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Supplementary Experiments for CLIP-Adapter and PLOT
Anonymous Authors

1 SUPPLEMENTARY EXPERIMENTS
1.1 The difference between Ours and PLOT
We will briefly describe the difference between our method and
PLOT.

Different Designs: In contrast to PLOT, we obtain a global text
feature for textual one prompt, instead of a local text feature with
textual multi-prompt input. The multi-prompt is that the set of
learnable prompt is 4 (𝑁 = 4) and the set of output text feature is 4.
The model optimizes four sentences simultaneously ("a photo of a
dog", "a picture of a dog", "a drawing of a dog", "a good drawing of
a dog"). Each embedding in each sentence participates in learning.
The output text feature of our method is global feature (𝑁 = 1),
the input sentence is one text prompt such as "a photo of a", and
the text prompt is non-learnable. Our method is more simpler
than text multi-prompt input method (PLOT) in textual design
component. Further, the core component of PLOT is OT, while the
core component of our method is EnLa. Our approach focuses on
the proposal of EnLa and frozen text prompt, which is different
with the design proposal of PlOT.

Different problems: Our approach primarily addresses gener-
alization issues, such as base-to-novel and cross-data transfer ex-
periments. In contrast, PlOT mainly focuses on few-shot learning
experiments that tackle supervised tasks. However, our method
also excels in few-shot learning experiments. As a result, the prob-
lems we aim to solve using optimal transport are entirely distinct
from those addressed by PlOT.

1.2 End-to-end OT
The transport plan is efficiently computed through a limited number
of matrix multiplications as a forward module. These matrix multi-
plications are crucial for determining the gradients that are then
preserved for back-propagation. While the optimization strategy
involves a two-stage process with optimal transport and prompts,
the overall training flow remains end-to-end.

1.3 Analysis of parameters
In terms of the number of parameters in the overall model, our
method has more parameters than PLOT because our method has
EnLa and learnable visual embeddings. We have added experiments
on CLIP-Adapter and PLOT.

1.4 Few-shot learning experiments for ViT-B/16
backbones

Our method provides improvements on few-shot settings compared
to PLOT. This indicates that our method is more excellent.

1.5 Cross Dataset Evaluation for ViT-B/16
backbones

To verify the cross-dataset generalization ability, we train our
method on the ImageNet dataset with 1, 000 classes, and test it

Table 1: Few-shot learning experiments for for ViT-B/16 back-
bones.

Dataset PLOT Ours

Average 82.09 83.31 (Δ +1.22)

ImageNet 72.60 73.35

Caltech101 96.04 96.37

OxfordPets 93.59 94.03

StanfordCars 84.55 84.17

Flowers102 97.56 98.2

Food101 87.11 87.65

FGVCAircraft 46.74 50.91

SUN397 76.03 77.20

DTD 71.43 74.57

EuroSAT 92.00 93.13

UCF101 85.34 86.87

Table 2: Cross-dataset benchmark evaluation. Our method
achieves overall favorable performance.
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Linear probe CLIP 66.73 92.94 89.07 65.29 71.30 86.11 24.87 62.62 44.56 47.69 66.77 65.12
CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CLIP-Adapter 71.40 93.85 89.57 64.66 68.85 85.54 18.53 64.35 41.86 46.43 66.77 64.04
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
PLOT 70.15 94.60 90.23 65.41 71.97 86.32 22.87 67.22 44.99 46.57 68.32 65.85
MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
Ours 71.03 93.93 91.20 65.63 71.73 86.40 25.13 67.67 46.47 48.96 69.73 66.69

on the remaining 10 datasets. We have added experiments on CLIP-
Adapter and PLOT. As shown in Table 2, our method shows compet-
itive performance and achieves better generalization in 8/10 over
the PLOT.

1.6 Domain Generalization Experiments for
ViT-B/16 backbones

We have added experiments on CLIP-Adapter and PLOT. Compared
with PLOT, our method shows improved performance in all Ima-
geNet variants datasets.

Table 3: Domain generalization. These approaches are trained
on imageNet and tested on datasets with domain shifts.

Source Target

ImageNet -V2 -S -A -R Avg.
Linear probe CLIP 66.73 60.83 46.15 47.77 73.96 57.18
CoOp 71.51 64.2 47.99 49.71 75.21 59.28
CLIP-Adapter 71.40 64.5 47.72 49.75 75.55 59.38
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.91
PLOT 70.15 64.17 49.15 50.83 76.5 60.16
MaPLe 70.72 64.07 49.15 50.9 76.98 60.27
Ours 71.03 64.3 49.5 51.45 77.83 60.77
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Table 5: Base-to-novel generalization experiments. Our
method demonstrates strong generalization results over ex-
isting methods on 11 recognition datasets. Here, the CLIP
refers to the linear probe CLIP.

Dataset CLIP CoOp CLIP-Adapter CoCoOp PLOT MaPLe Ours Δ

Average
Base 69.34 82.69 82.91 80.47 81.3 82.28 84.71 +2.4
Novel 74.22 63.22 63.98 71.69 72.2 75.14 76.90 +1.8
HM 71.70 71.66 72.23 75.83 76.48 78.55 80.64 +2.1

ImageNet
Base 72.43 76.47 76.88 75.98 75.33 76.66 77.70 +1.1
Novel 68.14 67.88 68.1 70.43 70.48 70.54 70.65 +0.1
HM 70.22 71.92 72.23 73.10 72.83 73.47 74.07 +0.6

Caltech101
Base 96.84 98.00 98.1 97.96 97.86 97.74 98.40 +0.7
Novel 94.00 89.81 90.00 93.81 93.99 94.36 94.07 -0.3
HM 95.40 93.73 93.89 95.84 95.92 96.02 96.2 +0.2

OxfordPets
Base 91.17 93.67 93.88 95.20 95.7 95.43 95.67 +0.2
Novel 97.26 95.29 95.55 97.69 98.1 97.76 97.63 -0.1
HM 94.12 94.47 94.74 96.43 76.80 96.58 96.67 +0.1

StanfordCars
Base 63.37 78.12 78.35 70.49 71.5 72.94 78.70 +5.8
Novel 74.89 60.40 60.55 73.59 73.77 74.00 75.67 +1.6
HM 68.65 68.13 68.33 72.01 72.62 73.47 77.22 +3.8

Flowers102
Base 72.08 97.60 97.61 94.87 95.1 95.92 98.47 +2.5
Novel 77.80 59.67 59.98 71.75 72.2 72.46 77.00 +4.4
HM 74.83 74.06 74.32 81.71 82.10 82.56 86.43 +4.0

Food101
Base 90.10 88.33 88.55 90.70 90.98 90.71 91.00 +0.3
Novel 91.22 82.26 82.35 91.29 91.54 92.05 91.80 -0.9
HM 90.66 85.19 85.36 90.99 91.28 91.38 91.41 +0.1

FGVCAircraft
Base 27.19 40.44 40.66 33.41 35.6 37.44 43.27 +5.8
Novel 36.29 22.30 23.1 23.71 28.5 35.61 37.77 +2.0
HM 31.09 28.75 29.46 27.74 31.66 36.50 40.34 +3.7

SUN397
Base 69.36 80.60 80.85 79.74 79.96 80.82 82.77 +2.0
Novel 75.35 65.89 65.91 76.86 77.33 78.70 79.07 +0.3
HM 72.23 72.51 72.62 78.27 78.64 79.75 80.91 +1.2

DTD
Base 53.24 79.44 80.56 77.01 78.9 80.36 83.87 +3.5
Novel 59.90 41.18 45.30 56.00 57.9 59.18 63.67 +3.5
HM 56.37 54.24 58 64.85 66.8 68.16 72.20 +4.0

EuroSAT
Base 56.48 92.19 92.5 87.49 90.2 94.07 94.50 +0.5
Novel 64.05 54.74 55.65 60.04 63.5 73.23 79.60 +6.4
HM 60.03 68.69 69.49 71.21 74.54 82.35 86.43 +4

UCF101
Base 70.53 84.69 84.10 82.33 82.56 83.00 87.47 +4.5
Novel 77.50 56.05 57.35 73.45 75.56 78.66 79.17 +0.5
HM 73.85 67.46 68.21 77.64 78.92 80.77 83.13 +2.5

1.7 Inference Stage Computational Cost
In Table 4, we show the compute cost analysis of our method and
compare it with text embedding learning approaches and hand-
craft prompt method CLIP-Adapter. We have added experiments
on CLIP-Adapter and PLOT.

Table 4: The compute cost comparison using SUN397 dataset.
Training time for all methods is calculated for 10 epochs on
a single A6000 GPU.

Method Params Params % CLIP Train time (min) HM

CoOp 2048 0.002 10.88 71.65
CoCoOp 35360 0.03 39.53 75.83
CLIP-Adapter 0.52M 0.41 8.55 72.23
PLOT 8192 0.008 10.85 76.48
MaPLe 3.55 M 2.85 10.58 79.68
Ours 0.65M 0.52 10.21 80.51

1.8 Base-to-novel experiments for ViT-B/16
backbones

Ourmethod demonstrates significant improvements on all 11 datasets.
Overall, our method provides the best-averaged results of 84.71%,
76.90%, and 80.64% on the base classes, novel classes, and harmonic
mean, respectively. We have added experiments on CLIP-Adapter
and PLOT.
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