
Require:
Node features X ∈ Rn×k,
Message function ψ : Rk × Rk → Rm,
Update function ϕ : Rm → Rm

Ensure: Latent features H ∈ Rn×m

Argsnd ← tile(X, 0, n); // Argsnd ∈ Rn×n×k

Argrcv ← tile(X, 1, n); // Argrcv ∈ Rn×n×k

for (u, v) ∈ V × V do
msguv ← ψ(argsnd

u ,argrcv
v); //Msg ∈ Rn×n×m

end for
for u ∈ V do

hu ← ϕ(
⊕

v∈V msgvu);
end for

V

V × V + V × V V × V

V

i

p

o

Figure 2: Correspondence between the individual arrows in the polynomial span, and the pseudocode
steps for implementing a plausible graph neural network. The code sections are colour-coded to
correspond to arrows in the polynomial span diagram. The specific sets X,Y, V,W of the polynomial
span are initialised to match the design choices in the GNN (for a set of nodes V , such that |V| = n).

A Correspondence between GNN pseudocode and the polynomial span

In Figure 2, we further elaborate on the diagrams given in Figure 1, to explicitly relate the various
steps of how processing data with a GNN might proceed with the individual arrows (i, p, o) of the
polynomial span. To do this, we colour-code parts of a plausible GNN pseudocode, to match the
colours of arrows in a polynomial span diagram.

Additionally, in Figure 3, we follow this construction to explicitly provide the pseudocodes for the
proposed V 2 and V 3-GNN models (as proposed in Diagram 7 and Diagram 10, respectively).

B The bag and list monads

Before we conclude, we turn back to the theory behind our polynomial spans, to more precisely
determine the restrictions on our abstract latent space R. We found this investigation useful to include
in the main paper, as it yields a strong connection to one of the most actively used concepts in
theoretical computer science and functional programming.

Recall that the realisation of our pushforward operations required the existence of two aggregators:⊗
(to fold lists) and

⊕
(to reduce bags). Previously, we mentioned only in passing how they can be

recovered—now, we proceed to define
⊕

axiomatically.

Given a set S, we define bag(S) := {p : S → N | #{p(r) ̸= 0} <∞}, the natural-valued functions
of finite support on S. This has a clear correspondence to multisets over S: p sends each element of
S to the amount of times it appears in the multiset. We can write its elements formally as

∑
s∈S nss,

where all but finitely many of the ns are nonzero.

Given a function f : S → T between sets, we can define a function bag(f) : bag(S) → bag(T),
as follows: bag(f)(

∑
s∈S nss) :=

∑
s∈S nsf(s), which we can write as

∑
t∈T mtt, where mt =∑

f(s)=t ns.

For each S, we can also define two special functions. The first is unit : S → bag(S), sending
each element to its indicator function (i.e. an element x ∈ S to the multiset {{x}}). The second is
join : bag(bag(S))→ bag(S), which interprets a nested sum as a single sum.

These facts tell us that bag is a monad, a special kind of self-transformation of the category of sets.
Monads are very general tools for computation, used heavily in functional programming languages
(e.g. Haskell) to model the semantics of wrapped or enriched types. Monads provide a clean way for
abstracting control flow, as well as gracefully handling functions with side effects [33].

It is well-known that the algebras for the monad bag are the commutative monoids, sets equipped
with a commutative and associative binary operation and a unit element.

14

Require:
Node features X ∈ Rn×k,
Message function ψ : Rk × Rk → Rm,
Update function ϕ : Rm → Rm

Ensure: Latent features H ∈ Rn×m (nodes), M ∈ Rn×n×m (edges)
Argsnd ← tile(X, 0, n); // Argsnd ∈ Rn×n×k

Argrcv ← tile(X, 1, n); // Argrcv ∈ Rn×n×k

for (u, v) ∈ V × V do
msguv ← ψ(argsnd

u ,argrcv
v); //Msg ∈ Rn×n×m

end for
for u ∈ V do

hu ← ϕ(
⊕

v∈V msgvu);
end for
M←Msg
// Msg is sent to two places (H,M); output morphism o is not a function!

V

2V2 V2

V + V2

i

p

o

Require:
Node features X ∈ Rn×k,
Edge message function ψ(e) : Rk × Rk → Rm,
Triplet message function ψ(t) : Rk × Rk × Rk → Rm,
Node update function ϕ(n) : Rm → Rm,
Edge update function ϕ(e) : Rm → Rm

Ensure: Latent features H ∈ Rn×m (nodes),M ∈ Rn×n×m (edges)
Argsnd ← tile(X, 0, n); // Argsnd ∈ Rn×n×k

Argrcv ← tile(X, 1, n); // Argrcv ∈ Rn×n×k

Argtri1 ← tile(X, [0, 1], n); // Argtri1 ∈ Rn×n×n×k

Argtri2 ← tile(X, [0, 2], n); // Argtri2 ∈ Rn×n×n×k

Argtri3 ← tile(X, [1, 2], n); // Argtri3 ∈ Rn×n×n×k

for (u, v) ∈ V × V do
msg

edge
uv ← ψ(e)(argsnd

u ,argrcv
v); // Msgedge ∈ Rn×n×m

for w ∈ V do
msgtri

uvw ← ψ(t)(argtri1
u ,argtri2

v ,argtri3
w); //Msgtri ∈ Rn×n×n×m

end for
end for
for u ∈ V do

hu ← ϕ(n)(
⊕

v∈V msgedge
vu);

for v ∈ V do
muv ← ϕ(e)(

⊕
w∈V msgtri

uvw);
end for

end for

V

2V2 + 3V3 V2 + V3

V + V2

i

p

o

Figure 3: Correspondence between the arrows in the polynomial span, and the pseudocode for
implementing the GNNs represented by Diagram 7 (above) and Diagram 10 (below). Edge and graph
features are ignored for simpicity. The code sections are colour-coded to correspond to arrows in the
polynomial span. Note the difference to Figure 2: we now also need to output edge features (on V2).

Concretely, a commutative monoid structure on a set R is equivalent to defining an aggregator
function

⊕
: bag(R)→ R compatible with the unit and monad composition. Here, compatibility

implies it should correctly handle sums of singletons and sums of sums, in the sense that the following
two diagrams commute; that is, they yield the same result regardless of which path is taken:

R bag(R) bag(bag(R)) bag(R)

R bag(R) R

bag(
⊕

)

join

⊕
⊕

unit

id
⊕

The first diagram explains that the outcome of aggregating a singleton multiset (i.e. the one produced
by applying unit) with

⊕
is equivalent to the original value placed in the singleton. The second

diagram indicates that the
⊕

operator yields the same results over a nested multiset, regardless of
whether we choose to directly apply it twice (once on each level of nesting), or first perform the join
function to collapse the nested multiset, then aggregate the collapsed multiset with

⊕
.

15

So the structure of a commutative monoid on R is exactly what we need to complete our definition of
the message pushforward o⊕. The story for the argument pushforward, p⊗, is remarkably similar.

Define list(S) := {(s1, . . . , sn) | n ∈ N, si ∈ S}, the set of all ordered lists of elements of S,
including the empty list. Equivalently, list(S) =

∐
n≥0 S

n. We can also extend list to a functor:
for a function f : S → T , list(f) : list(S) → list(T) is just the well-known map operation:
list(f)(s1, . . . , sn) := (f(s1), . . . , f(sn)).

list is also a monad, with unit : S → list(S) sending each x ∈ S to the singleton list (x), and
join : list(list(S))→ list(S) sending a list of lists to their concatenation.

The algebras for the list monads are monoids—not just commutative ones. So R needs a second
monoid structure, possibly noncommutative, to support our definition of the argument pushforward.
We detail how this can elegantly be done in our specific case in Appendix C.

C The monad for semirings

We have asked that R be an algebra for two monads: list and bag. But this is an unnatural
condition without some compatibility between the two. It would more useful to find a single monad
encapsulating both.

In general, the composition of two monads is not a monad. For example, the composite functor
list ◦ bag does not support a monad structure.

However, the other composite bag ◦ list is actually a monad in a natural way, due to the existence
of a distributive law, which is a natural transformation λ : list ◦ bag→ bag ◦ list satisfying some
axioms, see e.g. [8].4

It is easy to describe λ. Given any list of bags (
∑

i1
ai1 , . . . ,

∑
in
ain), we have

λ(
∑

i1
ai1 , . . . ,

∑
in
ain) =

∑
i1,...,in

(ai1 , . . . , ain). In other words, λ takes a list of bags and
returns the bag of all ordered selections from the list.

This is exactly how multiplication of sums works in a semiring. For example, if I think of a polynomial
as a bag of monomials, and I want to compute a product of polynomials, I interpret this product as a
list of polynomials, i.e. a list of bags. Then I expand it into a bag of lists (a sum of products), and
finally perform the products to produce the resulting bag of monomials, i.e. polynomial.

So it shouldn’t be a surprise that the algebras for the composite monad bag ◦ list are exactly
semirings, i.e. sets R equipped with a commutative monoid structure

⊕
, another monoid structure⊗

, and a “distributive law”
⊗⊕→⊕⊗

, usually written as, e.g. x(a+ b)y = xay + xby, and
extended to arbitrary sums and products by induction.

Indeed, if R is an algebra for the monad bag ◦ list, we have some “double aggregator” ev :
bag(list(R)) → R. We can recover ⊗ : list(R) → R by packing our list into a singleton bag,
and we can recover ⊕ : bag(R)→ R by packing our bag into a singleton list then applying λ.

D Polynomial functors

Polynomial spans are the starting point for our integral transform, but they are also the starting point
for polynomial functors, which arise in dependent type theory. Let C be a locally cartesian closed
category, and let C/A denote, for any object A of C, the category of morphisms with target A. A
polynomial functor starts with a polynomial span:

X Y

W Z

oi

p

4Cheng [8] also explains the general problem of composing three or more monads and its relation to the
Yang-Baxter equation, which provides further intuition about the unit axioms for semirings.

16

And it produces a composition of three functors:

C/X C/Y

C/W C/Z

Σoi∗

Πp

(11)

Here Σo and Πp are operations called the dependent sum and dependent product respectively.

Note that there is a direct correspondence between the three arrows in each of the diagrams 5 and 11.
So it is very tempting to ask whether our integral transform is expressible as a polynomial functor.
Can our results be rephrased in those terms?

We don’t have a complete answer, but we can connect the two pictures, at least in the case of
commutative multiplication, via the monoidal category FinPoly, whose objects are finite sets, whose
morphisms are polynomial diagrams, and whose monoidal product is given by disjoint union +.
A result of Tambara says that FinPoly is the Lawvere theory for commutative semirings [25, 17].
What this means is that the strong monoidal functors F : (FinPoly,+) → (Set,×) are uniquely
determined by giving a commutative semiring structure on the set F (1).

In other words, once we have decided on a commutative semiring structure on R = [1, R], we
automatially have F (V) = F (

∑
V 1) = [1, R]V = [V,R], and the action of F on morphisms can be

checked to coincide with our construction of the integral transform.

Likewise, we can interpret finite polynomial functors as the action on the category of categories F :
(FinPoly,+)→ (Cat,×) with F (1) = FinSet. Note that [V, FinSet] = FinSetV = FinSet/V ,
as picking one finite set for each element of V is equivalent to picking a finite set equipped with a
function to V . So F takes a finite set V to its slice category FinSet/V , and likewise takes polynomial
diagrams to the associated polynomial functor. In fact, F in this case actually extends to a 2-functor.
Since the 2-categorical structure is important for polynomial functors, it may be useful to explore it
for integral transforms as well.

In any case, we can see that [V,N], where N is the usual natural numbers with addition and multi-
plication, is just a decategorified version of FinSet/V , obtained by considering only cardinalities.
Indeed, the existence of such a “decategorification” for transforms over spans was an early inspiration
for our present work. But what about categorifying other semirings?

To replace N with an arbitrary semiring R, we would need to find a way to interpret a function
f : W → R as a classifying morphism for some kind of bundle E → W in a suitable category
of geometric objects over R. For the min-plus semiring R = N∞, one possibility is to define a
category of R-schemes, which should be certain types of topological spaces equipped with sheaves
of R-modules.

We don’t know of a place this theory is fully developed, but the spectrum functor from rings to
topological spaces is extended to poset-enriched semirings in [12]. And this construction is certainly
related to tropical schemes, defined in [18]. For R = R, we can also consider the more familiar
category of manifolds, or more generally the category of locally compact Hausdorff spaces.

But do polynomial functors work in categories like this? While polynomial functors were developed
in type theory over locally cartesian closed categories–too strong of a condition for interesting
topology to occur–[34] has shown that polynomial functors can be defined in any category with
pullbacks, as long as the “processor” morphism p : X → Y satisfies an abstract condition called
exponentiability. i and o can still be arbitrary morphisms.

For some intuition, we quote two results on exponentiability. [6] shows that the exponentiable
morphisms in the category of compact Hausdorff spaces are the local homeomorphisms. And [22]
shows that a morphism R → S of commutative rings gives rise to an exponentiable morphism
of affine schemes exactly when S is dualizable as an R-module. So exponentiability seems to be
strongly linked to covering spaces in classical topology, as well as descent theory in modern algebraic
geometry.

17

Expanding on these ideas is far out of scope for the present work, but we hope it gives a glimpse into
the possibilities for future development.

E Plots of in-distribution performance on CLRS

For plots that illustrate in-distribution performance of our proposed V 3 model, against the non-
polynomial (V 2) model, please refer to Figure 4 and Table 4. Our findings largely mirror the ones
from out-of-distribution—with V 3 either matching the performance of the baseline or significantly
outperforming it (e.g. on Insertion Sort and Floyd-Warshall). We do note that sometimes, matched
performance by the non-polynomial V 2 baseline in-distribution can be misleading, as it significantly
loses out to V 3 out of distribution (cf. Table 1). This lines up with predicitons of prior art: in-
distribution, many classes of GNNs can properly fit a target function [37], but in order to extrapolate
well, the alignment to the target function needs to be stronger, as otherwise the function learnt by the
model may be highly nonlinear, and therefore less robust out-of-distribution [38].

F Test results for the scaled PGN experiments on CLRS

To supplement the aggregated results provided in Table 2, here we provide the per-task results of our
scaled PGN experiment. Table 3 provides, for each of the 27 CLRS algorithms we investigated here,
the test (out-of-distribution) performance of the PGN model [29], with both the V 2 and V 3 variant.
In all cases, the models compute 96-dimensional embeddings; for memory considerations, the V 2

pipeline computes 128-dimensional latent vectors, the V 3 addition computes 16-dimensional latent
vectors, and these are then all linearly projected to 96 dimensions and combined. We particularly
highlight in Table 3 the edge-centric algorithms within this set, to emphasise our gains on them. An
algorithm is considered edge-centric if it explicitly requires a prediction (either on the algorithm’s
output or its intermediate state) over the given graph’s edges.

18

Table 3: Test (out-of-distribution) results of all PGN variants on all 27 algorithms in our scaled up
experiments, averaged over 8 seeds. Edge-centric algorithms are highlighted in blue. Note that most
of the benefits of our proposed V 3 architecture occur over the edge-centric tasks.

Algorithm V 2–PGN V 3–PGN
Activity Selector 62.28%± 1.02 63.75%± 1.03
Articulation Points 11.91%± 4.46 14.72%± 3.69
Bellman-Ford 80.05%± 0.87 77.69%± 0.78
BFS 99.97%± 0.02 99.76%± 0.12
Binary Search 26.20%± 2.07 25.57%± 1.95
Bridges 26.02%± 1.68 25.48%± 1.54
DAG Shortest Paths 62.62%± 0.44 62.43%± 0.82
DFS 8.70%± 0.73 8.16%± 0.95
Dijkstra 34.60%± 4.13 37.51%± 4.71
Find Maximum Subarray 48.28%± 1.46 52.58%± 1.20
Floyd-Warshall 8.01%± 1.31 17.31%± 0.92
Graham Scan 37.66%± 1.77 42.08%± 1.57
Heapsort 2.34%± 0.15 4.20%± 0.24
Insertion Sort 12.14%± 0.24 18.99%± 0.98
KMP Matcher 2.44%± 0.11 1.59%± 0.11
LCS Length 52.87%± 2.35 67.24%± 4.93
Matrix Chain Order 70.94%± 1.13 74.61%± 0.92
Minimum 58.92%± 1.82 56.54%± 1.77
MST-Kruskal 43.34%± 5.26 38.42%± 6.82
MST-Prim 29.05%± 3.54 29.86%± 3.78
Naïve String Matcher 2.06%± 0.59 1.80%± 0.46
Quickselect 2.22%± 0.08 2.56%± 0.16
Quicksort 2.45%± 0.09 6.82%± 1.01
Segments Intersect 61.77%± 2.15 61.24%± 1.99
Strongly Connected Components 8.98%± 0.56 11.41%± 2.13
Task Scheduling 84.36%± 1.30 85.18%± 0.63
Topological Sort 12.80%± 0.56 9.91%± 1.63

Overall average 35.30% 36.94%

Table 4: Validation (in-distribution) results of all MPNN-based models on all six algorithms studied,
across three random seeds.

Algorithm V 2–large V 3–large V 2–small V 3–small
Dijkstra 92.03%± 0.46 92.70%± 0.34 91.46%± 0.53 91.54%± 0.49
Find Maximum Subarray 81.98%± 2.51 84.71%± 0.93 81.91%± 1.99 76.29%± 2.46
Floyd-Warshall 79.51%± 0.59 90.02%± 0.32 78.19%± 0.67 88.99%± 0.47
Insertion Sort 87.48%± 1.96 87.97%± 1.86 76.12%± 3.77 88.84%± 1.68
Matrix Chain Order 97.69%± 0.07 97.96%± 0.06 97.59%± 0.10 97.88%± 0.10
Optimal BST 92.42%± 0.24 91.61%± 0.28 91.80%± 0.46 90.77%± 0.63

Overall average 88.52% 90.83% 86.18% 89.05%

19

Figure 4: Validation (in-distribution) curves of all models on all six algorithms studied, across three
random seeds.

20

	Introduction
	GNNs, dynamic programming, and the categorical connection
	The difficulty of connecting GNNs and DP
	The integral transform
	Bellman-Ford
	GNNs
	Improving GNNs with edge updates, with experimental evaluation
	Conclusions
	Correspondence between GNN pseudocode and the polynomial span
	The bag and list monads
	The monad for semirings
	Polynomial functors
	Plots of in-distribution performance on CLRS
	Test results for the scaled PGN experiments on CLRS

