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Abstract—Human-in-the-loop (HITL) feedback mechanisms
can significantly enhance machine learning models, particularly
in financial fraud detection, where fraud patterns change rapidly,
and fraudulent nodes are sparse. Even small amounts of feedback
from Subject Matter Experts (SMEs) can notably boost model
performance. This paper examines the impact of HITL feedback
on both traditional and advanced techniques using proprietary
and publicly available datasets. Our results show that HITL
feedback improves model accuracy, with graph-based techniques
benefiting the most. We also introduce a novel feedback propa-
gation method that extends feedback across the dataset, further
enhancing detection accuracy. By leveraging human expertise,
this approach addresses challenges related to evolving fraud
patterns, data sparsity, and model interpretability, ultimately
improving model robustness and streamlining the annotation
process.

Index Terms—Financial Fraud, Human in the Loop (HITL),
Machine Learning

I. INTRODUCTION

Financial fraud detection is essential for maintaining the
security and integrity of financial systems. As fraud techniques
become more sophisticated, traditional detection methods
struggle to effectively identify and prevent fraud. Machine
learning (ML) techniques have emerged as powerful tools,
leveraging large datasets to detect patterns and anomalies
indicative of fraud. However, these systems face challenges
such as the need for extensive labeled data, the dynamic
nature of fraud, and the complexity of domain-specific knowl-
edge. Human-in-the-loop (HITL) feedback mechanisms offer a
promising solution to these challenges by incorporating human
expertise into the ML process.

HITL involves active human participation in the machine
learning pipeline, providing critical insights, annotations, and
feedback to enhance model performance. It addresses key
issues such as limited labeled data, model interpretability,
and adapting to evolving fraud patterns. In financial fraud
detection, HITL systems leverage domain knowledge to iden-
tify subtle patterns that automated models might overlook.
This allows for more accurate model training and validation,
reducing false positives and ensuring better fraud detection.

Fraud detection presents several challenges ideal for HITL,
including imbalanced datasets, adversarial fraudsters, and
complex fraud patterns. Fraudsters continually adapt to evade

detection, creating an environment where models must be
updated frequently. Graph-based approaches, which model
transactions as networks, have shown promise in capturing
complex fraud patterns but require expert optimization.

In this paper, we introduce a HITL framework for financial
fraud detection, combining human expertise with advanced
ML techniques. Our approach incorporates annotation from
proprietary and public datasets, interactive model training,
and a novel feedback propagation algorithm. We evaluate the
impact of HITL feedback using standard metrics, demon-
strating improvements in detection accuracy, robustness, and
interpretability.

By integrating HITL into fraud detection systems, we im-
prove data annotation, model interpretability, and adaptability
to dynamic fraud patterns. Our proposed framework combines
advanced ML techniques with a novel feedback propagation
method, significantly enhancing fraud detection performance
across various algorithms. This research highlights the po-
tential of HITL to improve both traditional and state-of-the-
art methods in financial fraud detection while introducing a
novel technique for propagating feedback signals throughout
the dataset.

II. BACKGROUND AND RELATED WORK

A. Human-in-the-Loop (HITL) Feedback

Human-in-the-Loop (HITL) systems have become integral
to modern machine learning, addressing challenges in data pro-
cessing and model training by enhancing data quality, model
interpretability, and performance [1]. HITL systems combine
human intuition with machine learning, especially in data
annotation where labeled data is scarce. For instance, systems
proposed by Zhang et al. [2] and Liu et al. [3] demonstrate
significant performance improvements with human feedback.
HITL has also been used to refine models in tasks like question
answering [4] and reading comprehension [5].

Beyond annotation, HITL has been applied in domains such
as computer vision, NLP, and medical applications. Gentile
et al. [6] utilized HITL for interactive dictionary expansion,
while Liu et al. [3] explored it in person re-identification. HITL
systems handle complex tasks across fields, such as scene
categorization [7], syntactic parsing [8], network anomaly
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detection [9], and outlier detection [10]. Ristoski et al. [11]
proved HITL’s utility in relation extraction.

B. Financial Fraud Detection

Financial fraud detection has evolved from manual assess-
ments to rule-based detection systems [26]. These systems,
while easy to implement, lack adaptability to changing fraud
patterns. Machine learning addressed these limitations with
classifiers like Logistic Regression [14], Support Vector Ma-
chines [16], and Autoencoders with One-class SVMs [19].
KNN-clustering [20], Naive Bayes [22], and ensemble tech-
niques like Random Forest [24] and XGBoost [25] further
advanced fraud detection.

Graph representation learning significantly improved fraud
detection. Techniques like DeepWalk [27], node2vec [28], and
LINE [29] evolved to advanced methods like Graph Convolu-
tional Networks (GCNs) [31] and Graph Attention Networks
(GAT) [33]. Semi-supervised methods [32], sampling-based
GNNs [34], and Care-GNN [35] have addressed fraud detec-
tion challenges. Recent techniques like Split-GNN [38], BOLT
[48], and RioGNN [49] demonstrated state-of-the-art results.
GTAN [45] further improved results with a Gated Temporal
Attention mechanism.

Despite these advancements, challenges like adapting to
dynamic fraud patterns and data sparsity remain, which could
be mitigated by HITL.

III. METHOD

A. Manual Annotation

Manual annotation is a key part of our HITL framework,
involving experts with domain knowledge in financial fraud
annotating both proprietary and publicly available datasets.
The annotation process consists of:

Data Preprocessing: Data is cleaned by standardizing for-
mats, handling missing values, and performing exploratory
analysis to understand feature distributions.

Annotation Guidelines: Clear instructions are provided to
ensure consistency, defining fraudulent and non-fraudulent
transactions. The isFraud label is added to each anchor (e.g.,
transaction or review) and scaled from 0 to 100 based on SME
feedback.

Quality Control: A multi-layered process ensures high-
quality annotations through cross-checking, discussion, and
periodic review to correct errors.

B. Feedback Propagation

Due to the infeasibility of manually annotating all transac-
tions, we define an algorithm to propagate the feedback signal
through the transaction graph. Typically, only 0.1-0.2% of
transactions can be annotated, so propagation extends human
feedback to the broader dataset.

1) Graph Construction: We construct a transaction graph
G, where each node represents a transaction with attributes
such as email, phone number, and payment details. Nodes
are connected if they share attributes, with edge weights
corresponding to the number of shared attributes and their

Fig. 1. Transaction Graph - Here the red node has been manually annotated
where the isFraud score has been set to 100. You can see here how the
score is discounted based on the edge weights and the node similarities and
propogated further through the graph

predefined importance (e.g., a phone number carries more
weight than an email in telecom datasets).

The edge weight Wij between two transaction nodes i and
j can be calculated as follows:

Wij =

m∑
k=1

wk · δ(aki , akj ) (1)

where m is the number of attributes. wk is the predefined
weight of the k-th attribute. aki and akj are the k-th attributes
of transactions i and j, respectively. δ(aki , a

k
j ) is an indicator

function that equals 1 if aki = akj and 0 otherwise.
Thus, the transaction graph G can be defined as G =

(V,E,W ), where V is the set of transaction nodes. E is the
set of edges between nodes. W is the set of edge weights.

2) Initialization: To begin with, the transactions that have
been annotated as fraudulent by Subject Matter Experts
(SMEs) are given an isFraud score Si = 100 where Si ∈
[0, 100]. This score is different from the actual target label
and is stored as a property on the transaction node.

3) Propagation: In this phase, all the neighboring nodes
of the annotated nodes are scored iteratively up to n hops.
The score is further discounted as we move away from the
originally annotated nodes and the propagation is stopped at
n hops when the highest change in score for a given step of
propagation falls below the convergence criterion ϵ (usually
set as a lower value). The score of the immediate neighbor
j of a node i after one step of feedback propagation can be
given by:

S
(h)
j = S

(h)
j + S

(h−1)
i × Wij

max(W )
× Sim(i, j) (2)

where S
(h)
j is the score of node j at hop h. S(h−1)

i is the
score of node i at hop h− 1. Wij is the edge weight between
nodes i and j. max(W ) is the maximum possible edge weight
in the graph. Sim(i, j) is the similarity between nodes i and
j.



Once the highest change in score for a given step of prop-
agation falls below the convergence criterion, the propagation
is stopped:

∆S(h)
max < ϵ (3)

where ∆S
(h)
max is the highest change in score at hop h

between two distinct nodes. ϵ is the convergence criterion.

Algorithm 1 Feedback Propagation Algorithm
Require: Transaction graph G = (V,E,W ), Initial scores

Si for annotated nodes, Maximum number of hops n,
Convergence criterion ϵ

Ensure: Updated scores Si for all nodes in G
1: Initialize isFraud scores Si by manual annotation
2: Set h = 1
3: while h ≤ n do
4: ∆S

(h)
max = 0

5: for each edge (i, j) ∈ E do
6: if S(h−1)

i > 0 then
7: Calculate S

(h)
j using Equation 2

8: ∆S = |S(h)
j − S

(h−1)
j |

9: if ∆S > ∆S
(h)
max then

10: ∆S
(h)
max = ∆S

11: end if
12: end if
13: end for
14: if ∆S

(h)
max < ϵ then

15: break
16: end if
17: h = h+ 1
18: end while
19: return Si for all nodes

IV. EXPERIMENTS

A. Datasets

1) PFFD: - Our Proprietary Financial Fraud Dataset
(PFFD) consists of 1.25 million transactions sourced from
e-commerce clients. Each transaction includes hashed details
such as Name, Address, Email, Phone, Device, and Payment
data, ensuring privacy. The target label, Fraud Score (fs),
ranges from 0 to 1000, with 1.07% of the data labeled as
fraudulent. The isFraud label, scaled from 1 to 100, serves
as a feedback signal, annotated by SMEs. The graph has an
average node degree of 14.71 with around 29,000 hypernodes.

2) Yelp Dataset: - We also tested our approach on the
Yelp-Fraud dataset [35]. Each node represents a review, and
attributes like product and user ID are stored as properties.
We modeled this graph similarly to the PFFD, enabling us to
apply the same techniques to detect fraudulent reviews.

B. Training and Evaluation

SMEs annotated 3457 nodes with isFraud labels in the
PFFD dataset. Cosine Similarity [47] was used as the similarity

measure during feedback propagation to evaluate connections
between transactions. Training was done in mini-batches, with
a 60:20:20 train, validation, and test split. During training,
each mini-batch was used to create sub-graphs, which were
fed into both tabular and graph ML algorithms. Regularization
techniques like dropout and L2 were applied to prevent overfit-
ting. Hyperparameter tuning was conducted during validation,
and testing was done chronologically across 10 equal parts.
After each test set, SMEs provided additional annotations, and
feedback propagation was applied to update node scores.

C. Baselines

We compared HITL with several baselines, including Lo-
gistic Regression [14], SVM [16], Random Forest [24], and
advanced GNN models such as GCN [31], RGCN [39], and
GAT [33]. We also compared with state-of-the-art methods like
CareGNN [35], Semi-GNN [32], and BOLT [48], ensuring
a comprehensive evaluation across tabular and graph-based
algorithms.

D. Experimental Setup

Data was loaded into a Neo4j graph database, with sub-
graphs extracted for mini-batches using Cypher queries. The
training, validation, and test sets were sequentially loaded
to avoid future data leakage. Implementations from PyTorch
Geometric were used for GNNs, and sklearn [51] was used for
tabular methods. All training was conducted on the Databricks
platform with NC12 v3 instances supporting 2 NVIDIA Tesla
V100 GPUs.

To ensure fair evaluation, the test set was divided into 10
equal parts, with 150 transactions from each class randomly
sampled for annotation by SMEs. After annotation, feedback
propagation was performed across n hops, and subsequent
evaluations were triggered.

Evaluation Metrics: Given the imbalanced nature of the
data, we used ROC-AUC and Recall to measure model per-
formance.

E. Ablation Studies

We performed ablation studies across three different condi-
tions:

• Models without Feedback
• Models with HITL Feedback
• Models with HITL Feedback and Feedback Propagation
The results in Table I reflect performance across these

scenarios, helping quantify the contributions of HITL and
feedback propagation in enhancing model accuracy.

V. RESULTS

A. Overall Performance Improvement

All the algorithms perform better with the inclusion of
feedback and show further improvement with feedback prop-
agation. Even a small number of annotated transactions,
when aided with feedback propagation, were able to catch
changing patterns in fraud over time. The inclusion of human
annotations results in higher quality training data, leading to



improved model performance. Models trained with annotated
data exhibit better generalization to unseen fraud patterns and
lower false positive rates. Table I shows the AUC and Recall
values for each of the algorithms without HITL, with HITL,
and with HITL and Feedback Propagation. For the PFFD
dataset, the average improvement in AUC from without HITL
is 7.24%, and further from HITL to HITL with Feedback
Propagation is 2.19%. For Recall, the improvements are 6.81%
and 2.33% respectively. For the Yelp fraud dataset, the im-
provements in AUC are 5.32% and 2.07%, and in Recall are
4.31% and 2.81%.

B. Tabular vs. Graph Algorithms

Tabular algorithms show the least amount of improvement
with feedback, while graph algorithms benefit considerably.
This difference is due to the interactions with the immediate
neighbors that graph algorithms take into consideration, al-
lowing them to better capture complex relationships between
transactions. For tabular algorithms on the PFFD dataset,
the average improvement in AUC from “without feedback”
(w/o FB) to “with feedback” (w/ FB) is 3.46%, while the
improvement from w/ FB to “with feedback propagation” (w/
FP) is 2.72%. Similarly, the average improvement in Recall
from w/o FB to w/ FB is 2.83%, and from w/ FB to w/
FP is 1.64%. In the case of graph algorithms on the PFFD
dataset, the average improvement in AUC from w/o FB to w/
FB is 9.06%, and from w/ FB to w/ FP is 2.21%. The average
improvement in Recall from w/o FB to w/ FB is 9.09%, and
from w/ FB to w/ FP is 2.59%. For tabular algorithms on
the Yelp dataset, the average improvement in AUC from w/o
FB to w/ FB is 3.71%, and from w/ FB to w/ FP is 2.05%.
The average improvement in Recall from w/o FB to w/ FB
is 2.37%, and from w/ FB to w/ FP is 2.66%. For graph
algorithms on the Yelp dataset, the average improvement in
AUC from w/o FB to w/ FB is 6.11%, and from w/ FB to w/
FP is 1.94%. The average improvement in Recall from w/o
FB to w/ FB is 4.99%, and from w/ FB to w/ FP is 3.14%.

C. Progressive Improvement During Testing

After each test set and feedback propagation cycle during
testing, the performance of almost all algorithms improves fur-
ther. This progressive improvement demonstrates the dynamic
adaptability of the models in response to newly annotated
data and propagated feedback signals. Figure 2 shows pro-
gressive improvements in the performance of all the evaluated
algorithms without HITL, with HITL, and with HITL and
Feedback Propagation.

D. Ablation Study Findings

Ablation studies reveal that both human annotations and
feedback propagation are crucial for achieving the best per-
formance. Removing either component results in a significant
drop in accuracy and other performance metrics. For instance,
in the PFFD dataset, the average improvement in AUC from
without HITL to HITL is 7.24%, and further from HITL
to HITL with Feedback Propagation is 2.19%. The Recall

improvements for the same transitions are 6.81% and 2.33%
respectively. In the Yelp dataset, the AUC improvements from
without HITL to HITL and from HITL to HITL with Feedback
Propagation are 5.32% and 2.07% respectively, while the
Recall improvements are 4.31% and 2.81% respectively. This
underscores the importance of combining human expertise
with advanced machine learning techniques to develop robust
fraud detection systems.

These results validate the proposed HITL framework and
highlight the potential of integrating human expertise into
machine learning models for financial fraud detection. The
combination of high-quality annotations and effective feedback
propagation leads to robust, adaptable, and interpretable fraud
detection systems.

VI. CONCLUSION

This study demonstrates the significant benefits of in-
tegrating human-in-the-loop (HITL) feedback and feedback
propagation in financial fraud detection. By incorporating
human expertise through manual annotations and propagating
this feedback through transaction graphs, we achieve notable
improvements in model performance. Our experiments con-
firm that graph-based models benefit the most from HITL
feedback, showing significant gains in precision, recall, and
robustness. The progressive improvements with each feedback
cycle validate the adaptability of our approach, effectively
capturing evolving fraud patterns even with minimal anno-
tations. Ablation studies further emphasize the importance
of both human annotations and feedback propagation, with
either component’s removal leading to a drop in accuracy. In
conclusion, the proposed HITL framework offers a robust and
interpretable solution for financial fraud detection, showcasing
the powerful synergy between human expertise and machine
learning. Future work could extend this framework to other
domains and explore further enhancements in feedback mech-
anisms and propagation techniques.
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