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Abstract
In this paper, we consider the problem of finding high dimensional power means:
given a set A of n points in Rd, find the point m that minimizes the sum of Eu-
clidean distance, raised to the power z, over all input points. Special cases of
problem include the well-known Fermat-Weber problem – or geometric median
problem – where z = 1, the mean or centroid where z = 2, and the Minimum
Enclosing Ball problem, where z =∞.

We consider these problem in the big data regime. Here, we are interested in
sampling as few points as possible such that we can accurately estimate m. More
specifically, we consider sublinear algorithms as well as coresets for these prob-
lems. Sublinear algorithms have a random query access to the set A and the goal
is to minimize the number of queries. Here, we show that Õ

(
ε−z−3

)
samples are

sufficient to achieve a (1+ε)-approximation, generalizing the results from Cohen,
Lee, Miller, Pachocki, and Sidford [STOC ’16] and Inaba, Katoh, and Imai [SoCG
’94] to arbitrary z. Moreover, we show that this bound is nearly optimal, as any
algorithm requires at least Ω

(
ε−z+1

)
queries to achieve said approximation.

The second contribution are coresets for these problems, where we aim to find find
a small, weighted subset of the points which approximates cost of every candidate
point c ∈ Rd up to a (1 ± ε) factor. Here, we show that Õ

(
ε−2
)

points are suf-
ficient, improving on the Õ

(
dε−2

)
bound by Feldman and Langberg [STOC ’11]

and the Õ
(
ε−4
)

bound by Braverman, Jiang, Krauthgamer, and Wu [SODA 21].

1 Introduction
Large data sets have shifted the focus of algorithm design. In the past, an algorithm might have been
deemed feasible if its running time was polynomial in the input size and so a textbook fast algorithm
can have time complexity for example quadratic. For truly gargantuan data sets, even linear time
or nearly linear time algorithms could be considered too slow or requiring too much memory. This
led to the emergence of the field of sublinear algorithms: How well can we solve a problem without
reading the entire input?

Except for trivial problems, deterministic time sublinear algorithms do not exist. Our primary tool
in designing sublinear algorithms is thus the following basic approach:

• Take a uniform sample of the input.

• Run an algorithm on the sample.

Hence, the performance of a sublinear algorithm is often measured in terms of its query complexity,
i.e. the number of samples required such that we can extract a high quality solution in the second
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step above that generalizes to the entire input. Sublinear algorithms have close ties to questions in
learning theory and estimation theory, where we are similarly interested in a quality to sample size
tradeoff.

A perhaps very fundamental problem of primary importance in machine learning and data analysis
is to efficiently estimate the parameters of a distribution. For example, given a distribution D,
how many samples do we need to estimate the mean? Even such a simple and basic question has
surprisingly involved answers and are still subject to ongoing research (Lugosi & Mendelson (2019);
Lee & Valiant (2021)).

In this paper, we investigate the possibility of estimating power means in high dimensional Euclidean
spaces. Specifically, given an arbitrary set of points A, we wish to determine the number of uniform
queries S such that we can extract a power mean m with

cost(m) :=
∑
p∈A
‖p−m‖z ≤ (1 + ε) · min

µ

∑
p∈A
‖p− µ‖z,

where ‖p‖ denotes the Euclidean norm of a vector p.

The power mean problem captures a number of important problems in computational geometry and
multivariate statistics. For example, for z = 1, this corresponds to the Fermat-Weber problem also
known as the geometric median. For z = 2, the problem is to determine the mean or centroid of the
data set. Letting z →∞, we have the Minimum Enclosing Ball (MEB), where one needs to find the
Euclidean sphere of smallest radius containing all input points.

For z > 2, the problem is not as well studied, but it still has many applications. First, higher
powers allows us to interpolate between z = 2 and z →∞, which is interesting as the latter admits
no sublinear algorithms2. Skewness (a measure of the asymmetry of the probability distribution
of a real-valued random variable about its mean) and kurtosis (a measure of the ”tailedness” of the
probability distribution) are the centralized moments with respect to the three and the four norms and
are frequently used in statistics. The power mean is a way of estimating these values for multivariate
distributions.

Another application is when dealing with non-Euclidean distances, such as the Hamming metric,
coreset constructions for powers of z can be reduced to coreset constructions for powers 2z. So for
example if we want the mean in Hamming space, we can reduce it to the z = 4 case /in squared
Euclidean spaces Huang & Vishnoi (2020).

These problems are convex and thus can be approximated in the near-linear time efficiently via
convex optimization techniques. However, aside from the mean (z = 2), doing so in a sublinear
setting is challenging and to the best of our knowledge, only the mean and the geometric median
(z = 1) are currently known to admit nearly linear time algorithms.

Our main result is:

Theorem 1. There exists an algorithm that, with query complexity O(ε−z−3 ·
polylog(ε−1) log2 1/δ), computes a (1 + ε) approximate solution to the high dimensional
power mean problem with probability at least 1− δ.

A key component in designing this algorithm is a novel analysis for coresets for these problems.
Coresets are succinct summaries that approximate cost for any center solution c.

Theorem 2. For any set of points in d-dimensional Euclidean space, there exists an ε-coreset for
the high dimensional power mean problem of size Õ(ε−2 · 2O(z)).

With the exception of the mean, previous coresets for these problems achieved boundsO(ε−2 ·2O(z) ·
min(d, ε−2)) (Cohen-Addad et al. (2021); Braverman et al. (2021); Feldman & Langberg (2011)),
or had weaker guarantees such as merely approximating an optimal solution or requiring removal of
outliers from the data set.

Comparing the bounds in Theorem 1 and Theorem 2, one may question whether the exponential de-
pendency in z is necessary for computing an approximation. Indeed, previous sublinear algorithms

2To see this, we place n− 1 points at 0 and one point with probability 1/2 at 1 and with probability 1/2 at
0. Any 2 − ε approximation can distinguish between the two cases, but this clearly requires us to query Ω(n)
points.
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for both the geometric median and the mean had a query complexity of O(ε−2), and thus matched
our coresets bounds. Unfortunately, we show that the exponential dependency in the power is indeed
necessary even in a single dimension:

Theorem 3. For any ε > 0 and z, any algorithm that computes with probability more than 4/5 a
(1 + ε)-approximation for a one-dimensional power mean has query complexity Ω(ε−z+1).

Hence, up to constants in the exponent, our sublinear algorithm is tight. Moreover, the algorithm is
very simple to implement and performs well empircally.

1.1 Techniques
While stochastic gradient descent has been used for a variety of center-based problems (Clarkson
et al. (2012); Cohen et al. (2016)), it is difficult to apply it for higher powers. Indeed, Cohen et al.
(2016) remark in their paper that even for the mean3 (z = 2) their analysis does not work as the
objective function is neither Lipschitz, nor strictly convex.

Hence, one needs to use new tools. A natural starting point is to use techniques from coresets, as
they allow us to preserve most of the relevant information, using a substantially smaller number of
points. Unfortunately, coresets have a drawback: the sampling distributions used to construct core-
sets is non-uniform and therefore difficult to use in a sublinear setting. The first step is therefore to
design coresets from uniform sampling. To do this, we use and improve upon a technique originally
introduced by Chen (2009). Chen showed that, given a sufficiently good initial solution q, one can
partition the points into rings exponentially increasing radii such that the points cost the same, up
to constant factors. Thereafter, taking a uniform sample of size Õ(d · ε−2) from each ring produces
a coreset. Since there are at most O(log n) rings in the worst case, this yields a coreset of size
Õ(d · ε−2 · log n).

To realize these ideas in a sublinear setting, we are now faced with a number of challenges. First,
rings that are particularly far from q may contain very few points. This makes is difficult for a
sublinear algorithm to access them. Second, partitioning the points into rings depends on the cost
of q. It is very simple to construct examples where estimating the cost of an optimal power center
requires Ω(n) many queries. Finally, this analysis loses both factors log n and d, which we aim to
avoid.

We improve and extend this framework in two ways. First, we show that it is sufficient to only
consider O(log ε−1) many rings, which, in of itself, already removes the dependency on log n.
Moreover, we show that it is possible to simply ignore any ring containing too few points, i.e. any
ring with less than εz+O(1) · n points may be discarded. The intuition is that, while rings with
few point may contribute significantly to the cost, these points do not influence the position of the
optimal center by much. Thus, using a number of carefully chosen pruning steps, we show how to
reduce both the problem of obtaining a sublinear algorithm as well as obtaining coresets to sampling
from a select few rings containing many points.

The second improvement directly considers an improved analysis of sampling from rings. The
standard way to prove a coreset guarantee is to show that using s log 1/δ samples we preserve the
cost of a single solution with probability 1 − delta. If there exist T solutions then we set δ = 1/T
and have obtained a coreset, which we call the ”naive” union bound. This works in certain cases such
as finite metrics, but is insufficient if we have infinitely many solutions such as Euclidean spaces.
The simplest way to improve over the naive union bound is to discretize the space and then apply the
naive union bound on the discritization. In literature this is sometimes called an ε-net bound. This
can be optimal or close to optimal for certain metrics, but so far these arguments have only lead to
Õ(ε−2 min(d, ε−2)) bounds for coresets in Euclidean spaces.

Instead of applying a union bound over the discretization in ”one shot”, we apply a union bounded
over a nested sequence of increasingly better discretizations. Essentially, instead of only using a set
of centers Cε as a substitute for all centers is Rd, we use centers ch ∈ Ch for different values of
h ∈ {1, . . . , log 1/ε}. In literature, this is known as chaining, see Nelson (2016) for a survey. We can
then write, for any input point set P ,

∑
p∈P cost(p, c) =

∑
p∈P

∑
h≥0 cost(p, ch+1) − cost(p, ch),

where cost(p, c0) is defined to be 0 and |cost(p, ch) − cost(p, c)| ≤ 2−hcost(p, c). We now only

3For the special case of the mean, Inaba et al. Inaba et al. (1994) observed that O(ε−2) samples are never-
theless sufficient.
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apply the naive union bound for successive summands, i.e. we approximate
∑
p∈P cost(p, ch+1)−

cost(p, ch) up to an error of ε ·
∑
p∈P cost(p, c).

Essentially, the idea is to use a sequence of solutions ch that approximate a candidate solution c with
increasing accuracy as h → ∞. Approximating the cost of a candidate center c can then be written
as a telescoping sum of solutions ch, i.e. cost(c) =

∑∞
h=0 cost(ch+1) − cost(ch), where ch is a

solution that has distance to c of the order 2−h and cost(c0) := 0. The notion of distance between
candidate solutions is perhaps most easily understood by imagining a solution to be a cost vector vc
where the ith entry corresponds to the cost of the ith point of A when using c as a candidate center,
i.e., vci = cost(pi, c). Informally, we consider two solutions c and c′ to have distance at most 2−h if
|‖pi − c‖z − ‖pi − c′‖z| ≤ 2−h · (‖pi − c‖z + ‖pi − c′‖z) for all points pi ∈ A.

1.2 Related Work
Sublinear Approximation for Clustering: A number of sublinear algorithm are known for clus-
tering problems. For k-Median, under the constraint that the input space has a small diameter,
a constant factor approximation is known Czumaj & Sohler (2007). Ben-David (2007) proposed
a different set of conditions under which a sublinear algorithm for k-median and k-means exists.
Other approximations, with different constraint are also known: for instance, Meyerson et al. (2004)
give an algorithm achieving a O(1)-approximation in time poly(k/ε) for discrete metrics, when
each cluster has size Ω(nε/k). For the 1-median problem, this assumption is always satisfied, and
their algorithm gives a constant factor approximation in constant running time. The algorithm by
Cohen et al. (2016) produces a (1 + ε)-approximation in time min(nd log3(n/ε), d/ε2) for Eu-
clidean spaces of dimension d. Ding (2020, 2021) and Clarkson et al. (2012) showed how to obtain
sublinear algorithms for the minimum enclosing ball problem assuming that either the algorithm is
allowed to drop a fraction of the points, or with an additive error. For the unconstrained version
of the problem, no sublinear time algorithm is possible. For the k-means problem, Bachem et al.
(2016) showed how to approximate the k-means++ algorithm in sublinear time. To our knowledge,
no algorithm is known for higher distance powers z.

Coreset Constructions: A coreset is a weighted subset of the input points, such that the cost of any
clustering is the same on the coreset than on the input points, up to a (1 ± ε) factor. The arguably
most widely studied problem is coresets for the k clustering problems with powers of distances.
Following a long line of work Bachem et al. (2018); Becchetti et al. (2019); Braverman et al. (2021);
Chen (2009); Cohen-Addad et al. (2021); Feldman & Langberg (2011); Feldman et al. (2020); Feng
et al. (2021); Fichtenberger et al. (2013); Har-Peled & Kushal (2007); Har-Peled & Mazumdar
(2004); Huang & Vishnoi (2020); Langberg & Schulman (2010); Sohler & Woodruff (2018), we
now know that coreset of size Õ(kε−4 · 2O(z) ·min(k, ε−max z−2,0))) exist. In a low-dimensional
regime, this may be improved to Õ(k2dε−22O(z)) and Õ(kdε−2z) Feldman & Langberg (2011).
For the special case of clustering with a single center, this yields the state of the art Õ(ε−4) bound
due to Braverman et al. (2021). For the Minimum Enclosing Ball problem and its generalizations,
these algorithms yield no space saving, although sketches of weaker gaurantees of size O(ε−1)
exist (Badoiu & Clarkson (2008)). Given a coreset, it is easy to compute a (1 + ε)-approximation in
time independent of n: one just needs to find a (1 + ε)-approximation on the coreset points.

Coresets have also been studied for many other problems: we cite non-comprehensively fair cluster-
ing Cohen-Addad & Li (2019); Huang et al. (2019); Schmidt et al. (2019) determinant maximization
Indyk et al. (2020), diversity maximization Ceccarello et al. (2018); Indyk et al. (2014) logistic re-
gression Huggins et al. (2016); Munteanu et al. (2018), dependency networks Molina et al. (2018),
or low-rank approximation Maalouf et al. (2019). The interested reader is referred to the recent
surveys for more information Feldman (2020); Munteanu & Schwiegelshohn (2018).

1.3 Organization
We prove our key sampling result in Section 2. We follow up on that result by applying it to the
sublinear setting (Section 3) and to coresets (Section 4). We conclude with a short experimental
evaluation. Due to space constraints, all proofs are included in the supplementary material.

1.4 Preliminaries

We denote the Euclidean distance of a vector x by ‖x‖ :=
√∑d

i=1 x
2
i . Similarly, we define the

Hamming norm ‖x‖1 =
∑d
i=1 |xi|. For a set of points A, we say that ‖A‖0 is the distinct number
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of points. Note that if A contains multiplicities |A| 6= ‖A‖0. We write Õ(x) to denote O(x ·
loga x), where a is any constant. For any set A and candidate solution c, we defined cost(A, c) =∑
p∈A ‖p − c‖z . If the set is clear from context, we simply write cost(c). We frequently use the

following generalized triangle inequality, see Cohen-Addad & Schwiegelshohn (2017); Makarychev
et al. (2019) for proofs and similar statements.

Lemma 1 (Triangle Inequality for Powers). Let a, b, c be an arbitrary set of points in a metric space
with distance function d and let z be a positive integer. Then for any ε > 0

d(a, b)z ≤ (1 + ε)z−1d(a, c)z +

(
1 + ε

ε

)z−1

d(b, c)z

|d(a, b)z − d(a, c)z| ≤ ε · d(a, c)z +

(
z + ε

ε

)z−1

d(b, c)z.

We also use the fact that uniform sampling is efficient to approximate the density: we review details
on sampling in bounded VC dimension in the supplementary material.

Lemma 2 (Li et al. (2001)). Given a range space (X,R) with VC-dimension d, an constants ε, δ, η,
and a uniform sample S ⊂ X of size at least O( 1

η·ε−2 (d log 1/η+ log 1/δ)), we have for all ranges
R ∈ R with |X ∩R| ≥ η · |X|∣∣∣∣ |X ∩R||X|

− |S ∩R|
|S|

∣∣∣∣ ≤ ε · |X ∩R||X|

and for all ranges R ∈ R with |X ∩R| ≤ η · |X|∣∣∣∣ |X ∩R||X|
− |S ∩R|

|S|

∣∣∣∣ ≤ ε · η
with probability at least 1− δ.

The only range space we will consider is the one induced by Euclidean spheres centered around a
single fixed point. The VC dimension induced of this range space is 2, which seems to be a well
known fact, although we could not find a reference. For completeness, we added a short proof in the
supplementary material.

First, we recall the commonly used coreset definition for clustering problems in Euclidean spaces.

Definition 1. Let A be a set of points in Rd. Then a set Ω is a strong (ε, z)-coreset if there exists a
weight function w : Ω→ R+ and a constant κ such that for any point c∣∣∣∣∣∣

∑
p∈A
‖p− c‖z − (

∑
p∈S

wp‖p− c‖z + κ)

∣∣∣∣∣∣ ≤ ε ·
∑
p∈A′
‖p− c‖z.

We say that Ω is a weak (ε, z)-coreset if for some α ∈ [0, 1] any point satisfying
∑
p∈Ω wp ·

‖p − c′‖z ≤ (1 + α · ε)argmin
c∈Rd

∑
p∈Ω wp · ‖p − c‖z also satisfies

∑
p∈A ‖p − c′‖z ≤ (1 +

ε)argmin
c∈Rd

∑
p∈A ‖p− c‖z.

The difference between the two notions is that strong coresets give a guarantee for all candidate
centers, whereas the weak coreset guarantee only applies for the optimum. In an offline setting,
there is no difference in the size for our construction for either guarantee. In the sublinear setting,
we will be satisfied with a weak coreset as it can be obtained with a nearly optimal query complexity.

2 Uniform Sampling Routine
In this section, we outline the proof of our basic sampling subroutine. We assume that we are given
a point q, and a set of points R such that for all p, p′ ∈ R

‖p− q‖z ≤ 2 · ‖p′ − q‖z.

In the following sections, we refer to R as a ring. Under this assumption, the following claim holds.
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Theorem 4. Let q and R be defined as above and let Ω be a uniform random sample consisting of
s ∈ Õ(ε−2 · log 1/δ) points. Then with probability at least 1− δ, we have for all candidate centers
c ∣∣∣∣∣∣cost(R, c)−

∑
p∈Ω

|R|
s
· ‖p− c‖z

∣∣∣∣∣∣ ≤ ε · (cost(R, q) + cost(R, c)).

We prove this theorem, first by proving the following slightly simpler result and then showing how
to apply the result recursively to remove dependency in ‖R‖0:

Lemma 3. Let q and A be defined as above and let Ω be a uniform random sample consisting of
s ∈ Õ(ε−2 ·log ‖R‖0 ·log 1/δ) points. Then with probability at least 1−δ, we have for all candidate

centers c that
∣∣∣cost(R, c)−

∑
p∈Ω

|R|
s · ‖p− c‖

z
∣∣∣ ≤ ε · (cost(R, q) + cost(R, c)).

To set up a chaining analysis, we require two ingredients: (1) a notion of nets and (2) a Gaussian
process. We focus on the latter first. For any point c, let vc be the |R|-dimensional vector, henceforth
called a cost vector, such that vpi = ‖pi − c‖z for some arbitrary but fixed ordering of the points
in R. Note that ‖v‖1 = cost(R, c). Let pj ∈ Ω with j ∈ {1, . . . , s} be the jth point of the sample.
Observe for any cost vector v induced by some center c, we have

EΩ

[n
s
vpj

]
=
∑
p∈R
‖p− c‖z = cost(R, c).

We now symmetrize the expectation. Let g1, . . . gs be standard Gaussian random variables, i.e.
Gaussians with mean 0 and variance 1. Then we have for any collection of cost vectors N (see
Appendix B.3 of Rudra & Wootters (2014))

EΩsup
v∈N

∣∣∣∣∣
∑s
j=1

|R|
s vpj − ‖v‖1

cost(R, q) + ‖v‖1

∣∣∣∣∣ ≤ √
2πEΩEgsup

v∈N

∣∣∣∣∣
∑s
j=1

|R|
s vpj · gj

cost(R, q) + ‖v‖1

∣∣∣∣∣ (1)

Note that the first term in Equation 1 is the expected maximum deviation from the (normal-
ized) expected cost of the sample, if the cost vectors are induced by centers. In other words, if

sup
c∈Rd

∣∣∣∣∑s
j=1

|R|
s ‖pj−c‖

z−cost(R,c)
cost(R,q)+cost(R,c)

∣∣∣∣ ≤ ε, we have the desired coreset guarantee. Our cost vectors will

not be induced by centers for technical reasons, but are in a well-defined sense close enough such
that it will be enough to bound the deviation for these approximate cost vectors to obtain a bound
for all center induced cost vectors. Introducing Gaussians is standard in this type of analysis as
concentration bounds typically used for weighted Bernoulli random variables such as Hoeffding or

Bernstein are too weak. Our goal is therefore to show that EΩEg sup
c∈Rd

∣∣∣∣∑s
j=1

|R|
s ‖pj−c‖

z·gj
cost(R,q)+cost(R,c)

∣∣∣∣ ≤ ε√
2π

.

We now define the nets we will use.

Definition 2. Let R be a set of points and let q be a candidate solution. For β > 0, we say that a set
of vectors Nβ is a β-net of R, if there exists a vector v′ ∈ Nβ such that for every point p ∈ R with
‖p− c‖ ≤ 8z

ε · ‖p− q‖, we have∣∣‖p− c‖z − v′p∣∣ ≤ β · (‖p− c‖z + ‖p− q‖z) .

We need to show the following three properties:

1. By bounding EΩ sup
v∈Nε/10

∣∣∣∣∑s
j=1

|R|
s vpj−

∑
p∈Ri

vp

cost(R,q)+cost(R,c)

∣∣∣∣, we can also bound

EΩ sup
c∈Rd

∣∣∣∣∑s
j=1

|R|
s ‖pj−c‖

z−cost(R,c)
cost(R,q)+cost(R,c)

∣∣∣∣
2. There exist β-nets of size exp

(
z2 log ‖R‖0 · β−2 · log 1

ε·β

)
.
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3. Let v be a cost vector written as a telescoping sum v =
∑
i=1∞vi − vi−1 of cost vec-

tors from 2i-nets. Let v′, v′′ be cost vectors from successive β and β/2 nets Nβ and Nβ/2,

respectively. By bounding the term EΩEg sup
v′−v′′

∣∣∣∑s
j=1

|R|
s |v

′
pj − v

′′
pj | · gj

∣∣∣, we can also bound

EΩEg sup
v∈Nε

∣∣∣∑s
j=1

|R|
s vpj · gj

∣∣∣
We start with item 1 via the following lemma.

Lemma 4. Let Nε/10 be an ε/10-net of R. Then if supv∈Nε/10
|∑s

j=1
|R|
s vpj−‖v‖1|

cost(R,q)+cost(R,c) ≤
ε
10 we have

supc∈Rd
|∑s

j=1
|R|
s ‖pj−c‖

z−cost(R,c)|
cost(R,q)+cost(R,c) ≤ ε for all c ∈ Rd.

To prove item 2, we use terminal embeddings Elkin et al. (2017); Mahabadi et al. (2018); Narayanan
& Nelson (2019), defined as follows.

Definition 3 (Terminal Embeddings). Let A be a set of points in Rd. A mapping f : Rd → Rk is a
terminal embedding if for all p ∈ A and all c ∈ Rd

(1− ε) · ‖p− c‖2 ≤ ‖f(p)− f(c)‖2 ≤ (1 + ε) · ‖p− c‖2.

The guarantee of a terminal embedding is very similar to the guarantee of the famous Johnson
Lindenstrauss lemma, but stronger in one crucial detail. A terminal embedding preserves not only
the distances between the points of A but also the distance between an arbitrary point in Rd and any
point of A. Despite this stronger guarantee, the target dimension of terminal embedding is in fact no
worse than that of the Johnson Lindenstrauss lemma. Specifically:

Theorem 5 (Narayanan & Nelson (2019)). For any n point-set A ⊂ Rd, there exists a terminal
embedding f : Rd → Rk with k ∈ γ · ε−2 log n for some absolute constant γ.

We now use the terminal embeddings to show that small nets exist.

Lemma 5. Let R and q be defined as above. Then for every β > 0, there exists a β-net of R of size
at most exp(γ · z3β2 log ‖R‖0 · log ε−1), where γ is an absolute constant.

We now move onto item 3.

Lemma 6. Let R and q be defined as above and let Ω be a uniform sample consisting of s points.
Then for any point c and s ≥ η·z328z ·ε−2 ·log ‖R‖0 ·log3 ε−1 for some absolute constant η, we have

EΩEg sup
c∈Rd

∣∣∣∣∑s
j=1

|R|
s ‖pj−c‖

z·gj
cost(R,q)+cost(R,c)

∣∣∣∣ ≤ ε. Moreover, if s ≥ η · z328z · ε−2 · log ‖R‖0 · log4 ε−1 log 1/δ

for some absolute constant η, then we have sup
c∈Rd

∣∣∣∣∑s
j=1

|R|
s ‖pj−c‖

z·gj
cost(R,q)+cost(R,c)

∣∣∣∣ ≤ ε, with probability at least

1− δ.

The proof of Lemma 3 is now a direct consquence of Lemma 6 and Equation 1. To finally prove
Theorem 4, we apply Lemma 6 recursively. The result is essentially a special case of Theorem 3.1
from Braverman et al. (2021).

Lemma 7. Let R and q be defined as above. Suppose a uniform sample of size s ∈ Õ(Γ · log ‖R‖0 ·
log 1/δ) satisfies with probability at least 1− δ for all candidate centers c

|cost(R, c)−
∑
p∈Ω

|R|
s
· ‖p− c‖z| ≤ ε · (cost(R, q) + cost(R, c)).

Then a uniform sample of size Õ(Γ · log 1/δ) achieves the same guarantee.

3 Sublinear Algorithm and Analysis
We first describe an algorithm that succeeds with constant probability. This probability can be
amplified (non-trivially) using independent repetition. In the following we will use parameters β
and η that depends on ε which we will specify later. We let A be the set of input points.
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Algorithm 1 Sublinear Algorithm for Power Means
1. Sample a random point q.
2. Sample a set S of O(ε−z−3 · poly(ε−1)) points uniformly at random.
3. Compute the maximum distance d such that there exist 2/3 · ε · η · |S| points with distance at
least d from q. Discard all points at distance greater than d.
4. Define rings Ri such that Ri ∩ S contains all the points at distance (d · 2−i, d · 2−i+1] from q,
with i = {1, . . . , β}.
5. If |Ri ∩ S| < εη · |S|, remove all points in Ri ∩ S from S.
6. Define R̂i = n · |Ri∩S||S| . Weigh the points Ri ∩ S by R̂i

|Ri∩S| .
7. Solve the problem on the (weighted) set S.

Our goal is to show that S satisfies a weak coreset guarantee. Specifically, we will show that S has
the property that for all points A′ ⊆ A at distance at most d (defined in Algorithm 1) from q there
exists weight function w : S → R+ such that S is a strong coreset for A′. We then show that a
strong coreset for A′ is also weak coreset for A, i.e. we preserve the cost of all points in A′, and we
preserve the optimum for A.

In order to call Theorem 4 on only few rings, we now show that the loss incurred by only considering
A′ is indeed negligible.

Pruning Lemmas We first show that we can safely discard points that are sufficiently far away,
as parameterized by γ. We recall the meaning of parameters: α is the approximation-factor of the
initial solution, β is such that points at distance closer than 2βd can be merged to the center (see
Lemma 9), η is such that rings with less than an εη-fraction of the points can be discarded (see
Lemma 10)

Lemma 8. Suppose we are given an α-approximate center q. Let B(q, r) be the ball centered at q

with radius r = 4 ·
(

2α·OPT
n

)1/z
. Then the following two statements hold.

1. Any α-approximate center is in B(q, r).

2. For any two points c, c′ ∈ B(q, r) and for any point p with ‖p − q‖z > γ · rz with
γ > ε−z · (12z)z , we have ‖p− c‖z ≤ (1 + ε) · ‖p− c′‖z.

Unfortunately, we are not given a knowledge of OPT a priori. We therefore have to describe how
to implement this lemma in a sublinear fashion. For this, we observe the following. First, the point
q is an 2zα approximation with probability at least 1− 1/α. Second, the number of points that cost
more than γ · 2zα · OPTn is at most 1/γ · n. Combining this observation with Lemma 2 ensures that
we are not considering any points that are too far away. Since it is difficult to determine OPT

n in a
sublinear fashion, we will rely on additional pruning arguments for points that are close to q.

We proceed here in two steps. First, we consider the points that are very close to q. Second, we will
show that the rings which contain too few points to be efficiently sampled have an overall negligible
contribution to the cost.

Lemma 9. Suppose that q is an α-approximate solution. Let Anear ⊂ A be a set of points with cost
at most (ε/(α5z))

z · OPTn . Let Â = (1± ε)|Anear| Then for any candidate solution c we have∣∣∣∣∣∣Â · ‖q − c‖z −
∑

p∈Anear

‖p− c‖z
∣∣∣∣∣∣ ≤ ε/α ·

 ∑
p∈Anear

‖p− c‖z + OPT

 .

For rings with few points, we have the following.

Lemma 10. Suppose that q that is an α-approximate solution. Let Rcheap the union of rings with
|Ri ∩ A| < ε · η · n and with radius at most 4(γ · α·OPTn )1/z , where γ is given by Lemma 8. Then,
for any candidate solution c∑

p∈Rcheap∩A
‖p− c‖z ≤ ε · 4z+1 · β · η · γ · α ·

∑
p∈A
‖p− c‖z.
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While we will defer the exact parameterization to later, observe that for β ∈ O(log 1/ε), α ∈ 2O(z)

and η ∈ O(εz) this entire sum can be bounded by O(ε) ·OPT.
The next lemma states that we can use these pruning results in a sublinear fashion.

Lemma 11. Let q be a point that is an α-approximation and let S be a uniform sample consisting
of O

(
α · η−1 · ε−3polylog(ε−1 · δ−1)

)
points. Then with probability at least 1− δ for all rings Ri,

|Ri ∩A| − ε ·max (n · η, |Ri ∩A|) ≤
|Ri ∩ S| · n
|S|

≤ |Ri ∩A|+ ε ·max (n · η, |Ri ∩A|) .

Furthermore, let d as in the algorithm, i.e., such that 2
3 · ε · η · |S| ≤

∣∣S \ (B(q, d) ∩ S)
∣∣. Then

d <
(
3(εη)−1 · α·OPTn

)1/z
Since we do not know r, we also do not know which of the rings with i < 0, if any, satisfy 2i+1 ·d >

(ε/α5z) · (η/3α)
1/z . However, the maximum number of these rings is at most log( 5αz

ε ·
(

3α
η

)1/z

),

which will turn out to be of the order O(log ε−1). For all of the rings that are not light, i.e. we
cannot discard or snap to q, we now use Theorem 4. To ensure that we can call Theorem 4, we
invoke Lemma 2 for every ring.

Probability Amplification While the aforementioned algorithm is guaranteed to produce a (1+ε)-
approximation with constant probability, amplifying this is non-trivial. Indeed, when running the
algorithm multiple times, it is not clear how to distinguish a successful run from an unsuccessful
one. The main issue in amplifying the probability lies in the initial solution q, as any invocation of
Lemma 2 or Theorem 4 allows us to control the failure probability. The simplest way to achieve
a success probability 1 − δ is to condition on ‖q − c‖z ≤ δ · OPTn . Unfortunately, this makes ε
dependent on δ, which significantly increases the sampling complexity.

Instead, we use the following algorithm. We sample m ∈ O(log 1/δ) points q1, . . . qm uniformly at
random. For each point, we additionally sample O(ε−2(log 1/ε + log 1/δ)) points Sqi . For qi, let
di denote the minimum radius such that the points in n

|Sqi |
· |B(qi, di) ∩ Sqi | > n

2 . We output the
point with minimal di.

The following lemma shows that this point is, with probability at least 1− δ, a 8z approximation.

Lemma 12. Given query access to A, we can identify with probability 1 − δ a 8z-approximate
solution using O(ε−2(log 1/ε+ log 1/δ) log 1/δ) samples.

To achieve an overall success probability of 1 − δ, we only need to sample from non-cheap rings.
Thereafter, a high probability bound can be obtained by applying Theorem 4 applied to all Ri. The
range space induced by rings centered around a single point q has constant VC dimension. Hence,
Lemma 2 guarantees that a constant size sample will allow us to distinguish cheap rings from non-
cheap ones.

4 Improved Coreset Constructions
Our algorithm is as follows. First, we compute a point q that is a reasonably good approximation
to the optimum4. In the following, let α = cost(q)

OPT . Let ∆ = cost(q)
n be the average cost of the

input points when clustering them to q. We now partition the points into rings, defined as follow:

Ri = {p ∈ A |
(
ε
2z

)z · 1
α · 2

i ·∆ ≤ ‖p− q‖z ≤
(
ε
2z

)z · 1
α · 2

i+1 ·∆}. Let RM =
⋃log( 2z

ε )
3z

i=1 Ri.
For each ring Ri with 1 ≤ i ≤ log

(
2z
ε

)3z
, we sample a subset Si of s points uniformly at random,

where each point is weighted by |Ri|s . We weigh q by the number of points in A \ RM . Finally,
we set κ =

∑
i>log( 2z

ε )
3z

∑
p∈Ri ‖p− q‖

z . We claim, for s ∈ Õ(ε−2) that for the weights defined

above,
⋃log( 2z

ε )
3z

i=1 Si ∪ {q} together with the constant κ is a coreset.

The analysis for every ring Ri ∈ RM is merely an application of Theorem 4. For the remaining
points, we use the following lemma.

4We described an option in detail for the sublinear algorithm. In the interest of keeping the presentation
succinct, we defer to that part of the paper and omit further discussion.
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Lemma 13. Let q, RM and κ be defined as above. Then for any point c ∈ Rd, we have

|cost(A, c)− (cost(RM , c) + κ+ |A \RM | · ‖q − c‖2)| ≤ ε · cost(A, c).

5 Experimental Evaluation
While we can prove that the algorithm can compute a good solution in constant time for every
constant ε and z, even for moderately small ε (e.g. ε = 1/2) the sampling complexity becomes
quite large for even small values of z, as indeed our lower bound shows is necessarily the case. Our
experiments therefore aim at evaluating the performance of the sublinear algorithm on realistic, not
necessarily worst case data sets.

As baseline algorithm, we implemented a simple version of a batched gradient descent. Since all
considered objectives are convex, we can expect such an algorithm to find a good solution in a rea-
sonable time. The sublinear algorithm ran Algorithm 1 before calling the batched gradient descent.
The code can be found at https://github.com/DaSau/power-mean We selected two data sets
from the UCI repository Dua & Graff (2017), both of which are under the Creative Commons li-
cense. The first data set is the 3D Road Network data set from Kaul et al. (2013). It consists of
elevation information with the attributes longitude, latitude and altitude. The total number of points
is 434,874. For this data set, we considered all powers from z = 3 to 7. The second data set is the
USCensus data set, consisting of the records from a 1990 census. The total size of the data set was
2,458,285 samples, each with 68 attributes. For this data set, we considered the powers z = 3, 4, 5.

The results essentially confirmed that the sublinear algorithm succeeded in finding a good candidate
solution in a fraction of the time as batch gradient descent for essentially all considered problems.

A more extensive discussion can be found in the supplementary material.

6 Conclusion and Future Work
We gave sublinear algorithms and coresets for any power of means. Our bounds are nearly tight for
the sublinear algorithms and we conjecture the coreset bound to be optimal, up to polylog factors.

The most immediate open question is whether our results generalize to coresets for k-clustering
objectives. It seems likely that coresets of size O(k2/ε2) are achievable using our techniques. Im-
proving on either this bound or theO(kε−2−z) from Cohen-Addad et al. (2021) is arguable the most
important open problem in coresets.

In terms of sublinear algorithms, there is still a sub-optimal dependency on the ε by a factor ε−O(1).
Obtaining tight bounds would be interesting. Finally, it is also an interesting open question whether
sublinear algorithms for `p with p > 2 exist. It is known that for these spaces, no coreset that is
independent of d can exist, even for the mean or the median. Is it nevertheless possible to obtain a
sublinear algorithm that is independent of d?
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [No] The po-
tential societal impacts are the ones of any clustering algorithm; since this would be a
paper by itself, we did not discussed it.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [No]

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
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(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
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Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Additional Definitions and Properties
Definition 4. Let X be a ground set, andR ⊂ P(X). We say that (X,R) is a range space.

The VC-dimension of a range space (X,R) is the largest d such that, for some S ⊆ X with |S| = d,
|{R ∩ S | R ∈ R}| = 2d.

Let us consider the range space induced by Euclidean balls centered around a single point p. A
range R is induced by a ball of radius r is the set of all points at distance r or less from p, i.e.
R = {q ∈ X | ‖p− q‖ ≤ r}. Without loss of generality, assume that q is the origin. We show that
for any set of two points, we cannot generate all possible dichotomies, i.e. for any point set S we
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have |{R ∩ S | R ∈ R}| < 4. If both points have the same distance from p, then it is not possible to
define a range that contains one point and not the other. If both points have different distance from
p, it is not possible to define a range that contains the furthest point, but not the closest.

B Uniform Sampling Routine

Lemma 4. Let Nε/10 be an ε/10-net of R. Then if supv∈Nε/10
|∑s

j=1
|R|
s vpj−‖v‖1|

cost(R,q)+cost(R,c) ≤
ε
10 we have

supc∈Rd
|∑s

j=1
|R|
s ‖pj−c‖

z−cost(R,c)|
cost(R,q)+cost(R,c) ≤ ε for all c ∈ Rd.

Proof. Let c ∈ Rd be an arbitrary point. We first deal with the case where there is some point
p′ ∈ Ri with ‖p′ − c‖z ≥

(
8z
ε

)z · ‖p′ − q‖z . Then, for any point p′′ ∈ R

‖p′′ − c‖z

(Lemma 1) ≤ (1 + ε) · ‖p′ − c‖z +

(
2z + ε

ε

)z−1

· ‖p′ − p′′‖z

≤ (1 + ε) · ‖p′ − c‖z +

(
2z + ε

ε

)z−1

· 2z+1‖p′ − q‖z

≤ (1 + ε) · ‖p′ − c‖z +

(
2z + ε

ε

)z−1

· 2z+1 ·
( ε

8z

)z
· ‖p′ − c‖z

⇒ ‖p
′′ − c‖z

‖p′ − c‖z
≤ (1 + ε)

Using an analogous calculation, one can also show

‖p′ − c‖z

‖p′′ − c‖z
≤ (1 + ε)

which implies that (1−ε) · ‖p′−c‖z ≤ ‖p′′−c‖z ≤ (1+ε) · ‖p′−c‖z , ..e., any point inR costs the
same up to a (1± ε) factor. Since the coreset weights, by construction, sum up to |R|, we therefore
have

|cost(R, c)− cost(Ω, c)| ≤ ε · cost(R, c) (2)

Now, we focus on the case where ‖p− c‖z ≤
(

8z
ε

)z · ‖p− q‖z for all p ∈ R. We will assume

sup
v∈Nε

∣∣∣∑s
j=1

|R|
s vpj − ‖v‖1

∣∣∣
cost(R, q) + cost(R, c)

≤ ε

and rescale ε by a factor of 10 at the end. We know that there exists net vector v ∈ Nε such that

|‖p− c‖z − vp| ≤ ε · (‖p− c‖z + ‖p− q‖z) .

Summing this over all points in R, we therefore have∣∣∣∣∣∣
∑
p∈R

(‖p− c‖z − vp)

∣∣∣∣∣∣ ≤
∑
p∈R
|‖p− c‖z − vp|

≤ ε ·
∑
p∈R
‖p− c‖z + ‖p− q‖z

≤ ε · (cost(R, c) + cost(R, q)). (3)

We similarly show that
∑s
j=1

|R|
s ‖pj − c‖z and vpj are close. First observe that if∣∣∣∑p∈R vp −

∑s
j=1

|R|
s vpj

∣∣∣ ≤ ε ·
∑
p∈R vp, as assumed in the lemma, then

∑s
j=1

|R|
s vpj ≤
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2
∣∣∣∑p∈R vp

∣∣∣. Therefore we have∣∣∣∣∣∣
s∑
j=1

|R|
s
·
(
‖pj − c‖z − vpj

)∣∣∣∣∣∣ ≤
s∑
j=1

|R|
s
·
∣∣‖pj − c‖z − vpj ∣∣

≤ ε ·
s∑
j=1

|R|
s

(‖pj − c‖z + ‖pj − q‖z)

≤ 2ε ·
s∑
j=1

|R|
s

(
vpj + 2 · cost(R, q)

|R|

)
≤ 2ε · (2cost(R, q) +

∑
p∈R

vp)

≤ 4ε · (cost(R, c) + cost(R, q)). (4)

Combining equations 3 and 4, we therefore obtain∣∣∣∣∣∣
∑
p∈R
‖p− c‖z −

s∑
j=1

|R|
s
· ‖pj − c‖z

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
p∈R
‖p− c‖z − vp

∣∣∣∣∣∣
+

∣∣∣∣∣∣
s∑
j=1

|R|
s
· ‖pj − c‖z −

s∑
j=1

|R|
s
· vpj

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
p∈R

vp −
s∑
j=1

|R|
s
· vpj

∣∣∣∣∣∣
≤ 10ε · (cost(R, c) + cost(R, q)) .

Together with Equation 2 and rescaling ε by a factor of 10 yields the claim.

Lemma 5. Let R and q be defined as above. Then for every β > 0, there exists a β-net of R of size
at most exp(γ · z3β2 log ‖R‖0 · log ε−1), where γ is an absolute constant.

Proof. Let f : Rd → Rk with k ∈ O(z2β−2 logRi) be a terminal embedding satisfying for all
c ∈ Rd and all p ∈ Ri

(1− β/2z) · ‖p− c‖ ≤ ‖f(p)− f(c)‖ ≤ (1 + β/2z) · ‖p− c‖.

Note that this also implies

(1− β) · ‖p− c‖z ≤ ‖f(p)− f(c)‖z ≤ (1 + β) · ‖p− c‖z.

We now discretise Rk as follows. We cover the entire k-sphere centred around q with radius
(

8z
ε

)
·2 ·

∆
1
z
i with k-dimensional balls of radius at most ε

3z ·∆
1
z
i . Let B be the minimal set of balls required.

In k-dimensional Euclidean spaces, such a cover has size at most(
1 + 2 ·

(
8z

ε

)z
/ε

)k
.

For every center c′ of some ball in B, we add the vector v′ with entries v′p = ‖f(p)− c′‖z to the net
N . We claim that N is an O(β)-net. The lemma then follows by rescaling β.
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For every point c with ‖p− c‖ ≤ 8z
ε · ‖p− q‖, let f(c) be the image of this point under the terminal

embedding. Moreover, let v′ be the vector induced by the point c′ in B closest to f(c). We have
|‖p− c‖z − vp|

= |‖p− c‖z − ‖f(p)− f(c)‖z + ‖f(p)− f(c)‖z − vp|
= |‖p− c‖z − ‖f(p)− f(c)‖z + ‖f(p)− f(c)‖z − vp|

(Lemma 1) ≤ β · ‖p− c‖z + ε · ‖f(p)− f(c)‖z +

(
2z + 1

ε

)z−1

‖f(c)− c′‖z

≤ 3β‖f(p)− f(c)‖z +

(
3z

ε

)z−1

·
( ε

3z

)z
·∆i

≤ 3β‖f(p)− f(c)‖z + ε‖p− q‖z

≤ 3β(‖f(p)− f(c)‖z + ‖p− q‖z).
Rescaling β completes the proof.

Lemma 6. Let R and q be defined as above and let Ω be a uniform sample consisting of s points.
Then for any point c and s ≥ η·z328z ·ε−2 ·log ‖R‖0 ·log3 ε−1 for some absolute constant η, we have

EΩEg sup
c∈Rd

∣∣∣∣∑s
j=1

|R|
s ‖pj−c‖

z·gj
cost(R,q)+cost(R,c)

∣∣∣∣ ≤ ε. Moreover, if s ≥ η · z328z · ε−2 · log ‖R‖0 · log4 ε−1 log 1/δ

for some absolute constant η, then we have sup
c∈Rd

∣∣∣∣∑s
j=1

|R|
s ‖pj−c‖

z·gj
cost(R,q)+cost(R,c)

∣∣∣∣ ≤ ε, with probability at least

1− δ.

Proof. Lemma 4 shows that in order to bound EΩEg sup
c∈Rd

∣∣∣∣∑s
j=1

|R|
s ‖pj−c‖

z·gj
cost(R,q)+cost(R,c)

∣∣∣∣, it is enough to take

the supremum only over vectors of Nε/10.

For a center c ∈ Rd, let v be the cost vector induced by c and let therefore v′ ∈ Nε/10 be the
approximation of v given by the net. Furthermore, let v′0 = 0, v′1, v′2, . . . be a sequence of cost
vectors such that v′ =

∑log ε/10
k=1 v′k+1 − v′k and v′k ∈ N2−k .

EΩEg sup
v′∈Nε/10

∣∣∣∣∣
∑s
j=1

|R|
s v
′
pj · gj

cost(R, q) + cost(R, c)

∣∣∣∣∣
= EΩEg sup

v′∈Nε/10

log 10ε−1∑
k=1

∣∣∣∣∣
∑s
j=1

|R|
s (v′k+1

pj − v′kpj ) · gj
cost(R, q) + cost(R, c)

∣∣∣∣∣
≤ EΩ

log ε/10∑
k=1

EgE′k+1

with E′k+1 = sup
v′i+1,v′i∈Nk+1×Nk

∣∣∣∣∑s
j=1

|R|
s (v′i+1

pj
−v′ipj )·gj

cost(R,q)+cost(R,c)

∣∣∣∣ so we now focus on bounding the supre-

mum over theE′k+1. For every i,
∑s
j=1

|R|
s

(v′i+1
pj
−v′ipj )·gj

cost(R,q)+cost(R,c) is Gaussian distributed with zero mean
and variance

s∑
j=1

(
|R|
s

(v′i+1
pj − v′ipj )

cost(R, q) + cost(R, c)

)2

≤
s∑
j=1

(
|R|
s

(v′i+1
pj − vpj + vpj − v′ipj )

cost(R, q) + cost(R, c)

)2

≤
s∑
j=1

|R|2

s2
·

2−2k · 2 · v2
pj

(cost(R, q) + cost(R, c))2
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We distinguish between two cases. If vpj = cost(pj , c) ≥ 8z · cost(pj , q), then for any point
p′ dist(p, c) ≤ dist(p′, c) + dist(pj , p′) ≤ dist(p′, c) + 3dist(pj , q) ≤ dist(p′, c) + 3

8 dist(pj , c),
and hence cost(pj , c) ≤ 8zcost(p′, c), and by averaging vpj ≤ 8z · cost(R,c)

|R| . Otherwise vpj =

cost(p, c) ≤ 8zcost(p, q) ≤ 2 · 8z · cost(R,q)
|R| . Combining both in the aforementioned variance bound,

we have:

1

s

s∑
j=1

2−2k · 2 · v2
pj

(cost(R, q) + cost(R, c))2
· |R|

2

s

≤ 1

s

s∑
j=1

2−2k+3 · 82z ·max
(

cost(R,c)
|R| , cost(R,q)

|R|

)2

(cost(R, q) + cost(R, c))2
· |R|

2

s

≤ 1

s
82z+1 · 2−2k

Now sinceEk is the supremum of at most |Nk+1|·|Nk|many Gaussians, and the expected maximum
over n Gaussians with varaince at most σ2 is at most

√
2 log n · σ2, we have

Eg supE′k+1 ≤
√

2 log (|Nk+1|2) · 1

s
· 82z+1 · 2−2k

≤
√

2γ · z3 · 22k log |R| · log ε−1 · 1

s
· 82z+12−2k

≤ ε/ log 10ε−1,

where the first inequality follows from Lemma 5 and the second inequality holds by our choice of
s. Therefore, EgE′k+1 ≤ ε/ log 1/ε and consequently

EΩEg sup
v′∈Nε/10

log 10ε−1∑
k=1

∣∣∣∣∣
∑s
j=1

|R|
s v
′
pj · gj

cost(R, q) + cost(R, c)

∣∣∣∣∣
≤ EΩ

log 10ε−1∑
k=1

EgE′k+1

≤ log 10ε−1 · ε/ log 10ε−1 ≤ ε.

The proof now follows since Lemma 4 states that is is sufficient to get a bound for all cost vectors
in Nε/10 in order to get a coreset for all c ∈ Rd, up to a rescaling of ε by a factor 10.

To obtain a high probability bound, we now merely observe that for a zero mean Gaussian g with
variance σ2, we have P[g > t] ≤ 1

2π exp(−t2/(2σ2)). Hence, we can simply take a union bound
over all steps of the chain an obtain

P[∃v′i+1, v′i ∈ Ni+1 × Ni | Ei > ε/ log 10ε−1]

≤ |Ni+1| · |Ni| ·
1

2π
· exp

(
ε2

log2 10ε−1
· 82z+2 · 2−2k

s

)
.

The claim now follows by the second choice of s, and taking a union bound over all elements of the
chain.

Lemma 7. Let R and q be defined as above. Suppose a uniform sample of size s ∈ Õ(Γ · log ‖R‖0 ·
log 1/δ) satisfies with probability at least 1− δ for all candidate centers c

|cost(R, c)−
∑
p∈Ω

|R|
s
· ‖p− c‖z| ≤ ε · (cost(R, q) + cost(R, c)).

Then a uniform sample of size Õ(Γ · log 1/δ) achieves the same guarantee.
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Proof. We start by briefly outlining the key arguments from Theorem 3.1 of Braverman, Jiang,
Krauthgamer, and Wu Braverman et al. (2021). Denote by log(i) n the i-fold logarithm of n, i.e.
log(2) n = log log n. Suppose that the initial summary has size Γ · log ‖R‖0. We call the sampling
algorithm recursively. In iteration i, let ‖Ri‖0 be the distinct number of points left in iteration i, let
εi be the precision parameter used in iteration i and let δi be the failure probability. We choose the
parameters εi := ε/(log(i) ‖R‖0)

1
2 and δi := δ/‖Ri−1‖0.

BJKW show the invariants ‖Ri‖0 ≤ 20Γ log δ−1(log(i) ‖R‖0)3,
∏t
i=1(1 + εi) ≤ exp(2εt) and∑t

i=1 δi ≤ δ ·
(

1
‖R‖0 + 1

log ‖R‖0 + ·+ 1
log(t−1) ‖R‖0

)
∈ O(δ). The first invariant shows that after

O(Γ4) iterations, log(t) ‖R‖0 ≤ 20Γ. The second invariants bounds the overall error, which, by
choice of εt and the maximum number of iterations, is less than (1 + O(ε)). The final invariant
shows that the overall failure increases only by constant factors.

We now argue why it is sufficient for an algorithm that only uses uniform sampling to target the
final bound after the iterative size reduction. Consider the sampling distributions D0 and Dt, where
D0 is the sampling distribution before and and Dt is the sampling distribution after the iterative
size reduction. Note that since uniform sampling assigns the exact same weight to every point, the
sampling itself remains weight oblivious.

Therefore the sampling distribution of every application of Lemma 3 remains uniform sampling, i.e.
the probability that a point p is in the output of Dt is equal for all points. The same holds for the
output of D0, therefore the distributions of both algorithms are identical. Since Dt achieves a the
desired guarantee by sampling Õ(ε−2 · 2O(z)) many distinct points, D0 must do so as well.

C Pruning Lemmas

Lemma 8. Suppose we are given an α-approximate center q. Let B(q, r) be the ball centered at q

with radius r = 4 ·
(

2α·OPT
n

)1/z
. Then the following two statements hold.

1. Any α-approximate center is in B(q, r).

2. For any two points c, c′ ∈ B(q, r) and for any point p with ‖p − q‖z > γ · rz with
γ > ε−z · (12z)z , we have ‖p− c‖z ≤ (1 + ε) · ‖p− c′‖z.

Proof. For the first claim we consider a point c not in B(q, r) and show that c cannot be an α-
approximate center.

The average cost of the points when using q as a center is α· OPTn . Hence, by Markov’s inequality, at
least half of the points of A lie in B(q, r/4). Furthermore, by choice of c and the triangle inequality,
we have ‖p − c‖ > 2 · ‖p − q‖ for any point p ∈ B(q, r/4). Hence, the cost of clustering all the
points in A ∩B(q, r/4) to c is at least n/2 · (2 · r)z ≥ α ·OPT .

For the second claim, let c, c′ ∈ B(q, r) and p with ‖p− q‖z ≥ γ · rz . We first note that ‖p− c′‖ ≥
‖p− q‖ − ‖q − c′‖ ≥ γ1/z · r − 2r = (γ1/z − 2)r, which yields the inequality

r ≤ ‖p− c′‖ · 1

γ1/z − 2
(5)
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We then have

‖p− c‖z

(Lem. 1) ≤ (1 + ε/2z)z−1‖p− c′‖z +

(
ε+ 2z

ε

)z−1

· ‖c− c′‖z

≤ (1 + ε/2) · ‖p− c′‖z +

(
3z

ε

)z−1

(2r)z

(Eq. 5) ≤ (1 + ε/2) · ‖p− c′‖z +

(
3z

ε

)z−1

2z · ‖p− c′‖z
(

1

γ1/z − 2

)z
≤ (1 + ε/2) · ‖p− c′‖z +

(
3z

ε

)z−1

4z · ‖p− c′‖z · γ−1

(Choice of γ) ≤ (1 + ε/2) · ‖p− c′‖z + ε/2 · ‖p− c′‖z

≤ (1 + ε) · ‖p− c′‖z

Lemma 9. Suppose that q is an α-approximate solution. Let Anear ⊂ A be a set of points with cost
at most (ε/(α5z))

z · OPTn . Let Â = (1± ε)|Anear| Then for any candidate solution c we have∣∣∣∣∣∣Â · ‖q − c‖z −
∑

p∈Anear

‖p− c‖z
∣∣∣∣∣∣ ≤ ε/α ·

 ∑
p∈Anear

‖p− c‖z + OPT

 .

Proof. We first prove the result for Â = |Anear|, the claim for an estimation of |Anear| is a simple
corollary. We have, using Lemma 1:∣∣∣∣∣∣

∑
p∈Anear

(‖p− c‖z − ‖q − c‖z)

∣∣∣∣∣∣
≤

∑
p∈Anear

|‖p− c‖z − ‖q − c‖z|

≤
∑

p∈Anear

(
ε

α2
· ‖p− c‖z +

(
α5z

ε

)z−1

‖p− q‖z
)

≤
∑

p∈Anear

(
ε

α2
· ‖p− c‖z +

(
α5z

ε

)z−1 ( ε

α5z

)z OPT
n

)

≤ ε/α ·

 ∑
p∈Anear

‖p− c‖z + OPT


For an approximation to |Anear| we now merely add an additional additive error ε ·

∑
p∈Anear ‖p−

c‖z to the difference of the two terms.

Lemma 10. Suppose that q that is an α-approximate solution. Let Rcheap the union of rings with
|Ri ∩ A| < ε · η · n and with radius at most 4(γ · α·OPTn )1/z , where γ is given by Lemma 8. Then,
for any candidate solution c∑

p∈Rcheap∩A
‖p− c‖z ≤ ε · 4z+1 · β · η · γ · α ·

∑
p∈A
‖p− c‖z.
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Proof. We first require a bound on ‖q − c‖z . Using Lemma 1, we have

n · ‖q − c‖z ≤ 2z
∑
p∈A
‖p− q‖z + ‖p− c‖z

≤ α · 2z+1 ·
∑
p∈A
‖p− c‖z

⇒ ‖p− c‖z ≤ α · 2z+1 ·
∑
p∈A ‖p− c‖z

n
(6)

Therefore with another application of Lemma 1∑
p∈Rcheap∩A

‖p− c‖z

≤
∑

p∈Rcheap∩A
2z · (‖p− q‖z + ‖q − c‖z)

(Eq. 6) ≤ β · ε · η · n · 2z ·
(
γ · α ·OPT

n

+α · 2z+1 ·
∑
p∈A ‖p− c‖z

n

)
≤ β · ε · η · α · γ4z+1 ·

∑
p∈A
‖p− c‖z.

Lemma 11. Let q be a point that is an α-approximation and let S be a uniform sample consisting
of O

(
α · η−1 · ε−3polylog(ε−1 · δ−1)

)
points. Then with probability at least 1− δ for all rings Ri,

|Ri ∩A| − ε ·max (n · η, |Ri ∩A|) ≤
|Ri ∩ S| · n
|S|

≤ |Ri ∩A|+ ε ·max (n · η, |Ri ∩A|) .

Furthermore, let d as in the algorithm, i.e., such that 2
3 · ε · η · |S| ≤

∣∣S \ (B(q, d) ∩ S)
∣∣. Then

d <
(
3(εη)−1 · α·OPTn

)1/z
Proof. We consider the range space induced by Euclidean balls centered around q. This range space
has VC dimension of exactly 2. The VC dimension induced by the intersection of two Euclidean
balls centered around q is still constant Blumer et al. (1989), hence for our choice of |S|, Lemma 2
ensures that we have approximated the cardinality of all rings up to the additive error ε · max(η ·
n, |Ri ∩A|) with probability at least 1− δ, which proves the first claim.

For the second claim, let d as in the algorithm. By Lemma 2, we have
∣∣S \ (B(q, d) ∩ S)

∣∣ · n|S| ≤
(1 + ε)

∣∣A \ (B(q, d) ∩A)
∣∣. Hence, we have∣∣A \ (B(q, d) ∩A)

∣∣ ≥ 2

3
· ε · η · |S| · n

|S|(1 + ε)
≥ ε · η · n

3

Using Markov’s inequality, we now know that the number of points with cost 3(εη)−1 · α·OPTn is at

most ε·η·n3 . This implies d ≤
(
3(εη)−1 · α·OPTn

)1/z
.

D Proof of Theorem 1
We start by specifying our parameters: the approximation is set to be α = 20z . To prune the far
points, we set γ = (12z/ε)

z . Finally, we pick β and η such that η = 1
2z−1α·β·γ and 3 ·2−zβ+z · αεη ≤(

ε
5α

)z
. This is possible for β = Oz(log(1/ε)) and η ∈ Oz(ε−zpolylog(1/ε))

First, note that Lemma 8 shows that it is enough to compute an approximate solution for the set A′

consisting of points that are at distance less than O
((
γ OPT

n

)1/z)
.
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Let c be the optimal (1, z)-center. First, let us consider the initial sampled point q. With probability
at least 9/10, we have ‖q− c‖z ≤ 10 · OPTn . Hence due to the triangle inequality

∑
p∈A ‖p− q‖z ≤

20z · OPT , and q is an α-approximation. Let S be the set of points sampled and pruned by the
algorithm.

For each ring Ri at distance (2−id, 2−i+1d], we denote by R̂i either a (1± ε)-estimate of the size of
|Ri| via n·|Ri∩S|

|S| , if |Ri ∩S| ≥ ε · η · |S|, or we set R̂i = 0 if |Ri ∩S| < ε · η · |S|. Similarly, define
Rβ to be a (1±ε)-estimate of the size of points at distance less than 2−βd from q, if Rβ ≥ ε ·η · |S|,
or 0 if Rβ < ε · η · |S|.
Our goal to show that for any candidate solution c′, we have∣∣∣∣∣ ∑
p∈A′
‖p− c′‖z −

( ∑
i≤β−1

R̂i
|Ri ∩ S|

∑
p∈Ri∩S

‖p− c′‖z +
R̂β

|Rβ ∩ S|
‖q − c′‖z

)∣∣∣∣∣ ≤ ε ·∑
p∈A′
‖p− c′‖z.

(7)
Hence, computing a (1+ε)-approximate solution on the set S will give (1+ε)-approximate solution
for A′, which is also one for A following Lemma 8.

We now consider all rings Ri centered around q with radius (2−id, 2−i+1d]. First, for i = β ∈
O(log 1/ε), we have using Lemma 11 that the cost of points in Ri is, by choice of β,

(
2−β+1d

)z ≤
2−zβ+z 3

εη
OPT
n ≤ (ε/(α5z))

z OPT
n , hence we can use Lemma 9 to bound∣∣∣∣∣∣

∑
p∈A′∩Rβ

‖p− c′‖z − R̂β‖q − c′‖z
∣∣∣∣∣∣ ≤ ε/α ·

∑
p∈Anear

‖p− c′‖z + ‖p− q‖z

≤ ε ·
∑

p∈Anear

‖p− c‖z + ‖p− c′‖z.

Having dealt with the points close to q, we now deal with those far away. Since A′ results in the
pruning of A, rings with radius more than 4(γ · α·OPTn )1/z are empty in A′. Moreover, due to
Lemma 11, those rings must have R̂i = 0; hence, their contribution to Eq. (7) is 0.

We now turn our attention to the remaining rings. First, we consider the cheap rings, i.e. all rings
with R̂i = 0. Note that, by choice of d; this includes all rings with i ≤ 1. We have, due to
Lemma 10:∑

p∈Rcheap∩A
‖p− c‖z ≤ 4z+1β · ε · η · α · γ ·

∑
p∈A
‖p− c‖z

 ≤ ε
∑
p∈A
‖p− c‖z


Recall that R̂i = 0 in this case. We therefore obtain∣∣∣∣∣∣

∑
p∈Rcheap∩A

‖p− c‖z − R̂i
|Ri ∩ S|

∑
p∈Ri∩S

‖p− c‖z
∣∣∣∣∣∣ ≤ ε

∑
p∈A
‖p− c‖z.

Finally, we consider rings with |Ri ∩ S| > εη|S|, with β − 1 ≤ i ≤ 1. With our choice of
|S| = α·polylog(ε−1δ−1)

η·ε3 and Lemma 11, we have therefore |Ri ∩ S| > ε−4polylog(ε−1). Theorem 4
guarantee us that with Õ(ε−2) many samples, we have∣∣∣∣∣∣

∑
p∈Ri

‖p− c‖z − |Ri|
m

∑
p∈S
‖p− c‖z

∣∣∣∣∣∣ ≤ ε/β ·
∑
p∈Ri

‖p− c‖z + ‖p− q‖z


Summing up the error for all rings yields a total error of O(ε) ·
∑
p∈A′ ‖p − c‖z + ‖p − c′‖z ∈

O(ε)
∑
p∈A′ ‖p− c′‖z .

Subsequently, we can use any desired optimization algorithm to compute a (1 + ε)-approximate
solution c′ on S, with weights R̂i

|Ri∩S| on points of Ri. Rescaling ε according to degree of precision
of the optimization procedure and the precision of the coreset completes the proof.
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E Probability Amplification
Lemma 12. Given query access to A, we can identify with probability 1 − δ a 8z-approximate
solution using O(ε−2(log 1/ε+ log 1/δ) log 1/δ) samples.

Proof. Let c be the optimal center. In the following we will assume no knowledge of OPT , or even
an estimate of OPT , but we assume to know n.

With probability at least 1/2, a random point qi satisfies

‖qi − c‖z ≤ 2z
OPT

n
.

Therefore, when sampling log 1/δ points, we will have sampled a 2z approximate solution with
probability at least 1− δ.

Furthermore ∑
p∈A
‖p− qi‖z ≤

∑
p∈A

2z−1 · (‖p− c‖z + ‖qi − c‖z) ≤ 2z ·OPT.

Now since the range space induced by unit Euclidean balls centered around q has VC dimension 2,
we can estimate the number of points for any given radius up to an additive error of ε · n. Hence,
with probability 1 − δ, for every 2z-approximate solution qi, the estimated number of points in
B(q, 2

(
4OPTn

)1/z
) will be at least n/2.

Conversely, if qj is not 8z approximate, the estimated number of points in B(qj , 2
(
4OPTn

)1/z
) is

small. We have ∑
p

‖p− qj‖z > 8z
∑
p

‖p− c‖z

⇒

(∑
p

‖p− qj‖z
)1/z

> 8

(∑
p

‖p− c‖z
)1/z

⇒

(∑
p

‖c− qj‖z
)1/z

> 7

(∑
p

‖p− c‖z
)1/z

⇒ ‖c− qj‖ > 7

(
OPT

n

)1/z

Therefore, the intersection of B(qj , 2
(
4OPTn

)1/z
) with B(c,

(
2OPTn

)1/z
) is empty. Since at least

3n
4 points lie in B(c, 2

(
4OPTn

)1/z
), we know that with probability at least 1 − δ the estimated

number of points in B(qi, 3
(
OPT
n

)1/z
) will be larger than the estimated number of points in

B(qj , 2
(
4OPTn

)1/z
). Conditioned on having a 2z approximate solution in our sample, the returned

point is therefore no worse than a 8z approximation.

F Lower bound
The goal of that section is to prove Theorem 3, i.e., that any (1 + ε)-approximation algorithm must
sample ε−z+1 points.

Proof of Theorem 3. Consider the instance I on the 1-dimensional line where n points are located
at 0 and εz−1n points are located at 1. Intuitively, we show that any approximation algorithm on I
must sample at least a point at 1, and so must sample at least ε−z+1n points.

For simplicity, we rescale the instance so that n = 1. The optimal solution is OPTI = inf xz +
εz−1(1− x)z , and the optimal center is such that the derivative of the objective function is zero:

∂

∂x

(
xz + εz−1(1− x)z

)
= (z − 1)

(
xz−1 − (ε− εx)z−1

)
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so the optimal value is for xOPT such that (z − 1)
(
xz−1

OPT − (ε− εxOPT)z−1
)

= 0, which is xOPT =
ε
ε+1 . Hence,

OPT =

(
ε

ε+ 1

)z
+ εz−1

(
1− ε

ε+ 1

)z
=

εz−1

(ε+ 1)z
(ε+ 1) =

(
ε

1 + ε

)z−1

.

Since the cost of the solution having a center at 0 is εz−1, is it bigger than (1 + ε)OPT: indeed,

(1 + ε)

(
ε

1 + ε

)z−1

< εz−1. (8)

Now, consider the instance I and the instance I ′ that has n points located at 0. letA be an algorithm
that, with probability more than 4/5, computes a (1 + ε)-approximation for (1, z)-clustering.

Assume by contradiction that A samples less than ε−z+1/10 points. Let X be the random variable
counting the number of points located at 1 in that sample: we have Pr[X > 0] ≤ E[X] ≤ 1/10. So
with probability at least 9/10, A samples only point located at 0: even when that event occures, A
must output a center at a position different than 0 (following Equation 8) with some probability p.

SinceA succeeds with probability 4/5 andX = 0 with probability at least 9/10, we must have have
9
10p+ 1

10 ≥ 4/5, and so p ≥ 7
9 .

Hence, whenA samples only points located at 0, it must output a center different from 0 with proba-
bility at least 7/9. In particular, on instance I ′,A fails with probability at least 7/9, a contradiction.

So, any algorithm that computes a (1+ε)-approximation for (1, z)-clustering with probability more
than 4/5 must sample more than ε−z+1/10 points.

G Improved Coreset Construction
Lemma 13. Let q, RM and κ be defined as above. Then for any point c ∈ Rd, we have

|cost(A, c)− (cost(RM , c) + κ+ |A \RM | · ‖q − c‖2)| ≤ ε · cost(A, c).

Proof. First, we bound the difference in cost for the points that are close to q, i.e. the points in Ri
with i ≤ −1. We have for any such point p

|‖p− c‖z − ‖q − c‖z|

≤ ε · ‖p− c‖z +

(
z + ε

ε

)z−1

‖p− q‖z

≤ ε · ‖p− c‖z +

(
z + ε

ε

)z−1 ( ε
2z

)z
· 1

α
·∆

≤ ε · ‖p− c‖z +

(
z + ε

ε

)z−1 ( ε
2z

)z
· 1

α
· α · cost(c)

n

≤ ε · ‖p− c‖z + ε · cost(c)
n

.

Since there are at most n in ∪i≤−1Ri, we therefore have

|
∑
i≤−1

∑
p∈Ri

‖p− c‖z − ‖q − c‖2|

≤ ε ·
∑
i≤−1

∑
p∈Ri

‖p− c‖z + ε · cost(c)

≤ 2 · ε · cost(c). (9)

Now we focus on the points in Ri with i ≥ log ε−z . We distinguish between two cases. The first
case will assume that ‖q−c‖z ≤ ∆·

(
ε
4z

)−z
. Here, the intuition is that since these points are close to
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q (at least with respect to the points in Ri, i ≥ log ε−z) κ is a good approximation to their cost. The
second case assumes that ‖q − c‖z ≥ ∆ ·

(
ε
4z

)−z
. Here, the intuition is that

∑
i≥log ε−z cost(Ri, c)

is very small compared to cost(A, c).

In the first case, we have for any point p ∈ Ri with i ≥ ε−3z

|‖p− c‖z − ‖p− q‖z| ≤ ε · ‖p− c‖z +

(
z + ε

ε

)z−1

‖c− q‖z

≤ ε · ‖p− c‖z +

(
z + ε

ε

)z−1

·∆ ·
( ε

4z

)−z
≤ ε · ‖p− c‖z +

(
4z

ε

)2z−1

·∆

≤ ε · ‖p− c‖z + ε · 1

α
· ‖p− q‖z.

Again, we sum this over all points in ∪i≥log ε−2zRi. We then have∣∣∣∣∣∣
∑

i≥log ε−2z

∑
p∈Ri

(‖p− c‖z − ‖q − c‖z)− κ

∣∣∣∣∣∣
= |

∑
i≥log ε−2z

∑
p∈Ri

‖p− c‖z − ‖p− q‖z|+
∑

i≥log ε−2z

∑
p∈Ri

‖q − c‖z

≤ ε
∑

i≥log ε−2z

∑
p∈Ri

‖p− c‖z +
∑

i≥log ε−2z

∑
p∈Ri

ε · 2

α
· ‖p− q‖z

≤ ε · cost(A, c) + ε · 2

α
· cost(A, q)

≤ 3ε · cost(A, c) (10)
We now focus on the second case. LetA2 be the set of points with ‖p−q‖z ≤ 2∆. Due to Markov’s
inequality, we have |A2| ≥ n

2 . Also due to Markov’s inequality, we have |
⋃
i≥log ε−2z Ri| ≤ ε2z ·n.

We now give a lower bound on the cost of the points in A2. We start by showing that the difference
in cost between any point in A2 and q when clustering to c is negligible. Since ‖q− c‖ ≥ 4z

ε ·∆
1/z

and ‖p− q‖ ≤ 21/z ·∆1/z , we have ‖p− c‖z ≥ (1− ε)‖q − c‖z . This implies
cost(A2, c) ≥ |A2| · (1− ε)‖q − c‖z

Therefore∑
i≥log ε−2z

cost(Ri, c) ≤
∑

i≥log ε−2z

(1 + ε) · cost(Ri, q) +
( ε

4z

)2z

· n
(
z + ε

ε

)z−1

· ‖q − c‖z

≤ (1 + ε) · cost(A, q) +
( ε

4z

)z+1

· n · ‖q − c‖z

≤ (1 + ε) · cost(A, q) +
( ε

4z

)z+1

2|A2| · ‖q − c‖z

≤ (1 + ε) · 2|A2| ·∆ +
( ε

4z

)z+1

2|A2| · ‖q − c‖z

≤ (1 + ε) · 2|A2| ·
( ε

4z

)z
· ‖q − c‖z

≤ ε · cost(A2, c) ≤ ε · cost(A, c). (11)
Similarly

κ+
∑

i≥log ε−2z

|Ri| · ‖q − c‖z =
∑

i≥log ε−2z

∑
p∈Ri

‖p− q‖z + ‖q − c‖z

≤ n ·∆ + ε2z · n · ‖q − c‖z

≤ n ·
( ε

4z

)z
· ‖q − c‖z‖q − c‖z + ε2z · n · ‖q − c‖z

≤ ε · cost(A2, c) ≤ ε · cost(A, c). (12)
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Combining Equations 9, 10, 11, and 12 and rescaling ε now yields the claim.

Proof of Theorem 2. Let c be an arbitrary solution. For the points in A \RM , Lemma 13 determin-
istically allows us to bound the error by at most ε · cost(A, c). So we now turn our attention to the
rings in RM . We have for all c ∈ Rd∣∣∣∣∣∣

∑
p∈RM

‖p− c‖z −
∑
p∈Ω

wp · ‖p− c‖z
∣∣∣∣∣∣ ≤

∑
Ri∈RM

|
∑
p∈Ri

‖p− c‖z −
∑
p∈Ωi

wp · ‖p− c‖z|

≤
∑

Ri∈RM

ε · (cost(Ri, q) + cost(Ri, c))

= ε · (cost(RM , q) + cost(RM , c))
where the second inequality uses Theorem 4. Thus, taking a union bound over all Ri ∈ RM , we
have with probability at least 1−O(log 1/ε)δ for all points c ∈ Rd∣∣∣∣∣∣

∑
p∈A
‖p− c‖z − (

∑
p∈S

wp‖p− c‖z + κ)

∣∣∣∣∣∣ ≤ 2ε · (cost(A, c) + cost(A, q))

Rescaling ε by a factor 4/α and rescaling δ by a factor 1/ log 1/ε yields the desired bounds.

H Experiments
Implementation: We used a variant of Algorithm 1 which now describe. Instead of specifying a
desired accuracy, the algorithm is access to m samples picked uniformly at random from the data
set. As an α-approximate solution q, the algorithm merely selects a random point.

We also estimate OPT
n , by sampling another point q′ and using ‖q− q′‖z as a (coarse) estimate. We

then apply the pruning procedures. Our algorithms chose {100, 200, . . . , 1000} samples. For each
sample size, we repeated the algorithm 10 times and outputted the best center we could find.

Since the objective function is convex, we use a (simple) stochastic gradient descent on both the
sample and the full data set to compute a desired center. We iterated over the data set a total of 10
times. In every iteration, we partitioned the data into random chunks of size min(m, 2000), and used
chunk to perform a gradient step. We did not attempt to optimize the stochastic gradient descent; as
our focus is less on solving the problem in the fastest way possible and more on showcasing how
the sublinear algorithm can be used to potentially speed up any baseline algorithm.

The algorithms were coded in Python and run on a Intel Core i7-8665U processor with four 2 GHz
cores and 32 GByte RAM.

Results Tables with exact figures are given below. Here, we report and interpret the results.

On the Road Network data set, all samples sizes found a nearly optimal solution in at least one of
the 10 repetitions, with the largest deviation from the optimum of 4% occurring for 500 samples and
the z = 4 problem. In addition, the sublinear algorithms all required only a very small amount of
time compared to the baseline optimal solution (e.g. a factor of at least 400 quicker for the largest
sample size). What is notable is that starting with z = 5, the variance in cost of any given sample
size increased significantly. Since this occurred regardless of sample size, we attribute this effect to
quality of the seeding solution (q in Algorithm 1). The approximation factor of q directly impacts
the quality of the subsequent coreset construction, meaning that even with large sample sizes, the
algorithm has difficulty to recover. This means that good seeding solution q, for example using
Lemma 12 is essential.

Processing the USCensus data set was in its entirety was time consuming, running for more than
90 minutes. Constructing the coreset and optimizing it never took more than 14 seconds, however
the algorithm did not compute near optimal solutions as was the case for Road Networks data set.
For z = 3 and z = 5 the approximation was still rather small, and tightly concentrated. For to the
authors very unclear reasons, there exists a larger gap at z = 4. While a gap of that magnitude is
consistent with the lower bound, the data set does not seem to have a structure similar to said lower
bound.
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z = 3 z = 4 z = 5
Samples Cost Time Cost Time Cost Time

Min Avg Var/Avg2 Avg Min Avg Var/Avg2 Avg Min Avg Var/Avg2 Avg
100 4,90 6,67 0,08 0,62 1,79 2,83 0,12 0,62 7,47 10,13 0,35 0,61
200 4,80 6,36 0,05 1,16 1,86 3,85 0,24 1,29 7,37 8,29 0,30 1,16
300 4,79 7,40 0,21 1,74 1,78 2,48 0,16 1,76 7,39 12,44 0,15 1,76
400 4,86 6,89 0,11 2,27 1,79 2,82 0,13 2,37 7,37 12,44 0,51 2,41
500 4,95 7,80 0,04 2,88 1,84 2,88 0,47 2,90 7,39 11,11 0,61 2,89
600 4,84 10,35 0,47 3,42 1,78 2,91 0,76 3,46 7,55 21,52 0,23 3,48
700 4,79 6,67 0,22 3,97 1,80 3,12 0,31 4,10 7,37 16,22 0,60 4,06
800 4,79 6,92 0,19 4,60 1,78 6,20 0,67 4,62 7,38 15,89 0,57 4,71
900 4,79 9,27 0,58 5,12 1,78 3,43 0,69 5,23 7,37 25,93 0,20 5,26
1k 4,81 10,97 0,30 5,65 1,78 4,91 0,62 5,90 7,47 29,68 0,41 5,81

OPT 4,79 - - 871 1,78 - - 875 7,37 - - 877
z = 6 z = 7

Samples Cost Time Cost Time
Min Avg Var/Avg2 Avg Min Avg Var/Avg2 Avg

100 3,40 5,38 0,20 0,63 1,59 2,28 0,32 0,61
200 3,32 6,22 0,41 1,20 1,60 2,72 0,46 1,19
300 3,51 11,47 0,91 1,77 1,59 6,20 1,21 1,82
400 3,35 6,54 0,71 2,33 1,59 8,70 4,12 2,36
500 3,54 8,22 1,43 2,89 1,61 2,42 0,33 2,92
600 3,32 6,33 0,85 3,47 1,61 14,01 2,25 3,50
700 3,32 7,86 0,93 4,06 1,60 6,53 2,87 4,10
800 3,35 11,10 2,25 4,63 1,61 5,06 0,76 4,70
900 3,31 8,46 0,29 5,21 1,59 7,49 0,54 5,28
1k 3,34 7,89 0,57 5,98 1,59 2,35 0,16 5,78

OPT 3,31 - - 885 1,59 - - 882

Figure 1: Overview of cost and running time for the sublinear algorithm on the Road Networks data
set. Costs scaled by a factor 109 for z = 3, 1011 for z = 4 and z = 5, 1014 for z = 6 and 1016

for z = 7. The variance was extremely small for running times, so we omit it. Running time is
given in seconds. The running time for the sampling algorithms only considers the time required to
sample the points, prune the data set, and run the optimization, i.e. the time required to evaluate the
computed solution on the entire data set is not included.
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z = 3 z = 4 z = 5
Samples Cost Time Cost Time Cost Time

Min Avg Avg Min Avg Avg Min Avg Avg
100 1,306 1,310 6,03 1,907 1,910 7,03 1,527 1,560 7,22
200 1,306 1,311 6,03 1,907 1,911 7,04 1,518 1,554 7,81
300 1,305 1,310 6,30 1,907 1,908 7,59 1,523 1,560 8,65
400 1,305 1,310 6,48 1,907 1,909 7,74 1,521 1,544 9,06
500 1,306 1,309 6,74 1,906 1,908 7,92 1,512 1,547 9,84
600 1,305 1,308 7,06 1,907 1,908 8,21 1,516 1,553 10,39
700 1,307 1,309 7,20 1,907 1,908 8,35 1,516 1,545 11,14
800 1,306 1,309 7,53 1,907 1,908 8,82 1,528 1,547 11,86
900 1,306 1,310 7,60 1,907 1,909 8,98 1,523 1,553 12,43
1k 1,307 1,312 8,04 1,906 1,909 9,6 1,526 1,550 13,26

OPT 1,125 - 5544 1,296 - 5586 1,499 - 5934

Figure 2: Overview of cost and running time for the sublinear algorithm on the USCensus data
set. Costs scaled by a factor 1012 for z = 3, 1014 for z = 4 and 1016 for z = 5. The variance
was extremely small for all values (cost and running time), as indicated by the small gaps between
minimum and average. We therefore omitted it from the table. The largest variance (relative to the
squared cost) we encountered was for z = 5 and 600 samples, where it was still below 0.0005.
Running time is given in seconds. The running for the sampling algorithms only considers the time
required to sample the points, prune the data set, and run the optimization, i.e. the time required to
evaluate the computed solution on the entire data set (which vastly exceeds the given time bounds)
is not included.
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