣∣ ≲ C2r2 · d

n
.

We conclude by bounding the second term using Bernstein’s inequality with the sub-exponential
norm bound of Lemma E.14. Recall that D = max{d,N}. Then, for sufficiently large C0 (and thus
sufficiently large C1),

P

[
sup
θ̃,c̃

∣∣∣Ln(c̃, θ̃)− L(c̃, θ̃)
∣∣∣ ≥ C0C

2r2
√
D log(n/δ)

n

]
≤
(

3

ϵθ

)d(
3r

ϵc

)N
exp

(
−C1n · D log(n/δ)

n

)
≤ exp (d log(3n) +N log(3n)− C1D log(n/δ))

≤ δ/3 .

E.4 Proof of Lemma E.3

Lemma E.3 (Gradient flow escapes the equator). Assume
∑
j(j+A)

kα2
j ≤ C forA ≤ s and k ≤ 3.

With probability at least 1/2−2δ over the initial condition, the draw of the data, and the draw of the
random features, if n = Ω̃(max{λ−4(d+N)ds−1, λ−2d(s+3)/2}) and N = Θ

(
λ−1 log(λ−1δ−1)

)
then the first phase of gradient flow with a randomly initialised c(0) ∼ Unif{c ∈ ρSN−1; ∥c∥0 =

N0} with ρ = Θ(
√
NN

−(2+s)/2
0 (τ2 + λN/N0)

−1) and N0 = Θ
(
log 1

δ

)
escapes the equator in

time T0 = Õ
(
ds/2−1

)
.

Recall our gradient flow dynamics in the first phase:

θ̇(t) = −∇θLn(c(0), θ(t)) ,

where c(0) ∼ Unif({c ∈ RN ; ∥c∥2 = ρ; ∥c∥0 = N0}), θ(0) ∼ Unif(Sd−1), where ρ is another
parameter determining the initial norm of c.

Our goal is to show that the gradient flow trajectory is likely to cross the energy barrier Bcrit =
Θ̃
(
λ−2∆crit

)
and therefore avoid the bad critical points (see Eq. (38)). Denote by m(t) = ⟨θ(t), θ∗⟩

the trajectory of the correlation. We will show that, from an initial correlation m(0) ∼ 1/
√
d, the

gradient flow dynamics yield ṁ(t) > 0 for long enough to guarantee that m(t) grows substantially.
This will ultimately be sufficient to ensure that the loss crosses the previous energy barrier, provided
c(0) has an appropriate norm ρ.
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Thanks to the concentration results from Lemma E.13 and Lemma E.1, we can first compute the
correlation trajectory m(t) for the population loss, and then extend them to the empirical gradients.

Assume that m(0) and c(0) are such that that sign(αsc(0)⊤Ts) = sign(m(0)), which occurs with
probability 1/2 over the randomness of c(0) and m(0). By symmetry, we will assume m(0) > 0
and αsc(0)⊤Ts > 0 for the rest of the proof. Let us express the population objective without offset
as

L(c, θ) = ∥f∗∥2γ + c⊤Qλc− 2msR̄ , with (52)

R̄(m) := αs⟨c, Ts⟩+m
∑
j≥0

αj+s+1⟨c, Tj+s+1⟩mj . (53)

From Lemma B.7, we know that the correlation m(0) at initialization cannot be too small. More
precisely,

P
(
|m(0)| ≥ δ/

√
d
)
≤ 1− 4δ .

Moreover, the change in correlation according to the population gradient is given by

−⟨∇Sd−1

θ L(c, θ(t)), θ∗⟩ = (1−m2)ms−1R , (54)

where we have defined

R(m) := sαs⟨c, Ts⟩+m
∑
j≥0

(j + s+ 1)αj+s+1⟨c, Tj+s+1⟩mj . (55)

The following lemma, proved below, shows there exists γ = γ(c(0)) > 0 and γ̄ such that R(m) >
R(0)/2 for m ∈ [0, γ) and R̄(m) > R̄(0)/2 for m ∈ [0, γ̄).

Lemma E.15. Let Cf∗,τ = 2τ
(∑

j>0(j + s)2j2α2
j+s

)1/2
and C̄f∗,τ = 2τ

(∑
j>0(j)

2α2
j+s

)1/2
.

Then

1. R(m) > 1
2sαsc

⊤Ts for m ∈ [0, γ), where

γ ≥ sαsc
⊤Ts

2ρCf∗,τ
,

2. R̄(m) > 1
2αsc

⊤Ts for m ∈ [0, γ̄), where

γ̄ ≥ αsc
⊤Ts

2ρC̄f∗,τ
.

In other words, the gradient flow under the population loss sees a monotonically increasing correla-
tion m (since its time derivative under the population gradient flow is positive), until m(t) reaches a
value γ = C αsc

⊤Ts

ρ .

Let γ∗ = min(γ, γ̄) and ρ0 = ρ
√

N0

N . As the correlation reaches the value m = γ∗, using
Lemma E.15 to lower bound R̄, one can verify that the population loss obeys the following up-
per bound:

Lesc ≤ ∥f∗∥2γ + ρ2⟨c/∥c∥, Qλc/∥c∥⟩ − ργs∗αs⟨c/∥c∥, Ts⟩ (56)

= ∥f∗∥2γ + λρ2 + ρ20⟨c̃, Q̃c̃⟩ − ρ0γ
s
∗αs⟨c̃, T̃s⟩ , (57)

where, denoting by S the support of c, we defined

Q̃ =
1

N0
[⟨ϕ(· − bj), ϕ(· − bj′)⟩γ ]j,j′∈S ∈ RN0×N0 (58)

T̃s =
1√
N0

[⟨hs, ϕ(· − bj)⟩γ ]j∈S ∈ RN0 (59)

c̃ =
1

ρ
[cj ]j∈S ∈ RN0 . (60)
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By Lemma E.12, we have ∥Q̃∥op ≤ 2τ2 w.p. 1 − δ as soon as N0 ≳ log(1/δ), so that the bound
above becomes:

Lesc ≤ ∥f∗∥2γ + λρ2 + 2τ2ρ20 − ρ0γ
s
∗αs⟨c̃, T̃s⟩. (61)

Let us now verify that the empirical correlation trajectory and loss have the same behavior. Observe
that

ṁ(t) = −⟨∇Sd−1

θ Ln(c, θ(t)), θ∗⟩

= −⟨∇Sd−1

θ L(c, θ(t)), θ∗⟩+ ⟨∇Sd−1

θ L(c, θ(t))−∇Sd−1

θ Ln(c, θ(t)), θ∗⟩

= (1−m2)ms−1R(m) + Õ

(
λ−2 max

{√
D

n
,
d2

n

})
. (62)

From the anti-concentration Lemma B.7, it follows that whenever n =
Ω̃(max{λ−4Dds−1, λ−2d

s+3
2 }), with probability greater than 1− δ

(1−m(0)2)(m(0))s−1R(m(0)) ≫ Õ

(
λ−2 max

{√
D

n
,
d2

n

})
(63)

and therefore from Lemma E.15 we deduce that ṁ(0) > 0, andm(t) keeps increasing at least until it
reaches γ∗. From Lemma E.13, the empirical loss at this correlation level is with probability greater
than 1− δ

Ln,esc ≤ ∥f∗∥2γ + σ2 + λρ2 + 2τ2ρ20 − ρ0γ
s
∗αs⟨c̃, T̃s⟩+ Õ

(
λ−2

√
D

n

)

= ∥f∗∥2γ + σ2 + λρ2 + 2τ2ρ20 − Cρ0(αs⟨c̃, T̃s⟩)s+1 + Õ

(
λ−2

√
D

n

)
In order to ensure that this initial training phase escapes the ‘bad’ empirical points near the equa-
tor |m| ≈ 0, by Eq. (38), it is sufficient to show that

λρ2 + 2τ2ρ20 − Cρ0(αs⟨c̃, T̃s⟩)1+s ≪ −Õ
(
λ−2∆crit

)
, (64)

with ∆crit := max

{√
D
n ,
(
d2

n

) 2s
2s−1

}
.

Let us now study the term ⟨c̃, T̃s⟩ for the choice of sparsity N0 we picked for c. Let µs = ⟨hs,Σhs⟩.
Observe that µs > 0 since the kernel is universal. We have the following anti-concentration result:

Lemma E.16 (Anticoncentration of |⟨c̃, T̃s⟩|). We have

P
(
|⟨c̃, T̃s⟩| ≥

µsδ

8
√
N0

)
≥ 1− 2e

N0cµ2
s

4τ4 − δ , (65)

where the probability is over both the initial draw of c and the draw of the random features.

We obtain that αs⟨c̃, T̃s⟩ ≥ αsµsδ
8
√
N0

holds with probability close to 1/2. Then, the condition (64)
becomes

λρ2 + 2τ2ρ20 − C ′ρ0N
− 1+s

2
0 = (λN/N0 + 2τ2)ρ20 − C ′ρ0N

− 1+s
2

0 ≪ −Õ(λ−2∆crit), (66)

with C ′ a positive constant.

Taking ρ0 =
C′N

− 1+s
2

0

2(2τ2+λN/N0)
yields the new condition

C ′′N
−(1+s)
0

2τ2 + λN/N0
= Ω̃

(
λ−2∆crit

)
. (67)
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In particular, since we assume λ−2∆crit ≪ 1, we may take N0 = Θ(1) and

N = Õ
(
λ∆−1

crit

)
to ensure (67), and consequently (64).

Finally, let us upper bound the escape time T needed to reach m(T ) = γ∗. Denote ∆n :=

λ−2 max
{√

D
n ,

d2

n

}
. Observe that for t ≤ T ,

ṁ(t) ≥ 1

2
(1−m2)ms−1sαsc

⊤Ts − Õ (∆n)

≥ A(1− γ2∗)m(t)s−1 − Õ (∆n)

:= G(m(t))− Õ (∆n) , (68)

where G(u) = Ãus−1 is convex in [0, 1] with

Ã =
1

2
(1− γ2∗)sαsc

⊤Ts .

A crude bound is therefore

ṁ(t) ≥ G(m(0)) +G′(m(0))(m(t)−m(0))− Õ (∆n) ,

:= A+Bm(t) , (69)

with

A = G(m(0))−G′(m(0))m(0)− Õ (∆n) = Ãm(0)s−1(2− s)− Õ (∆n)

B = G′(m(0)) = Ã(s− 1)m(0)s−2 , (70)

which leads to a Gronwall-type inequality of the form

m(t) ≥ A

B − 1

(
eBt − 1

)
+m(0) , (71)

and therefore

T ≤ B−1 log

(
γ∗(B − 1)

A

)
= Ã−1Õ

(
ds/2−1

)
= Õ

(
ds/2−1

)
, (72)

since Ã = Θ(|c⊤Ts|) = Θ
(
N

− 2+s
2

0

)
= Θ(1). This concludes the proof. □

Proof of Lemma E.15. Recall that T : L2(γ) → RN is the operator T f = (⟨f, ϕεibi ⟩γ)i=1...n. Its
operator norm is bounded by Lemma E.12 with probability 1−δ over the random features: ∥T ∥op ≤
∥Σ̂∥1/2op ≤ 2τ . Since R(0) = sαs⟨c, Ts⟩ and

R′(m) =

〈
c,
∑
j>0

(j + s)jαj+sTj+smj−1

〉

=

〈
c,
∑
j>0

(j + s)jαj+sm
j−1T hj+s

〉

=

〈
c, T

∑
j>0

(j + s)jmj−1αj+shj+s

〉 (73)

satisfies

sup
m∈[0,1]

|R′(m)| ≤ ∥T ∥ρ

∥∥∥∥∥∥
∑
j>0

(j + s)jmj−1αj+shj+s

∥∥∥∥∥∥
γ

≤ 2τρ

√∑
j>0

(j + s)2j2m2(j−1)α2
j+s

≤ ρCf∗,τ . (74)
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Thus, if we assume that m ≤ γ as specified in the theorem statement,

R(m) ≥ R(0)− |R(m)−R(0)| ≥ sαs⟨c, Ts⟩ − sup
m∈[0,1]

|R′(m)| |m− 0|

≥ sαs⟨c, Ts⟩ −mρCf∗ ≥ 1

2
sαs⟨c, Ts⟩.

The derivation for R̄(m) is analogous.

Proof of Lemma E.16. Observe that the dot product ⟨c̃, T̃s⟩ only depends on a subset of N0 random
features. Let us denote by

Zs = ⟨hs, σ(· − Z)⟩γ , where Z ∼ γτ .

Observe that Zs = ψ(Z) with ψ(x) = ⟨hs, σ(· − x)⟩γ satisfying

|ψ′(x)| = |⟨hs, σ′(· − x)⟩γ | ≤ ∥hs∥γ∥σ′(· − x)∥γ ≤ 1 ,

which shows that Zs is 1
2τ2 -subgaussian, and thus that the random vector

T̃s =
1√
N0

(⟨hs, σ(· − bj)⟩γ ; j ∈ supp(c)) ∈ RN0

has independent N0

2τ2 -subgaussian entries. Therefore, by Bernstein concentration [83, Theorem
3.1.1], the Euclidean norm ∥T̃s∥ concentrates around its expectation µs =

√
⟨hs,Σhs⟩ as

PΦ(|∥T̃s∥ − µs| ≥ t) ≤ 2e−
cN0t2

τ4 .

Finally, using again the anticoncentration of the correlation of a uniform direction with a fixed
direction (Lemma B.7), we obtain with a union bound that

Pc,Φ
(
|⟨c̃, T̃s⟩| ≥

µsδ

4
√
N0

)
≥ 1− δ − 2e−

cN0µ2
s

4τ4 , (75)

as claimed.

E.5 Proof of Corollary 6.2

We restate Corollary 6.2 here for convenience.
Corollary 6.2 (Excess risk of Algorithm 1). Under the assumptions of Theorem 6.1, and further
assuming n ≳ d3, an appropriate choice of λ yields an excess risk guarantee of the form

∥F̂ − F ∗∥2γd = Õ

((
d

n

) β
β+4

+

(
1

n

) β
β+5

)
, (12)

where β is defined as in Lemma 4.4.

Proof. Let F̂ (x) = f̂(⟨x, θ̂⟩), and Gm,θ̂(x) = gm(⟨θ̂, x⟩) =
∑
j αjm

jhj(⟨θ̂, x⟩), where m =

⟨θ̂, θ∗⟩. We have

∥F̂ − F ∗∥2γd ≤ 2∥F̂ −Gm,θ̂∥
2
γd

+ 2∥Gm,θ̂ − F ∗∥2γd (76)

= 2∥f̂ − gm∥2γ + 2∥Gm,θ̂ − F ∗∥2γd . (77)

Denoting cθ = Q−1
λ T gm, and considering N = Θ( 1λ log 1

λ ), recall that we have

∇cL(ĉ, θ̂) = 2Qλ(ĉ− cθ), ∥∇cL(ĉ, θ̂)∥ ≤ Õ

(
λ−1

√
d+N

n

)
= Õ

(√
d

λ2n
+

1

λ3n

)
,

(78)
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Thus, we obtain

∥f̂ − P̂λgm∥2γ = ∥Q(ĉ− cθ)∥2 ≤ ∥Qλ(ĉ− cθ)∥2 =
1

4
∥∇cL(ĉ, θ)∥2 ≤ Õ

(
d

λ2n
+

1

λ3n

)
. (79)

As a consequence, using Lemmas C.2 and 4.4 we obtain

∥f̂ − gm∥2γ ≤ 2
(
∥f̂ − P̂λgm∥2γ + ∥(I − P̂λ)gm∥2γ

)
≤ Õ

(
d

λ2n
+

1

λ3n
+ 2λβ∥f ′′∗ ∥2γ

)
. (80)

On the other hand, we also have

∥Gm,θ̂ − F∗∥2γd =
∑
j

α2
jm

2j +
∑
j

α2
j − 2

∑
j

m2jα2
j (81)

=
∑
j

(1−m2j)α2
j (82)

≤ (1− |m|)
∑
j

2jα2
j (83)

= O (1− |m|) = Õ

(
λ−4 d+N

n

)
= Õ

(
d

λ4n
+

1

λ5n

)
. (84)

where the Õ follows from Lemma E.2. We thus obtain

∥F̂ − F ∗∥2γd ≤ Õ

(
d

λ2n
+

d

λ4n
+

1

λ3n
+

1

λ5n
+ λβ

)
= Õ

(
d

λ4n
+

1

λ5n
+ λβ

)
.

Setting

λ = max

{(
1

n

) 1
β+5

,

(
d

n

) 1
β+4

}
,

we then have

∥F̂ − F ∗∥2γd = Õ

(
max

{(
d

n

) β
β+4

,

(
1

n

) β
β+5

})
, (85)

which establishes the desired rate. It remains to check that the upper boundN = Õ(λ∆−1
crit ) required

by Theorem 6.1 holds with this choice of λ. Note that we have

N∆crit

λ
= Õ

 1

λ2

√
d+ 1

λ

n


= Õ

(√
d

λ4n
+

1

λ5n

)
= o(1),

where we control the quantity inside the square root in the same way as we obtained (85). The
calculation above also shows that ∆crit

λ2 = o(1), so that the requirement λ = Ω(
√
∆crit) is also

satisfied.

E.6 Proof of Proposition 6.3

Proposition 6.3 (Excess risk of fine-tuning). Let δ ∈ (0, 1/4). Let m = ⟨θ∗, θ̂⟩, where θ̂ is
obtained from the previous gradient descent phase, and let ĉ be the ridge regression estimator
obtained from a fresh dataset D′ of n′ samples, N random features, and regularization parame-
ter λn′ := (σ2τ2/∥f ′′∗ ∥2γn′)1/(β+1), and let F̂ (x) = ĉ⊤Φ(⟨θ̂, x⟩). Assume

n′ ≳ max
{
σ2τ2/∥f ′′∗ ∥2γ , (∥f ′′∗ ∥2γ/σ2τ2)1/β , ∥f∗∥2∞/(σ2τ2)β/(β+1)

}
, and

N ≳ Cτ
(
n′∥f ′′∗ ∥2γ/σ2τ2

) 1
β+1 log

(
n′1/(β+1)δ−1

)
.
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Then with probability at least 1− δ over the random features, we have

E
D′
[∥F̂ − F ∗∥2γd |θ̂] ≲ ∥f ′′∗ ∥

2
β+1
γ

(
σ2τ2

n′

) β
β+1

+ ∥f ′∗∥2γ(1− |m|) , (14)

where the expectation is over the n′ fresh samples, and is conditioned on the previously obtained θ̂.

Proof. Let κ̂θ(x, x′) = Φ(⟨θ, x⟩)⊤Φ(⟨θ, x′⟩) be the random feature kernel on Rd and denote by Ĥθ

the corresponding RKHS. Let κθ and Hθ be their infinite-width counterparts. Note that κθ(x, x′) =
⟨φ(⟨θ, x⟩), φ(⟨θ, x′⟩)⟩H, where φ(u) = κ(u, ·) denotes the kernel mapping of H. Then, one can
easily show, e.g. using Theorem B.8, that Hθ = {F = f(⟨θ, ·⟩) : f ∈ H}, with ∥F∥Hθ

= ∥f∥H
when F (x) = f(⟨θ, x⟩).
Considering fresh samples (xi, yi), i = 1, . . . , n′, with yi = F ∗(xi)+ ϵi, E[ϵi|xi] = 0, Var[ϵi|xi] ≤
σ2, we now assume

c =

(
1

n′

∑
i

Φ(⟨θ, xi⟩)Φ(⟨θ, xi⟩)⊤ + λI

)−1
1

n′

∑
i

yiΦ(⟨θ, xi⟩)

Define
Q = E

x∼γd
[Φ(⟨θ, x⟩)Φ(⟨θ, x⟩)⊤] = E

z∼γ
[Φ(z)Φ(z)⊤] ∈ RN×N ,

and
Q̂ =

1

n′

∑
i

Φ(⟨θ, xi⟩)Φ(⟨θ, xi⟩)⊤ .

Assume for now that F ∗ belongs to Ĥθ and takes the form F ∗(x) = c⊤∗ Φ(⟨θ, x⟩) = f̃(⟨θ, x⟩). Then,
we may use a variant of [7, Prop 7.2], which holds for bounded data, to our unbounded setting, by
adapting the covariance concentration step [7, Proposition 7.1].

Lemma E.17 (Concentration for covariance operators, sub-exponential case). For n′ ≥ R2

2λ log R2

λ ,

where R is a universal constant, with probability greater than 1− 7Tr(QQ−1
λ ) exp

(
− n′

8R2+2R

)
it

holds
−1

2
I ⪯ (Q+ λI)−1/2(Q− Q̂)(Q+ λI)−1/2 ⪯ 1

2
I . (86)

Then, we have for n′ ≥ R2

2λ log R2

λ and λ ≤ R2, following [7, Proposition 7.1]

E[∥Fc,θ−F ∗∥2γd ] ≤ 16
σ2

n′
Tr(Q(Q+λI)−1)+16 inf

F∈Ĥθ

{
∥F − F ∗∥2γd + λ∥F∥2Ĥθ

}
+

24

n′2
∥F ∗∥2∞,

(87)
where the expectation is over the n′ fresh samples.

We have the following upper bound on the first (variance) term

Tr(Q(Q+ λI)−1) ≤ Tr(Q)

λ
=

Tr(Σ̂)

λ
≤

1
2 + τ2

λ
≤ 2τ2

λ
, (88)

where we used Lemma E.12.

The approximation error may be controlled as follows:

inf
F∈Ĥθ

{
∥F − F ∗∥2γd + λ∥F∥2Ĥθ

}
= λ⟨c∗, Q(Q+ λI)−1c∗⟩

= λ⟨f̃ , (Σ̂ + λI)−1f̃⟩γ
≤ 4λ⟨f̃ , (Σ + λI)−1f̃⟩γ (by Lemma C.3)

= 4λ inf
f∈H

{
∥f − f̃∥2γ + ∥f∥2H

}
= 4λ inf

F∈Hθ

{
∥F − F ∗∥2γd + ∥F∥2Hθ

}
,
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where we assume N ≥ Cdmax(τ, λ) log(dmax(τ, λ)/δ) in order to apply Lemma C.3.

We thus obtain

E[∥Fc,θ − F ∗∥2γd ] ≲
σ2τ2

n′λ
+ inf
F∈Hθ

{
∥F − F ∗∥2γd + λ∥F∥2Hθ

}
+

1

n′2
∥F ∗∥2∞. (89)

By limiting arguments, we may show that this holds for any F ∗ in the closure of Hθ. Now consider
the true F ∗(x) = f∗(⟨θ∗, x⟩). When θ∗ ̸= θ, F ∗ does not belong to the closure of Hθ, but we may
consider the projection F ∗

Hθ
on this closure. Then, following the arguments of [7, Section 7.6.4], we

obtain

E[∥Fc,θ − F ∗∥2γd ] ≲
σ2τ2

n′λ
+ inf
F∈Hθ

{
∥F − F ∗

Hθ
∥2γd + λ∥F∥2Hθ

}
+ ∥F ∗

Hθ
− F ∗∥2γd +

1

n′2
∥F ∗∥2∞ .

(90)

We may take F ∗
Hθ

(x) = g(⟨θ, x⟩) for some g, since all functions in Hθ and its closure take this
form. Then, we may consider g of the form g =

∑
j bjhj , since such functions are dense in the

closure of Hθ. Optimizing the approximation error ∥F ∗
Hθ

− F ∗∥γd over such g yields bj = αjm
j ,

so that the approximation error becomes
∥F ∗

Hθ
− F ∗∥2γd = ∥F ∗

Hθ
∥2γd + ∥F ∗∥2γd − 2⟨F ∗

Hθ
, F ∗⟩γd

=
∑
j

α2
jm

2j +
∑
j

α2
j − 2

∑
j

α2
jm

2j

=
∑
j

α2
j (1−m2j)

≤ 2(1− |m|)
∑
j

jα2
j = (1− |m|)Cf∗ ,

withCf∗ = 2∥f ′∗∥2γ , by using the bound 1−m2j ≤ (1−|m|)(1+|m|+· · ·+|m|2j−1) ≤ 2j(1−|m|).
We also have

inf
F∈Hθ

{
∥F − F ∗

Hθ
∥2γd + λ∥F∥2Hθ

}
= A(g, λ) ≲ λβ∥g′′∥2γ ≤ λβ∥f ′′∗ ∥2γ . (91)

The final bound becomes

E[∥Fc,θ − F ∗∥2γd ] ≲
σ2τ2

n′λ
+ λβ∥f ′′∗ ∥2γ + Cf∗(1− |m|) + 1

n′2
∥f∗∥2∞ . (92)

Setting λ =
(

σ2τ2

n′∥f ′′
∗ ∥2

γ

) 1
β+1

yields

E[∥Fc,θ − F ∗∥2γd ] ≲ ∥f ′′∗ ∥
2

β+1
γ

(
σ2τ2

n′

) β
β+1

+ Cf∗(1− |m|) + 1

n′2
∥f∗∥2∞. (93)

The condition n′ ≳ R2/λ is satisfied when

n′ ≳

(
∥f ′′∗ ∥2γ
σ2τ2

)1/β

,

while the condition λ ≤ R2 is satisfied when

n′ ≳
σ2τ2

∥f ′′∗ ∥2γ
.

The last term is negligible when

n′ ≳
∥f∗∥2∞

(σ2τ2)β/(β+1)
.

Finally, the requirement on N scales as

N ≥ Cτ
λ

ln
1

λδ
≳ Cτ

(
n′∥f ′′∗ ∥2γ
σ2τ2

) 1
β+1

ln

(
n′1/(β+1)

δ

)
. (94)
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Proof of Lemma E.17. We establish this matrix concentration result using a dimension-independent
matrix Bernstein inequality for subexponential and potentially unbounded random matrices, by
adapting arguments of Minsker [62, Eq. (3.9)] and Tropp [80, Theorem 6.2]. The sub-exponential
tail assumption is established next, in Lemma E.19.

Lemma E.18 (Dimension-independent matrix Bernstein bound). Let X1, . . . , Xn be random
i.i.d. self-adjoint operators with sub-exponential tails, in the sense that there exist self-adjoint oper-
ators Ai and R > 0 such that

E[Xi] = 0 and E[Xp
i ] ⪯

p!

2
Rp−2A2

i for p = 2, 3, 4, . . .

Defining the variance parameter

σ2 :=

∥∥∥∥∥
n∑
i=1

A2
i

∥∥∥∥∥ ,
we have the following for all t ≥

√
R2 + 4σ2:

P

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
op

≥ t

 ≤
7
∑
iTr(A

2
i )

σ2
exp

(
−t2/2
σ2 +Rt

)
. (95)

Next we show that the sub-exponential bound needed for Lemma E.18 holds under our setting.

Lemma E.19 (Sub-exponential tail for covariance concentration). For X ∼ N(0, I), let

M = Q
−1/2
λ (Φθ(X)Φθ(X)⊤ −Q)Q

−1/2
λ ,

and define Bλ = Q1/2Q
−1/2
λ . Then E[M ] = 0 and E[Mp] ⪯ (R)

p
p!BλB

⊤
λ for p ≥ 2 and some

universal constant R.

Let us finally establish (86). By defining Xi = Q
−1/2
λ (Φθ(xi)Φθ(xi)

T − Q)Q
−1/2
λ , Lemma E.19

guarantees subexponential tails, satisfying E[Xp
i ] ⪯ Rpp!BλB

⊤
λ for p ≥ 2 and a universal constant

R, and where Bλ = Q1/2Q
−1/2
λ . Therefore, defining A2

i := 2R2BλB
⊤
λ , we have

E[Xp
i ] ⪯

p!

2
Rp−2A2

i .

We can now apply Lemma E.18. In that case, σ2 = 2R2n, and by choosing t = n/2 in (95), we
obtain

P
[∥∥∥(Q+ λI)−1/2(Q− Q̂)(Q+ λI)−1/2

∥∥∥
op

≥ 1

2

]
≤

7
∑
i Tr(A

2
i )

2R2n
exp

(
− n2/4

n(2R2 +R/2)

)
≤ 7Tr(Q1/2Q−1

λ Q1/2) exp

(
− n

8R2 + 2R

)
,

proving (86).

Proof of Lemma E.18. Let Sn :=
∑n
i=1Xi and ψ(θ) := eθ − θ − 1. Following the argument of

Theorem 3.1 of [62], we apply Markov’s inequality and the monotonicity of ψ to upper-bound the
probability that the ∥

∑
iXi∥op is large for any fixed θ > 0 and t > 0.

P
[
∥Sn∥op ≥ t

]
= P

[
ψ
(
θ ∥Sn∥op

)
≥ ψ(θt)

]
= P

[
∥ψ (θSn)∥op ≥ ψ(θt)

]
≤ P [Tr(ψ (θSn)) ≥ ψ(θt)] ≤ E [Tr(ψ(θSn))]

ψ(θt)
.

We continue to adapt the argument of [62] in order to bound the numerator, taking advantage of the
fact that EXi = 0 (and hence, ESi = 0). We additionally apply Jensen’s inequality and Lieb’s
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concavity theorem (Fact 5 of [62]).

E [Tr(ψ(θSn))] = E [Tr (exp(θSn)− Sn − I)] = E [Tr (exp(θSn−1 + log(exp(Xn)))− I)]

≤ E
X1,...,Xn−1

[
Tr

(
exp

(
θSn−1 + log

(
E
Xn

[exp(θXn)]

))
− I

)]
≤ Tr

(
exp

(
n∑
i=1

log (E [exp(θXi)])

)
− I

)

According to Lemma 6.8 of [80], by scalingXi appropriately and taking θ ∈ (0, 1
R ), the assumptions

in the theorem statement guarantee that

E [exp(θXi)] ≼ exp

(
(θR)2

2(1− θR)
· 1

R2
A2
i

)
= exp

(
θ2

2(1− θR)
·A2

i

)
,

for all i ∈ [n]. Let Bn :=
∑n
i=1A

2
i . As a result,

E [Tr(ψ(θSn))] ≤ Tr

(
exp

(
n∑
i=1

θ2

2(1− θR)
·A2

i

)
− I

)
= Tr

( ∞∑
k=1

1

k!

(
θ2

2(1− θR)
Bn

)k)

= Tr

(
θ2

2(1− θR)
B1/2

∞∑
k=1

1

k!

(
θ2

2(1− θR)
Bn

)k−1

B1/2

)

≤ Tr

(
θ2

2(1− θR)
B1/2

∞∑
k=1

1

k!

(
θ2

2(1− θR)
∥Bn∥op

)k−1

B1/2

)

=
θ2

2(1− θR)
Tr (B)

∞∑
k=1

1

k!

(
θ2

2(1− θR)
σ2

)k−1

=
θ2

2(1− θR)
Tr(B)

exp
(

θ2

2(1−θR)σ
2
)
− 1

θ2

2(1−θR)σ
2

≤ Tr(B)

σ2
exp

(
θ2

2(1− θR)
σ2

)
.

We conclude by putting the terms together to simplify the expression (continuing to borrow from
[62]) while letting θ := t

σ2+Rt and requiring that t be sufficiently large:

P
[
∥Sn∥op ≥ t

]
≤ Tr(B)

σ2
exp

(
θ2

2(1− θR)
σ2

)
· 1

ψ(θt)

≤ Tr(B)

σ2
exp

(
θ2

2(1− θR)
σ2 − θt

)
· exp(θt)
ψ(θt)

≤ Tr(B)

σ2
exp

(
θt

(
θσ2

2t(1− θR)
− 1

))(
1 +

6

(θt)2

)
=

Tr(B)

σ2
exp

(
t2

σ2 +Rt

(
σ2

2(σ2 +Rt)
· σ

2 +Rt

σ2
− 1

))(
1 +

6(σ2 +Rt)2

t4

)
=

7Tr(B)

σ2
exp

(
− t2/2

σ2 +Rt

)
.

Proof of Lemma E.19. E[M ] = 0 is clear. For p ≥ 2, we bound the moments of M by considering
the subgaussianity of inner products.

We define Ψ := Q−1/2Φθ(X) and note that it is isotropic and subgaussian, i.e. v⊤(Ψ − IN )v is
C1-subgaussian for universal constant C1 and any v ∈ SN−1. We also define Bλ := Q1/2Q

−1/2
λ ,

so that M = B⊤
λ (ΨΨ⊤ − IN )Bλ.

Observe first that v⊤(ΨΨ⊤−IN )v is C2-subexponential, i.e. E[exp(C2v
⊤(ΨΨ⊤−IN )v)] ≤ 2, for

any fixed v ∈ SN−1 because Ψ is subgaussian and IN = E[ΨΨ⊤]. As a result, E[exp(C2(ΨΨ⊤ −
IN ))] ⪯ 2IN .
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Let us now write Mp = B⊤
λ M̃pBλ. We claim that ∥E M̃p∥op ≤ 4p!/Cp2 for any p ≥ 2. Indeed,

observe that M̃p is a product of matrices of the form T1 = (ΨΨ⊤ − I) and T2 = BλB
⊤
λ . Since

∥T2∥op ≤ 1, we have

∥E[M̃p]∥op ≤ ∥E[(ΨΨ⊤ − I)p]∥op .

Now, because any positive semi-definite matrix A satisfies Ap ⪯ p!(eA + e−A), we bound the
moment E[v⊤(ΨΨ⊤ − I)pv] following the simple argument made in [83, Proposition 2.71].

E[v⊤(ΨΨ⊤ − IN )pv] ≤ p!

Cp2
· v⊤(E[exp(C2(ΨΨ⊤ − IN ))] + E[exp(−C2(ΨΨ⊤ − IN ))])v

≤ 4p!

Cp2
,

which shows that ∥E[M̃p]∥op ≤ 4p!
Cp

2
. Therefore, we have

E[v⊤Mpv] = E[(Bλv)⊤M̃p(Bλv)]

≤ 4p!

Cp2
∥Bλv∥2 ,

which shows that E[Mp] ⪯ Cpp!BλB
⊤
λ for p ≥ 2. The conclusion is immediate for a proper choice

of constant R.

E.7 Proof of Corollary 6.4

Corollary 6.4 (Excess risk of Algorithm 2). Let δ ∈ (0, 1/4). As in Theorem 6.1, let µs =
⟨hs,Σhs⟩ > 0, and let f∗ satisfy Assumption 5.2. Let λ = Θ(1), and assume the following on
the sample sizes and number of random features for the first phase (n,N,N0) and fine-tuning phase
(n′, N ′):

N = N0 = Θ

(
1

λ
log

1

λδ

)
, n = Ω̃

(
max{ds, d(s+3)/2}

)
, N ′ = Ω̃

(
n′

1
β+1

)
.

and let ρ be as in Theorem 6.1. With probability at least 1/2 − 2δ over the initial n samples,
initialization, random features, we have

E
D′
[∥F̂ − Fθ∗∥2γd ] ≤ Õ

(
max

{
d

n
,
d4

n2

}
+

(
1

n′

) β
β+1

)
, (15)

where the constants in Õ do not depend on d other than through logarithmic factors.

Proof. The result is immediate by applying Proposition 6.3 and using the following bound from
Lemma E.2:

1− |m| ≤ Õ

(
λ−4 max

{
d+N

n
,
d4

n2

})
,

where λ is a constant as given in the statement. Note that with a constant λ as in the statement, the
choiceN0 = N ∼ λ−1 for the first phase is sufficient for satisfying the assumptions of Theorem 6.1.

E.8 Omitted proofs from Section E

Lemma E.7. Let f : R → R be function such that its derivatives f (1), . . . , f (4) are all in L2(γ).
Let f(z) =

∑∞
j=0 αjhj(z) be the Hermite expansion of f . Then,

∞∑
j=1

j2(j − 1)2α2
j = ∥f (4)∥2γ + 4∥f (3)∥2γ + 2∥f (2)∥2γ .
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Proof. The statement follows from straightforward, albeit tedious, algebraic manipulation.
∞∑
j=1

jα2
j = ∥f (1)∥2γ

∞∑
j=1

j2α2
j =

∞∑
j=1

j(j − 1)α2
j +

∞∑
j=1

jα2
j = ∥f (2)∥2γ + ∥f (1)∥2γ

∞∑
j=1

j3α2
j =

2∑
j=1

j3α2
j +

∞∑
j=3

j(j − 1)(j − 2)α2
j + 3

∞∑
j=3

j2α2
j − 2

∞∑
j=3

jα2
j

=

2∑
j=1

j3α2
j +

∞∑
j=3

j(j − 1)(j − 2)α2
j + 3

 ∞∑
j=1

j2α2
j −

2∑
j=1

j2α2
j

− 2

 ∞∑
j=3

jα2
j −

2∑
j=1

jα2
j


= ∥f (3)∥2γ + 3∥f (2)∥2γ + ∥f (1)∥2γ +

2∑
j=1

(j3 − 3j2 + 2j)α2
j

= ∥f (3)∥2γ + 3∥f (2)∥2γ + ∥f (1)∥2γ
∞∑
j=1

j4α2
j =

3∑
j=1

j4α2
j +

∞∑
j=4

j(j − 1)(j − 2)(j − 3)α2
j + 6

∞∑
j=4

j3α2
j − 11

∞∑
j=4

j2α2
j + 6

∞∑
j=4

jα2
j

=

3∑
j=1

j4α2
j + ∥f (4)∥2γ

+ 6

 ∞∑
j=1

j3α2
j −

3∑
j=1

j3α2
j

− 11

 ∞∑
j=1

j2α2
j −

3∑
j=1

j2α2

+ 6

 ∞∑
j=4

jα2
j −

3∑
j=1

jα2
j


= ∥f (4)∥2γ + 6(∥f (3)∥2γ + 3∥f (2)∥2γ + ∥f (1)∥2γ)− 11(∥f (2)∥2γ + ∥f (1)∥2γ) + 6∥f (1)∥2γ

+

3∑
j=1

(j4 − 6j3 + 11j2 − 6j)α2
j

= ∥f (4)∥2γ + 6∥f (3)∥2γ + 7∥f (2)∥2γ + ∥f (1)∥2γ .
Using the above expressions for series of the form

∑∞
j=1 j

pα2
j for p = 1, 2, 3, 4, we conclude

∞∑
j=1

j2(j − 1)2α2
j =

∞∑
j=1

(j4 − 2j3 + j2)α2
j

= ∥f (4)∥2γ + 4∥f (3)∥2γ + 2∥f (2)∥2γ .

F Gradient Flow on Non-smooth Landscapes

As mentioned in Section 2, for our purposes we only require 1) the existence of a curve z : [a, b] →
Rp satisfying the subgradient dynamics (what we have conveniently referred to as “gradient flow”
in earlier Sections) and 2) the descent property, which requires that the (empirical) loss L be non-
increasing along any such curve. We first introduce basic terminology and concepts used in non-
smooth optimization.

For non-smooth objective functions defined on Euclidean domains, a subdifferential set ∂L(θ) is
used in place of the gradient ∇L(θ). We restrict our attention to locally Lipschitz objectives which
enjoy the property that they are differentiable a.e. [16, Theorem 9.1.2]. Formally,
Definition F.1 (Clarke Subdifferential). For any locally Lipschitz function L : Ω → R with an open
domain Ω ⊆ Rp, the Clarke subdifferential of L at θ ∈ Ω is defined by

∂L(θ) = conv
{
lim
i→∞

∇L(θi)
∣∣∣ xi ∈ Ω, ∇L(θi) exists, lim

i→∞
θi = θ

}
.
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We denote by ∂̄L(θ) the unique min-norm element of ∂L(θ).

A curve satisfying the subgradient dynamics of a locally Lipschitz objective function L is any abso-
lutely continuous function z : [a, b] → Ω which satisfies the following differential inclusion almost
everywhere.

ż(t) ∈ −∂L(z(t)) . (96)

Closely related to curves satisfying the subgradient dynamics are near-steepest descent curves,
which can be defined in any locally convex metric space (see [3, 32]). For any locally convex
metric space (Ω, d) and any lower semicontinuous objective function L : Ω → R satisfying very
weak continuity conditions, the existence of a near-steepest curve for L emanating from any starting
point z0 ∈ Ω is guaranteed [32, Theorem 3.4] and along the curve the objective is non-increasing.
Furthermore, if L admits the chain rule (Definition F.2), then these two notions of curves coincide;
near-steepest descent curves satisfy the subgradient dynamics a.e. and vice versa [32, Proposition
4.10]. Thus, the chain rule guarantees the descent property for any curve satisfying the subgradient
dynamics [54, 29, 49].

For our purposes, it suffices to show that the empirical squared loss on any ReLU network satisfies
the chain rule. Previous work by [29, 49] show that the chain rule holds for the class of functions
definable on some o-minimal structure [81]. We simply write “L is definable” in place of “L is
definable in some o-minimal structure”. Notably, empirical squared loss functionals on ReLU net-
works, which can be viewed as real-valued functions w.r.t. the network parameters, are definable.
We refer to [49, Appendix B] for further technical definitions and detailed proofs, but reproduce the
formal statements here for convenience (See also [29, Theorem 5.8]).
Definition F.2 (Chain rule [32, Definition 4.9]). Consider a lower semicontinuous function L :
Rp → R. We say that L admits a chain rule if for every absolutely continuous function z : [a, b] →
Rp for which L◦z is non-increasing and L is subdifferentiable along z, the following equation holds
for a.e. t ∈ (a, b)

(L ◦ z)′(t) = ⟨z∗(t), ż(t)⟩ for all z∗(t) ∈ ∂L(z(t)) .

Lemma F.3 ([49, Lemma B.2]). Any empirical squared loss functionals of any ReLU network (as a
function w.r.t. the network parameters θ) is definable.
Lemma F.4 (Chain rule adapted from [49, Lemma B.9]). Given locally Lipschitz definable L : Ω →
R with an open domain Ω ⊆ Rp, for any absolutely continuous function z : [a, b] → Ω, it holds for
a.e. t ∈ [a, b] that

(L ◦ z)′(t) = ⟨z∗(t), ż(t)⟩ , for all z∗(t) ∈ ∂L(z(t)) .

Moreover, for the gradient inclusion

ż(t) ∈ −∂L(z(t)) ,

it holds for a.e. t ≥ 0 that ż(t) = −∂̄L(z(t)) and dL(z(t))/dt = −∥∂̄L(z(t))∥22 and therefore

L(z(a))− L(z(b)) =

∫ b

a

∥∂̄L(z(τ))∥22dτ .

Remark F.5 (Riemannian gradients). We also need to show existence and the descent property
for Riemannian gradient flows on the unit sphere, in which the subdifferentials in the differential
inclusion (96) are projected onto the tangent space of z(t). This is because we take spherical
gradients for the (shared) first layer weights. However, the desired results follow from the same
theorems since the existence of a near-steepest descent curve only requires the objective function
to be lower semi-continuous and satisfy some very weak continuity conditions. We can enforce
any near-steepest descent curve to be contained in Sp−1 by modifying the objective to L̃(z) =
L · δSp−1(z), where δSp−1(z) is 1 for z ∈ Sp−1 and ∞ otherwise. By Lemma F.4 and Claim F.6
(see below), L̃ satisfies the chain rule for all curves z : [a, b] → Ω contained entirely in Sp−1.
More precisely, the following observation implies that the chain rule holds for L̃ and any curve
z : [a, b] → Rp contained entirely in Sp−1:

⟨(I − z(t)z(t)⊤)z∗(t), ż(t)⟩ = ⟨z∗(t), ż(t)⟩ − ⟨z(t), z∗(t)⟩⟨z(t), ż(t)⟩ = ⟨z∗(t), ż(t)⟩ .
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Claim F.6. Let z : [a, b] → Rp be an absolutely continuous function satisfying ∥z(t)∥2 = 1 for all
t ∈ [a, b]. Then, the derivative ż(t) exists almost all t ∈ [a, b] and satisfies ⟨z(t), ż(t)⟩ = 0.

Proof. Since [a, b] is compact and z is absolutely continuous, z is differentiable a.e. on [a, b] by
Rademacher’s Theorem [16, Theorem 9.1.2]. Now consider the derivative of the constant function
∥z∥22. For any t ∈ [a, b] such that ż(t) exists, we have

d

dt
∥z(t)∥22 = 2⟨z(t), ż(t)⟩ = 0 .

G Smooth Activation Functions

We discuss the impact of replacing the ReLU activation by a smooth activation ϕ. This choice affects
both approximation and optimization properties of the corresponding model. To illustrate this, we
focus on Gaussian smoothing which we define using the Ornstein-Ulhenbeck semigroup.

Definition G.1. For ρ ∈ [0, 1], the Ornstein–Uhlenbeck noise operator Uρ is defined by

Uρf(t) =

∫
f(ρt+

√
1− ρ2u)dγ(u) .

Assumption G.2 (Smoothed ReLU). Given ρ ∈ [0, 1] and ϕ(t) = max(0, t), also known as the
ReLU activation, we refer to ϕρ = Uρϕ as the ρ-smoothed ReLU.

The resulting activation is akin to the so-called Exponential Linear Unit (ELU) [25]. As will be
shown next, we leverage hypercontractivity properties of the Gaussian measure defining ϕρ. From
[44], our smoothing operator may be replaced by a more general one provided it satisfies a Log-
Sobolev inequality, but such extensions are out of the present scope.

Approximation properties. Let ρ ∈ [0, 1] and let Hρ be the RKHS associated with the kernel

κρ(x, x
′) = E

b∼γτ̃ ,ε
[ϕρ(εx− b)ϕρ(εx

′ − b)] .

where τ̃ = ρτ , and for any f ∈ L2(γ), let

A(f, λ, ρ) := inf
h∈Hρ

∥f − h∥2γ + λ∥h∥2Hρ
. (97)

Recall the function space F = {g ∈ H2(γ) | g′′ ∈ L4(γ)} (see Assumption 4.3). We define an
alternate λ-regularized approximation error of f with respect to the image of F under the operator
Uρ by

B(f, λ, ρ) := inf
g∈F

∥f − Uρg∥2γ + λ(∥g∥2γ + ∥g′′∥24) . (98)

The following proposition relates the approximation error achievable by Hρ to that of H.

Proposition G.3 (Approximation error in Hρ). Let τ > 1 and β = 1−1/τ2

3+1/τ2 . Then, there exists a
universal constant C0 > 0 such that for any ρ ∈ [0, 1] and any f ∈ L2(γ),

A(Uρf, λ, ρ) ≤ A(f, λ) , and A(f, λ, ρ) ≤ C0τ
1+βB(f, λβ , ρ) .

Proof. We first consider target functions f which satisfy the source condition f = Uρf0, where
f0 ∈ F . Consider h∗ = argminh∈H ∥f0 − h∥2γ + λ∥h∥2H . We verify from the definition that
∥f0 − h∗∥2 ≤ A(f0, λ) and ∥h∗∥2H ≤ λ−1A(f0, λ). Now consider hρ = Uρh

∗. Let Tu be the
translation operator Tuf(t) = f(t− u). We verify that

UρTuf =

∫
f(ρt+

√
1− ρ2z − u)dγ(z) =

∫
f(ρ(t− (u/ρ)) +

√
1− ρ2z)dγ(z) = T(u/ρ)Uρf .
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so UρTu = T(u/ρ)Uρ. From the RKHS representation of h∗.

h∗(t) =

∫
ϕ(t− u)c(u)γτ (u)du =

∫
Tuϕ(t)c(u)γτ (u)du

with ∥c∥2γ = ∥h∗∥2H, we verify that

hρ(t) = Uρh
∗(t) =

∫
UρTuϕ(t)c(u)γτ (u)du

=

∫
T(u/ρ)Uρϕ(t)c(u)γτ (u)du =

∫
ϕρ(t− (u/ρ))c(u)dγτ (u)

=

∫
ϕρ(t− u)c(ρu)γτ̃ (u)du ,

which shows that hρ ∈ Hρ since

∥hρ∥2Hρ
≤
∫
c(ρu)2γτ̃ (u)du =

∫
c(u)2γτ (u)du = ∥h∗∥2H <∞ .

Therefore, for any ρ < 1 and target f satisfying the source condition f = Uρf0, we have

A(f, λ, ρ) ≤ ∥f − Uρh
∗∥2γ + λ∥Uρh∗∥2Hρ

≤ ∥Uρ(f0 − h∗)∥2γ + λ∥h∗∥2H
≤ A(f0, λ) ,

where we used the fact that Uρ is a contraction in L2(γ) for any ρ ≤ 1 [67, Theorem 11.23].

Let us now consider a general f ∈ L2(γ).

A(f, λ, ρ) = inf
h∈Hρ

∥f − h∥2γ + λ∥h∥2Hρ

≤ 2 inf
g∈F

(
inf
h∈Hρ

∥f − Uρg∥2γ + ∥Uρg − h∥2γ + λ∥h∥2Hρ

)
≤ 2 inf

g∈F

(
∥f − Uρg∥2γ +

(
inf
h∈Hρ

∥Uρg − h∥2γ + λ∥h∥2Hρ

))
= 2 inf

g∈F
∥f − Uρg∥2γ + 2A(Uρg, λ, ρ)

≤ 2 inf
g∈F

∥f − Uρg∥2γ + 2A(g, λ)

≤ 2 inf
g∈F

∥f − Uρg∥2γ + Cλβ(∥g∥2γ + ∥g′′∥24)

≤ max{2, C}τ1+β ·B(f, λβ , ρ) .

where we used A(g, λ) ≤ Cτ1+βλβ(∥g∥2γ +∥g′′∥24), where C > 0 is a universal constant satisfying
Lemma 4.4, ∥g′∥2γ ≤ ∥g∥2γ+∥g′′∥2γ , and ∥ ·∥γ ≤ ∥·∥4, which follows from Jensen’s inequality.

Proposition G.3 shows that approximation properties can be transferred from F to Hρ for tar-
get functions satisfying a certain smoothness property, which is encoded in the source condition
B(f, λ, ρ). The choice of Uρ as the smoothing operator is motivated by its rich structure in L2(γ),
in particular its (hyper-)contractivity. The source condition (98) can be explicitly controlled using
the Hermite decomposition of f , though the L4(γ)-norm penalty on the (weak) second derivative of
the approximant g ∈ F imposes restrictions on the decay of its Hermite coefficients. We leave such
analysis for future work.

Besides the RKHS approximation error, our results also require control of approximation error from
using random features (Lemma C.3). We verify that the same argument (contained in Lemma C.4)
can be directly applied to Hρ, leading to an analogous control in terms of degrees of freedom. That
being said, one may be able to obtain better control of the degrees of freedom under smoothness,
leading to smaller estimation error of the KRR estimator, which in general compensates for the
worse approximation error via tuning the regularisation parameter λ [7, Chapter 7].
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Optimization properties. Using a smooth activation function for the student network simplifies
the analysis of the empirical optimization landscape since we can readily adapt the tools developed
in [60]. Moreover, since the empirical loss becomes a smooth function with Lipschitz gradients, our
gradient flow analysis can be discretized and thereby yield guarantees for gradient descent. We now
verify that for any ρ ∈ (0, 1), ϕ′ρ is L-Lipschitz with L ≤ supt |ϕ′′ρ(t)| which we now compute.

Claim G.4 (Lipschitz constant of ϕ′′ρ). Let ρ ∈ [0, 1) and let ϕρ be the ρ-smoothed ReLU. Then,

sup
t∈R

|ϕ′′ρ(t)| ≤
4ρ2√
1− ρ2

.

Proof.

ϕρ(t) =

∫
ϕ(ρt+

√
1− ρ2u)γ(u)du

=
1√

1− ρ2

∫
ϕ(v)γ

(
v − ρt√
1− ρ2

)
dv

=
1√

1− ρ2

∫ ∞

0

v · γ

(
v − ρt√
1− ρ2

)
dv ,

using change of variables with v = ρt+
√
1− ρ2u. Hence,

ϕ′′ρ(t) =
ρ2

(1− ρ2)3/2

∫ ∞

0

v · γ′′
(

v − ρt√
1− ρ2

)
dv

=
ρ2

1− ρ2

∫ ∞

− ρt√
1−ρ2

(ρt+
√
1− ρ2u)γ′′(u)du

=
ρ2

1− ρ2

(
(ρt+

√
1− ρ2u)γ′(u)|∞− ρt√

1−ρ2

−
√
1− ρ2

∫ ∞

− ρt√
1−ρ2

γ′(u)du

)

= − ρ2√
1− ρ2

∫ ∞

− ρt√
1−ρ2

γ′(u)du ,

Thus,

|ϕ′′ρ(t)| ≤
ρ2√
1− ρ2

∫ ∞

−∞
|γ′(u)|du

=
ρ2√
1− ρ2

∫ ∞

−∞
|u|γ(u)du

=
2ρ2√
1− ρ2

(∫ 1

0

uγ(u)du+

∫
u≥1

uγ(u)du

)
≤ 2ρ2√

1− ρ2

(
1− γ(1) +

∫ ∞

−∞
u2γ(u)du

)
≤ 2ρ2√

1− ρ2
· (2− γ(1)) .

H RKHS Approximation Beyond F

We further discuss the approximation capability of the RKHS H. Recall that Lemma 4.4 states
that functions in F = {f ∈ H2(γ) | f ′′ ∈ L4(γ)} can be approximated by functions in H at
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a polynomial-in-λ rate. We show that ReLU as the target function admits a polynomial-in-λ ap-
proximation rate (Proposition H.1). Note that ReLU /∈ F since ReLU is not even in H2(γ). Thus,
Proposition H.1 demonstrates that containment in F (Assumption 5.2) is sufficient, but not necessary
for polynomial approximation rates.

Proposition H.1 (RKHS approximation error for ReLU). Let τ > 1 and let ϕ(t) = max(0, t).
Then, for any λ ∈ (0, λ∗), where λ∗ < 1 depends only on τ ,

A(ϕ, λ) ≤ (2 + τ2) · λ2/3 .

Proof. We directly upper boundA(ϕ, λ) by the one-parameter family of functions ϕρ = Uρϕ, where
we recall that Uρ is the Ornstein-Uhlenbeck operator. Define λ∗ ∈ (0, 1) by

λ∗ = (1−
√

2/(2τ2 + 1))3/2 .

We consider approximants ϕρ such that ρ >
√

2/(2τ2 + 1), which in turn satisfies 1−ρ < (λ∗)2/3.
We first show that for ρ sufficiently close to 1, ϕρ approximates ϕ well in L2(γ). Then, we show
that ϕρ ∈ H for ρ >

√
1/(2τ2 + 1), and further show that ∥ϕρ∥H is roughly upper bounded by

1/
√
1− ρ2. From Corollary H.4, we know that the Hermite expansion of ϕ yields ϕ =

∑
j αjhj

with |αj | ≤ j−5/4 for j ≥ 2. Since Hermite polynomials are eigenfunctions of the operator Uρ, we
immediately have

∥ϕ− ϕρ∥2γ =

∞∑
j=1

|αj |2(1− ρj)2 ≤
∞∑
j=1

|αj |2(1− ρj)

= (1− ρ)

∞∑
j=1

|αj |2(1 + · · ·+ ρj−1)

≤ (1− ρ)

∞∑
j=1

j|αj |2

≤ (1− ρ)

∞∑
j=1

j−3/2

≤ (1− ρ)
(
1 +

∫ ∞

1

j−3/2
)

≤ 2(1− ρ) .

On the other hand, by definition and change-of-variables, we have

ϕρ(t) =

∫
ϕ(ρt+

√
1− ρ2u)γ(u)du

=

∫
ρ · ϕ

(
t+

√
1− ρ2

ρ
u

)
γ(u)du

=
ρ2√
1− ρ2

∫
ϕ(t+ b)γ

(
ρ√

1− ρ2
· b

)
db

=

∫
ϕ(t+ b)c(b)γτ (b)db ,

where

c(b) =
ρ2τ√
1− ρ2

· exp
(
− 1

2

(
ρ2

1− ρ2
− 1

τ2

)
b2
)
.
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We thus have

∥ϕρ∥2H ≤ ∥c∥2γτ

=
ρ4τ√

2π(1− ρ2)

∫
exp

(
−
(

ρ2

1− ρ2
− 1

2τ2

)
b2
)
db

=
ρ4τ√

2π(1− ρ2)

∫
exp

(
− (1 + 2τ2)ρ2 − 1

2τ2(1− ρ2)
b2
)
db

=
ρ4τ√

2π(1− ρ2)
·

τ
√

2π(1− ρ2)√
(1 + 2τ2)ρ2 − 1

=
ρ4τ2√

1− ρ2
√
(1 + 2τ2)ρ2 − 1

,

which implies that ϕρ ∈ H for any ρ > 1/
√
1 + 2τ2.

We balance the upper bounds of ∥ϕ − ϕρ∥2γ and λ∥ϕρ∥2H to control A(ϕ, λ) in terms of λ. To this
end, we set ρ = 1− λ2/3, where λ < λ∗. Then, we have

∥ϕ− ϕρ∥2γ ≤ 2(1− ρ) = 2λ2/3 ,

Moreover, using the fact that 1− ρ2 = (1− ρ)(1+ ρ) ≥ 1− ρ and (1+ 2τ2)ρ2 > 2, which follows
from ρ > 1− (λ∗)2/3, we get

λ∥ϕρ∥2H ≤ λ · (1− λ2/3)4τ2

λ1/3
√
(1 + 2τ2)ρ2 − 1

≤ λ2/3 · τ2 .

Hence, for any λ ∈ (0, λ∗),

A(ϕ, λ) ≤ ∥ϕ− ϕρ∥2γ + λ∥ϕρ∥2H ≤ (2 + τ2) · λ2/3 .

H.1 ReLU Hermite coefficients

Fact H.2. Let {Hj(z)}j∈N be the unnormalized (probabilist’s) Hermite polynomials. Then,

Hj(0) =

{
0 if j odd
(−1)j/2 j!

(j/2)!2j/2
if j even .

Claim H.3 (ReLU Hermite coefficients [42, Claim 1]). The Hermite coefficients of ReLU(z) are
given by

αj =


1/
√
2π if j = 0

1/2 if j = 1
1√
2πj!

(Hj(0) + jHj−2(0)) otherwise .

Corollary H.4 (ReLU coefficient bounds for j ≥ 2).

αj =
1√
2πj!

· (−1)(j−2)/2 (j − 2)!j

(j/2)!2j/2
and |αj | ≤

1√
2π3/2

· 1

j5/4
.

65



Proof. Combining Fact H.2 and Claim H.3,

Hj(0) + jHj−2(0) = (−1)j/2
(

j!

(j/2)!2j/2
− (j − 2)!2j(j/2)

(j/2)!2j/2

)
= (−1)j/2

(j − 2)!

(j/2)!2j/2
(
j(j − 1)− j2

)
= (−1)(j−2)/2 (j − 2)!j

(j/2)!2j/2

αj =
1√
2πj!

· (−1)(j−2)/2 (j − 2)!j

(j/2)!2j/2

=
(−1)(j−2)/2

√
2π

·
√

(j − 2)!
√
j√

j − 1(j/2)!2j/2

=
(−1)(j−2)/2

√
2π

·
√
j
√
(j − 2)!√

j − 1j!!
,

where we used the fact that j!! = (j/2)!2j/2 for even j in the last line. It remains to evaluate the
RHS. We use the following facts on double factorials.

j!!

(j − 1)!!
=

2j/2(j/2)!

j!/(2j/2(j/2)!)
= 2j

(
j

j/2

)−1

≤
√
π(j + 1)/2 ≤

√
πj (99)

(j − 2)! = (j − 2)!!(j − 3)!! =
(j − 1)!!j!!

j(j − 1)
≤ (j!!)2

j(j − 1)
√
πj

,

where in Eq. (99), we used the fact that
(
2k
k

)
≥ 4k/

√
π(k + 1/2). Thus,

|αj | ≤
1√
2π

· 1

(j − 1)(πj)1/4

≤ 1√
2π3/2

· 1

j5/4
.
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