
A APPENDIX

A.1 TRAINING

A.1.1 LEARNING ALGORITHM DETAILS

Hyperparameter Value

Discount Factor 0.99
GAE Discount Factor (τ ) 0.95
Learning Rate (start of training) 5e-4
Learning Rate (end of training, linear decay) 1e-6
Batch Size 65356
Mini-batch Size 16384
Number of Epochs 8
Clip Range (ε) 0.2
Entropy Coefficient 0

Table 1: PPO Hyperparameters.

We used the open-source version of PPO from (Makoviichuk & Makoviychuk, 2021) which provides
the ability to work with highly vectorised environments. The hyperparameters used are listed in Table
1.

A.2 SUCCESS FOR ROTATION AND POSITION

We break out position and rotation success rates individually in Figure 1. They show that the keypoint-
based reward formulation fixes the issues identified in Experiment 1 from the paper, namely that
summing position and orientation components of reward leads to poor orientation success rate. Using
keypoints improves orientation performance without sacrificing achieving the position goal. It is still
apparent that progress can be made with reducing this gap as the orientation reward still continues
improving until 4 Billion steps of experience, and this is a direction of ongoing work.
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(a) Position Goal at End of Episode (a) Orientation Goal at End of Episode
Figure 1: End of episode success for keypoints and no keypoints.

A.2.1 REPRODUCING RESULTS ON A CONSUMER GPU

The reward curves and times stated in the main text were produced on a single NVIDIA V-100
GPU. We were able to reproduce these results on a desktop machine with a consumer-grade NVIDIA
RTX3090 GPU. This produced the same reward curves but actually reduced the training times from
around 24 hours to 20 hours, showing the ability of our system to train on a desktop.
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A.2.2 THROUGHPUT COMPARISON BETWEEN CPU AND GPU

We tested the throughput of the simulator on the same desktop computer with 3090 GPU and 12-core
i9-7920X processor to compare the speed of end2end training (simulation, inference and training on
CPU) to standard training with simulation on the CPU and neural network inference and training
on the GPU. Using the Trifinger environment in Isaac Gym, we got 45,000 steps per second while
training using the former while only 6200 using the latter, a speedup of more than 7x.

A.3 DETAILS OF SIM2REAL TRANSFER

A.3.1 SUCCESS THRESHOLDS
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Figure 2: We investigated the impact of varying the thresholds on success rate. The results are shown in the
heatmap.

The success rates on the real robot for different thresholds of position and orientation are shown in
Figure 2. We see a graceful degradation as the success thresholds are tightened. We note that these
are necessarily based on noisy camera observations due to the remote nature of the setup; at 0.01m of
position and 0.1rad of orientation error this becomes a particular problem. Note also that ’success’
for us is based off a different metric than some other works (eg. (OpenAI et al., 2018)): we define
’success’ as being within the goal at the end of an episode instead of achiving it at any point during it.
This is because part of the challenge of the Trifinger orientation task is being able to grasp and hold
the cube in position, as the upside-down orientation of Trifinger making this challenging.

A.3.2 HARDWARE SETUP

As mentioned in the main text, we perform inference on the Trifinger platform remotely. The interface
is described in the corresponding whitepaper (Wüthrich et al., 2020).

Inference, including camera tracking and running the network, is performed on CPU on the same
computer that hand-written solutions to last year’s real robot challenge (Funk et al., 2021; Chen et al.,
2021; Yoneda et al., 2021) were written on. An entire setup to run our system, including training,
inference and physical robot hardware, could be purchased for less than US$10,000.

A.3.3 SOFTWARE DETAILS

Inference is done in the Python; the time from getting the observations to sending the actions to the
hardware platform is on the order of 5-8ms, a delay consisting of generating keypoints observations
and running the policy. Reducing this delay by moving our inference code to C++ is a direction for
future improvements to our system.

A.3.4 POSE FILTERING

Unlike some previous works using visual information to perform in-hand manipulation, our system
uses the pose estimator provided in (Wüthrich et al., 2020). This performs iterative optimization
without reference to the history, and thus can provide temporally inconsistent quaternion inputs to the
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policy, with the quaternion value flipping between +q and −q. We found that this destabilised the
policies which were provided position and quaternion inputs during inference, and so implemented a
simple filter over the input: if the quaternion from the last camera measurement qlast was within 0.2 of
the negated quaternion from a new camera measurement −qnew, we used −qnew in the policy input.
While this had no impact on the keypoints model (it performs an analytic transformation prior to
policy inference which is invariant to this issue) we found it important to perform this transformation
to allow stable grasps in policies which took raw quaternions as input and thus to provide a fair
comparison.

We tried using an Extended Kalman Filter using the formulation from (Davison et al., 2007) in order
to account for the noise in camera observations. However, we did not find that the performance of
our policies on the real-robot was noticeably improved as compared with policies, likely due to the
high variance in the unknown acceleration in in-hand manipulation.
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