
A Appendix

A.1 Intuitive explanation of Self-Attention’s permutation invariant property

Here, we provide a simple, non-rigorous example demonstrating permutation invariant property
of the self-attention mechanism, to give some intuition to readers who may not be familiar with
self-attention. For a detailed treatment, please refer to [1].

As mentioned in Section 3.1 of the main text, in its simplest form, self-attention is described as:

y = σ(QK>)V (1)

where Q ∈ RNq×dq ,K ∈ RN×dq , V ∈ RN×dv are the Query, Key and Value matrices and
σ(·) is a non-linear function. In this work, Q is a fixed matrix, and K,V are functions of the input
X ∈ RN×din whereN is the number of observation components (equivalent to the number of sensory
neurons) and din is the dimension of each component. In most settings, K = XWk, V = XWv are
linear transformations, thus permuting X therefore is equivalent to permuting the rows in K,V .

We would like to show that the output y is the same regardless of the ordering of the rows of K,V .
For simplicity, suppose N = 3, Nq = 2, dq = dv = 1, so that Q ∈ R2×1,K ∈ R3×1, V ∈ R3×1:
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The output y ∈ R2×1 remains the same when the rows of K,V are permuted from [1, 2, 3] to [3, 1, 2]:
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We have highlighted the same terms with the same color in Equations 2 and 3 to show the results
are indeed identical. In general, we have yij =

∑N
b=1 σ

(∑dq

a=1QiaKba

)
Vbj . Permuting the input

is equivalent to permuting the indices b (i.e. rows of K and V ), which only affects the order of the
outer summation and does not affect yij because summation is a permutation invariant operation.
Notice that in the above example and the proof here we have assumed that σ(·) is an element-wise
operation—a valid assumption since most activation functions satisfy this condition.1

As discussed in Section 3.2 of the main text, this formulation lets us convert an observation signal
from the RL environment into a permutation invariant representation y. We can use y in place of the
actual observation as the input that goes into the downstream policy network of an RL agent.

A.2 Hyper-parameters

Table 1 in the main text contains the hyper-parameters used for each experiment. We did not employ
exhaustive hyper-parameter tuning, but have simply selected (from experience) hyper-parameters
that work with training methods such as evolution strategies, where the number of model parameters
cannot be too large. As mentioned in the discussion section about the limitations, we tested a small
range of patch sizes (1, 4, and 6 pixels), and we find that a patch size of 6x6 works well across tasks.

1Applying softmax to each row only brings scalar multipliers to each row and the proof still holds.

1



A.3 Description of compute infrastructure used to conduct experiments

For all ES results, we train on Google Kubernetes Engines (GKE) with 256 CPUs (N1 series) for
each job. The approximate time, including both training and periodic tests, for the jobs are: 3 days
(CartPole), 5 days (PyBullet Ant ES) and 10 days (CarRacing). For BC results, we train with Google
Computing Engines (GCE) on an instance that has one V100 GPU. The approximate time, including
both training and periodic tests, for the jobs are: 5 days (PyBullet Ant BC), 1 day (Atari Pong).

A.4 Detailed setups for the experiments

A.4.1 Training budget

The costs of ES training are summarized in the following table. A maximum of 20K generations
is specified in the training, but stopped early if the performance converged. Each generation has
256× 16 = 4096 episode rollouts, where 256 is the population size and 16 is the rollout repetitions.
The Pong permutation-invariant (PI) agents were trained using behavior cloning (BC) on a pre-trained
PPO policy (which is not PI-capable), with 10M training steps.

Environment CartPoleSwingUpHarder PyBullet Ant Atari Pong CarRacing
Number of Generations 14,000 12,000 - 4,000

Note that we used the hyper-parameters (e.g., population size, rollout repetitions) that proved to
work on a wide range of tasks from past experience, and did not tune them for each experiment. In
other words, these settings were not chosen with sample-efficiency in mind, but rather for learning a
working PI-capable policy using distributed computation within a reasonable wall-clock time budget.

We consider two possible approaches when we take sample-efficiency into consideration. In the
experiments, we have demonstrated that it is possible to simply use state-of-the-art RL algorithms
to learn a non-PI policy, and then use BC to produce a PI version of the policy. The first approach
is thus to rely on the conventional RL algorithms to increase sample efficiency, which is a hot and
on-going topic in the area. On the other hand, we do think that an interesting future direction is to
formulate environments where BC will fail in a PI setting, and that interactions with the environment
(in a PI setting) is required to learn a PI policy. For instance, we have demonstrated in PyBullet Ant
that the BC method requires the cloned agent to have a much larger number of parameters compared
to one trained with RL. This is where an investigation in sample-efficiency improvements in the RL
algorithm explicitly in the PI setting may be beneficial.

A.4.2 PyBullet Ant

In the PyBullet Ant experiment, we demonstrated that a pre-trained policy can be converted into
a permutation invariant one with behavior cloning (BC). We give detailed task description and
experimental setups here. In AntBulletEnv-v0, the agent controls an ant robot that has 8 joints
(|A| = 8), and gets to see an observation vector that has base and joint states as well as foot-ground
contact information at each time step (|O|=28). The mission is to make the ant move along a pre-
defined straight line as fast as possible. The teacher policy is a 2-layer FNN policy that has 32 hidden
units trained with ES. We collected data from 1000 test roll-outs, each of which lasted for 500 steps.
During training, we add zero-mean Gaussian noise (σ = 0.03) to the previous actions. For the student
policy, We set up two networks. The first policy is a 2-layered network that has the AttentionNeuron
with output size mt ∈ R32 as its first layer, followed by a fully-connected (FC) layer. The second,
larger policy is similar in architecture, but we added one more FC layer and expanded all hidden
size to 128 to increase its expressiveness. We train the students with a batch size of 64, an Adam
optimizer of lr = 0.001 and we clip the gradient at maximum norm of 0.5.

A.4.3 Atari Pong

In the Atari game Pong, we append a deep CNN to the AttentionNeuron layer in our agent (student
policy). To be concrete, we reshape the AttentionNeuron’s output message mt ∈ R400×32 to mt ∈
R20×20×32 and pass it to the trailing CNN: [Conv(in=32, out=64, kernel=4, stride=2), Conv(in=64,
out=64, kernel=3, stride=1), FC(in=3136, out=512), FC(in=512, out=6)]. We use ReLU as the
activation functions in the CNN. We collect the stacked observations and the corresponding logits
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output from a pre-trained PPO agent (teacher policy) from 1000 roll-outs, and we minimize the MSE
loss between the student policy’s output and the teacher policy’s logits. The learning rate and norm
clip are the same as the previous experiment, but we use a batch size of 256.

For the occluded Pong experiment, we randomly remove a certain percentage of the patches across
a training batch of stacked observation patches. In tests, we sample a patch mask to determine the
positions to occlude at the beginning of the episode, and apply this mask throughout the episode.

A.4.4 CarRacing

In AttentionAgent [2], the authors observed that the agent generalizes well if it is forced to make
decisions based on only a fraction of the available observations. Concretely, [2] proposed to segment
the input image into patches and let the patches vote for each other via a modified self-attention
mechanism. The agent would then take into consideration only the top K = 10 patches that have the
most votes and based on the coordinates of which an LSTM controller makes decisions. Because the
voting process involves sorting and pruning that are not differentiable, the agent is trained with ES. In
their experiments, the authors demonstrated that the agent could navigate well not only in the training
environment, but also zero-shot transfer to several modified environments.

We need only to reshape the AttentionNeuron layer’s outputs to adapt for AttentionAgent’s policy
network. Specifically, we reshape the output message mt ∈ R1024×16 to mt ∈ R32×32×16 such that
it can be viewed as a 32-by-32 “image” of 16 channels. Then if we make AttentionAgent’s patch
segmentation size 1, the original patch voting becomes voting among the mt’s and thus the output
fits perfectly into the policy network. Except for this patch size, we kept all hyper-parameters in
AttentionAgent unchanged, we also used the same CMA-ES training hyper-parameters.

Although the simple settings above allows our augmented agent to learn to drive and generalize
to unseen background changes, we found the car jittered left and right through the courses. We
suspect this is because of the frame differential operation in our fk(ot, at−1). Specifically, even
when the car is on a straight lane, constantly steering left and right allows fk(ot, at−1) to capture
more meaningful signals related to the changes of the road. To avoid such jittering behavior, we
make mt a rolling average of itself: mt = (1− α)mt + αmt−1, 0 ≤ α ≤ 1. In our implementation
α = g([ht−1, at−1]), where ht−1 is the hidden state from AttentionAgent’s LSTM controller and
at−1 is the previous action. g(·) is a 2-layer FNN with 16 hidden units and a sigmoid output layer.

We analyzed the attention matrix in the AttentionNeuron layer and visualized the attended positions.
To be concrete, in CarRacing, the Query matrix has 1024 rows. Because we have 16 × 16 = 256
patches, the Key matrix has 256 rows, we therefore have an attention matrix of size 1024× 256. To
plot attended patches, we select from each row in the attention matrix the patch that has the largest
value after softmax, this gives us a vector of length 1024. This vector represents the patches each of
the 1024 output channels has considered to be the most important. 1024 is larger than the total patch
count, however there are duplications (i.e. multiple output channels have mostly focused on the same
patches). The unique number turns out to be 10 ∼ 20 at each time step. We emphasize these patches
on the observation images to create an animation.
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