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Supplementary Experiments for CLIP-Adapter and PLOT
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1 SUPPLEMENTARY EXPERIMENTS
1.1 The difference between Ours and PLOT

We will briefly describe the difference between our method and
PLOT.

Different Designs: In contrast to PLOT, we obtain a global text
feature for textual one prompt, instead of a local text feature with
textual multi-prompt input. The multi-prompt is that the set of
learnable prompt is 4 (N = 4) and the set of output text feature is 4.
The model optimizes four sentences simultaneously ("a photo of a
dog'", "a picture of a dog", "a drawing of a dog", "a good drawing of
a dog"). Each embedding in each sentence participates in learning.
The output text feature of our method is global feature (N = 1),
the input sentence is one text prompt such as "a photo of a", and
the text prompt is non-learnable. Our method is more simpler
than text multi-prompt input method (PLOT) in textual design
component. Further, the core component of PLOT is OT, while the
core component of our method is EnLa. Our approach focuses on
the proposal of EnLa and frozen text prompt, which is different
with the design proposal of PIOT.

Different problems: Our approach primarily addresses gener-
alization issues, such as base-to-novel and cross-data transfer ex-
periments. In contrast, PIOT mainly focuses on few-shot learning
experiments that tackle supervised tasks. However, our method
also excels in few-shot learning experiments. As a result, the prob-
lems we aim to solve using optimal transport are entirely distinct
from those addressed by PIOT.

1.2 End-to-end OT

The transport plan is efficiently computed through a limited number
of matrix multiplications as a forward module. These matrix multi-
plications are crucial for determining the gradients that are then
preserved for back-propagation. While the optimization strategy
involves a two-stage process with optimal transport and prompts,
the overall training flow remains end-to-end.

1.3 Analysis of parameters

In terms of the number of parameters in the overall model, our
method has more parameters than PLOT because our method has
EnLa and learnable visual embeddings. We have added experiments
on CLIP-Adapter and PLOT.

1.4 Few-shot learning experiments for ViT-B/16
backbones

Our method provides improvements on few-shot settings compared
to PLOT. This indicates that our method is more excellent.

1.5 Cross Dataset Evaluation for ViT-B/16
backbones

To verify the cross-dataset generalization ability, we train our
method on the ImageNet dataset with 1,000 classes, and test it

Table 1: Few-shot learning experiments for for ViT-B/16 back-
bones.

Dataset ‘ PLOT Ours
Average | 82.09 83.31(A+1.22)
ImageNet | 72.60 73.35
Caltech101 | 96.04 96.37
OxfordPets | 93.59 94.03
StanfordCars | 84.55 84.17
Flowers102 | 97.56 98.2
Food101 | 87.11 87.65
FGVCAircraft | 46.74 50.91
SUN397 | 76.03 77.20
DTD | 71.43 74.57
EuroSAT | 92.00 93.13
UCF101 | 8534 86.87

Table 2: Cross-dataset benchmark evaluation. Our method
achieves overall favorable performance.

Source Target
- P A o
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Linear probe CLIP 66.73 9294 89.07 6529 71.30 86.11 2487 62.62 44.56 47.69 66.77 65.12
CoOp 7151 93.70 89.14 6451 68.71 8530 1847 64.15 4192 4639 66.55 63.88
CLIP-Adapter 71.40 93.85 89.57 64.66 68.85 8554 1853 64.35 41.86 4643 66.77 64.04
CoCoOp 71.02 94.43 90.14 6532 71.88 86.06 2294 6736 4573 4537 68.21 6574
PLOT 70.15 94.60 90.23 6541 71.97 8632 2287 67.22 4499 46.57 6832 6585
MaPLe 70.72 93.53 9049 6557 7223 86.20 2474 67.01 46.49 48.06 68.69 66.30
Ours 71.03 9393 9120 65.63 7173 86.40 25.13 67.67 4647 48.96 69.73 66.69

on the remaining 10 datasets. We have added experiments on CLIP-
Adapter and PLOT. As shown in Table 2, our method shows compet-
itive performance and achieves better generalization in 8/10 over
the PLOT.

1.6 Domain Generalization Experiments for
ViT-B/16 backbones
We have added experiments on CLIP-Adapter and PLOT. Compared

with PLOT, our method shows improved performance in all Ima-
geNet variants datasets.

Table 3: Domain generalization. These approaches are trained
on imageNet and tested on datasets with domain shifts.

Source Target

ImageNet -V2 -S -A -R Avg.
Linear probe CLIP 66.73 60.83 46.15 47.77 7396 57.18
CoOp 71.51 64.2 4799 49.71 7521 59.28
CLIP-Adapter 71.40 64.5 47.72 49.75 7555 59.38
CoCoOp 71.02 64.07 4875 50.63 76.18 59.91
PLOT 70.15 64.17 49.15 5083 765 60.16
MaPLe 70.72 64.07 49.15  50.9 76.98  60.27
Ours 71.03 64.3 49.5 5145 77.83 60.77
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Table 5: Base-to-novel generalization experiments. Our
method demonstrates strong generalization results over ex-
isting methods on 11 recognition datasets. Here, the CLIP
refers to the linear probe CLIP.

Dataset ‘ CLIP CoOp CLIP-Adapter CoCoOp PLOT MaPLe Ours A
Base | 69.34 82.69 82.91 80.47 81.3 8228 8471 +2.4
Average Novel | 74.22 63.22 63.98 71.69 72.2 75.14 7690 +1.8
HM 71.70  71.66 72.23 75.83 76.48 78.55 80.64 +2.1
Base | 72.43 76.47 76.88 75.98 75.33 76.66  77.70 +1.1
ImageNet Novel | 68.14 67.88 68.1 70.43 70.48 7054  70.65 +0.1
HM | 7022 71.92 72.23 73.10 72.83 7347  74.07 +0.6
Base | 96.84 98.00 98.1 97.96 97.86 9774  98.40 +0.7
Caltech101 Novel | 94.00 89.81 90.00 93.81 93.99 9436 9407 -0.3
HM | 9540 93.73 93.89 95.84 95.92 96.02 96.2 +0.2
Base | 91.17 93.67 93.88 95.20 95.7 9543  95.67 +0.2
OxfordPets Novel | 97.26  95.29 95.55 97.69 98.1 97.76  97.63 -0.1
HM | 9412 94.47 94.74 96.43 76.80 96.58  96.67 +0.1
Base | 63.37 78.12 78.35 70.49 715 7294 78.70 +5.8
StanfordCars ~ Novel | 74.89  60.40 60.55 73.59 73.77 74.00  75.67 +1.6
HM | 68.65 68.13 68.33 72.01 72.62 7347 77.22 +38
Base | 72.08 97.60 97.61 94.87 95.1 95.92 98.47 +2.5
Flowers102 Novel | 77.80  59.67 59.98 71.75 72.2 7246  77.00 +4.4
HM | 74.83  74.06 74.32 81.71 82.10 8256 86.43 +4.0
Base | 90.10 8833 88.55 90.70 90.98 90.71  91.00 +0.3
Food101 Novel | 91.22 82.26 82.35 91.29 91.54 92.05 9180 -0.9
HM | 90.66 85.19 85.36 90.99 91.28 9138 9141 +0.1
Base | 27.19 40.44 40.66 33.41 35.6 37.44 4327 +58
FGVCAircraft Novel | 36.29 22.30 23.1 23.71 28.5 35.61 37.77 +2.0
HM | 31.09 2875 29.46 27.74 31.66 36.50 40.34 +3.7
Base | 69.36  80.60 80.85 79.74 79.96 80.82  82.77 +2.0
SUN397 Novel | 7535 65.89 65.91 76.86 77.33 7870  79.07 +0.3
HM 72.23  72.51 72.62 78.27 78.64 79.75  80.91 +1.2
Base | 53.24 79.44 80.56 77.01 78.9 80.36  83.87 +3.5
DTD Novel | 59.90 41.18 45.30 56.00 57.9 59.18 63.67 +3.5
HM 56.37 54.24 58 64.85 66.8 68.16 7220 +4.0
Base | 56.48 92.19 92.5 87.49 90.2 94.07  94.50 +0.5
EuroSAT Novel | 64.05 54.74 55.65 60.04 63.5 7323 79.60 +6.4
HM | 60.03 68.69 69.49 71.21 74.54 8235 86.43 +4
Base | 70.53 84.69 84.10 82.33 82.56 83.00 87.47 +4.5
UCF101 Novel | 77.50  56.05 57.35 73.45 75.56 78.66  79.17 +0.5
HM | 7385 67.46 68.21 77.64 78.92 80.77 83.13 +2.5
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1.7 Inference Stage Computational Cost

In Table 4, we show the compute cost analysis of our method and
compare it with text embedding learning approaches and hand-
craft prompt method CLIP-Adapter. We have added experiments
on CLIP-Adapter and PLOT.

Table 4: The compute cost comparison using SUN397 dataset.
Training time for all methods is calculated for 10 epochs on
a single A6000 GPU.

Method Params Params % CLIP Train time (min) HM
CoOp 2048 0.002 10.88 71.65
CoCoOp 35360 0.03 39.53 75.83
CLIP-Adapter  0.52M 0.41 8.55 72.23
PLOT 8192 0.008 10.85 76.48
MaPLe 3.55M 2.85 10.58 79.68
Ours 0.65M 0.52 10.21 80.51

1.8 Base-to-novel experiments for ViT-B/16
backbones

Our method demonstrates significant improvements on all 11 datasets.
Overall, our method provides the best-averaged results of 84.71%,
76.90%, and 80.64% on the base classes, novel classes, and harmonic
mean, respectively. We have added experiments on CLIP-Adapter
and PLOT.
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