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ABSTRACT

Despite the vast empirical evidence supporting the efficacy of adaptive optimization
methods in deep learning, their theoretical understanding is far from complete. This
work introduces novel SDEs for commonly used adaptive optimizers: SignSGD,
RMSprop(W), and Adam(W). These SDEs offer a quantitatively accurate descrip-
tion of these optimizers and help illuminate an intricate relationship between
adaptivity, gradient noise, and curvature. Our novel analysis of SignSGD high-
lights a noteworthy and precise contrast to SGD in terms of convergence speed,
stationary distribution, and robustness to heavy-tail noise. We extend this analysis
to AdamW and RMSpropW, for which we observe that the role of noise is much
more complex. Crucially, we support our theoretical analysis with experimental
evidence by verifying our insights: this includes numerically integrating our SDEs
using Euler-Maruyama discretization on various neural network architectures such
as MLPs, CNNs, ResNets, and Transformers. Our SDEs accurately track the
behavior of the respective optimizers, especially when compared to previous SDEs
derived for Adam and RMSprop. We believe our approach can provide valuable
insights into best training practices and novel scaling rules.

1 INTRODUCTION

Adaptive optimizers lay the foundation for effective training of modern deep learning models. These
methods are typically employed to optimize an objective function expressed as a sum of losses across
N individual data points: minx∈Rd [f(x) := 1

N

∑N
i=1 fi(x)], where f, fi : Rd → R, i = 1, . . . , N.

Due to the practical difficulties of selecting the learning rate of stochastic gradient descent, adaptive
methods have grown in popularity over the past decade. At a high level, these optimizers adjust the
learning rate for each parameter based on the historical gradients. Popular optimizers that belong to
this family are RMSprop (Tieleman and Hinton, 2012), Adam (Kingma and Ba, 2015), SignSGD
(Bernstein et al., 2018), AdamW (Loshchilov and Hutter, 2019), and many other variants. SignSGD is
often used for compressing gradients in distributed machine learning (Karimireddy et al., 2019a), but
it also has gained popularity due to its connection to RMSprop and Adam (Balles and Hennig, 2018).
The latter algorithms have emerged as the standard methods for training modern large language
models, partly because of enhancements in signal propagation (Noci et al., 2022).

Although adaptive methods are widely favored in practice, their theoretical foundations remain enig-
matic. Recent research has illuminated some of their advantages: Zhang et al. (2020b) demonstrated
how gradient clipping addresses heavy-tailed gradient noise, Pan and Li (2022) related the success
of Adam over SGD to sharpness, and Yang et al. (2024) showed that adaptive methods are more
resilient to poor learning rate tuning than SGD. At the same time, many optimization studies focus on
worst-case convergence rates: These rates (e.g., Défossez et al. (2022)) are valuable, yet they provide
an incomplete depiction of algorithm behavior, showing no quantifiable advantage over standard
SGD. One particular aspect still lacking clarity is the precise role of noise in the algorithm trajectory.

Our investigation aims to study how gradient noise influences the dynamics of adaptive optimizers
and how it impacts their asymptotic behaviors in terms of expected loss and stationary distribution. In
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particular, we want to understand which algorithms are more resilient to high (possibly heavy-tailed)
gradient noise levels. To do this, we rely on stochastic differential equations (SDEs) which have
become popular in the literature to study the behavior of optimization algorithms (Li et al., 2017;
Jastrzebski et al., 2018). These continuous-time models unlock powerful tools from Itô calculus,
enabling us to establish convergence bounds, determine stationary distributions, unveil implicit
regularization, and elucidate the intricate interplay between landscape and noise. Notably, SDEs
facilitate direct comparisons between optimizers by explicitly illustrating how each hyperparameter
and certain landscape features influence their dynamics (Orvieto and Lucchi, 2019; Malladi et al.,
2022; Compagnoni et al., 2023; 2024; 2025).

We begin by analyzing SignSGD, showing how the ratio between the gradient and the level of gradient
noise affects its dynamics and elucidating the impact of noise at convergence. After examining the
case where the gradient noise has an infinite variance, we extend our analysis to Adam and RMSprop
with decoupled weight decay (Loshchilov and Hutter, 2019) – i.e. AdamW and RMSpropW: for
both, we refine batch size scaling rules and compare the role of noise to SignSGD. Our analysis
provides some theoretical grounding for the resilience of these adaptive methods to high noise levels.
Importantly, we highlight that Adam and RMSprop are byproducts of our analysis and that our novel
SDEs are derived under weaker assumptions than those in the literature (Zhou et al., 2020a; Malladi
et al., 2022).
Contributions We identify our key contributions as follows:

1. We derive the first1 SDE for SignSGD under very general assumptions: We show that
SignSGD exhibits three different phases of the dynamics and characterize the loss behavior
in these phases, including the stationary distribution and asymptotic loss value;

2. We prove that for SignSGD, noise inversely affects the convergence rate of both the loss
and the iterates. Differently, it has a linear impact on the asymptotic expected loss and
the asymptotic variance of the iterates. This is in contrast to SGD, where noise does not
influence the convergence speed, but it has a quadratic effect on the loss and variance of the
iterates. Finally, we show that, even if the noise has infinite variance, SignSGD is resilient:
its performance is only marginally impacted. In the same conditions, SGD diverges;

3. We derive new, improved, SDEs for AdamW and RMSpropW and use them to (i) show
a novel batch size scaling rule and (ii) inspect the stationary distribution and stationary
loss value in convex quadratics. In particular, we dive into the properties of weight decay:
while for vanilla Adam and RMSprop the effect of noise at convergence mimics SignSGD,
something different happens in AdamW and RMSpropW — Due to an intricate interac-
tion between noise, curvature, and regularization, decoupled weight decay plays a crucial
stabilization role at high noise levels near the minimizer;

4. We empirically verify every theoretical insight we derive. Importantly, we integrate our
SDEs with Euler-Maruyama to confirm that our SDEs faithfully track their respective
optimizers. We do so on an MLP, a CNN, a ResNet, and a Transformer. For RMSprop and
Adam, our SDEs exhibit superior modeling power than the SDEs already in the literature.
We emphasize that while our results rely on certain regularity assumptions for loss functions
and gradient noise, their applicability extends beyond these. For example, we validate our
novel scaling rule for AdamW on a Pythia-like 160M LLM (Biderman et al., 2023) trained
on 2.5B/10B tokens from the SlimPajama dataset (Soboleva et al., 2023).

2 RELATED WORK

SDE approximations and applications. (Li et al., 2017) introduced a formal theoretical framework
aimed at deriving SDEs that effectively model the inherent stochastic nature of optimizers. Ever since,
SDEs have found several applications in the field of machine learning, for instance in connection
with stochastic optimal control to select the stepsize (Li et al., 2017; 2019) and batch size (Zhao
et al., 2022), the derivation of convergence bounds and stationary distributions (Compagnoni et al.,
2023; 2024), implicit regularization (Smith et al., 2021), and scaling rules (Jastrzebski et al., 2018).
Previous work by Malladi et al. (2022) has already made strides in deriving SDE models for RMSprop
and Adam, albeit under somewhat restrictive assumptions. They establish a scaling rule that they

1In a concurrent work, Xiao et al. (2024) derived an SDE for SignSGD in the high dimensional setting for a
linear regression task: See Appendix F in Xiao et al. (2024) for a comparison with our SDE.
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assert remains valid throughout the entirety of the dynamics. While their derivation builds on the
approach of Jastrzebski et al. (2018), which may be problematic in the general setting (see Appendix
E for further discussion), our analysis suggests that the SDEs proposed in Malladi et al. (2022)
provide accurate approximations primarily near minima, implying that the corresponding scaling
rules might not hold globally. (Zhou et al., 2020a) derived a Lévy SDE for Adam; however, the
approximation relies on random coefficients, a technique that is theoretically sound only under very
specific conditions (see Kohatsu-Higa et al. (1997); Bishop and Del Moral (2019)). Xie et al. (2022)
modeled AdamW with an SDE to investigate the roles of learning rate adaptivity and momentum in
saddle-point escaping and flat minima selection. However, since their derivation does not follow a
formal framework, it currently lacks comprehensive approximation guarantees. Finally, Zhou et al.
(2024) presented an informal SDE for the iterates of AdamW: Their derivation relies on several strong
assumptions and approximations, which may benefit from further formal justification.

Influence of noise on convergence. Several empirical papers demonstrate that adaptive algorithms
adjust better to the noise during training. Specifically, (Zhang et al., 2020b) noticed a consistent gap
in the performance of SGD and Adam on language models and connected that phenomenon with
heavy-tailed noise distributions. (Pascanu et al., 2013) suggests using gradient clipping to deal with
heavy tail noise, and consequently several follow-up works analyzed clipped SGD under heavy-tailed
noise (Zhang et al., 2020a; Mai and Johansson, 2021; Puchkin et al., 2024). Kunstner et al. (2024)
present thorough numerical experiments illustrating that a significant contributor to heavy-tailed noise
during language model training is class imbalance, where certain words occur much more frequently
than others. They demonstrate that adaptive optimization methods such as Adam and SignSGD can
better adapt to such class imbalances. However, the theoretical understanding of the influence of
noise in the context of adaptive algorithms is much more limited. The first convergence results on
Adam and RMSprop were derived under bounded stochastic gradients assumption (De et al., 2018;
Zaheer et al., 2018; Chen et al., 2019; Défossez et al., 2022). Later, this noise model was relaxed
to weak growth condition (Zhang et al., 2022; Wang et al., 2022) and its coordinate-wise version
(Hong and Lin, 2023; Wang et al., 2024) and sub-gaussian noise (Li et al., 2023a). SignSGD and
its momentum version Signum were originally studied as a method for compressed communication
(Bernstein et al., 2018) under bounded variance assumption, but with a requirement of large batches.
Several works provided counterexamples where SignSGD fails to converge if stochastic and full
gradients are not correlated enough (Karimireddy et al., 2019b; Safaryan and Richtarik, 2021). In
the case of AdamW, (Zhou et al., 2022; 2024) provided convergence guarantees under restrictive
assumptions such as bounded gradient and bounded noise. All aforementioned results only show
that SignSGD, Adam, and RMSprop at least do not perform worse than vanilla SGD. None of them
studied how noise affects the dynamics of the algorithm: In this work, we attempt to close this gap.

3 FORMAL STATEMENTS & INSIGHTS: THE SDES

This section provides the general formulations of the SDEs of SignSGD (Theorem 3.2) and AdamW
(Theorem 3.12). Due to the technical nature of the analysis, we refer the reader to the appendix for
the complete formal statements and proofs and only provide a sketch of the proof of key results.

Assumptions and notation. In this section, we collect most of the notation and assumptions
used in the paper. All our analysis take place on a filtered probability space (Ω,F , {Ft}t≥0,P).
The batches γ are of size B ≥ 1 and modeled as i.i.d. random variables uniformly distributed
on {1, . . . , N}. We assume that the stochastic gradient ∇fγ(x) := 1

B

∑
i∈γ ∇(fi(x)) can be

decomposed as ∇f(x) + Z(x), where ∇f(x) is the full gradient and Z(x) is the batch noise. We
assume that E[Z(x)] = 0 and unless we study the cases where the gradient variance is unbounded, we
write Cov(Z(x)) = Σ(x) (we omit the size of the batch γ unless relevant.) s.t.

√
Σ(x) is bounded,

Lipschitz, satisfies affine growth, and together with its derivatives, it grows at most polynomially
fast (Definition 2.5 in Malladi et al. (2022)). Importantly, we assume that Z(x) has a bounded and
smooth probability density function whose derivatives are all integrable: A common assumption in
the literature is for Z(x) to be Gaussian2 (Ahn et al., 2012; Chen et al., 2014; Mandt et al., 2016;
Stephan et al., 2017; Zhu et al., 2019; Wu et al., 2020; Xie et al., 2021), while our assumption allows
for heavy-tailed distributions such as the Student’s t. Specifically, Li et al. (2017); Mertikopoulos
and Staudigl (2018); Raginsky and Bouvrie (2012); Zhu et al. (2019); Mandt et al. (2016); Ahn et al.
(2012); Jastrzebski et al. (2018) use a Gaussian noise with constant covariance matrix to model batch
noise. To derive the stationary distribution around an optimum, we approximate the loss function

2See Jastrzebski et al. (2018) for the justification why this might be the case.
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Figure 1: Comparison of SignSGD and its SDE in terms of f(x): Our SDE successfully tracks
the dynamics of SignSGD on several architectures, datasets, and hyperparameters: DNN on the
Breast Cancer dataset (Left); CNN on MNIST (Center-Left); Transformer on MNIST (Center-Right);
ResNet on CIFAR-10 (Right).

with a quadratic convex function f(x) = 1
2x

⊤Hx as commonly done in the literature (Ge et al.,
2015; Levy, 2016; Jin et al., 2017; Poggio et al., 2017; Mandt et al., 2017; Compagnoni et al., 2023).
Finally, η > 0 is the step size, the βs refer to momentum parameters, θ > 0 is the (decoupled)
L2-regularization parameter, and ϵ > 0 is a scalar used for numerical stability. Finally, we use Wt to
indicate a Brownian motion.

The following definition formalizes the idea that an SDE can be a “good model” to describe an
optimizer. It is drawn from the field of numerical analysis of SDEs (see Mil’shtein (1986)) and it
quantifies the disparity between the discrete and the continuous processes.
Definition 3.1 (Weak Approximation). A continuous-time stochastic process {Xt}t∈[0,T ] is an order
α weak approximation (or α-order SDE) of a discrete stochastic process {xk}⌊T/η⌋

k=0 if for every
polynomial growth function g, there exists a positive constant C, independent of the stepsize η, such
that maxk=0,...,⌊T/η⌋ |Eg (xk)− Eg (Xkη)| ≤ Cηα.

3.1 SIGNSGD SDE
In this section, we derive an SDE model for SignSGD, which we believe to be a novel addition to
the existing literature. This derivation will reveal the unique manner in which noise influences the
dynamics of SignSGD. First, we recall the update equation of SignSGD:

xk+1 = xk − η sign (∇fγk
(xk)) . (1)

The following theorem derives a formal continuous-time model for SignSGD.
Theorem 3.2 (Informal Statement of Theorem C.16). Under sufficient regularity conditions, the
solution of the following SDE is an order 1 weak approximation of the discrete update of SignSGD:

dXt = −(1− 2P(∇fγ(Xt) < 0))dt+
√
η
√

Σ̄(Xt)dWt, (2)

where Σ̄(x) is the noise covariance Σ̄(x) = E[ξγ(x)ξγ(x)⊤], and ξγ(x) := sign(∇fγ(x)) − 1 +
2P(∇fγ(x) < 0) is the noise of sign (∇fγ(x)).
Proof idea. One needs to prove that the first and second moments of the increments of the discretiza-
tion of the SDE match those of SignSGD up to an error of order O(η) and O(η2), respectively.

For didactic reasons, we next present a corollary of Theorem 3.2 that provides a more interpretable
SDE. To do so, we model the batch noise with a Gaussian distribution with constant covariance
matrix,3 which is a common approach in the literature (Li et al., 2017; Mertikopoulos and Staudigl,
2018; Raginsky and Bouvrie, 2012; Zhu et al., 2019; Mandt et al., 2016; Ahn et al., 2012; Jastrzebski
et al., 2018). Figure 1 shows the empirical validation of this model for various neural network classes:
All details are presented in Appendix F.
Corollary 3.3 (Informal Statement of Corollary C.19). Under the assumptions of Theorem 3.2, and
that the stochastic gradient is ∇fγ(x) = ∇f(x)+Z such that Z ∼ N (0,Σ), Σ = diag(σ2

1 , · · · , σ2
d),

the following SDE provides a 1 weak approximation of the discrete update of SignSGD

dXt = −Erf

(
Σ− 1

2∇f(Xt)√
2

)
dt+

√
η

√√√√Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

dWt, (3)

where the error function Erf(x) := 2√
π

∫ x

0
e−t2dt and the square are applied component-wise.

3See Section C.5 for more realistic noise structures.
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While Eq. 3 may appear intricate at first glance, it becomes apparent upon closer inspection that
the properties of the Erf(·) function enable a detailed exploration of the dynamics of SignSGD. In
particular, we demonstrate that the dynamics of SignSGD can be categorized into three distinct
phases. The left of Figure 2 empirically verifies this result on a convex quadratic function.

Lemma 3.4. Under the assumptions of Coroll. 3.3, Yt :=
Σ− 1

2 ∇f(Xt)√
2

, | · | applied element-wise, and

some constants4 m ∈ R+, q+ ∈ Rd, q− ∈ Rd, the dynamics of SignSGD exhibits three phases:

1. Phase 1: If |Yt| > 3
2 , the SDE coincides with the ODE of SignGD:

dXt = − sign(∇f(Xt))dt; (4)

2. Phase 2: If 1 < |Yt| < 3
2 :

(a) −mYt − q+ ≤ dE[Xt]
dt ≤ −mYt − q−;

(b) For any a > 0, P
[
∥Xt − E [Xt]∥22 > a

]
≤ η

a

(
d− ∥mYt + q−∥22

)
;

3. Phase 3: If |Yt| < 1, the SDE is

dXt = −
√

2

π
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

2

π
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (5)

Remark: For ease of reading, we will informally refer to the gradient ∇f(x) as the “signal” and to
Σ as the “noise”. Then, Lemma 3.4 tells us that the behavior of SignSGD depends on the size of the
“signal-to-noise” ratio. In particular, the SDE itself shows that in Phase 3, the inverse of the scale
of the noise Σ− 1

2 premultiplies ∇f(x), affecting the rate of descent. This is not the case for SGD
where Σ only influences the diffusion term.5 To better understand the role of the noise, we study
how it affects the dynamics of the loss on strongly convex functions and compare it with SGD. The
dynamics of E

[
∥∇f(Xt)∥22

]
for general non-convex smooth functions is presented in Lemma C.24.

Lemma 3.5. Let f be µ-strongly convex, Tr(∇2f(x)) ≤ Lτ , σ2
max be the maximum eigenvalue of Σ,

and St := f(Xt)− f(X∗). Then, during

1. Phase 1, St ≤ 1
4

(√
µt− 2

√
S0

)2
, so SignSGD stays in this phase for at most t∗ = 2

√
S0

µ ;

2. Phase 2 as ∆ :=
(

m√
2σmax

+ ηµm2

4σ2
max

)
:

E[St] ≤ S0e
−2µ∆t +

η

2

(
Lτ − µdq̂2

)
2µ∆

(
1− e−2µ∆t

)
;

3. Phase 3 as ∆ :=
(√

2
π

1
σmax

+ η
π

µ
σ2

max

)
:

E[St] ≤ S0e
−2µ∆t +

η

2

Lτ

2µ∆

(
1− e−2µ∆t

)
.

Proof idea. For each Phase, we use the respective SDE of SignSGD from Lemma 3.4 to derive the
SDE of St via Itô’s lemma. Then, we take its expectation to obtain the ODE of E [St] and leverage
the assumptions to establish a bound.

As per Eq. 4, during Phase 1 SignSGD behaves like SignGD: Lemma 3.5 shows that, consistently
with the analysis of SignGD in (Ma et al., 2022), such a strong decrease in the loss value explains the
fast initial convergence of the optimizer as well as of RMSprop and Adam. In this phase, the loss
undergoes a decrease which ensures the emergence of Phase 2 which in turn triggers that of Phase 3
which is characterized by an exponential decay to an asymptotic loss level: As a practical example,
we verify the dynamics of the expected loss around a minimum in the center-left of Figure 2.

4See Lemma C.21 for their definitions.
5The SDE of SGD is dXt = −∇f(Xt)dt+

√
ηΣ

1
2 dWt.
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Figure 2: Phases of SignSGD: The ODE of Phase 1 and the SDE of Phase 3 overlap with the “Full”
SDE as per Lemma 3.4. In Phase 2, the dynamics satisfies the prescribed bounds (Left); Phases
of the Loss: The bounds derived in Lemma 3.5 for the loss during the different phases correctly
track the loss evolution (Center-Left); The dynamics of the moments of Xt predicted in Lemma 3.7
track the empirical ones (Center-Right); If the schedulers satisfy the condition in Lemma 3.9, the
loss decays to 0 as prescribed. Otherwise, the loss does not converge to 0 (Right). For each figure,
f(x) = x⊤Hx

2 for H = diag(1, 2), η = 0.001, and Σ = σ2I2 where σ = 0.1.

Lemma 3.6. For SGD, the expected loss satisfies: E[St] ≤ S0e
−2µt + η

2
Lτσ

2
max

2µ

(
1− e−2µt

)
.

Remark: The two key observations are that:

1. Both in Phase 2 and Phase 3, the noise level σmax inversely affects the exponential conver-
gence speed, while this trend is not observed with SGD;

2. The asymptotic loss of SignSGD is (almost) linear in σmax while that of SGD is quadratic.
Indeed, the asymptotic value of E[St] in Phase 3 scales with 1

∆ = πσmax√
2π+ ηµ

σmax

: when the

noise σmax dominates the learning rate η and/or the minimum eigenvalue µ of the Hessian,
or in general when ηµ

σmax
∼ 0, we can conclude that the scaling is (almost) linear in σmax.

Additionally, we characterize the stationary distribution of SignSGD around a minimum. To do this,
we study the behavior of SignSGD on a quadratic loss function, which is a common approach in
the literature (Ge et al., 2015; Levy, 2016; Jin et al., 2017; Poggio et al., 2017; Mandt et al., 2017;
Compagnoni et al., 2023). Empirical validation is provided in the center-right of Figure 2.

Lemma 3.7. Let H = diag(λ1, . . . , λd) and Mt := e
−2

(√
2
πΣ− 1

2 H+ η
πΣ−1H2

)
t. Then,

1. E [Xt] = e−
√

2
πΣ− 1

2 HtX0;

2. Cov [Xt] =
(
Mt − e−2

√
2
πΣ− 1

2 Ht
)
X2

0 + η
2

(√
2
π Id +

η
πHΣ− 1

2

)−1

H−1Σ
1
2 (Id −Mt).

Therefore, we have that the stationary distribution of SignSGD is:

(E[X∞], Cov[X∞]) =

(
0,

η

2

(√
2

π
Id +

η

π
HΣ− 1

2

)−1

H−1Σ
1
2

)
.

Proof idea. For the E[Xt], we take the expected value of the SDE of Phase 3 from Lemma 3.4 and
integrate the resulting ODE. For Cov[Xt], we derive the SDE of XtX

⊤
t via Itô’s lemma, take the

expectation, and integrate the resulting ODE. Then, we subtract E[Xt]E[Xt]
⊤.

Lemma 3.8. Under the same assumptions as Lemma 3.7, the stationary distribution for SGD is:

E [Xt] = e−HtX0
t→∞→ 0 and Cov [Xt] =

η
2H

−1Σ
(
Id − e−2Ht

) t→∞→ η
2H

−1Σ.

As we observed above, the noise inversely affects the convergence rate of the iterates of SignSGD
while it does not impact that of SGD. Additionally, while both covariance matrices essentially scale
inversely to the Hessian, that of SignSGD scales with Σ

1
2 while that of SGD scales with Σ.

We conclude this section by presenting a condition on the step size scheduler that ensures the
asymptotic convergence of the expected loss to 0 in Phase 3. For general schedulers, we characterize
precisely the speed of convergence and the factors influencing it. Empirical validation is provided in
the right of Figure 2 for a convex quadratic as we use ηϑt = 1

(t+1)ϑ
for ϑ ∈ { 1

10 ,
1
2 ,

3
2}.
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Lemma 3.9. Under the assumptions of Lemma 3.5, any step size scheduler ηt such that∫ ∞

0

ηsds = ∞ and lim
t→∞

ηt = 0 =⇒ E[f(Xt)− f(X∗)]
t→∞→ ≲

Lτσmax

4µ

√
π

2
ηt

t→∞→ 0. (6)

Remark: Under the same conditions, SGD satisfies E[f(Xt)− f(X∗)]
t→∞→ ≲ Lτσ

2
max

4µ ηt
t→∞→ 0.

Conclusion: As noted in Bernstein et al. (2018), the “signal-to-noise” ratio is key in determining
the dynamics of SignSGD. Our SDEs help clarify the mechanisms underlying the dynamics of
SignSGD: we show that the effect of noise is radically different from SGD: 1) It affects the rate
of convergence of the iterates, of the covariance of the iterates, and of the expected loss; 2) The
asymptotic loss value and covariance of the iterates scale in Σ

1
2 while for SGD it does so in

Σ. On the one hand, low levels of noise will ensure a faster and steadier loss decrease close to
minima for SignSGD than for SGD. On the other, SGD will converge to much lower loss values.
A symmetric argument holds for high levels of noise, which suggests that SignSGD is more
resilient to high levels of noise.

3.1.1 HEAVY-TAILED NOISE

Interestingly, we can replicate the efforts above also in case the noise Z(x) is heavy-tailed as it is
distributed according to a Student’s t distribution. Notably, we derive the SDE for the case where the
noise has infinite variance and show how little marginal effect this has on the dynamics of SignSGD.
Lemma 3.10. Under the assumptions of Corollary 3.3 where the noise on the gradients Z ∼ tν(0, Id)
and ν ∈ Z+, the following SDE is a 1 weak approximation of the discrete update of SignSGD

dXt = −2Ξ
(
Σ− 1

2∇f(Xt)
)
dt+

√
η

√
Id − 4 diag

(
Ξ
(
Σ− 1

2∇f(Xt)
))2

dWt, (7)

where Ξ(x) is defined as Ξ(x) := x
Γ( ν+1

2 )
√
πνΓ( ν

2 )
2F1

(
1
2 ,

ν+1
2 ; 3

2 ;−
x2

ν

)
, Γ is the gamma function, and

2F1 is the hypergeometric function. Above, the Ξ(x) and the square are applied component-wise.

We now characterize the dynamics of SignSGD when the noise on the gradient has infinite variance.
Corollary 3.11. Under the assumptions of Lemma 3.10 and ν = 2, the dynamics in Phase 3 is:

dXt = −
√

1

2
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

1

2
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (8)

Conclusion: We observe that the dynamics of SignSGD when the noise is Gaussian (Eq. 5)
w.r.t. when it is heavy-tailed with unbounded variance (Eq. 8) are very similar: By comparing
the constants (

√
1/2 and

√
2/π) in front of the drift terms Σ− 1

2∇f(Xt), they are only ∼ 10%
apart, and the diffusion coefficients are comparable. Not only do we once more showcase the
resilience of SignSGD to high levels of noise, but in alignment with (Zhang et al., 2020b), we
provide theoretical support to the success of Adam in such a scenario where SGD would diverge.

All the results derived above can be extended to this heavy-tailed noise setting: See Compagnoni
et al. (2025) for a detailed discussion in the distributed setting.

3.2 ADAMW SDE
In the last subsection, we showcased how SDEs can serve as powerful tools to understand the
dynamics of the simplest among coordinate-wise adaptive methods: SignSGD. Here, we extend the
discussion to Adam with decoupled weight decay, i.e. AdamW:

vk+1 = β2vk + (1− β2) (∇fγk
(xk))

2
, mk+1 = β1mk + (1− β1)∇fγk

(xk),

xk+1 = xk − η
m̂k+1√
v̂k+1 + ϵ

− ηθxk, m̂k =
mk

1− βk
1

, v̂k =
vk

1− βk
2

, (9)

which, of course, covers Adam, RMSprop, and RMSpropW depending on the values of θ and β1.

The following result proves the SDE of AdamW which we validate in Figure 3 for two simple
landscapes and in Figure 4 for a Transformer and a ResNet.

7



Published as a conference paper at ICLR 2025

1 0 1
X1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

X 2

Trajectories
AdamW
AdamW SDE
RMSpropW
RMSpropW SDE

0

3

6

9

12

15

18

21

0 10000 20000 30000 40000 50000
Iterations

10 3

10 2

10 1

100

101

Lo
ss

Losses
AdamW
AdamW SDE
RMSpropW
RMSpropW SDE

2 1 0 1 2
X1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

X 2

Trajectories

AdamW
AdamW SDE
RMSpropW
RMSpropW SDE

2

1

0

1

2

3

4

5

6

0 5000 10000 15000 20000 25000
Iterations

10 3

10 2

10 1

100

Lo
ss

Losses

AdamW
AdamW SDE
RMSpropW
RMSpropW SDE

Figure 3: The two images on the left compare the SDEs of AdamW and RMSpropW with the
respective optimizers in terms of trajectories and f(x) for a convex quadratic function while the other
two provide a comparison for an embedded saddle. In all cases, we observe good agreements.

Theorem 3.12 (Informal Statement of Theorem C.53). Under sufficient regularity conditions, ρ1 =
O(η−ζ) s.t. ζ ∈ (0, 1), and ρ2 = O(1), the order 1 weak approximation of AdamW is:

dXt = −
√
ι2(t)

ι1(t)
P−1
t (Mt + ηρ1 (∇f (Xt)−Mt))dt− θXtdt (10)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1
√

Σ (Xt)dWt (11)

dVt = ρ2
(
(∇f(Xt))

2 + diag (Σ (Xt))− Vt

)
dt, (12)

where βi = 1− ηρi ∼ 1, ιi(t) = 1− e−ρit, t > t0, and Pt = diag
√
Vt + ϵ

√
ι2(t)Id.

Mt and Vt are the exponential moving averages of the gradient and the squared gradient, respectively.
P−1
t acts as an adaptive preconditioner, scaling the parameter updates Xt based on the accumulated

squared gradients in Vt. While Mt is the momentum term and captures the history of gradients
to smooth out the updates, ηρ1 (∇f (Xt)−Mt) adjusts Mt towards the current gradient, ensuring
responsiveness to recent changes. Finally, −θXt dt applies regularization by shrinking the parameters.

We highlight that in contrast to Remark 4.3 of Malladi et al. (2022), which suggests that an SDE for
Adam is only viable if σ ≫ ∥∇f(x)∥ and σ ∼ 1

η , our derivation that does not need these assumptions:
See Remark C.46 for a deeper discussion, the implications, and the experimental comparisons.

The following result demonstrates how the asymptotic expected loss of AdamW scales with the noise
level. Notably, it introduces the first scaling rule for AdamW, proposing an alternative to the one
proposed for Adam in (Malladi et al., 2022) and extending it to include weight decay scaling. It is
crucial to understand that, unlike the typical approach in the literature (see (Jastrzebski et al., 2018;
Malladi et al., 2022)), our objective in deriving these rules is not to maintain the dynamics of the
optimizers or the SDE unchanged. Instead, our goal is to offer a practical strategy for adjusting
hyperparameters (e.g., from η to η̃) to retain certain performance metrics or optimizer properties as
the batch size increases (e.g., from B to B̃). Therefore, in our upcoming analysis, we aim to derive
scaling rules that preserve specific relevant aspects of the dynamics, such as the convergence bound
on the loss or the speed. See Appendix E for a more detailed discussion motivating our approach.
Lemma 3.13. If f is µ-strongly convex and L-smooth, Tr(∇2f(x)) ≤ Lτ , X∗ = 0, Σ(x) = σ2Id,
and (∇f(x))2 = O(η), η̃ = κη, B̃ = Bδ, and ρ̃i = αiρi, and θ̃ = ξθ, AdamW satisfies

E[f(Xt)− f(X∗)]
t→∞
≤ ηLτσL

2

κ

2µ
√
BδL+ σξθ(L+ µ)

. (13)

We derive the novel scaling rule by 1) Preserving the upper bound, which requires that κ =
√
δ and

ξ = κ; 2) Preserving the relative speed of Mt, Vt and Xt, which requires that β̃i = 1− κ(1− βi).
The left of Figure 5 shows the empirical verification of the predicted loss value and scaling rule on a
convex quadratic function: Consistently with Lemma 3.13, such a value is bounded w.r.t. σ, meaning
that the loss of AdamW does not diverge to infinity even if there is an infinite level of gradient noise:
See the right of Figure 6 for an experimental validation. Interestingly, the asymptotic loss value is not
influenced by the choice of βi: We argue that βi do not impact the asymptotic level of the loss, but
rather drive the selection of the basin and speed at which AdamW converges to it — The center-right
of Fig. 5 exemplifies this on a simple non-convex landscape. Finally, we observe that the scaling rule
informally derived in Malladi et al. (2022) prescribes β̃i = 1− κ2(1− βi): This can be recovered by
preserving other quantities. While there is no reason to prefer one over the other a priori, our analysis
on LLMs in Appendix F.8 shows that our rescaling might be preferable in practice.
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Figure 4: The two images on the left represent the comparison between AdamW and its SDE in terms
of f(x). The two on the right do the same for RMSpropW. In both cases, the first is a Transformer on
MNIST and the second a ResNet on CIFAR-10: Our SDEs match the respective optimizers.

1 4000 8000 12000 16000 20000
Iterations

10 4

10 3

10 2

Lo
ss

Losses
AdamW ( = 1)
AdamW R ( = 1)
AdamW NR ( = 1)
Theor. Pred. ( = 1)
AdamW ( = 4)
AdamW R ( = 4)
AdamW NR ( = 4)
Theor. Pred. ( = 4)

1 4000 8000 12000 16000 20000
Iterations

10 3

10 2

Lo
ss

Losses
RMSpropW ( = 1)
RMSpropW R ( = 1)
RMSpropW NR ( = 1)
Theor. Pred. ( = 1)
RMSpropW ( = 4)
RMSpropW R ( = 4)
RMSpropW NR ( = 4)
Theor. Pred. ( = 4)

0 10000 20000 30000 40000 50000
Iterations

10 4

10 2

100

102

Lo
ss

Losses - AdamW

1 = 0.999, 2 = 0.998
1 = 0.999, 2 = 0.996
1 = 0.999, 2 = 0.992
1 = 0.9, 2 = 0.998
1 = 0.9, 2 = 0.996
1 = 0.9, 2 = 0.992

0 20000
t

10 7

10 6

10 5

10 4

Va
r[X

1]

AdamW
RMSpropW
Theor. Pred.

0 20000
t

10 7

10 6

10 5

10 4

10 3

Va
r[X

2]

AdamW
RMSpropW
Theor. Pred.

Figure 5: The loss predicted in Lemma 3.13 matches the experimental results on a convex quadratic
function. AdamW is run with regularization parameter θ = 1. AdamW R (AdamW Rescaled) is run
as we apply the scaling rule with κ = 2. AdamW NR (AdamW Not Rescaled) is run as we apply
the scaling rule with κ = 2 on all hyperparameters but θ, which is left unchanged: Our scaling rule
holds, and failing to rescale θ leads the optimizer not to preserve the asymptotic loss level. The same
happens for θ = 4 (Left); The same for RMSpropW (Center-Left); For AdamW, β1 and β2 influence
which basin will attract the dynamics and how fast this will converge, but not the asymptotic loss
level inside the basin (Center-Right). For both AdamW and RMSpropW, the variance at convergence
predicted in Lemma 3.14 matches the experimental results (Right).

Interestingly, the fact that the weight decay is decoupled is key to determining the dependency of
the asymptotic loss of AdamW w.r.t. the noise level σ. While the asymptotic loss of AdamW is
upper-bounded in σ, the same does not hold if we use Adam on the L2-regularized loss f(x)+ θ∥x∥2

2

2 .

Under the same assumptions of Lemma 3.13, the dynamics of Adam on f(x) +
θ∥x∥2

2

2 implies that

E[f(Xt)− f(X∗)]
t→∞
≤ ηLτσ

2

L

2µL+ θ(L+ µ)
, (14)

meaning that the asymptotic loss level grows linearly in σ: See Figure 14 for empirical validation.

We conclude this section with the stationary distribution of AdamW around a minimum which we
empirically validate on the right of Figure 5.
Lemma 3.14. If Σ(x) = Σ, the stationary distribution of AdamW is

(E[X∞], Cov[X∞]) =

(
0,

η

2

(
Id + θH−1Σ

1
2

)−1

H−1Σ
1
2

)
.

RMSpropW We derived the analogous results for RMSprop(W) and we reported them in Appendix
C.7: importantly, we validate the SDE in Figure 3 for two simple landscapes and in Figure 4 for a
Transformer and a ResNet. The results regarding the asymptotic loss level and stationary distributions
are validated in the center-left and right of Figure 5 for a convex quadratic function.

Conclusion: While for both SignSGD and Adam the asymptotic loss value and the covariance of
the iterates scale linearly with Σ

1
2 , we observe for AdamW this is more intricate: The interaction

between curvature, noise, and regularization implies that these two quantities are upper-bounded
in Σ

1
2 and increasing Σ to infinity does not lead to their explosion: decoupled weight decay

plays a crucial stabilization role at high noise levels near the minimizer — See Figure 6 for a
comparison across optimizers. Finally, we argue that βi play a key role in selecting the basin and
the convergence speed to the asymptotic loss value rather than impacting the loss value itself.
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Figure 6: For SGD (Left), SignSGD (Center-Left), Adam (Center-Right), and AdamW: For each
optimizer, we plot the loss value on a convex quadratic and compare its asymptotic value with the
limits predicted by our theory. As we take Σ = σ2Id, we confirm that the loss of SGD scales
quadratically in σ (Lemma 3.6), and linearly for SignSGD (Lemma 3.5) and Adam (Lemma 3.13
with θ = 0). For AdamW, the maximum asymptotic loss value is bounded in σ (Lemma 3.13 with
θ > 0). In accordance with the experiments, our theory predicts that adaptive methods are more
resilient to noise.

4 EXPERIMENTS: SDE VALIDATION

The point of our experiments is to validate the theoretical results derived from the SDEs. Therefore,
we first show that our SDEs faithfully represent the dynamics of their respective optimizers. To do
so, we integrate the SDEs with Euler-Maruyama (Algorithm 1): This is particularly challenging and
expensive as one needs to calculate the full gradients of the DNNs at each iteration.6 Ours is the first
set of validation experiments on various architectures and datasets: An MLP on the Breast Cancer
dataset, a CNN and a Transformer on MNIST, and a ResNet on CIFAR-10. Details in Appendix F.

5 CONCLUSION

We derived the first formal SDE for SignSGD, enabling us to demonstrate its dynamics traversing
three discernible phases. We characterize how the “signal-to-noise” ratio drives the dynamics of
the loss in each of these phases, and we derive the asymptotic value of the loss function, as well as
the stationary distribution. Regarding the role of noise, we draw a straightforward comparison with
SGD. For SignSGD, the noise level

√
Σ has an inverse linear effect on the convergence speed of the

loss and the iterates. However, it linearly affects the asymptotic expected loss and the asymptotic
variance of the iterates. In contrast, for SGD, noise does not influence the convergence speed but
has a quadratic impact on the loss level and variance. We also examine the scenario where the noise
has infinite variance and demonstrate the resilience of SignSGD, showing that its performance is
only marginally affected. Finally, we generalize the analysis to include AdamW and RMSpropW.
Specifically, we leverage our novel SDEs to derive the asymptotic value of the loss function, their
stationary distribution on a convex quadratic, and a novel scaling rule. The key insight is that, similarly
to SignSGD, the loss level and covariance matrix of the iterates of Adam and RMSprop scale linearly
in the noise level Σ

1
2 . For AdamW and RMSpropW, the complex interaction of noise, curvature, and

regularization implies that these two quantities are bounded in terms of Σ
1
2 , showing that decoupled

weight decay plays a crucial stabilization role at high noise levels near the minimizer. Interestingly,
the SDEs for Adam and RMSprop are a straightforward corollary of our general results and were
derived under much less restrictive and more realistic assumptions than those in the literature. Finally,
we thoroughly validate all our theoretical results: We compare the dynamics of the various optimizers
with the respective SDEs and find good agreement on simple landscapes and DNNs. For Adam and
RMSprop, our SDEs track them more faithfully than those derived in (Malladi et al., 2022).

Future work We believe our results can be extended to other optimizers commonly used in practice
such as Signum, AdaGrad, AdaMax, and Nadam. Additionally, inspired by the insights from our
SDE analysis, there is potential for designing new optimization algorithms that combine and preserve
the strengths of existing methods while mitigating their weaknesses. For example, developing hybrid
optimizers that adaptively switch between different strategies based on the training phase or current
state of the optimization process could offer superior performance.

6Many papers derive SDEs to model optimizers, but most lack validation. Some use toy landscapes, while
only Paquette et al. (2021); Compagnoni et al. (2023) validate on simple DNNs. See Appendix A for details.
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A ADDITIONAL RELATED WORKS

In this section, we list some papers that derived or used SDEs to model optimizers. In particular, we
focus on the aspect of empirically verifying the validity of such SDEs in the sense that they indeed
track the respective optimizers. We divide these into three categories: Those that did not carry out
any type of validation, those that did it on simple landscapes (quadratic functions et similia), and
those that did small experiments on neural networks.

While the following works contribute to the theoretical understanding, they do not provide direct
experimental validation of their SDE approximations or the derived insights: (Liu et al., 2021; Hu
et al., 2019; Bercher et al., 2020; Zhu and Ying, 2021; Cui et al., 2020; Maulén Soto, 2021; Wang and
Wu, 2020; Lanconelli and Lauria, 2022; Ayadi and Turinici, 2021; Soto et al., 2022; Li and Wang,
2022; Wang and Mao, 2022; Bardi and Kouhkouh, 2022; Chen et al., 2022; Kunin et al., 2023; Zhang
et al., 2023; Sun et al., 2023; Li et al., 2023b; Gess et al., 2024; Dambrine et al., 2024; Maulen-Soto
et al., 2024).

The following ones carried out validation experiments on artificial landscapes, e.g. quadratic or
quartic function, or easy regression tasks: (Li et al., 2017; 2019; Zhou et al., 2020b; An et al., 2020;
Fontaine et al., 2021; Gu et al., 2021; Su and Lau, 2023; Ankirchner and Perko, 2024).

Some recent papers have performed experiments involving neural networks (see, e.g., (Paquette
et al., 2021; Compagnoni et al., 2023)). In both works, the authors simulate the corresponding SDEs
using numerical integrators and then compare the results with those of the associated optimizers.
Specifically, (Paquette et al., 2021) validates the SDE on a shallow MLP, while (Compagnoni et al.,
2023) performs the validation on both a shallow and a deep MLP.

In contrast, the studies by (Li et al., 2021; Malladi et al., 2022) do not empirically validate their
derived SDEs through numerical integration. While their analysis of SVAG provides valuable insights,
we believe there are conceptual aspects worth discussing:

1. After deriving an SDE for an optimizer which we refer to as “Optimizer A”, one observes
that simulating these SDEs can be computationally expensive;

2. To mitigate this computational challenge, (Li et al., 2021; Malladi et al., 2022) introduce
a discrete-time algorithm called SVAG, which shares the same SDE as “Optimizer A”.
Importantly, SVAG does not perform a numerical integration of the original SDE, as it does
not require access to either the drift or diffusion term;

3. (Li et al., 2021; Malladi et al., 2022) simulate SVAG and observe that it tracks “Optimizer
A” closely, which they interpret as evidence that the SDE is a suitable approximation for
“Optimizer A”.

However, it is important to note that (Li et al., 2021; Malladi et al., 2022) do not directly validate the
SDE by simulating it. To illustrate a potential concern with this approach, consider the following
hypothetical scenario:

1. Derive an SDE for “Optimizer A”;

2. Recognize that simulating the SDE is computationally costly;

3. Define another discrete-time algorithm called “Optimizer B”, which coincides with “Opti-
mizer A” and therefore, by definition, shares the same SDE;

4. Simulate “Optimizer B” and observe that it tracks “Optimizer A” perfectly, since they are
identical by construction;

5. Conclude that the SDE is a good approximation for “Optimizer A”.
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While the reasoning in prior work (Li et al., 2021; Malladi et al., 2022) demonstrates that SVAG is a
discrete-time optimizer that shares the same SDE as “Optimizer A”, this alone does not establish that
the SDE is the correct or most suitable model for “Optimizer A”. Simply comparing two algorithms
that share an SDE does not necessarily confirm the validity of the SDE itself. Otherwise, an optimizer
compared with itself would trivially satisfy this criterion. A more direct validation of the SDE would
require numerical integration using a method that explicitly incorporates the drift and diffusion terms
(Higham, 2001; Milstein, 2013).

B STOCHASTIC CALCULUS

In this section, we summarize some important results in the analysis of Stochastic Differential
Equations Mao (2007); Øksendal (1990). The notation and the results in this section will be used
extensively in all proofs in this paper. We assume the reader to have some familiarity with Brownian
motion and with the definition of stochastic integral (Ch. 1.4 and 1.5 in Mao (2007)).

B.1 ITÔ’S LEMMA

We start with some notation: Let (Ω,F , {Ft}t≥0,P) be a filtered probability space. We say that an
event E ∈ F holds almost surely (a.s.) in this space if P(E) = 1. We call Lp([a, b],Rd), with p > 0,
the family of Rd-valued Ft-adapted processes {ft}a≤t≤b such that∫ b

a

∥ft∥pdt ≤ ∞.

Moreover, we denote by Mp([a, b],Rd), with p > 0, the family of Rd-valued processes {ft}a≤t≤b

in L([a, b],Rd) such that E
[∫ b

a
∥ft∥pdt

]
≤ ∞. We will write h ∈ Lp

(
R+,Rd

)
, with p > 0, if

h ∈ Lp
(
[0, T ],Rd

)
for every T > 0. Similar definitions hold for matrix-valued functions using the

Frobenius norm ∥A∥ :=
√∑

ij |Aij |2.

Let W = {Wt}t≥0 be a one-dimensional Brownian motion defined on our probability space and let
X = {Xt}t≥0 be an Ft-adapted process taking values on Rd.

Definition B.1. Let the drift be b ∈ L1
(
R+,Rd

)
and the diffusion term be σ ∈ L2

(
R+,Rd×m

)
.

Xt is an Itô process if it takes the form

Xt = x0 +

∫ t

0

bsds+

∫ t

0

σsdWs.

We shall say that Xt has the stochastic differential

dXt = btdt+ σtdWt. (15)

Theorem B.2 (Itô’s Lemma). Let Xt be an Itô process with stochastic differential dXt = btdt +
σtdWt. Let f (x, t) be twice continuously differentiable in x and continuously differentiable in t,
taking values in R. Then f(Xt, t) is again an Itô process with stochastic differential

df(Xt, t) = ∂tf(Xt, t))dt+ ⟨∇f(Xt, t), bt⟩dt+
1

2
Tr
(
σtσ

⊤
t ∇2f(Xt, t)

)
dt+ ⟨∇f(Xt, t), σt⟩dWt.

(16)

B.2 STOCHASTIC DIFFERENTIAL EQUATIONS

Stochastic Differential Equations (SDEs) are equations of the form

dXt = b(Xt, t)dt+ σ(Xt, t)dWt.

First of all, we need to define what it means for a stochastic process X = {Xt}t≥0 with values in Rd

to solve an SDE.
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Definition B.3. Let Xt be as above with deterministic initial condition X0 = x0. Assume b :
Rd × [0, T ] → Rd and σ : Rd × [0, T ] → Rd×m are Borel measurable; Xt is called a solution to the
corresponding SDE if

1. Xt is continuous and Ft-adapted;

2. b ∈ L1
(
[0, T ],Rd

)
;

3. σ ∈ L2
(
[0, T ],Rd×m

)
;

4. For every t ∈ [0, T ]

Xt = x0 +

∫ t

0

b(Xs, s)ds+

∫ t

0

σ(Xs, s)dW (s) a.s.

Moreover, the solution Xt is said to be unique if any other solution X⋆
t is such that

P {Xt = X⋆
t , for all 0 ≤ t ≤ T} = 1.

Notice that since the solution to an SDE is an Itô process, we can use Itô’s lemma. The following
theorem gives a sufficient condition on b and σ for the existence of a solution to the corresponding
SDE.

Theorem B.4. Assume that there exist two positive constants K̄ and K such that

1. (Global Lipschitz condition) for all x, y ∈ Rd and t ∈ [0, T ]

max{∥b(x, t)− b(y, t)∥2, ∥σ(x, t)− σ(y, t)∥2} ≤ K̄∥x− y∥2;

2. (Linear growth condition) for all x ∈ Rd and t ∈ [0, T ]

max{∥b(x, t)∥2, ∥σ(x, t)∥2} ≤ K(1 + ∥x∥2).

Then, there exists a unique solution Xt to the corresponding SDE, and Xt ∈ M2([0, T ],Rd).

Numerical approximation. Often, SDEs are solved numerically. The simplest algorithm to provide
a sample path (x̂k)k≥0 for Xt, so that Xk∆t ≊ x̂k for some small ∆t and for all k∆t ≤ M is called
Euler-Maruyama (Algorithm 1). For more details on this integration method and its approximation
properties, the reader can check Mao (2007).

Algorithm 1 Euler-Maruyama Integration Method for SDEs

input The drift b, the volatility σ, and the initial condition x0.
Fix a stepsize ∆t;
Initialize x̂0 = x0;
k = 0;
while k ≤

⌊
T
∆t

⌋
do

Sample some d-dimensional Gaussian noise Zk ∼ N (0, Id);
Compute x̂k+1 = x̂k +∆t b(x̂k, k∆t) +

√
∆t σ(x̂k, k∆t)Zk;

k = k + 1;
end while

output The approximated sample path (x̂k)0≤k≤⌊ T
∆t⌋.

C THEORETICAL FRAMEWORK - WEAK APPROXIMATION

In this section, we introduce the theoretical framework used in the paper, together with its assumptions
and notations.
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First of all, many proofs will use Taylor expansions in powers of η. For ease of notation, we introduce
the shorthand that whenever we write O (ηα), we mean that there exists a function K(x) ∈ G such
that the error terms are bounded by K(x)ηα. For example, we write

b(x+ η) = b0(x) + ηb1(x) +O
(
η2
)

to mean: there exists K ∈ G such that

|b(x+ η)− b0(x)− ηb1(x)| ≤ K(x)η2.

Additionally, we introduce the following shorthand:

• A multi-index is α = (α1, α2, . . . , αn) such that αj ∈ {0, 1, 2, . . .};
• |α| := α1 + α2 + · · ·+ αn;
• α! := α1!α2! · · ·αn!;
• For x = (x1, x2, . . . , xn) ∈ Rn, we define xα := xα1

1 xα2
2 · · ·xαn

n ;

• For a multi-index β, ∂|β|
β f(x) := ∂|β|

∂
β1
x1

∂
β2
x2

···∂βn
xn

f(x);

• We also denote the partial derivative with respect to xi by ∂ei .

Definition C.1 (G Set). Let G denote the set of continuous functions Rd → R of at most polynomial
growth, i.e. g ∈ G if there exists positive integers ν1, ν2 > 0 such that |g(x)| ≤ ν1

(
1 + |x|2ν2

)
, for

all x ∈ Rd.
Definition C.2 (Ck

b (Rn,R)). Ck
b (Rn,R) denotes the space of functions whose k-th derivatives are

bounded.

The next results are inspired by Theorem 1 of Li et al. (2017) and are derived under some regularity
assumption on the function f .

C.1 ASSUMPTIONS

In general, we assume some regularity in the loss function.

Assumption C.3. Assume that the following conditions on f, fi ∈ C8
b (Rn,R), and their

gradients are satisfied:
• ∇f,∇fi satisfy a Lipschitz condition: there exists L > 0 such that

|∇f(u)−∇f(v)|+
n∑

i=1

|∇fi(u)−∇fi(v)| ≤ L|u− v|;

• f, fi and its partial derivatives up to order 7 belong to G;
• ∇f,∇fi satisfy a growth condition: there exists M > 0 such that

|∇f(x)|+
n∑

i=1

|∇fi(x)| ≤ M(1 + |x|).

Regarding the gradient noise, each optimizer has its mild assumptions which are weaker or in line
with the literature.

SignSGD

1. The gradient noise Z(x) admits a strictly positive density function gx for all x and require
that g : Rn × Rn → [0,∞) s.t. (x, y) 7→ gx(y) is in C8(Rn × Rn) such that all partial
derivatives of g up to order 8 are integrable with respect to y and s.t. their L1-norms are
uniformly bounded in x. This assumption covers Gaussian and Student’s t, thus being more
general than the literature. Indeed, the Gaussianity of the noise is commonly assumed:
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Among others, see Ahn et al. (2012); Chen et al. (2014); Mandt et al. (2016); Stephan et al.
(2017); Zhu et al. (2019); Wu et al. (2020); Xie et al. (2021), while Jastrzebski et al. (2018)
offers an intuitive justification as well;

2. For all compact sets K
sup
x∈K

|g(x, ·)| ∈ L1(Rn),

which of course covers the Gaussian case, thus being more general than the literature.

3. The functions in Eq. 18 to be in G, which, as we show below, covers Gaussian and Student’s
t, thus being more general than the literature.

Adam(W) and RMSprop(W)

1. In line with Malladi et al. (2022), we assume that
√
Σ(x) is: In G together with its derivatives,

Lipschitz, bounded, and satisfy Affine Growth;

2. The term (∇f(x))2 to be Lipschitz and of affine growth, which is a consequence of assuming
bounded gradients as often done in the literature on the convergence of RMSprop and Adam:
Among many, see (Luo et al., 2019; Défossez et al., 2022; Guo et al., 2021; Huang et al.,
2021) together with the discussion in Section 2.1 of Shi and Li (2021).

Remark All the assumptions above are in line with or more general than those commonly found
in the literature. In line with Remark 11 of the seminal paper Li et al. (2019), we observe that
while some of these assumptions might seem strong, loss functions in applications have inward
pointing gradients for sufficiently large x. Therefore, we could simply modify the loss to satisfy the
assumptions above.

Regarding the drift and diffusion coefficients, we highlight that many papers in the literature following
this framework do not check for their regularity before applying the approximation theorems Hu
et al. (2019); An et al. (2020); Zhu and Ying (2021); Cui et al. (2020); Maulén Soto (2021); Wang
and Mao (2022); Compagnoni et al. (2023; 2024); Li et al. (2017). At first sight, it would seem that
not even the seminal paper Li et al. (2019) checks these conditions carefully. However, a deeper
investigation shows that they are restricting their analysis to compact sets to leverage the regularity
and convergence properties of mollifiers: The assumption regarding the compactness of the domain
is not highlighted nor assumed in any part of the paper. Therefore, we conclude that, willingly or not,
most papers implicitly make these assumptions.

C.2 TECHNICAL RESULTS

In this subsection, we provide some results that will be instrumental in the derivation of the SDEs.

Lemma C.4. Assume the existence of a probability density gx of the gradient noise Z(x) for all x
and require that g : Rn × Rn → [0,∞) ; (x, y) 7→ gx(y) is in C8(Rn × Rn) such that all partial
derivatives of g up to order 8 are integrable with respect to y and such that their L1−norms are
uniformly bounded in x. Further, let f ∈ C8(Rn) and h : Rn → R be a bounded Borel measurable
function. Define the function k by

k(x) = E [h(∇fγ(x))] .

Then there exists a version k̂ of k with k̂ ∈ C7
b (Rn).

Proof. Let φ be smooth and compactly supported. Then for all multi indices β with |β| ≤ 8,
substitution, Fubini‘s theorem, and integration by parts imply that∫

Rn

k(x)∂
|β|
β φ(x)dx =

∫
Rn

E [h(∇fγ(x))] ∂
|β|
β φ(x)dx

=

∫
Rn

∫
Rn

h(y)gx(y −∇f(x))dy∂
|β|
β φ(x)dx

= (−1)|β|
∫
Rn

∫
Rn

h(y)∂
|β|
β (gx(y −∇f(x)))dyφ(x)dx.
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So ∫
Rn

h(y)∂
|β|
β (gx(y −∇f(x)))dy

is a weak derivative ∂
|β|
β k of k on any bounded open set. For compact sets K we obtain that∫

K

∣∣∣∣∫
Rn

h(y)∂
|β|
β (gx(y −∇f(x)))dy

∣∣∣∣p dx
≤ ∥h∥p∞ λn(K)

(
sup
x∈Rn

∫
Rn

∣∣∣∂|β|
β (gx(y −∇f(x)))

∣∣∣ dy)p

< ∞

for all p ≥ 2 because of our assumptions on g and f and substitution (λn Lebesgue measure). So it
follows from Sobolev embeddings with respect to Hölder spaces that for all bounded and open sets Ω
there exists a version k̂ of k such that k̂ ∈ C7(Ω). The latter version can be extended to Ω = Rn,
which we also denote by k̂. Since ∂

|β|
β k is bounded for |β| ≤ 8, we conclude that k̂ ∈ C7

b (Rn).

Lemma C.5. Assuming that for all compact sets K

sup
x∈K

|g(x, ·)| ∈ L1(Rn),

and the positivity of the density functions, we have that for m = 1, . . . , 7 that∥∥∥∂j1 . . . ∂jmA1/2(x)
∥∥∥ ≤ Clm(x), (17)

where the function lm(x) is defined as

lm(x) :=

m−1∑
r=0

(
1

m(x) + s(x)(n− 1)1/2

(
1 +

2s(x)(n− 1)1/2

m(x)− s(x)(n− 1)−1/2

))−(r+1/2)

× max
|β|≤m

∥∥∥∂|β|
β A(x)

∥∥∥r+1

. (18)

Proof. To prove this, we need the fact that the Fréchet derivatives of the square root function φ can
be represented as follows (see Theorem 1.1 in Del Moral and Niclas (2018)):

∇φ(A)[H] =

∫ ∞

0

e−tφ(A)He−tφ(A)dt,

and higher derivatives of order m ≥ 2 are given by

∇mφ(A)[H, . . . ,H] = −∇φ(A)

[ ∑
p+q=m−2

m!

(p+ 1)!(q + 1)!
(∇p+1φ(A)[H, . . . ,H])

×(∇q+1φ(A)[H, . . . ,H])
]

(19)

for all A ∈ S and symmetric n×n matrices H . Moreover, we have the following estimate for m ≥ 0:∥∥∇m+1φ(A)
∥∥ ≤ (

√
n)m(m+ 1)!Cm2−2(m+1)λmin(A)−(m+1/2), (20)

where λmin(A) > 0 is the smallest eigenvalue of A and Cm := 1
m+1

(
2m
m

)
.

We find that ∂lA1/2(x) = ∇φ(A(x))[∂lA(x)] and

∂j∂lA
1/2(x) = ∇2φ(A(x))[∂jA(x), ∂lA(x)] +∇φ(A(x))[∂j∂lA(x)].

Thus, it follows from Eq. (20) that∥∥∥∂lA1/2(x)
∥∥∥ ≤ Cλmin(A(x))−1/2 ∥∂lA(x)∥ ,

and ∥∥∥∂j∂lA1/2(x)
∥∥∥ ≤ C1λmin(A(x))−(1+1/2) ∥∂jA(x)∥ ∥∂lA(x)∥

+C2λmin(A(x))−1/2 ∥∂j∂lA(x)∥ .
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More generally, for m = 1, . . . , 7,

∥∥∥∂j1 . . . ∂jmA1/2(x)
∥∥∥ ≤ Cm

{
m−1∑
r=0

λmin(A(x))−(r+1/2)

× max
|β|≤m

∥∥∥∂|β|
β A(x)

∥∥∥r+1
}
. (21)

Let us now provide a lower bound for λmin(A(x)) in terms of tr(A(x)) and tr((A(x))2). Define

s2(x) = n−1

(
tr((A(x))2)− (tr(A(x)))2

n

)
, m(x) =

tr(A(x))

n
.

Then, from Corollary 2.1, Corollary 2.2, and Theorem 2.1 in Wolkowicz and Styan (1980), we obtain

1

λmin(A(x))
≤ 1

λmax(A(x))

(
1 +

2s(x)(n− 1)1/2

m(x)− s(x)(n− 1)−1/2

)
≤ 1

m(x) + s(x)(n− 1)1/2

(
1 +

2s(x)(n− 1)1/2

m(x)− s(x)(n− 1)−1/2

)
.

Therefore, from Eq. (21), we have for m = 1, . . . , 7 that∥∥∥∂j1 . . . ∂jmA1/2(x)
∥∥∥ ≤ Clm(x), (22)

where the function lm(x) is defined as

lm(x) :=

m−1∑
r=0

(
1

m(x) + s(x)(n− 1)1/2

(
1 +

2s(x)(n− 1)1/2

m(x)− s(x)(n− 1)−1/2

))−(r+1/2)

× max
|β|≤m

∥∥∥∂|β|
β A(x)

∥∥∥r+1

. (23)

The following results are key to guarantee that an SDE is a weak approximation of an optimizer.

Lemma C.6 (Lemma 1 Li et al. (2017)). Let 0 < η < 1. Consider a stochastic process
Xt, t ≥ 0 satisfying the SDE

dXt = b (Xt) dt+
√
ησ (Xt) dWt

with X0 = x ∈ Rd and b, σ together with their derivatives belong to G. Define the one-step
difference ∆ = Xη − x, and indicate the i-th component of ∆ with ∆i. Then we have

1. E∆i = biη + 1
2

[∑d
j=1 bj∂ej bi

]
η2 +O

(
η3
)

∀i = 1, . . . , d;

2. E∆i∆j =
[
bibj + σσT

(ij)

]
η2 +O

(
η3
)

∀i, j = 1, . . . , d;

3. E
∏s

j=1 ∆(ij) = O
(
η3
)

for all s ≥ 3, ij = 1, . . . , d.

All functions above are evaluated at x.
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Theorem C.7 (Theorem 2 and Lemma 5, Mil’shtein (1986)). Let Assumption C.3 hold and
let us define ∆̄ = x1 − x to be the increment in the discrete-time algorithm, and indicate the
i-th component of ∆̄ with ∆̄i. If in addition there exists K1,K2,K3,K4 ∈ G so that

1.
∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d;

2.
∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d;

3.
∣∣∣E∏s

j=1 ∆ij − E
∏s

j=1 ∆̄ij

∣∣∣ ≤ K3(x)η
2, ∀s ≥ 3, ∀ij ∈ {1, . . . , d};

4. E
∏3

j=1

∣∣∆̄ij

∣∣ ≤ K4(x)η
2, ∀ij ∈ {1, . . . , d}.

Then, there exists a constant C so that for all k = 0, 1, . . . , N we have

|Eg (Xkη)− Eg (xk)| ≤ Cη.

C.3 LIMITATIONS

Modeling of discrete-time algorithms using SDEs relies on Assumption C.3. As noted by Li et al.
(2021), the approximation can fail when the stepsize η is large or if certain conditions on ∇f and the
noise covariance matrix are not met. Although these issues can be addressed by increasing the order
of the weak approximation, we believe that the primary purpose of SDEs is to serve as simplification
tools that enhance our intuition: We would not benefit significantly from added complexity.

C.4 FORMAL DERIVATION - SIGNSGD

In this subsection, we provide the first formal derivation of an SDE model for SignSGD. Let us
consider the stochastic process Xt ∈ Rd defined as the solution of

dXt = −(1− 2P(∇fγ(Xt) < 0))dt+
√
η
√

Σ̄(Xt)dWt, (24)

where

Σ̄(x) = E[ξγ(x)ξγ(x)⊤], (25)

and ξγ(x) := sign(∇fγ(x)) − 1 + 2P(∇fγ(x) < 0) the noise in the sample sign (∇fγ(x)). The
following theorem guarantees that such a process is a 1-order SDE of the discrete-time algorithm of
SignSGD

xk+1 = xk − η sign (fγk
(xk)) , (26)

with x0 ∈ Rd, η ∈ R>0 is the step size, the mini-batches {γk} are modelled as i.i.d. random variables
uniformly distributed on {1, · · · , N}, and of size B ≥ 1.

Before proceeding, we ensure that the SDE admits a unique solution and that its coefficients are
sufficiently regular.
Lemma C.8. The drift term b(x) := − (1− 2P(∇fγ(x) < 0)) is Lipschitz, satisfies affine growth,
and belongs to the space G together with its derivatives.

Proof. Since we are assuming that the gradient noise has a smooth and bounded probability den-
sity function,7 the drift can be rewritten in terms of the CDF FZ(x) of the noise as b(x) :=

2FZ(−∇f(x)) − 1, whose derivative is −2F
′

Z(−∇f(x))∇2f(x). Since the density function and
the Hessian of f are bounded, we conclude that the derivative is bounded. Therefore, the drift is
Lipschitz and as regular as ∇f , meaning that each entry is in G, together with its derivatives. Finally,
since it is bounded, it has affine growth.

Lemma C.9. The diffusion coefficient
√
Σ satisfies the affine growth condition.

Proof. Since it is bounded, the result follows immediately.
7This is commonly assumed in the literature. Among others, Ahn et al. (2012); Chen et al. (2014); Mandt

et al. (2016); Stephan et al. (2017); Zhu et al. (2019); Wu et al. (2020); Xie et al. (2021) assume that it is
Gaussian, while Jastrzebski et al. (2018) offers an intuitive justification.
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Lemma C.10. Let us assume the same assumptions as Lemma C.4. Additionally, assume that
sup
x∈K

|g(x, ·)| ∈ L1(Rn)

for all compact sets K. Then the entries of Σ in Eq. 25 are in C7
b (Rn).

Proof. By the definition of Σ in terms of the sign-function and dominated convergence, from the
additional assumption on g, it follows that Σ is continuous. So Lemma C.4 entails that the entries of
Σ are in C7

b (Rn).

Lemma C.11. Under the assumption that
g(x, y) > 0, (27)

the covariance matrix Σ is positive definite.

Proof. For y = (y1, . . . , yn)
T , observe that

(
Σ(x)y, y

)
=

n∑
i,j=1

yiE
[
ξiγ(x)ξ

j
γ(x)

]
yj = E

( n∑
i=1

ξiγ(x)yi

)2
 .

Using the definition of ξγ and the positivity of the density g, we can argue by contradiction and
see that for y ̸= 0, the right-hand side of the equation must be strictly greater than zero for all x.
Therefore, Σ(x) ∈ S for all x, where S denotes the open set of positive definite matrices in the space
of symmetric n× n matrices.

Corollary C.12. Since Σ is positive definite and its entries are in C7
b (Rn),

√
Σ is Lipschitz.

Proof. The function
φ : S → S, A 7→

√
A

has Fréchet derivatives of any order on S (see e.g. Del Moral and Niclas (2018)). Therefore,
Σ

1/2 ∈ C7(Rn), and since Σ ∈ C7
b (Rn), Σ

1/2
is Lipschitz continuous (see Proposition 6.2 in Ikeda

and Watanabe (2014)).

Proposition C.13. Assume the conditions of Lemma C.5 and assume that the functions lm(x) for

m = 1, . . . , 7 in Eq. (18) are of polynomial growth. Then Σ
1/2 ∈ G together with its derivatives.

Corollary C.14. If the noise Z(x) ∼ N (0,Σ) or Z(x) ∼ tν(0,Σ), then Σ
1/2 ∈ G together with its

derivatives.

Proof. With the definition of Ξ(x) given in Lemma 3.10, the function K(x) :=
√
1− 4Ξ(x)2 is in

G together with its derivative: It is easy to verify that all the derivatives of K(x) are bounded even
in the case ν = 1, which is the most pathological one. Therefore,

√
Σ(x) is in G together with its

derivatives.

Remark C.15. Based on the above results, we have that under mild assumptions on the noise structures
(see Sec. C.1) that cover and generalize the well-accepted Gaussianity, e.g. covering Student’s t as
well, the SDE of SignSGD admits a unique solution and its coefficients are regular enough to apply
Lemma C.6 and Thm. C.7.

Theorem C.16 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋.
Let xk ∈ Rd, 0 ≤ k ≤ N denote a sequence of SignSGD iterations defined by Eq. 26.
Consider the stochastic process Xt defined in Eq. 24 and fix some test function g ∈ G and
suppose that g and its partial derivatives up to order 6 belong to G.
Then, under Assumption C.3, there exists a constant C > 0 independent of η such that for all
k = 0, 1, . . . , N , we have

|Eg (Xkη)− Eg (xk)| ≤ Cη.

That is, the SDE 24 is an order 1 weak approximation of the SignSGD iterations 26.
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Lemma C.17. Under the assumptions of Theorem C.16, let 0 < η < 1 and consider
xk, k ≥ 0 satisfying the SignSGD iterations

xk+1 = xk − η sign (∇fγk
(xk))

with x0 ∈ Rd. From the definition the one-step difference ∆̄ = x1 − x, then we have

1. E∆̄i = − (1− 2P (∂ifγ < 0)) η ∀i = 1, . . . , d;
2. E∆̄i∆̄j =

(
(1− 2P (∂ifγ < 0)) (1− 2P (∂jfγ < 0)) + Σ̄(ij)

)
η2 ∀i, j =

1, . . . , d;
3. E

∏s
j=1 ∆̄ij = O

(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

All the functions above are evaluated at x.

Proof of Lemma C.17. First of all, we have that by definition

E
[
xi
1 − xi

]
= −ηE [sign (∂ifγ(x))] , (28)

which implies
E∆̄i = − (1− 2P (∂ifγ(x) < 0)) η ∀i = 1, . . . , d. (29)

Second, we have that by definition

E
[
(x1 − x) (x1 − x)

⊤
]
=E [(x1 − x)]E

[
(x1 − x)

⊤
]
+ (30)

E
[
(sign (∇fγ(x))− 1 + 2P (∇fγ(x) < 0)) (31)

(sign (∇fγ(x))− 1 + 2P (∇fγ(x) < 0))
⊤
]
η2, (32)

which implies that

E∆̄i∆̄j = (1− 2P (∂ifγ < 0)) (1− 2P (∂jfγ < 0)) η2 + Σ̄(ij)η
2 ∀i, j = 1, . . . , d. (33)

Finally, by definition

E
s∏

j=1

∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}, (34)

which concludes our proof.

Proof of Theorem C.16. To prove this result, all we need to do is check the conditions in Theorem
C.7. As we apply Lemma C.6, we make the following choices:

• b(x) = −(1− 2P (∇fγ(x) < 0));

• σ(x) =
√
Σ̄(x).

First of all, we notice that ∀i = 1, . . . , d, it holds that

• E∆̄i
1. Lemma C.17

= − (1− 2P (∂ifγ(x) < 0)) η;

• E∆i
1. Lemma C.6

= − (1− 2P (∂ifγ(x) < 0)) η +O
(
η2
)
.
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Therefore, we have that for some K1(x) ∈ G,∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d. (35)

Additionally, we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma C.17

= (1− 2P (∂ifγ(x) < 0)) (1− 2P (∂jfγ(x) < 0)) η2 + Σ̄(ij)(x)η
2;

• E∆i∆j
2. Lemma C.6

=
(
(1− 2P (∂ifγ(x) < 0)) (1− 2P (∂jfγ(x) < 0)) + Σ̄(ij)(x)

)
η2 +

O
(
η3
)
.

Therefore, we have that for some K2(x) ∈ G,∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d. (36)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma C.17

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma C.6

= O
(
η3
)
.

Therefore, we have that for some K3(x) ∈ G,∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2. (37)

Additionally, for some K4(x) ∈ G, ∀ij ∈ {1, . . . , d},

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma C.17
≤ K4(x)η

2. (38)

Remark C.18. Remembering Remark C.15, and thanks to Eq. 35, Eq. 36, Eq. 37, and Eq. 38, the
thesis follows from Lemma C.6 and Thm. C.7.

In all the following results, the reader will notice that all the drifts, diffusion terms, and noise
assumptions are selected to guarantee that the SDE we derived for SignSGD is indeed a 1 weak
approximation for SignSGD even without the mollification argument used in Li et al. (2019) to handle
the regularity issues.

Corollary C.19. Let us take the same assumptions of Theorem C.16, and that the stochastic
gradient is ∇fγ(x) = ∇f(x) + Z such that Z ∼ N (0,Σ) that does not depend on x. Then,
the following SDE provides a 1 weak approximation of the discrete update of SignSGD

dXt = −Erf

(
Σ− 1

2∇f(Xt)√
2

)
dt+

√
η

√√√√Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

dWt, (39)

where the error function Erf(x) and the square are applied component-wise, and Σ =
diag

(
σ2
1 , · · · , σ2

d

)
.

Proof of Corollary C.19. First of all, we observe that

1− 2P (∇fγ(x) < 0) = 1− 2P
(
∇f(x) + Σ

1
2Z < 0

)
= 1− 2Φ

(
−Σ− 1

2∇f(x)
)
, (40)
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where Φ is the cumulative distribution function of the standardized normal distribution. Remembering
that

Φ(x) =
1

2

(
1 + Erf

(
x√
2

))
, (41)

we have that

1− 2P (∇fγ(x) < 0) = 1− 2
1

2

(
1 + Erf

(
−Σ− 1

2∇f(x)√
2

))
= Erf

(
Σ− 1

2∇f(x)√
2

)
. (42)

Similarly, one can prove that Σ̄ defined in 25 becomes

Σ̄ = Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

. (43)

Corollary C.20. Let us take the same assumptions of Theorem C.16, and that the stochastic
gradient is ∇fγ(x) = ∇f(x) +

√
ΣZ such that Z ∼ tν(0, Id) that does not depend on x

and ν is a positive integer number. Then, the following SDE provides a 1 weak approximation
of the discrete update of SignSGD

dXt = −2Ξ
(
Σ− 1

2∇f(Xt)
)
dt+

√
η

√
Id − 4 diag

(
Ξ
(
Σ− 1

2∇f(Xt)
))2

dWt, (44)

where Ξ(x) is defined as

Ξ(x) := x
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) 2F1

(
1

2
,
ν + 1

2
;
3

2
;−x2

ν

)
, (45)

and 2F1 (a, b; c;x) is the hypergeometric function. Above, function Ξ(x) and the square are
applied component-wise, and Σ = diag

(
σ2
1 , · · · , σ2

d

)
.

Proof. First of all, we observe that

1− 2P (∇fγ(x) < 0) = 1− 2P
(
∇f(x) + Σ

1
2Z < 0

)
= 1− 2Fν

(
−Σ− 1

2∇f(x)
)
, (46)

where Fν (x) is the cumulative function of a t distribution with ν degrees of freedom. Remembering
that

Fν (x) =
1

2
+ Ξν(x), (47)

we have that

1− 2P (∇fγ(x) < 0) = 1− 2

(
1

2
+ Ξν(−Σ− 1

2∇f(x))

)
= 2Ξν(Σ

− 1
2∇f(x)). (48)

Similarly, one can prove that Σ becomes

Σ̄ = Id − 4 diag
(
Ξν

(
Σ− 1

2∇f(Xt)
))2

. (49)

Lemma C.21. Under the assumptions of Corollary C.19 and signal-to-noise ratio Yt :=
Σ− 1

2 ∇f(Xt)√
2

,

1. Phase 1: If |Yt| > 3
2 , the SDE coincides with the ODE of SignGD:

dXt = − sign(∇f(Xt))dt; (50)

2. Phase 2: If 1 < |Yt| < 3
2 :
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(a) mYt + q− ≤ dE[Xt]
dt ≤ mYt + q+;

(b) P
[
∥Xt − E [Xt]∥22 > a

]
≤ η

a

(
d− ∥mYt + q−∥22

)
;

3. Phase 3: If |Yt| < 1, the SDE is

dXt = −
√

2

π
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

2

π
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (51)

Proof of Lemma C.21. Exploiting the regularity of the Erf function, we approximate the SDE in Eq.
39 in three different regions:

1. Phase 1: If |x| > 3
2 , Erf(x) ∼ sign(x). Therefore, if

∣∣∣∣Σ− 1
2 ∇f(Xt)√

2

∣∣∣∣ > 3
2 ,

(a) Erf
(

Σ− 1
2 ∇f(Xt)√

2

)
∼ sign

(
Σ− 1

2 ∇f(Xt)√
2

)
= sign (∇f(Xt));

(b) Erf
(

Σ− 1
2 ∇f(Xt)√

2

)2

∼ sign

(
Σ− 1

2 ∇f(Xt)√
2

)2

= (1, . . . , 1).

Therefore,

dXt = −Erf

(
Σ− 1

2∇f(Xt)√
2

)
dt+

√
η

√√√√Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

dWt

∼ − sign(∇f(Xt)); (52)

2. Phase 2: Let m and q1 are the slope and intercept of the line secant to the graph of Erf(x)
between the points (1,Erf(1)) and

(
3
2 ,Erf

(
3
2

))
, while q2 is the intercept of the line tangent

to the graph of Erf(x) and slope m. If 1 < x < 3
2 , we have that

mx+ q1 < Erf(x) < mx+ q2. (53)

Analogously, if − 3
2 < x < −1

mx− q2 < Erf(x) < mx− q1. (54)

Therefore, we have that if 1 <

∣∣∣∣Σ− 1
2 ∇f(Xt)√

2

∣∣∣∣ < 3
2 , then

(a)

m√
2
Σ− 1

2∇f(Xt) + q− < Erf

(
Σ− 1

2∇f(Xt)√
2

)
<

m√
2
Σ− 1

2∇f(Xt) + q+, (55)

where

(q+)i :=

{
q2 if ∂if(x) > 0

−q1 if ∂if(x) < 0 ,
(56)

and

(q−)i :=

{
q1 if ∂if(x) > 0

−q2 if ∂if(x) < 0 ,
(57)

Therefore,

− m√
2
Σ− 1

2∇f(Xt)− q+ ≤ dE [Xt]

dt
≤ − m√

2
Σ− 1

2∇f(Xt)− q−; (58)

(b) Similar to the above,(
m√
2
Σ− 1

2∇f(Xt) + q−
)2

≤ Erf

(
Σ− 1

2∇f(Xt)√
2

)2

≤
(

m√
2
Σ− 1

2∇f(Xt) + q+

)2

.
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Therefore,

P
[
∥Xt − E [Xt]∥22 > a

]
≤ P

[
∃i s.t. |Xi

t − E
[
Xi

t

]
|2 > a

]
(59)

≤
∑
i

P
[
|Xi

t − E
[
Xi

t

]
| >

√
a
]

≤ η

a

∑
i

1− Erf

(
Σ

− 1
2

i ∂if(Xt)√
2

)2
 (60)

<
η

a

(
d− ∥ m√

2
Σ− 1

2∇f(Xt) + q−∥22
)
. (61)

3. Phase 3: If |x| < 1, Erf(x) ∼ 2√
π
x. Therefore, if

∣∣∣∣Σ− 1
2 ∇f(Xt)√

2

∣∣∣∣ < 1,

(a) Erf
(

Σ− 1
2 ∇f(Xt)√

2

)
∼
√

2
πΣ

− 1
2∇f(Xt);

(b)
(

Erf
(

Σ− 1
2 ∇f(Xt)√

2

))2

∼ 2
π

(
Σ− 1

2∇f(Xt)
)2

.

Therefore,

dXt = −Erf

(
Σ− 1

2∇f(Xt)√
2

)
dt+

√
η

√√√√Id − diag

(
Erf

(
Σ− 1

2∇f(Xt)√
2

))2

dWt

∼ −
√

2

π
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

2

π
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (62)

Lemma C.22 (Dynamics of Expected Loss). Let f be µ-strongly convex, Tr(∇2f(x)) ≤ Lτ , and
St := f(Xt)− f(X∗). Then, during

1. Phase 1, the dynamics will stop before t∗ = 2
√

S0

µ because St ≤ 1
4

(√
µt− 2

√
S0

)2
;

2. Phase 2 with ∆ :=
(

m√
2σmax

+ ηµm2

4σ2
max

)
: E[St] ≤ S0e

−2µ∆t + η
2

(Lτ−µdq̂2)
2µ∆

(
1− e−2µ∆t

)
;

3. Phase 3 with ∆ :=
(√

2
π

1
σmax

+ η
π

µ
σ2

max

)
: E[St] ≤ S0e

−2µ∆t + η
2

Lτ

2µ∆

(
1− e−2µ∆t

)
.

Proof of Lemma C.22. We prove each point by leveraging the shape of the law of Xt derived in
Lemma C.21:

1. Phase 1:

d(f(Xt)− f(X∗)) = −∇f(Xt) sign(∇f(Xt))dt = −∥∇f(Xt)∥1dt ≤ −∥∇f(Xt)∥2dt
(63)

Since f is µ − PL, we have that −∥∇f(Xt)∥22 < −2µ(f(Xt) − f(X∗)), which implies
that

f(Xt)− f(X∗) ≤
1

4

(√
µt− 2

√
f(X0)− f(X∗)

)2
, (64)

meaning that the dynamics will stop before t∗ = 2
√

f(X0)−f(X∗)
µ ;

2. Phase 2: By applying the Itô Lemma to f(Xt)− f(X∗) and that

m√
2
Σ− 1

2∇f(Xt) + q− < Erf

(
Σ− 1

2∇f(Xt)√
2

)
<

m√
2
Σ− 1

2∇f(Xt) + q+, (65)
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we have that if q̂ := max(q1, q2),

d(f(Xt)− f(X∗)) ≤−
(

m√
2
Σ− 1

2∇f(Xt) + q−
)⊤

∇f(Xt)dt+O(Noise) (66)

+
η

2
Tr

[
∇2f(Xt)

(
Id − diag

(
m√
2
Σ− 1

2∇f(Xt) + q−
)2
)]

dt

(67)

≤− m√
2

1

σmax
∥∇f(Xt)∥22dt− q̂∥∇f(Xt)∥1dt+

ηLτ

2
dt (68)

− ηµ

2
∥ m√

2
Σ− 1

2∇f(Xt)dt+ q−∥22dt+O(Noise) (69)

≤− m√
2

1

σmax
∥∇f(Xt)∥22dt− q̂∥∇f(Xt)∥1dt+

ηLτ

2
dt (70)

− ηµm2

4σ2
max

∥∇f(Xt)∥22dt−
ηµdq̂2

2
dt−

√
2mq̂

σmax
∥∇f(Xt)∥1dt (71)

+O(Noise) (72)

≤− 2µ

(
m√
2σmax

+
ηµm2

4σ2
max

)
(f(Xt)− f(X∗))dt (73)

+
η

2

(
Lτ − µdq̂2

)
dt+O(Noise), (74)

which implies that if k := 2µ
(

m√
2σmax

+ ηµm2

4σ2
max

)
,

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗)))e
−kt +

η
(
Lτ − µdq̂2

)
2k

(
1− e−kt

)
. (75)

3. Phase 3: By applying the Itô Lemma to f(Xt)− f(X∗), we have that:

d(f(Xt)− f(X∗)) =−
√

2

π
∇f(Xt)

⊤Σ− 1
2∇f(Xt)dt+O(Noise) (76)

+
η

2
Tr
((

Id −
2

π
diag

(
Σ− 1

2∇f(Xt)
)2)

∇2f(Xt)

)
dt (77)

≤ −
√

2

π

1

σmax
∥∇f(Xt)∥22dt+O(Noise) (78)

+
η

2
Tr
(
∇2f(Xt)

)
dt− η

π

µ

σ2
max

∥∇f(Xt)∥22dt (79)

≤ −

(√
2

π

1

σmax
+

η

π

µ

σ2
max

)
∥∇f(Xt)∥22dt (80)

+
η

2
Tr(∇2f(Xt))dt+O(Noise) (81)

Since f is µ-Strongly Convex, f is also µ-PL. Therefore, we have

d(f(Xt)− f(X∗)) ≤− 2µ

(√
2

π

1

σmax
+

η

π

µ

σ2
max

)
(f(Xt)− f(X∗))dt (82)

+
η

2
Tr(∇2f(Xt))dt+O(Noise). (83)

Therefore,

dE[f(Xt)− f(X∗)] ≤ −2µ

(√
2

π

1

σmax
+

η

π

µ

σ2
max

)
(E[f(Xt)− f(X∗)])dt+

η

2
Lτdt,

(84)
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which implies that if k := 2µ
(√

2
π

1
σmax

+ η
π

µ
σ2

max

)
,

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗)))e
−kt +

ηLτ

2k

(
1− e−kt

)
. (85)

We can weaken the regularity of f from µ-strongly convex to µ-PL: This results in less tight bounds
as expected.

Lemma C.23 (Dynamics of Expected Loss). Let f be µ-PL, L-smooth, and St := f(Xt)− f(X∗).
Then, during

1. Phase 1, the dynamics will stop before t∗ = 2
√

S0

µ because St ≤ 1
4

(√
µt− 2

√
S0

)2
;

2. Phase 2 with ∆ := m√
2σmax

: E[St] ≤ S0e
−2µ∆t + ηLd

4µ∆

(
1− e−2µ∆t

)
;

3. Phase 3 with ∆ :=
√

2
π

1
σmax

: E[St] ≤ S0e
−2µ∆t + ηLd

4µ∆

(
1− e−2µ∆t

)
.

Proof of Lemma C.22. We prove each point by leveraging the shape of the law of Xt derived in
Lemma C.21:

1. Phase 1:

d(f(Xt)− f(X∗)) = −∇f(Xt) sign(∇f(Xt))dt = −∥∇f(Xt)∥1dt ≤ −∥∇f(Xt)∥2dt.
(86)

Since f is µ − PL, we have that −∥∇f(Xt)∥22 < −2µ(f(Xt) − f(X∗)), which implies
that

f(Xt)− f(X∗) ≤
1

4

(√
µt− 2

√
f(X0)− f(X∗)

)2
, (87)

meaning that the dynamics will stop before t∗ = 2
√

f(X0)−f(X∗)
µ ;

2. Phase 2: By applying the Itô Lemma to f(Xt)− f(X∗) and that

m√
2
Σ− 1

2∇f(Xt) + q− < Erf

(
Σ− 1

2∇f(Xt)√
2

)
<

m√
2
Σ− 1

2∇f(Xt) + q+, (88)

we have that if q̂ := max(q1, q2),

d(f(Xt)− f(X∗)) ≤−
(

m√
2
Σ− 1

2∇f(Xt) + q−
)⊤

∇f(Xt)dt+O(Noise) (89)

+
η

2
Tr

[
∇2f(Xt)

(
Id − diag

(
m√
2
Σ− 1

2∇f(Xt) + q−
)2
)]

dt

(90)

≤− m√
2

1

σmax
∥∇f(Xt)∥22dt− q̂∥∇f(Xt)∥1dt+

ηLd

2
dt (91)

≤− 2µ
m√
2σmax

(f(Xt)− f(X∗))dt+
ηLd

2
dt+O(Noise), (92)

which implies that if ∆ := m√
2σmax

,

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗)))e
−2µ∆t +

ηLd

4µ∆

(
1− e−2µ∆t

)
. (93)
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3. Phase 3: By applying the Itô Lemma to f(Xt)− f(X∗), we have that:

d(f(Xt)− f(X∗)) =−
√

2

π
∇f(Xt)

⊤Σ− 1
2∇f(Xt)dt+O(Noise) +

ηLd

2
dt (94)

≤ −
√

2

π

1

σmax
∥∇f(Xt)∥22dt+O(Noise) +

ηLd

2
dt (95)

Since f is µ-PL, we have

d(f(Xt)− f(X∗)) ≤− 2µ

√
2

π

1

σmax
(f(Xt)− f(X∗))dt+

ηLd

2
dt+O(Noise). (96)

Therefore, for ∆ :=
√

2
π

1
σmax

,

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗)))e
−2µ∆t +

ηLd

4µ∆

(
1− e−2µ∆t

)
. (97)

We can weaken the regularity of f from µ-PL to L-Smooth: Of course, we can only bound the
expected norm of the gradient.
Lemma C.24 (Dynamics of Expected Gradient Norm). Let f be L-smooth, ηt be a learning rate
scheduler such that limt→∞

ϕ2
t

ϕ1
t

t→∞→ 0 and ϕ1
t

t→∞→ ∞, where ϕi
t =

∫ t

0
(ηs)

ids. Then, during

1. Phase 1, ∥∇f (Xt̃1)∥1 ≤ f(X0)−f(X∗)
ϕ1
t

t→∞→ 0;

2. Phase 2,(
m√
2
E∥∇f (Xt̃(1,2))∥22 + q̂σmaxE∥∇f (Xt̃(2,2))∥1

)
≤ σmax

(
f(X0)− f(X∗)

ϕ1
t

+
ηLd

2

ϕ2
t

ϕ1
t

)
t→∞→ 0;

3. Phase 3, E∥∇f (Xt̃3)∥22 ≤
√

π
2
σmaxηLd

2
ϕ2
t

ϕ1
t
+
√

π
2σmax

f(X0)−f(X∗)
ϕ1
t

t→∞→ 0;

where t̃1, t̃(1,2), t̃(2,2), and t̃3 are random times with distribution ηt

ϕ1
t

.

Proof of Lemma C.22. We prove each point by leveraging the shape of the law of Xt derived in
Lemma C.21:

1. Phase 1:
d(f(Xt)− f(X∗)) = −ηt∇f(Xt) sign(∇f(Xt))dt = −ηt∥∇f(Xt)∥1dt (98)

= −ϕ1
t

ηt∥∇f(Xt)∥1
ϕ1
t

dt (99)

Therefore, by integrating over time and using the law of the unconscious statistician

∥∇f (Xt̃1)∥1 ≤ f(X0)− f(X∗)

ϕ1
t

t→∞→ 0; (100)

2. Phase 2: By applying the Itô Lemma to f(Xt)− f(X∗) and that

m√
2
Σ− 1

2∇f(Xt) + q− < Erf

(
Σ− 1

2∇f(Xt)√
2

)
<

m√
2
Σ− 1

2∇f(Xt) + q+, (101)

Similar to what we have shown above, we have that

d(f(Xt)− f(X∗)) ≤− m√
2

1

σmax
ηt∥∇f(Xt)∥22dt− ηtq̂∥∇f(Xt)∥1dt (102)

+η2t
ηLd

2
dt+O(Noise). (103)
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Therefore, by integrating over time and using the law of the unconscious statistician we have

m√
2
E∥∇f (Xt̃(1,2))∥22+q̂σmaxE∥∇f (Xt̃(2,2))∥1 ≤ σmax

ϕ1
t

(
f(X0)− f(X∗) +

ηLdϕ2
t

2

)
t→∞→ 0;

(104)

3. Phase 3: By applying the Itô Lemma to f(Xt)− f(X∗), we have that:

d(f(Xt)− f(X∗)) ≤ −
√

2

π

1

σmax
ηt∥∇f(Xt)∥22dt+O(Noise) + η2t

ηLd

2
dt (105)

Therefore, by integrating over time and using the law of the unconscious statistician we have

E∥∇f (Xt̃3)∥22 ≤
√

π

2

σmaxηLd

2

ϕ2
t

ϕ1
t

+

√
π

2
σmax

f(X0)− f(X∗)

ϕ1
t

t→∞→ 0. (106)

Lemma C.25. Under the assumptions of Lemma 3.5, for any step size scheduler ηt such that∫ ∞

0

ηsds = ∞ and lim
t→∞

ηt = 0 =⇒ E[f(Xt)− f(X∗)]
t→∞→ 0. (107)

Proof of Lemma C.25. For any scheduler ηk used in

xk+1 = xk − ηηk sign (fγk
(xk)) , (108)

the SDE of Phase 3 is

dXt = −
√

2

π
Σ− 1

2∇f(Xt)ηtdt+
√
ηηt

√
Id −

2

π
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (109)

Therefore, analogously to the calculations in Lemma C.22, we have that

E[f(Xt)− f(X∗)] ≤
f(X0)− f(X∗) +

ηLτ

2

∫ t

0
e
2µ

∫ s
0

(√
2
π

1
σmax

ηl+
η
π

µ

σ2
max

η2
l

)
dl
η2sds

e
2µ

∫ t
0

(√
2
π

1
σmax

ηs+
η
π

µ

σ2
max

η2
s

)
ds

. (110)

Therefore, using l’Hôpital’s rule we have that∫ ∞

0

ηsds = ∞ and lim
t→∞

ηt = 0 =⇒ E[f(Xt)− f(X∗)]
t→∞→ 0. (111)

Lemma C.26. Let H = diag(λ1, . . . , λd) and Mt := e
−2

(√
2
πΣ− 1

2 H+ η
πΣ−1H2

)
t. Then,

1. E [Xt] = e−
√

2
πΣ− 1

2 HtX0;

2. V ar [Xt] =
(
Mt − e−2

√
2
πΣ− 1

2 Ht
)
X2

0 + η
2

(√
2
π Id +

η
πHΣ− 1

2

)−1

H−1Σ
1
2 (Id −Mt).

Proof of Lemma C.26. The proof is banal: The expected value derivation leverages the martingale
property of the Brownian motion while that of the variance uses the Itô Isomerty.

Lemma C.27. Let H = diag(λ1, . . . , λd). Then, E
[
X⊤

t HXt

2

]
is equal to

d∑
i=1

λi(X
i
0)

2

2
e
−2λi

(√
2
π

1
σi

+
λiη

πσ2
i

)
t
+

η

4
(√

2
π

1
σi

+ λiη
πσ2

i

) (1− e
−2λi

(√
2
π

1
σi

+
λiη

πσ2
i

)
t

)
. (112)
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Proof of Lemma C.27. Since the matrix H is diagonal, we focus on a single component. We apply
the Itô Lemma to λi(X

i
t)

2

2 :

d

(
λi(X

i
t)

2

2

)
= −2

√
2

π

λi

σi

λi(X
i
t)

2

2
dt+

ηλi

2
dt− 2λ2

i η

πσ2
i

λi(X
i
t)

2

2
dt+O(Noise), (113)

which implies that

E
[
λi(X

i
t)

2

2

]
=

λi(X
i
0)

2

2
e
−2

(√
2
π

λi
σi

+
λ2
i η

πσ2
i

)
t
+

η

4
(√

2
π

1
σi

+ λiη
πσ2

i

) (1− e
−2

(√
2
π

λi
σi

+
λ2
i η

πσ2
i

)
t

)
.

(114)
Therefore,

E
[
X⊤

t HXt

2

]
=

d∑
i=1

λi(X
i
0)

2

2
e
−2λi

(√
2
π

1
σi

+
λiη

πσ2
i

)
t
+

η

4
(√

2
π

1
σi

+ λiη
πσ2

i

) (1− e
−2λi

(√
2
π

1
σi

+
λiη

πσ2
i

)
t

)
.

(115)

Lemma C.28. Under the assumptions of Corollary C.20, where ∇fγ(x) = ∇f(x)+
√
ΣZ, we have

that the dynamics of SignSGD in Phase 3 is:

dXt = −
√

1

2
Σ− 1

2∇f(Xt)dt+
√
η

√
Id −

1

2
diag

(
Σ− 1

2∇f(Xt)
)2

dWt. (116)

Proof of lemma C.28. We apply Eq. 44 with ν = 2 and linearly approximate Ξ(x) as |x| < 1, where
2Ξ(x) ∼ x√

2
.

C.5 ALTERNATIVE NOISE ASSUMPTIONS

In this subsection, we report the consequences of assuming different noise structures. We do not
provide the proofs as they mimic those of Corollary C.19 and Lemma C.21. We validate our results
in Figure 7.

Assumption from (Ziyin et al., 2021) As per Eq. (16) in Corollary 2 of (Ziyin et al., 2021), we
take Σ := σ2f(x∗)∇2f(x∗), where we added the constant σ2 as a parameter to control the scale

of the noise and f(x∗) > 0. Under this assumption, we have that for Yt :=
∇2f(x∗)

− 1
2 ∇f(Xt)√

2∇f(x∗)σ
and

Sd(Xt) := Eγ [(sign(∇fγ(Xt))(sign(∇fγ(Xt))
⊤], Corollary C.19 becomes:

dXt = −Erf (Yt) dt+
√
η

√
Sd(Xt)− Erf (Yt)Erf (Yt)

⊤
dWt. (117)

As a consequence, Lemma C.21 becomes:

Lemma C.29. Let f be µ-strongly convex, Tr(∇2f(x)) ≤ Lτ , λmax be the largest eigenvalue of
∇2f(x∗), and St := f(Xt)− f(x∗). Then, during

1. Phase 1, the loss will reach 0 before t∗ = 2
√

S0

µ because St ≤ 1
4

(√
µt− 2

√
S0

)2
;

2. Phase 2 with ∆ :=

(
m√

2f(x∗)σmax
√
λmax

+ ηµm2

4f(x∗)σ2
maxλmax

)
: E[St] ≤ S0e

−2µ∆t +

η
2

(Lτ−µdq̂2)
2µ∆

(
1− e−2µ∆t

)
;

3. Phase 3 with ∆ :=

(√
2
π

1√
f(x∗)σmax

√
λmax

+ η
π

µ
f(x∗)σ2

maxλmax

)
: E[St] ≤ S0e

−2µ∆t +

η
2

Lτ

2µ∆

(
1− e−2µ∆t

)
.
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Assumption from (Wojtowytsch, 2024) (Wojtowytsch, 2024) discusses two possible assumptions
on Σ: ∥Σ(x)∥ ≤ Cf(x) and ∥Σ(x)∥ ≤ Cf(x)

[
1 + |x|2

]
. As Section 2.4, they ultimately use

Σ = Cf(x)Id. Therefore, we take Σ := σ2f(x)Id, where we changed the constant to σ2 to maintain
consistency with the rest of our paper. Under this assumption, we have that for Yt := ∇f(Xt)√

2f(x)σ
,

Corollary C.19 becomes:

dXt = −Erf (Yt) dt+
√
η
√

Id − diag(Erf (Yt))2dWt. (118)

As a consequence, Lemma C.21 becomes:
Lemma C.30. Let f be µ-strongly convex, Tr(∇2f(x)) ≤ Lτ , and St := f(Xt)− f(X∗). Then,
during

1. Phase 1, the loss will reach 0 before t∗ = 2
√

S0

µ because St ≤ 1
4

(√
µt− 2

√
S0

)2
;

2. Phase 2 with β := η
2

(
Lτ − µdq̂2 − m2µ2

σ2

)
and α :=

√
2mµ
σ ,

E[St] ≤
β2
(
W
(

(β+
√
S0α)

β exp
(
−α2t−2

√
S0α

2β − 1
))

+ 1
)2

α2

t→∞→ β2

α2
; (119)

3. Phase 3 with β := η
(

Lτ

2 − 2µ2

πσ2

)
and α := 2

√
2
π

µ
σ ,

E[St] ≤
β2
(
W
(

(β+
√
S0α)

β exp
(
−α2t−2

√
S0α

2β − 1
))

+ 1
)2

α2

t→∞→ β2

α2
, (120)

where W is the Lambert W function.

Assumption from (Wu et al., 2022) (Wu et al., 2022) proposes a novel structure of Σ as being
aligned with the Fisher Information Matrix and proportional to the loss function. Consistently with
this, we take Σ := σ2f(x)∇2f(x), where we changed the constants to σ2 to maintain consistency

with the rest of our paper. Under this assumption, we have that for Yt :=
(∇2f(Xt))

− 1
2 ∇f(Xt)√

2∇f(x)σ
and

Sd(Xt) := Eγ [(sign(∇fγ(Xt))(sign(∇fγ(Xt))
⊤], Corollary C.19 becomes:

dXt = −Erf (Yt) dt+
√
η

√
Sd(Xt)− Erf (Yt)Erf (Yt)

⊤
dWt. (121)

As a consequence, Lemma C.21 becomes:
Lemma C.31. Let f be µ-strongly convex, L-smooth, Tr(∇2f(x)) ≤ Lτ , and St := f(Xt)−f(X∗).
Then, during

1. Phase 1, the loss will reach 0 before t∗ = 2
√

S0

µ because St ≤ 1
4

(√
µt− 2

√
S0

)2
;

2. Phase 2 with β := η
2

(
Lτ − µdq̂2 − m2µ2

σ2L

)
and α :=

√
2mµ√
Lσ

,

E[St] ≤
β2
(
W
(

(β+
√
S0α)

β exp
(
−α2t−2

√
S0α

2β − 1
))

+ 1
)2

α2

t→∞→ β2

α2
; (122)

3. Phase 3 with β := η
(

Lτ

2 − 2µ2

πσ2L

)
and α := 2

√
2
π

µ√
Lσ

,

E[St] ≤
β2
(
W
(

(β+
√
S0α)

β exp
(
−α2t−2

√
S0α

2β − 1
))

+ 1
)2

α2

t→∞→ β2

α2
, (123)

where W is the Lambert W function.
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(a) Σ(x) := σ2f(x∗)∇2f(x∗).
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(b) Σ(x) := σ2f(x)∇2f(x).
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(c) Σ(x) := σ2f(x)Id.

Figure 7: Empirical validation of the bounds for SignSGD derived for the noise structure:
Σ(x) := σ2f(x∗)∇2f(x∗) (left), Σ(x) := σ2f(x)∇2f(x) (center), Σ(x) := σ2f(x)Id (right).
Each empirical validation has been carried out on strongly convex quadratic loss functions. The
experiments are averaged over 500 runs.

Assumption from (Paquette et al., 2024) In this section, we adopt the notation of (Paquette et al.,
2024). As per Eq. 5 of (Paquette et al., 2024), the loss function can be rewritten as

f(θ) =
1

2
⟨D(Wθ − b), (Wθ − b)⟩, where D = diag

(
j−2α

)
∈ Rv×v. (124)

Without loss of generality, we define ϕ := Wθ − b, which implies that

f(θ) =
ϕ⊤Dϕ

2
, where D = diag

(
j−2α

)
∈ Rv×v, where , 1 ≤ j ≤ v. (125)

The stochastic gradient is unbiased and its covariance is the well-known BΣ(ϕ) = (ϕ⊤Dϕ)D +
Dϕϕ⊤D = 2f(ϕ)D +∇f(ϕ)∇f(ϕ)⊤, where B is the batch size. Under this assumption, we have

that for Yt :=
√
B(Σ(ϕt))

− 1
2 ∇f(ϕt)√

2
and S(ϕt) = E[(Sign(∇fγ(ϕt))(Sign(∇fγ(ϕt))

⊤], Corollary
C.19 becomes:

dϕt = −Erf (Yt) dt+
√
η

√
S(ϕt)− Erf (Yt)Erf (Yt)

⊤
dWt. (126)

As a consequence, Lemma C.21 becomes:

Lemma C.32. Let f be as above, ft := f(ϕt), and Lτ := Tr(D). Let µ be the minimum eigenvalue
of D, and L be its maximum one. Then, during

1. Phase 1, the loss will reach 0 before t∗ = 2
√

S0

µ because ft ≤ 1
4

(√
µt− 2

√
f0
)2

;

2. Phase 2 with β := η
2Lτ and α := mµ

√
B√

2L
,

E[St] ≤
β2
(
W
(

(β+
√
S0α)

β exp
(
−α2t−2

√
S0α

2β − 1
))

+ 1
)2

α2

t→∞→ β2

α2
; (127)

3. Phase 3 with β := η
2Lτ and α :=

√
2
π

µ
√
B√
L

;

E[St] ≤
β2
(
W
(

(β+
√
S0α)

β exp
(
−α2t−2

√
S0α

2β − 1
))

+ 1
)2

α2

t→∞→ β2

α2
, (128)

where W is the Lambert W function.

See Figure 8 for an empirical validation.
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(a) v = 5, d = 50.
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(b) v = 50, d = 500.

Figure 8: Empirical validation of the bounds for SignSGD derived in Lemma C.32: In both experi-
ments, α = 0.25, β = 2, η = 0.001, B = 256, N = 10000, and trajectories are averaged over 500
runs.

C.6 FORMAL DERIVATION - RMSPROP
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Figure 9: The first two subfigures on the left compare our SDE, that from Malladi et al. (2022), and
RMSprop in terms of trajectories and f(x), respectively, for a convex quadratic function. The other
subfigures do the same for an embedded saddle, and one can observe that our SDE tracks RMSprop
more faithfully.

In this subsection, we provide our formal derivation of an SDE model for RMSprop. Let us consider
the stochastic process Lt := (Xt, Vt) ∈ Rd × Rd defined as the solution of

dXt = −P−1
t (∇f(Xt)dt+

√
ηΣ(Xt)

1
2 dWt) (129)

dVt = ρ((∇f(Xt))
2 + diag(Σ(Xt))− Vt))dt, (130)

where β = 1− ηρ, ρ = O(1), and Pt := diag (Vt)
1
2 + ϵId.

Remark C.33. We observe that the term in blue is the only difference w.r.t. the SDE derived in
(Malladi et al., 2022) (see Theorem D.2): This is extremely relevant when the gradient size is not
negligible. Figure 9 shows the comparison between our SDE, the one derived in (Malladi et al., 2022),
and RMSprop itself: It is clear that even on simple landscapes, our SDE tracks the algorithm more
faithfully. Importantly, one can observe that the SDE derived in (Malladi et al., 2022) is only slightly
less accurate than ours at the end of the dynamics: As we show in Lemma C.37, Theorem D.2 is a
corollary of Theorem C.34 when ∇f(x) = O(

√
η), e.g. it only describes the dynamics where the

gradient is vanishing. In Figure 10, we compare the two SDEs in question with RMSprop on an MLP,
a CNN, a ResNet, and a Transformer: Our SDE exhibits a superior description of the dynamics.
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Figure 10: We compare our SDE, that from Malladi et al. (2022), and RMSprop in terms of f(x): The
first is an MLP on the Breast Cancer dataset, the second a CNN on MNIST, the third a Transformer
on MNIST, and the last a ResNet on CIFAR-10: One can observe that our SDE tracks RMSprop
more faithfully.

The following theorem guarantees that such a process is a 1-order SDE of the discrete-time algorithm
of RMSprop

xk+1 = xk − η
∇fγk

(xk)√
vk+1 + ϵId

(131)

vk+1 = βvk + (1− β) (∇fγk
(xk))

2 (132)

with (x0, v0) ∈ Rd ×Rd, η ∈ R>0 is the step size, β = 1− ρη for ρ = O(1), the mini-batches {γk}
are modelled as i.i.d. random variables uniformly distributed on {1, · · · , N}, and of size B ≥ 1.

Theorem C.34 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋.
Let lk := (xk, vk) ∈ Rd × Rd, 0 ≤ k ≤ N denote a sequence of RMSprop iterations defined
by Eq. 131. Consider the stochastic process Lt defined in Eq. 129 and fix some test function
g ∈ G and suppose that g and its partial derivatives up to order 6 belong to G.
Then, under Assumption C.3 and ρ = O(1) there exists a constant C > 0 independent of η
such that for all k = 0, 1, . . . , N , we have

|Eg (Lkη)− Eg (lk)| ≤ Cη.

That is, the SDE 129 is an order 1 weak approximation of the RMSprop iterations 131.

Proof. The proof is virtually identical to that of Theorem C.16. Therefore, we only report the key
steps necessary to conclude the thesis. First of all, we observe that since β = 1− ηρ

vk+1 − vk = −ηρ
(
vk − (∇fγk

(xk))
2
)
. (133)

Then,

1
√
vk+1

=

√
vk

vk+1

1

vk
=

√
vk+1 +O(η)

vk+1

1

vk
=

√
1 +

O(η)

vk+1

√
1

vk
∼
√

1

vk
(1 +O(η)). (134)

Therefore, we work with the following algorithm as all the approximations below only carry an
additional error of order O(η2), which we can ignore. Therefore, we have that

xk+1 − xk = −η
∇fγk

(xk)√
vk + ϵId

(135)

vk − vk−1 = −ηρ
(
vk−1 −

(
∇fγk−1

(xk−1)
)2)

. (136)

Therefore, if ∇fγj
(xj) = ∇f(xj) + Zj(xj), E[Zj(xj)] = 0, and Cov(Zj(xj)) = Σ(xj)

1. E[xk+1 − xk] = −η diag(vk + ϵId)
− 1

2∇f(xk) ;

2. E[vk − vk−1] = ηρ
[
(∇f(xk−1))

2
+ diag(Σ(xk))− vk−1

]
.
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Then, we have that if Φk := ∇f(xk)√
vk+ϵId

− ∇fγk (xk)√
vk+ϵId

1.

E[(xk+1 − xk)(xk+1 − xk)
⊤] = E[(xk+1 − xk)]E[(xk+1 − xk)]

⊤ (137)

+ η2E
[
(Φk) (Φk)

⊤
]

(138)

= E[(xk+1 − xk)]E[(xk+1 − xk)]
⊤ (139)

+ η2(diag(vk) + ϵId)
−1Σ(xk); (140)

2. E[(vk − vk−1)(vk − vk−1)
⊤] = E[(vk − vk−1)]E[(vk − vk−1)]

⊤ +O(ρη2);

3. E[(xk+1 − xk)(vk − vk−1)
⊤] = E[(xk+1 − xk)]E[(vk − vk−1)

⊤] + 0.

Remark C.35. Let us remember that by assumption, ∇f(x) and
√
Σ(x) are Lipschitz, grow at most

affinely, and are in G together with their derivative. Therefore, the drift and diffusion terms of the
SDE governing Xt are the ratio between regular functions and a uniformly lower bounded process.
Therefore, they are in turn regular, modulo dividing by

√
Vt + ϵ2V + ϵ s.t. ϵ2V ∼ 0 rather than

by
√
Vt + ϵ (See Bock and Weiß (2021) as they experimentally verify that this has no impact on

the performance of the optimizer). Regarding the ODE governing Vt, Σ(Xt) is Lipschitz because√
Σ(Xt) is bounded and Lipschitz. Additionally, it is smooth, and with affine growth. On top of this,

we need the term (∇f(x))2 to be Lipschitz and of affine growth, which is a consequence of assuming
bounded gradients as often done in the literature on the convergence of RMSprop and Adam: Among
many, see (Luo et al., 2019; Défossez et al., 2022; Guo et al., 2021; Huang et al., 2021) together with
the discussion in Section 2.1 of Shi and Li (2021). Alternatively, exactly as done in Theorem 9 of Li
et al. (2019), one can regularize the drifts and the diffusion terms with mollifiers on a sufficiently large
compact Reddi et al. (2018), which automatically implies that drift and diffusion coefficients satisfy
all necessary regularity conditions. Importantly, one needs to then send the mollification parameter ϵ
to 0 to conclude our statement. Therefore, we the SDE of RMSprop for Pt := diag (Vt)

1
2 + ϵId is

dXt = −P−1
t (∇f(Xt)dt+

√
ηΣ(Xt)

1
2 dWt) (141)

dVt = ρ(((∇f(Xt))
2 + diag(Σ(Xt))− Vt))dt. (142)

Remark C.36. In all the following results, the reader will notice that all the drifts, diffusion terms,
and noise assumptions are selected to guarantee that the SDE we derived for RMSprop is indeed a 1
weak approximation for RMSprop even without the mollification argument. Importantly, our analysis
of RMSprop focuses on its behavior at convergence, i.e. (∇f(x))2 = O(η). Therefore, there is no
need to assume bounded gradients or a compact domain.
Lemma C.37. If (∇f(x))2 = O(η), Theorem D.2 is a Corollary of Theorem C.34.

Proof. In the proof of Theorem C.34, one drops the term η(∇f(x))2 as it is of order η2.

Corollary C.38. Under the assumptions of Theorem C.34 with Σ(x) = σ2Id, η̃ = κη, B̃ = Bδ, and
ρ̃ = αρ,

dXt = κdiag(Vt)
− 1

2

(
−∇f(Xt)dt+

1√
δ

√
η

B
σIddWt

)
(143)

dVt = αρ

(
(∇f(Xt))

2 +
σ2

Bδ
1− Vt

)
dt. (144)

Lemma C.39 (Scaling Rule at Convergence). Under the assumptions of Corollary C.38, f is µ-
strongly convex, Tr(∇2f(x)) ≤ Lτ , and (∇f(x))2 = O(η), the asymptotic dynamics of the iterates
of RMSprop satisfies the classic scaling rule κ =

√
δ because

E[f(Xt)− f(X∗)]
t→∞
≤ ησLτ

4µ
√
B

κ√
δ
. (145)
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By enforcing that the speed of Vt matches that of Xt, one needs ρ̃ = κρ, which implies β̃ =
1− κ(1− β).

Proof of Lemma C.39. In order to recover the scaling of β, we enforce that the rate at which Vt

converges to its limit matches the speed of Xt: We need ρ̃ = κρ, which recovers the novel scaling
β̃ = 1− κ(1− β). Additionally, since (∇f(x))2 = O(η) we have that

dXt = κdiag(Vt)
− 1

2

(
−∇f(Xt)dt+

1√
δ

√
η

B
σIddWt

)
(146)

dVt = κρ

(
σ2

Bδ
1− Vt

)
dt. (147)

Therefore, Vt
t→∞→ σ2

Bδ1, meaning that under these conditions:

dXt = −
√
Bδκ

σ
∇f(Xt)dt+ κ

√
ηIddWt, (148)

which satisfies the following for µ-strongly convex functions

dE[f(Xt)− f(X∗)] ≤ −2κµ

√
Bδ

σ
E[f(Xt)− f(X∗)]dt+

κ2ηLτ

2
dt, (149)

meaning that E[f(Xt)− f(X∗)]
t→∞
≤ ησLτ

4µ
√
B

κ√
δ

.

Since the asymptotic the loss is η
2

Lτσ

2µ
√
B

κ√
δ

does not depend on κ and δ if κ√
δ
= 1, we recover the

classic scaling rule.

Remark: Under the same conditions, SGD satisfies

dXt = −κ∇f(Xt)dt+ κ
1√
δ

√
η

B
σIddWt (150)

and therefore

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µκt +

η

2

Lτσ
2

2µB

κ

δ

(
1− e−2µκt

)
, (151)

meaning that asymptotically the loss is η
2
Lτσ

2

2µB
κ
δ which does not depend on κ and δ if κ

δ = 1.

Lemma C.40. For f(x) := x⊤Hx
2 , the stationary distribution of RMSprop is (E[X∞]], Cov(X∞)) =(

0, η
2Σ

1
2H−1

)
.

Proof. As (∇f(x))2 = O(η) and t → ∞, we have

dXt = −Σ− 1
2HXtdt+

√
ηIddWt (152)

which implies that

Xt = e−Σ− 1
2 Ht

(
X0 +

√
η

∫ t

0

eΣ
− 1

2 HsdWs

)
. (153)

The thesis follows from the martingale property of Brownian motion and the Itô isometry.
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C.7 RMSPROPW
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Figure 11: The first two represent the comparison between AdamW and its SDE in terms of f(x).
The other two do the same for RMSpropW. In both cases, the first is an MLP on the Breast Cancer
Dataset and the second a CNN on MNIST: Our SDEs match the respective optimizers.

In this subsection, we derive the SDE of RMSpropW defined as

xk+1 = xk − η
∇fγk

(xk)√
vk+1 + ϵId

− ηθxk (154)

vk+1 = βvk + (1− β) (∇fγk
(xk))

2 (155)

with (x0, v0) ∈ Rd×Rd, η ∈ R>0 is the step size, β = 1−ρη for ρ = O(1), θ > 0, the mini-batches
{γk} are modelled as i.i.d. random variables uniformly distributed on {1, · · · , N}, and of size B ≥ 1.

Theorem C.41. Under the same assumptions as Theorem C.34, the SDE of RMSpropW is

dXt = −P−1
t (∇f(Xt)dt+

√
ηΣ(Xt)

1
2 dWt)− θXtdt (156)

dVt = ρ((∇f(Xt))
2 + diag(Σ(Xt))− Vt))dt, (157)

where β = 1− ηρ, ρ = O(1), θ > 0, and Pt := diag (Vt)
1
2 + ϵId.

Proof. The proof is the same as the of Theorem C.34 and the only difference is that ηθxk is
approximated with θXtdt.

Figure 4 and Figure 11 validate this result on a variety of architectures and datasets.
Remark C.42. See Remark C.35 and Remark C.36 for a discussion on the regularity of the SDE
derived in Theorem C.41.

Corollary C.43. Under the assumptions of Theorem C.41 with Σ(x) = σ2Id, η̃ = κη, B̃ = Bδ, and
ρ̃ = αρ, and θ̃ = ξθ,

dXt = κdiag(Vt)
− 1

2

(
−∇f(Xt)dt+

1√
δ

√
η

B
σIddWt

)
− ξθκXtdt (158)

dVt = αρ

(
(∇f(Xt))

2 +
σ2

Bδ
1− Vt

)
dt. (159)

Lemma C.44 (Scaling Rule at Convergence). Under the assumptions of Corollary C.43, f is µ-
strongly convex and L-smooth, Tr(∇2f(x)) ≤ Lτ , X∗ = 0, and (∇f(x))2 = O(η), the asymptotic
dynamics of the iterates of RMSpropW satisfies the novel scaling rule if κ =

√
δ and ξ = κ because

E[f(Xt)− f(X∗)]
t→∞
≤ ηLτσL

2

κ

2µ
√
BδL+ σξθ(L+ µ)

. (160)

By enforcing that the speed of Vt matches that of Xt, one needs ρ̃ = κρ, which implies β̃ =
1− κ(1− β).
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Figure 12: The first two on the left compare our SDE, that from Malladi et al. (2022), and Adam in
terms of trajectories and f(x), respectively, for a convex quadratic function. The others do the same
for an embedded saddle: Our SDE is shown here to track Adam more faithfully.

Proof of Lemma C.44. In order to recover the scaling of β, we enforce that the rate at which Vt

converges to its limit matches the speed of Xt: We need ρ̃ = κρ, which recovers the novel scaling
β̃ = 1− κ(1− β). Additionally, since (∇f(x))2 = O(η) we have that

dXt = κdiag(Vt)
− 1

2

(
−∇f(Xt)dt+

1√
δ

√
η

B
σIddWt

)
− κξθXtdt (161)

dVt = κρ

(
σ2

Bδ
1− Vt

)
dt. (162)

Therefore, Vt
t→∞→ σ2

Bδ1, meaning that under these conditions:

dXt = −
√
Bδκ

σ
∇f(Xt)dt+ κ

√
ηIddWt − κξθXtdt, (163)

which satisfies the following for µ-strongly convex and L-smooth functions

dE[f(Xt)− f(X∗)] ≤ κ

(
2µ

√
Bδ

σ
+ ξθ

(
1 +

µ

L

))
E[f(Xt)− f(X∗)]dt+

κ2ηLτ

2
dt, (164)

meaning that E[f(Xt)− f(X∗)]
t→∞
≤ ηLτσL

2
κ

2µ
√
BδL+σξθ(L+µ)

.

Since the asymptotic the loss ηLτσL
2

κ
2µ

√
BδL+σξθ(L+µ)

does not depend on κ and δ and ξ if κ = ξ =
√
δ, we recover the novel scaling rule.

A similar result can be derived for a general X∗: The final expression is very convoluted and brings
marginally negligible added value.

Lemma C.45. For f(x) := x⊤Hx
2 , the stationary distribution of RMSpropW is

(E[X∞]], Cov(X∞)) =
(
0, η

2 (HΣ− 1
2 + θId)

−1
)

.

Proof. As (∇f(x))2 = O(η) and t → ∞, we have

dXt = −Σ− 1
2HXtdt+

√
ηIddWt − θXtdt (165)

which implies that

Xt = e−(Σ− 1
2 H+γId)t

(
X0 +

√
η

∫ t

0

e(Σ
− 1

2 H+θId)sdWs

)
. (166)

The thesis follows from the martingale property of Brownian motion and the Itô isometry.
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C.8 FORMAL DERIVATION - ADAM

In this subsection, we provide our formal derivation of an SDE model for Adam. Let us consider the
stochastic process Lt := (Xt,Mt, Vt) ∈ Rd × Rd × Rd defined as the solution of

dXt = −
√
ι2(t)

ι1(t)
P−1
t (Mt + ηρ1 (∇f (Xt)−Mt))dt (167)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1Σ

1/2 (Xt) dWt (168)

dVt = ρ2
(
(∇f(Xt))

2 + diag (Σ (Xt))− Vt

)
dt, (169)

where βi = 1 − ηρi, ιi(t) = 1 − e−ρit, ρ1 = O(η−ζ) s.t. ζ ∈ (0, 1), ρ2 = O(1), t > t0, and
Pt = diag

√
Vt + ϵ

√
ι2(t)Id.

Remark C.46. The terms in purple and in blue are the two differences w.r.t. that of (Malladi et al.,
2022) which is reported in Theorem D.5. The first appears because we assume realistic values of β1

while the second appears because we allow the gradient size to be non-negligible. For two simple
landscapes, Figure 12 compares our SDE and that of Malladi et al. (2022) with Adam: In both
cases, the first part of the dynamics is perfectly represented only by our SDE. While the discrepancy
between the SDE of (Malladi et al., 2022) and Adam is asymptotically negligible in the convex
setting, we observe that in the non-convex case, it converges to a different local minimum than ours
and of Adam. Finally, Theorem D.5 is a corollary of ours when (∇f(x))2 = O(η) and ρ1 = O(1):
It only describes the dynamics where the gradient to noise ratio is vanishing and only for unrealistic
values of β1 = 1− ηρ1. In Figure 13, we compare the dynamics of our SDE, that of Malladi et al.
(2022), and Adam on an MLP, a CNN, a ResNet, and a Transformer. One can observe that our SDE
captures the Adam’s dynamics more accurately. Details on these experiments are in Appendix F.

The following theorem guarantees that such a process is a 1-order SDE of the discrete-time algorithm
of Adam

vk+1 = β2vk + (1− β2) (∇fγk
(xk))

2 (170)
mk+1 = β1mk + (1− β1)∇fγk

(xk) (171)

m̂k = mk

(
1− βk

1

)−1
(172)

v̂k = vk
(
1− βk

2

)−1
(173)

xk+1 = xk − η
m̂k+1√

v̂k+1 + ϵId
, (174)

with (x0,m0, v0) ∈ Rd × Rd × Rd, η ∈ R>0 is the step size, βi = 1 − ρiη for ρ1 = O(η−ζ) s.t.
ζ ∈ (0, 1), ρ2 = O(1), the mini-batches {γk} are modelled as i.i.d. random variables uniformly
distributed on {1, · · · , N}, and of size B ≥ 1.

Theorem C.47 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋.
Let lk := (xk,mk, vk) ∈ Rd × Rd × Rd, 0 ≤ k ≤ N denote a sequence of Adam iterations
defined by Eq. 170. Consider the stochastic process Lt defined in Eq. 167 and fix some test
function g ∈ G and suppose that g and its partial derivatives up to order 6 belong to G.
Then, under Assumption C.3 ρ1 = O(η−ζ) s.t. ζ ∈ (0, 1), while ρ2 = O(1), there exists a
constant C > 0 independent of η such that for all k = 0, 1, . . . , N , we have

|Eg (Lkη)− Eg (lk)| ≤ Cη.

That is, the SDE 167 is an order 1 weak approximation of the Adam iterations 170 for t > t0.

Proof. The proof is virtually identical to that of Theorem C.16. Therefore, we only report the key
steps necessary to conclude the thesis. First of all, we observe that since β1 = 1− ηρ1

vk+1 − vk = −ηρ1

(
vk − (∇fγk

(xk))
2
)
. (175)
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Figure 13: We compare our SDE, that from Malladi et al. (2022), and Adam in terms of f(x): The
first is an MLP on the Breast Cancer dataset, the second a CNN on MNIST, the third a Transformer
on MNIST, and the last a ResNet on CIFAR-10: One can observe that our SDE matches the algorithm
more accurately.

Then,

1
√
vk+1

=

√
vk

vk+1

1

vk
=

√
vk+1 +O(η)

vk+1

1

vk
=

√
1 +

O(η)

vk+1

√
1

vk
∼
√

1

vk
(1 +O(η)). (176)

Therefore, we work with the following algorithm as all approximations only carry an additional error
of order O(η2), which we can ignore. Therefore, we have that

vk − vk−1 = −ηρ2

(
vk−1 −

(
∇fγk−1

(xk−1)
)2)

(177)

mk+1 −mk = −ηρ1 (mk −∇fγk
(xk)) (178)

m̂k = mk

(
1− βk

1

)−1
(179)

v̂k = vk
(
1− βk

1

)−1
(180)

xk+1 − xk = − η
√
vk + ϵId

√
1− (1− ηρ2)k

1− (1− ηρ1)k+1
(mk + ηρ1(∇fγk

(xk)−mk)). (181)

Therefore, if ∇fγj
(xj) = ∇f(xj) + Zj(xj) and E[Zj(xj)] = 0, and Cov(Zj(xj)) = Σ(xj), we

have that

1. E[vk − vk−1] = ηρ2

[
(∇f(xk−1))

2
+ diag(Σ(xk))− vk−1

]
;

2. E[mk+1 −mk] = ηρ1 [∇f(xk)−mk] ;

3. E[xk+1 − xk] = − η√
vk+ϵId

√
1−(1−ηρ2)k

1−(1−ηρ1)k+1 (mk + ηρ1(∇f(xk)−mk)) .

Then, we have

1. E[(xk+1 − xk)(xk+1 − xk)
⊤] = E[(xk+1 − xk)]E[(xk+1 − xk)]

⊤ +O(η4ρ21);

2. E[(xk+1 − xk)(mk −mk−1)
⊤] = E[(xk+1 − xk)]E[(mk −mk−1)]

⊤ + 0;

3. E[(xk+1 − xk)(vk − vk−1)
⊤] = E[(xk+1 − xk)]E[(vk − vk−1)]

⊤ + 0;

4. E[(vk − vk−1)(vk − vk−1)
⊤] = E[(vk − vk−1)]E[(vk − vk−1)]

⊤ +O(η2ρ22);

5. E[(mk −mk−1)(mk −mk−1)
⊤] = E[(mk −mk−1)]E[(mk −mk−1)]

⊤ + η2ρ21Σ(xk−1);

6. E[(vk − vk−1)(mk −mk−1)
⊤] = E[(vk − vk−1)]E[(mk −mk−1)]

⊤ +O(η2ρ1ρ2).
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Since in real-world applications, ρ1 = O(η−ζ) s.t. ζ ∈ (0, 1), while ρ2 = O(1), we have

dXt = −
√
ι2(t)

ι1(t)
P−1
t (Mt + ηρ1 (∇f (Xt)−Mt))dt (182)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1Σ

1/2 (Xt) dWt (183)

dVt = ρ2
(
(∇f(Xt))

2 + diag (Σ (Xt))− Vt

)
dt. (184)

where βi = 1− ηρi, ιi(t) = 1− e−ρit, t > t0, and Pt = diag
√
Vt + ϵ

√
ι2(t)Id.

Remark C.48. See Remark C.35 and Remark C.36 for a discussion on the regularity of the SDE
derived in Theorem C.47.

Corollary C.49. Under the assumptions of Theorem C.47 with Σ(x) = σ2Id, η̃ = κη, B̃ = Bδ,
ρ̃1 = α1ρ1, and ρ̃2 = α2ρ2

dXt = −κ

√
ι2(t)

ι1(t)
P−1
t (Mt + ηα1ρ1 (∇f (Xt)−Mt))dt (185)

dMt = α1ρ1 (∇f (Xt)−Mt) dt+
√
ηα1ρ1

σ√
Bδ

IddWt (186)

dVt = α2ρ2

(
(∇f(Xt))

2 +
σ2

Bδ
Id − Vt

)
dt. (187)

Lemma C.50. Under the assumptions of Corollary C.49, f is µ-strongly convex, Tr(∇2f(x)) ≤ Lτ ,
and (∇f(x))2 = O(η), the asymptotic dynamics of the iterates of Adam satisfies the classic scaling

rule κ =
√
δ because E[f(Xt)]

t→∞
≤ ησLτ

4
√
B

κ√
δ

. To enforce that the speed of Mt and Vt match that of

Xt, one needs ρ̃i = κρi, which implies β̃i = 1− κ(1− βi).

Proof. First of all, we need to ensure that the relative speeds of Xt, Mt, and Vt match. Therefore,
we select αi = κ, which recovers the scaling rules for β̃i = 1 − κ(1 − βi). Then, recalling that
(∇f(x))2 = O(η), we have that as t → ∞, Vt → σ2

Bδ , and Mt → ∇f(Xt) with high probability.
Therefore,

dXt = −κ

√
Bδ

σ
∇f(Xt)dt (188)

dMt = κ
√
ηρ1

σ√
Bδ

dWt (189)

dVt = 0. (190)

Therefore, if H(Xt, Vt) := f(Xt) +
LτδB
ρ2
1σ

2

∥Mt∥2
2

2 and ξ ∈ (0, 1) we have that by Itô’s lemma,

dH(Xt, Vt) = −(∇f(Xt))
⊤

(
κ

√
Bδ

σ
∇f(Xt)

)
dt+

(
LτδB

ρ21σ
2
Mt

)
κ
√
ηρ1

σ√
Bδ

dWt (191)

+
1

2

(
LτδB

ρ21σ
2

)
κ2ηρ21

σ2

Bδ
dt (192)

= −

(
κ

√
Bδ

σ

)
∥∇f(Xt)∥22dt+ Noise +

κ2ηLτ

2
dt (193)

= −

(
κ

√
Bδ

σ

)(
ξ∥∇f(Xt)∥22 + (1− ξ)∥∇f(Xt)∥22

)
dt+ Noise +

κ2ηLτ

2
dt

(194)

≤ −2κµ

√
Bδ

σ
ξ

(
f(Xt) +

1− ξ

µξ

∥∇f(Xt)∥22
2

)
dt+ Noise +

κ2ηLτ

2
dt. (195)
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Let us now select ξ such that 1−ξ
µξ = LτδB

ρ2
1σ

2 , this means that ξ =
σ2ρ2

1

σ2ρ2
1+µLτσB

∈ (0, 1) and 1
ξ =

1 + µLτδB
ρ2
1σ

2 . Since Mt → ∇f(Xt), we have that

dH(Xt, Vt) ≤ −2κµ

√
Bδ

σ
ξH(Xt, Vt)dt+

κ2ηLτ

2
dt+ Noise. (196)

Therefore,

E[f(Xt)]

ξ
=

(
1 + µ

LτδB

ρ21σ
2

)
E[f(Xt)] ≤ E[H(Xt, Vt)]

t→∞
≤ 1

ξ

ησLτ

4µ
√
B

κ√
δ
, (197)

which implies that

E[f(Xt)]
t→∞
≤ ησLτ

4µ
√
B

κ√
δ
. (198)

Analogously,

E[f(Xt)− f(X∗)]
t→∞
≤ ησLτ

4µ
√
B

κ√
δ
. (199)

which gives the square root scaling rule.

Lemma C.51. Under the assumptions of Corollary C.49, f(x) = x⊤Hx
2 s.t. H = diag(λ1, · · · , λd)

and (∇f(x))2 = O(η), the dynamics of Adam implies that f(Xt) → ησd

4
√
B

κ√
δ

.

Proof. Recalling that (∇f(x))2 = O(η), we have that as t → ∞, Vt → σ2

Bδ , and Mt → λXt with
high probability. Therefore, in the one-dimensional case

dXt = −κ

√
Bδ

σ
λXtdt (200)

dMt = κ
√
ηρ1

σ√
Bδ

dWt (201)

dVt = 0. (202)

Therefore, if H(Xt, Vt) :=
λX2

t

2 + λδB
ρ2
1σ

2

M2
t

2 , 8 we have that by Itô’s lemma,

dH(Xt, Vt) = −(λXt)

(
κ

√
Bδ

σ
λXt

)
dt+

(
λδB

ρ21σ
2
Mt

)
κ
√
ηρ1

σ√
Bδ

dWt (203)

+
1

2

(
λδB

ρ21σ
2

)
κ2ηρ21

σ2

Bδ
dt (204)

= −2κλ

√
Bδ

σ
f(Xt)dt+

κ2ηρ21σ
2

2Bδ

λδB

ρ21σ
2
dt+ Noise. (205)

= −2κλ

√
Bδ

σ
f(Xt)dt+

κ2ηλ

2
dt+ Noise. (206)

Once again, since Mt → λXt, we have that

H(Xt, Vt) =
λX2

t

2
+

λδB

ρ21σ
2

M2
t

2
→ λX2

t

2
+ λ

λδB

ρ21σ
2

λX2
t

2
=

(
1 + λ

λδB

ρ21σ
2

)
λX2

t

2
=: Kf(Xt).

(207)
Therefore,

KdE[f(Xt)] = −2κλ

√
Bδ

σ
E[f(Xt)]dt+

κ2ηλ

2
dt, (208)

which implies that E[f(Xt)] → ησ

4
√
B

κ√
δ

, which also gives the square root scaling rule. The general-
ization to d dimension is analogous and one needs to sum across all the dimensions.

8Inspired by (Barakat and Bianchi, 2021)
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Lemma C.52. Let f(x) := x⊤Hx
2 where H = diag(λ1, . . . , λd). The stationary distribution of

Adam is (E[X∞]], Cov(X∞)) =
(
0, η

2Σ
1
2H−1

)
.

Proof. The expected value follows immediately from the fact that

dXt = −Σ− 1
2Xtdt (209)

For the covariance, we focus on the one-dimensional case. We define H(Xt, Vt) :=
X2

t

2 + λ2

2σ2ρ2
1

M2
t

2 .
With the same arguments as Lemma C.51, we have

d(Xt)
2 = −λ

σ
X2

t dt+
η

2
dt+ Noise, (210)

which implies that
E[X2

t ]
t→0→ η

2

σ

λ
. (211)

The thesis follows by applying the same logic to multiple dimensions.

C.9 ADAMW

In this subsection, we derive the SDE of AdamW defined as defined as

vk+1 = β2vk + (1− β2) (∇fγk
(xk))

2 (212)
mk+1 = β1mk + (1− β1)∇fγk

(xk) (213)

m̂k = mk

(
1− βk

1

)−1
(214)

v̂k = vk
(
1− βk

2

)−1
(215)

xk+1 = xk − η
m̂k+1√

v̂k+1 + ϵId
− ηθxk (216)

with (x0,m0, v0) ∈ Rd × Rd × Rd, η ∈ R>0 is the step size, βi = 1 − ρiη for ρ1 = O(η−ζ)
s.t. ζ ∈ (0, 1), ρ2 = O(1), θ > 0, the mini-batches {γk} are modelled as i.i.d. random variables
uniformly distributed on {1, · · · , N}, and of size B ≥ 1.
Theorem C.53. Under the same assumptions as Theorem C.47, the SDE of AdamW is

dXt = −
√

ι2(t)

ι1(t)
P−1
t (Mt + ηρ1 (∇f (Xt)−Mt))dt− θXtdt (217)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1Σ

1/2 (Xt) dWt (218)

dVt = ρ2
(
(∇f(Xt))

2 + diag (Σ (Xt))− Vt

)
dt. (219)

where βi = 1− ηρi, θ > 0, ιi(t) = 1− e−ρit, t > t0, and Pt = diag
√
Vt + ϵ

√
ι2(t)Id.

Proof. The proof is the same as the of Theorem C.47 and the only difference is that ηθxk is
approximated with θXtdt.

Figure 4 and Figure 11 validate this result on a variety of architectures and datasets.
Remark C.54. See Remark C.35 and Remark C.36 for a discussion on the regularity of the SDE
derived in Theorem C.53.
Corollary C.55. Under the assumptions of Theorem C.53 with Σ(x) = σ2Id, η̃ = κη, B̃ = Bδ,
ρ̃1 = α1ρ1, θ̃ = ξθ, and ρ̃2 = α2ρ2

dXt = −κ

√
ι2(t)

ι1(t)
P−1
t (Mt + ηα1ρ1 (∇f (Xt)−Mt))dt− κξθXtdt (220)

dMt = α1ρ1 (∇f (Xt)−Mt) dt+
√
ηα1ρ1

σ√
Bδ

IddWt (221)

dVt = α2ρ2

(
(∇f(Xt))

2 +
σ2

Bδ
Id − Vt

)
dt. (222)
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Lemma C.56 (Scaling Rule at Convergence). Under the assumptions of Corollary C.55, f is µ-
strongly convex and L-smooth, Tr(∇2f(x)) ≤ Lτ , X∗ = 0, and (∇f(x))2 = O(η), the asymptotic
dynamics of the iterates of AdamW satisfies the novel scaling rule if κ =

√
δ and ξ = κ because

E[f(Xt)− f(X∗)]
t→∞
≤ ηLτσL

2

κ

2µ
√
BδL+ σξθ(L+ µ)

(223)

By enforcing that the speed of Vt matches that of Xt, one needs ρ̃ = κρ, which implies β̃i =
1− κ(1− βi).

Proof. The proof is the same as Lemma C.50 where we also use L-smoothness as in Lemma C.44.

A similar result can be derived for a general X∗: The final expression is very convoluted and brings
marginally negligible added value.

Lemma C.57. For f(x) := x⊤Hx
2 , the stationary distribution of AdamW is (E[X∞]], Cov(X∞)) =(

0, η
2 (HΣ− 1

2 + θId)
−1
)

.

Proof. The proof is the same as Lemma C.52.

Finally, we prove a generalization of Lemma C.56 to the L-smooth case.

Lemma C.58. Let f be L-smooth, ηt be a learning rate scheduler such that limt→∞
ϕ2
t

ϕ1
t

t→∞→ 0 and

ϕ1
t

t→∞→ ∞, where ϕi
t =

∫ t

0
(ηs)

ids. Then

E∥∇f (Xt̃)∥22 ≤
(
f(X0)− f(X∗) +

LτδB

ρ21σ
2

∥M0∥22
2

+
ϕ2
tηκ

2Lτ

2

)
σ

κ
√
δB

1

ϕ1
t

t→∞→ 0, (224)

where t̃ is a random time with distribution ηt

ϕ1
t

.

Proof. The proof is the same as Lemma C.24.

D SDES FROM THE LITERATURE

Theorem D.1 (Original Malladi’s Statement). Let σ0 := ση, ϵ0 := ϵη, and c2 := 1−β
η2 . Define the

state of the SDE as Lt = (Xt, ut) and the dynamics as

dXt = −P−1
t

(
∇f (Xt) dt+ σ0Σ

1/2 (Xt) dWt

)
(225)

dut = c2 (diag (Σ (Xt))− ut) dt (226)

where Pt := σ0 diag (ut)
1/2

+ ϵ0Id.

Theorem D.2 (Informal Statement of Theorem C.2 Malladi et al. (2022)). Under sufficient regularity
conditions and ∇f(x) = O(

√
η), the following SDE is an order 1 weak approximation of RMSprop:

dXt = −P−1
t (∇f(Xt)dt+

√
ηΣ(Xt)

1
2 dWt) (227)

dVt = ρ(diag(Σ(Xt))− Vt))dt, (228)

where β = 1− ηρ, ρ = O(1), and Pt := diag (Vt)
1
2 + ϵId.

Lemma D.3. Theorem D.1 and Theorem D.2 are equivalent.

Proof. It follows applying time rescaling t := ηξ and observing that Wt = Wηξ =
√
ηWξ.
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Theorem D.4 (Original Malladi’s Statement). Let c1 := (1− β1) /η
2, c2 := (1− β2) /η

2 and define
σ0, ϵ0 in Theorem D.1. Let ι1(t) := 1− exp (−c1t) and ι2(t) := 1− exp (−c2t). Define the state of
the SDE as Lt = (Xt,mt, ut) and the dynamics as

dXt = −
√

ι2(t)

ι1(t)
P−1
t mtdt (229)

dmt = c1 (∇f (Xt)−mt) dt+ σ0c1Σ
1/2 (Xt) dWt, (230)

dut = c2 (diag (Σ (Xt))− ut) dt, (231)

where Pt := σ0 diag (ut)
1/2

+ ϵ0
√
ι2(t)Id.

Theorem D.5 (Informal Statement of Theorem D.2 Malladi et al. (2022)). Under sufficient regularity
conditions and ∇f(x) = O(

√
η), the following SDE is an order 1 weak approximation of Adam:

dXt = −
√
ι2(t)

ι1(t)
P−1
t Mtdt (232)

dMt = ρ1 (∇f (Xt)−Mt) dt+
√
ηρ1Σ

1/2 (Xt) dWt (233)
dVt = ρ2 (diag (Σ (Xt))− Vt) dt. (234)

where βi = 1− ηρi, ιi(t) = 1− e−ρit, ρi = O(1), and Pt = diag
√
Vt + ϵ

√
ι2(t)Id.

Lemma D.6. Theorem D.4 and Theorem D.5 are equivalent.

Proof. It follows applying time rescaling t := ηξ and observing that Wt = Wηξ =
√
ηWξ.

E SDE CANNOT BE DERIVED NOR USED NAIVELY

In this section, we provide a gentle introduction to the meaning of deriving an SDE model for an
optimizer and discuss how SDEs have been used to derive scaling rules. To aid the intuition of the
reader, we informally derive an SDE for SGD with learning rate η, mini-batches γB of size B, and
starting point x0 = x, which we dub SGD(η,B). The iterates are given by:

xk+1 = xk − η∇fγB
k
(xk) (235)

which for Uk :=
√
η(∇f(xk)−∇fγB

k
(xk)), we rewrite as

xk − η∇f(xk) +
√
ηUk, (236)

where E[Uk] = 0 and Cov(Uk) =
η
BΣ(xk) =

η
B

1
n

∑n
i=0(∇f(xk)−∇fi(xk))(∇f(x)−∇fi(xk))

⊤.
If we now consider the SDE

dXt = −∇f(Xt)dt+

√
η

B
Σ(Xt)

1
2 dWt, (237)

its Euler-Maruyama discretization with pace ∆t = η and Zk ∼ N (0, Id) is

Xk+1 = Xk − η∇f(Xk) +
√
η

√
η

B
Σ(Xt)

1
2Zk. (238)

Since the Eq. 235 and Eq. 238 share the first two moments, it is reasonable that by identifying t = kη,
the SDE in Eq. 237 is a good model to describe the iterates of SGD in Eq. 235.

Informally, we need a “good model”, which is an SDE that is close to the real optimizer. This is
formalized in the following definition which comes from the field of numerical analysis of SDEs (see
Mil’shtein (1986)) and bounds the disparity between the the discrete and the continuous process.
Definition E.1 (Weak Approximation). A continuous-time stochastic process {Xt}t∈[0,T ] is an order
α weak approximation (or α-order SDE) of a discrete stochastic process {xk}⌊T/η⌋

k=0 if for every
polynomial growth function g, there exists a positive constant C, independent of the stepsize η, such
that maxk=0,...,⌊T/η⌋ |Eg (xk)− Eg (Xkη)| ≤ Cηα.

To see if an SDE satisfies such a definition, one has to check that for ∆̄ = x1 − x and ∆ = Xη − x,
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1.
∣∣E∆i − E∆̄i

∣∣ = O(η2), ∀i = 1, . . . , d;

2.
∣∣E∆i∆j − E∆̄i∆̄j

∣∣ = O(η2), ∀i, j = 1, . . . , d.

Example: Let us prove that the SDE in Eq. 237 is a valid approximation of SGD(η,B): The first
condition is easily verified. Coming to the second condition we have that

1. E∆i∆j = η2∂if(x)∂jf(x) +
η2

B Σ(x);

2. E∆̄i∆̄j = η2∂if(x)∂jf(x) +
η2

B Σ(x) +O(η3);

whose difference is of order η3 and thus satisfies the condition. However, we observe that if the
scale of the noise is too small w.r.t. η, i.e. Σ(x) = O(ηα) for α ≥ 0, then the simplest SDE model
describing SGD(η,B) is the ODE dXt = −∇f(Xt)dt as in that case

1. E∆i∆j = η2∂if(x)∂jf(x) +O(η2+α);

2. E∆̄i∆̄j = η2∂if(x)∂jf(x) +O(η2),

whose difference is also of order η2. Much differently, if Σ(x) = O(η−α) for α > 0, the simplest
model is the SDE in Eq. 237. We highlight that simplest does not mean best: The SDE is more
accurate than the ODE even in a regime with low noise, but this observation serves as a provocation.
One has to pay attention when deriving SDEs: Some models are more realistic than others.

Let us dig deeper into this thought as we derive two SDEs for SGD with learning rate η̃ := κη and
batch size B̃ := δB for κ > 1 and δ > 1, which we dub SGD(η̃,B̃). The first is derived considering
that the learning rate is η̃ and carries an error of order O(η̃) w.r.t. SGD(η̃,B̃)

dXt = −∇f(Xt)dt+

√
η̃

B̃
Σ(Xt)

1
2 dWt = −∇f(Xt)dt+

√
ηκ

Bδ
Σ(Xt)

1
2 dWt. (239)

The second one instead is derived considering η as the learning rate and κ as a constant “scheduler”.
Consistently with (Li et al., 2017), the SDE which carries an error of order O(η) w.r.t. SGD(η̃,B̃) is

dXt = −κ∇f(Xt)dt+ κ

√
η

Bδ
Σ(Xt)

1
2 dWt. (240)

While they both are valid models, there are three reasons why one should prefer the latter:

1. It fully reflects the fact that a larger learning rate results in a faster and noisier dynamics;

2. It has intrinsically less error than the other;

3. It is consistent with the optimizer in that there is no combination of κ and δ that can ever
leave the dynamics unchanged.

E.1 DERIVING SCALING RULES

Jastrzebski et al. (2018) observed that only the ratio between η and B matters in determining the
dynamics of Eq. 238. Therefore, they argue that for κ = δ the SDE for SGD(κη,δB) coincides with
that of SGD(η,B) and that this implies that the path properties of the optimizers are the same. On the
contrary, the path of SGD(η,B) strongly depends on the hyperparameters: The speed and volatility of
the dynamics are driven by η, and no choice of B can undo this. We remind the reader that the goal of
these rules is not to keep the dynamics of the optimizers unaltered, but rather to give a practical way
to change a hyperparameter, e.g. η, and have a principled way to adjust the others, e.g. B, such that
the performance of the optimizer is preserved. Therefore, we propose deriving scaling rules as we
preserve certain relevant quantities of the dynamics such as the convergence bound on the expected
loss. To show this quantitatively, we use this rationale to derive the scaling rule of SGD as we aim at
preserving the asymptotic loss level.

Lemma E.2. If f is a µ strongly convex function, Tr(∇2f(x)) ≤ Lτ and Σ(x) = σ2Id, then:
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1. Under the dynamics of Eq. 237 we have:

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µt +

η

2

Lτσ
2

2µB

(
1− e−2µt

)
; (241)

2. Under the dynamics of Eq. 239 we have:

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µt +

η

2

Lτσ
2

2µB

κ

δ

(
1− e−2µt

)
; (242)

3. Under the dynamics of Eq. 240 we have:

E[f(Xt)− f(X∗)] ≤ (f(X0)− f(X∗))e
−2µκt +

η

2

Lτσ
2

2µB

κ

δ

(
1− e−2µκt

)
. (243)

The first bound implies that the asymptotic limit of the expected loss for SGD(η,B) is η
2
Lτσ

2

2µB . The

last two bounds predict that the asymptotic loss level for SGD(η̃,B̃) is η
2
Lτσ

2

2µB
κ
δ . Since the objective

of the scaling rule is to find κ and δ such that SGD(η̃,B̃) achieves the same loss level as SGD(η,B),
we recover the linear scaling rule setting κ = δ. However, only the last bound can correctly capture
the fact that the dynamics of SGD(η̃,B̃) is κ times faster than that of SGD(η,B).

We thus conclude that:

1. Eq. 240 is a better model for SGD(η̃,B̃) as it represents the dynamics more accurately;
2. Maintaining the shape of the SDE does not preserve the path properties of the optimizer;
3. Deriving a scaling rule uniquely from the SDE might lead to the wrong conclusions in the

general case.

Remark E.3. In Malladi et al. (2022), Theorem 5.3 proposes a formal derivation of a scaling rule for
RMSprop. Following the perspective of Jastrzebski et al. (2018), the authors suggest that a scaling
rule that leaves their SDE unchanged would also preserve the dynamics of the RMSprop iterates.
We note, however, that an SDE is defined not only by the equation that governs the dynamics but
also by its initial condition (see Karatzas and Shreve (2014), Section 5). Although the scaling rule in
question leaves the differential equation unchanged, it modifies the initial condition of the process ut,
and hence, the overall SDE is altered. This observation suggests that the claim and proof in Malladi
et al. (2022) may need to be revisited.

Furthermore, the rule appears to be valid only in the vicinity of convergence, as the corresponding
SDE is applicable primarily in that regime. Additionally, Lemma E.2 provides concrete evidence
that maintaining the form of the SDE does not necessarily imply that the path properties of the
optimizer are preserved. We offer these clarifications with the hope of contributing constructively to
the discussion.

F EXPERIMENTS

In this section, we provide the modeling choices and instructions to replicate our experiments. The
code is implemented in Python 3 (Van Rossum and Drake, 2009) mainly using Numpy (Harris et al.,
2020), scikit-learn (Pedregosa et al., 2011), and JAX (Bradbury et al., 2018).

F.1 SIGNSGD: SDE VALIDATION (FIGURE 1)

In this subsection, we describe the experiments we run to produce Figure 1: The loss dynamics of
SignSGD and that of our SDE match on average.

DNN on Breast Cancer Dataset (Dua and Graff, 2017) This paragraph refers to the left of Figure
1. The DNN has 10 dense layers with 20 neurons each activated with a ReLu. We minimize the binary
cross-entropy loss. We run SignSGD for 50000 epochs as we calculate the full gradient and inject it
with Gaussian noise Z ∼ N (0, σ2Id) where σ = 1. The learning rate is η = 0.001. Similarly, we
integrate the SignSGD SDE (Eq. 7) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are
averaged over 3 runs and the shaded areas are the average ± the standard deviation.
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CNN on MNIST (Deng, 2012) This paragraph refers to the center-left of Figure 1. The CNN
has a (3, 3, 32) convolutional layer with stride 1, followed by a ReLu activation, a (2, 2) max pool
layer with stride (2, 2), a (3, 3, 32) convolutional layer with stride 1, a ReLu activation, a (2, 2) max
pool layer with stride (2, 2). Then the activations are flattened and passed through a dense layer
that compresses them into 128 dimensions, a final ReLu activation, and a final dense layer into the
output dimension 10. The output finally goes through a softmax as we minimize the cross-entropy
loss. We run SignSGD for 60000 epochs as we calculate the full gradient and inject it with Gaussian
noise Z ∼ N (0, σ2Id) where σ = 0.4. The learning rate is η = 0.001. Similarly, we integrate the
SignSGD SDE (Eq. 7) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over
3 run and the shaded areas are the average ± the standard deviation.

Transformer on MNIST This paragraph refers to the center-right of Figure 1. The Architecture is
a scaled-down version of (Dosovitskiy et al., 2021), where the hyperparameters are patch size=28,
out features=10, width=48, depth=3, num heads=6, and dim ffn=192. We minimize the cross-entropy
loss as we run SignSGD for 5000 epochs as we calculate the full gradient and inject it with Gaussian
noise Z ∼ N (0, σ2Id) where σ = 1. The learning rate is η = 0.001. Similarly, we integrate the
SignSGD SDE (Eq. 7) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over
3 runs and the shaded areas are the average ± the standard deviation.

ResNet on CIFAR-10 (Krizhevsky et al., 2009) This paragraph refers to the right of Figure
1. The ResNet has a (3, 3, 32) convolutional layer with stride 1, followed by a ReLu activation, a
second (3, 3, 32) convolutional layer with stride 1, followed by a residual connection from the first
convolutional layer, then a (2, 2) max pool layer with stride (2, 2). Then the activations are flattened
and passed through a dense layer that compresses them into 128 dimensions, a final ReLu activation,
and a final dense layer into the output dimension 10. The output finally goes through a softmax as we
minimize the cross-entropy loss. We run SignSGD for 5000 epochs as we calculate the full gradient
and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 1. The learning rate is η = 0.001.
Similarly, we integrate the SignSGD SDE (Eq. 7) with Euler-Maruyama (Algorithm 1) with ∆t = η.
Results are averaged over 3 runs and the shaded areas are the average ± the standard deviation.

F.2 SIGNSGD: INSIGHTS VALIDATION (FIGURE 2)

In this subsection, we describe the experiments we run to produce Figure 2: We successfully validate
them all.

Phases: Lemma 3.4 and Lemma 3.5 In this paragraph, we describe how we validated the existence
of the phases of SignSGD as predicted in Lemma 3.4 and Lemma 3.5. To produce the left of Figure
2), we simulated the full SDE (Eq. 24) and the one describing Phase 3 (Eq. 5). The optimized
function is f(x) = x⊤Hx

2 for H = diag(1, 2), x0 drawn (and fixed for all runs) from a normal
distribution N (0, 0.01), η = 0.001, and Σ = σ2Id where σ = 0.1. We integrate the SDEs with
Euler-Maruyama (Algorithm 1) with ∆t = η and for 3000 iterations. Results are averaged over 500
runs and the shaded areas are the average ± the standard deviation. Clearly, the two SDEs share the
same dynamics.

To produce the center-left of Figure 2, we repeat the above as x0 drawn (and fixed for all runs) from
a normal distribution N (0, 1). Then, we plot the average loss values together with the theoretical
prediction of Phase 1 and Phase 3: They perfectly overlap.

Stationary distribution: Lemma 3.7 In this paragraph, we describe how we validated the conver-
gence behavior predicted in Lemma 3.7. To produce the center-right of Figure 2), we run SignSGD on
f(x) = x⊤Hx

2 for H = diag(1, 2), x0 = (0.001, 0.001), η = 0.001 and Σ = σ2Id where σ = 0.1.
We run this for 5000 times and report the evolution of the moments. Then, we add lines representing
the theoretical predictions derived in Lemma 3.7: They match.

Schedulers: Lemma 3.9 In this paragraph, we describe how we validated the convergence behavior
predicted in Lemma 3.9. To produce the right of Figure 2, we run SignSGD on f(x) = x⊤Hx

2 for
H = diag(1, 2), x0 = (0.01, 0.01), η = 0.01 and Σ = σ2Id where σ = 0.1. We used the scheduler
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ηϑt = 1
(t+1)ϑ

for ϑ ∈ {0.1, 0.5, 1.5}. For the first two choices of ϑ, ηϑt satisfies our sufficient
condition for the convergence of SignSGD: In the figure, we observe that indeed SignSGD converges
to 0 with the same speed as the one predicted in the Lemma. For ϑ = 1.5, we observe that SignSGD
does not converge following the theoretical curve because it does not satisfy our sufficient condition.
Results are averaged over 500 runs.

F.3 RMSPROP: SDE VALIDATION (FIGURE 9 AND FIGURE 10)

In this subsection, we describe the experiments we run to produce Figure 9 and Figure 10: The
dynamics of our SDE matches that of RMSprop more accurately than the SDE derived in (Malladi
et al., 2022).

Quadratic convex function This paragraph refers to the left and center-left of Figure 9. We
optimize the function f(x) = x⊤Hx

2 where H = diag(10, 2). We run RMSprop for 2000 epochs as
we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.1. The
learning rate is η = 0.01, β = 0.99. Similarly, we integrate our RMSprop SDE (Eq. 129) and that
of Malladi (Eq. 227) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over
500 runs and the shaded areas are the average ± the standard deviation: Our SDE matches RMSprop
more accurately.

Embedded saddle This paragraph refers to the center-right and right of Figure 9. We optimize the
function f(x) = x⊤Hx

2 + 1
4λ
∑2

i=1 x
4
i −

ξ
3

∑2
i=1 x

3
i where H = diag(−1, 2), λ = 1, and ξ = 0.1.

We run RMSprop for 1600 epochs as we calculate the full gradient and inject it with Gaussian noise
Z ∼ N (0, σ2Id) where σ = 0.01. The learning rate is η = 0.01, β = 0.99. Similarly, we integrate
our RMSprop SDE (Eq. 129) and that of Malladi (Eq. 227) with Euler-Maruyama (Algorithm 1)
with ∆t = η. Results are averaged over 500 runs and the shaded areas are the average ± the standard
deviation: Our SDE matches RMSprop more accurately.

DNN on Breast Cancer Dataset This paragraph refers to the left of Figure 10. The architecture
and loss are the same as used above for SignSGD. We run RMSprop for 2000 epochs as we calculate
the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning
rate is η = 10−4, β = 0.9995. Similarly, we integrate our RMSprop SDE (Eq. 129) and that of
Malladi (Eq. 227) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3
runs and the shaded areas are the average ± the standard deviation: Our SDE matches RMSprop
more accurately.

CNN on MNIST This paragraph refers to the center-left of Figure 10. The architecture and loss
are the same as used above for SignSGD. We run RMSprop for 100000 epochs as we calculate the
full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning rate
is η = 10−4, β = 0.999. Similarly, we integrate our RMSprop SDE (Eq. 129) and that of Malladi
(Eq. 227) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3 run and the
shaded areas are the average ± the standard deviation: Our SDE matches RMSprop more accurately.

Transformer on MNIST This paragraph refers to the center-right of Figure 10. The architecture
and loss are the same as used above for SignSGD. We run RMSprop for 2000 epochs as we calculate
the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning
rate is η = 10−3, β = 0.995. Similarly, we integrate our RMSprop SDE (Eq. 129) and that of
Malladi (Eq. 227) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3
runs and the shaded areas are the average ± the standard deviation: Our SDE matches RMSprop
more accurately.

ResNet on CIFAR-10 This paragraph refers to the right of Figure 10. The architecture and loss
are the same as used above for SignSGD. We run RMSprop for 500 epochs as we calculate the full
gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−4. The learning rate is
η = 10−4, β = 0.9999. Similarly, we integrate our RMSprop SDE (Eq. 129) and that of Malladi (Eq.
227) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3 runs and the
shaded areas are the average ± the standard deviation: Our SDE matches RMSprop more accurately.
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F.4 ADAM: SDE VALIDATION (FIGURE 12 AND FIGURE 13)

In this subsection, we describe the experiments we run to produce Figure 13 and Figure 12: The
dynamics of our SDE matches that of Adam more accurately than that derived in (Malladi et al.,
2022).

Quadratic convex function This paragraph refers to the left and center-left of Figure 12. We
optimize the function f(x) = x⊤Hx

2 where H = diag(10, 2). We run Adam for 50000 epochs as
we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.01.
The learning rate is η = 0.001, β1 = 0.9, and β2 = 0.999. Similarly, we integrate our Adam SDE
(Eq. 167) and that of Malladi (Eq. 232) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results
are averaged over 500 runs and the shaded areas are the average ± the standard deviation: Our SDE
matches Adam more accurately.

Embedded saddle This paragraph refers to the center-right and right of Figure 12. We optimize the
function f(x) = x⊤Hx

2 + 1
4λ
∑2

i=1 x
4
i −

ξ
3

∑2
i=1 x

3
i where H = diag(−1, 2), λ = 1, and ξ = 0.1.

We run Adam as we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id)
where σ = 0.1. The learning rate is η = 0.001, β1 = 0.9, and β2 = 0.999. Similarly, we integrate
our Adam SDE (Eq. 167) and that of Malladi (Eq. 232) with Euler-Maruyama (Algorithm 1) with
∆t = η. Results are averaged over 500 runs and the shaded areas are the average ± the standard
deviation: Our SDE matches Adam more accurately.

DNN on Breast Cancer Dataset This paragraph refers to the left of Figure 13. The architecture
and loss are the same as used above for SignSGD. We run Adam for 2000 epochs as we calculate the
full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning rate
is η = 10−4, β1 = 0.99, and β2 = 0.999. Similarly, we integrate our Adam SDE (Eq. 167) and that
of Malladi (Eq. 232) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3
runs and the shaded areas are the average ± the standard deviation: Our SDE matches Adam more
accurately.

CNN on MNIST This paragraph refers to the center-left of Figure 13. The architecture and loss
are the same as used above for SignSGD. We run Adam for 40000 epochs as we calculate the full
gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning rate is
η = 10−3, β1 = 0.99, and β2 = 0.999. Similarly, we integrate our Adam SDE (Eq. 167) and that of
Malladi (Eq. 232) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3
runs and the shaded areas are the average ± the standard deviation: Our SDE matches Adam more
accurately.

Transformer on MNIST This paragraph refers to the center-right of Figure 13. The architecture
and loss are the same as used above for SignSGD. We run Adam for 2000 epochs as we calculate the
full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−2. The learning rate
is η = 10−2, β1 = 0.9, and β2 = 0.99. Similarly, we integrate our Adam SDE (Eq. 167) and that of
Malladi (Eq. 232) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3
runs and the shaded areas are the average ± the standard deviation: Our SDE matches Adam more
accurately.

ResNet on CIFAR-10 This paragraph refers to the right of Figure 13. The architecture and loss are
the same as used above for SignSGD. We run Adam for 2000 epochs as we calculate the full gradient
and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 10−5. The learning rate is η = 10−5,
β1 = 0.99, and β2 = 0.9999. Similarly, we integrate our Adam SDE (Eq. 167) and that of Malladi
(Eq. 232) with Euler-Maruyama (Algorithm 1) with ∆t = η. Results are averaged over 3 runs and
the shaded areas are the average ± the standard deviation: Our SDE matches Adam more accurately.

F.5 RMSPROPW & ADAMW: SDE VALIDATION (FIGURE 3, FIGURE 4)

The settings are exactly the same as those for RMSprop and Adam. The regularization parameter
used is always θ = 0.01. We observe that our SDEs match the respective algorithm with a good
agreement.
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Figure 14: Empirical validation of the bounds for Adam on an L2-regularized loss f(x) + θ∥x∥2
2

2 . For
several levels of noise σ, we find that our theoretical predictions match the experimental results: The
loss levels scale linearly in σ.

F.6 RMSPROPW & ADAMW: INSIGHTS VALIDATION (FIGURE 5)

In this subsection, we describe the experiments we run to produce Figure 5: The theoretically
predicted asymptotic loss value and moments of RMSpropW and AdamW match those empirically
found.

Asymptotic loss & scaling rule of AdamW This paragraph refers to the left of Figure 5. We
optimize the function f(x) = x⊤Hx

2 where H = diag(1, 3). We run AdamW for 20000 epochs as
we calculate the full gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 1. The
learning rate is η = 0.001, β1 = 0.9, and β2 = 0.999. Experiments are run for both θ = 1 and θ = 4.
The rescaled versions of the algorithms AdamW R follow the novel scaling rule with κ = 2. AdamW
NR follows the scaling rule but not for θ which is left unchanged. We plot the evolution of the loss
values with the theoretical predictions of Lemma C.50: Results are averaged over 500 runs.

Asymptotic loss & scaling rule of RMSpropW This paragraph refers to the center-left of Figure
5: The only difference with the previous paragraph is that we use RMSpropW with β = 0.999.

AdamW: the role of the βs This paragraph refers to the center-right of Figure 5. We optimize
the function f(x) = x⊤Hx

2 + 1
4λ
∑2

i=1 x
4
i − ξ

3

∑2
i=1 x

3
i where H = diag(−1, 2), λ = 1, and

ξ = 0.1. We run AdamW as we calculate the full gradient and inject it with Gaussian noise
Z ∼ N (0, σ2Id) where σ = 0.1. The learning rate is η = 0.001, θ = 0.1, β1 ∈ {0.99, 0.999},
and β2 ∈ {0.992, 0.996, 0.998}: Clearly, three combinations go into a minimum and three go into
the other. For each minimum, the three optimizers converge to the same asymptotic loss value
independently on the values of β1 and β2. We argue that β1, and β2 select the basin and the speed of
convergence, not the asymptotic loss value: This is consistent with Lemma 3.13.

Stationary distribution This paragraph refers to the right of Figure 5. We optimize the function
f(x) = x⊤Hx

2 where H = diag(1, 3). We run Adam for 20000 epochs as we calculate the full
gradient and inject it with Gaussian noise Z ∼ N (0, σ2Id) where σ = 0.01. The learning rate is
η = 0.001, θ = 4, β = 0.999, β1 = 0.9, and β2 = 0.999. We plot the evolution of the average
variances with the theoretical predictions of Lemma C.45 and Lemma 3.14: Results are averaged
over 100 runs.

F.7 EFFECT OF NOISE - VALIDATION (FIGURE 6 AND FIGURE 14)

In this subsection, we describe the experiments run to produce Figure 6 and Figure 14: All bounds
on the asymptotic expected loss value for SGD, SignSGD, Adam, and AdamW, and Adam on an
L2-regularized loss are perfectly verified.
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We optimize the loss f(x) = x⊤Hx
2 where H = diag(1, 1) as we run each optimizer for 100000

iterations with η = 0.01. We repeat this procedure five times, one for each σ ∈ {0.01, 0.1, 1, 10, 100}.
As we train, we inject noise on the gradient as distributed as N (0, σ2Id). We plot the average loss
together with the respective limits predicted by our Lemmas. For each optimizer and each σ, the
average asymptotic loss matches the predicted limit. Therefore, we verify that the loss of SGD scales
quadratically in σ, that of Adam on f(x), Adam on f(x) +

θ∥x∥2
2

2 , and SignSGD scales linearly, and
that of AdamW is limited in σ.

F.8 INCREASING WEIGHT DECAY WITH THE BATCH SIZE (FIGURE 15 AND TABLE 1)
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Figure 15: RMSprop Scaling. We first (left plot) tune at a small batch size (256) the learning rate
and β2 simultaneously and report all test perplexity results after cosine decay at 2.5B tokens (4800
RMSprop steps). For these runs, weight decay is turned off to eliminate confounding factors in this
first analysis (see later Table 1). We then report the results for the same tuning but at a batch size of
1024 sequences. One can clearly see that the optimal learning rate shifts up from 1e− 3 to 2e− 3,
as predicted by both ours and Malladi et al. (2022) scalings (factor δ = 4). The best run in the base
setting was with β2 = 0.95. Our rule predicts a scaled up optimal β2 with value 1−

√
δ(1− β2) =

1 − 2 × 0.5 = 0.9, while Malladi et al. (2022) predicts 1 − δ(1 − β2) = 1 − 4 × 0.5 = 0.8. The
results show that while results are close (biggest effects in learning rate scaling with

√
δ), our scaling

is slightly more performant.

The analysis of Malladi et al. (2022) suggests that, when scaling batch size B by a factor δ, one also
has to scale up (↑) the learning rate η by a factor

√
δ and scale down (↓) β1 to the value 1− δ(1−β1)

and β2 to the value 1− δ(1− β2). Our SDE analysis confirms similar rules (Lemma 3.13) but

1. Proposes to scale down less β1 and β2, i.e. as 1−
√
δ(1− β).

2. Additionally suggests scaling up the decoupled weight decay parameter θ by a factor
√
δ.

We test this in the language modeling setting utilizing a Pythia-like 160M parameter transformer
architecture (Biderman et al., 2023) trained on 2.5B and 10B tokens from the SlimPajama dataset.
We scale up the batch size by a factor of δ = 4 and keep the same number of iterations – i.e., we have
10B tokens of training in the scaled-up runs. The sequence length in all of our experiments is 2048
tokens. We perform two experiments, and report results in Figure 15 and Table 1:

Vanilla experiment. In Figure 15, we set β1, θ = 0 and study in isolation the effects of scaling
the learning rate and β2 as the batch size increases. The results clearly indicate that scaling up the
learning rate is beneficial when increasing the batch size. In addition, they indicate that our scaling of
β2 might be slightly preferable compared to the one in Malladi et al. (2022).

Scaling weight decay. In Table 1 we verify our scaling on AdamW runs (β1, θ ̸= 0). We operate in a
similar regime as Figure 15 and scale 9 distinct configurations at a small batch size to a big batch size
using different strategies. Again, results indicate the effectiveness of our strategy.

Remark. While the experiments above show promise, future research is needed in order to better
compare and evaluate strategies. In particular, we noticed that in non-pathological settings, it might
be beneficial to not scale down β1 with the batch size and to perhaps keep the same learning rate.
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Baseline (Malladi et al., 2022) (Malladi et al., 2022) This paper,
B = 256, θ = 0.1 B = 1024, θ = 0.1 B = 1024, θ = 0.2 B = 1024, θ = 0.2

β1 = 0.975, β2 = 0.9875 β1 = 0.9, β2 = 0.95 β1 = 0.9, β2 = 0.95 β1 = 0.95, β2 = 0.975
23.5889 20.6157 20.2158 19.5785

β1 = 0.975, β2 = 0.975 β1 = 0.9, β2 = 0.9 β1 = 0.9, β2 = 0.9 β1 = 0.95, β2 = 0.95
23.7916 20.0463 19.7162 19.3467

β1 = 0.975, β2 = 0.95 β1 = 0.9, β2 = 0.8 β1 = 0.9, β2 = 0.8 β1 = 0.95, β2 = 0.9
23.7461 20.0237 19.5846 19.2398

β1 = 0.95, β2 = 0.9875 β1 = 0.8, β2 = 0.95 β1 = 0.8, β2 = 0.95 β1 = 0.9, β2 = 0.975
23.4310 22.7750 21.3613 20.6354

β1 = 0.95, β2 = 0.975 β1 = 0.8, β2 = 0.9 β1 = 0.8, β2 = 0.9 β1 = 0.9, β2 = 0.95
23.3911 21.4489 20.4485 20.2158

β1 = 0.95, β2 = 0.95 β1 = 0.8, β2 = 0.8 β1 = 0.8, β2 = 0.8 β1 = 0.9, β2 = 0.9
23.4654 20.5648 20.3054 19.7162

β1 = 0.9, β2 = 0.9875 β1 = 0.6, β2 = 0.95 β1 = 0.6, β2 = 0.95 β1 = 0.8, β2 = 0.975
25.0240 1972.5442 185.4383 23.3668

β1 = 0.9, β2 = 0.975 β1 = 0.6, β2 = 0.9 β1 = 0.6, β2 = 0.9 β1 = 0.8, β2 = 0.95
25.1012 646.8980 42.6782 21.3613

β1 = 0.9, β2 = 0.95 β1 = 0.6, β2 = 0.8 β1 = 0.6, β2 = 0.8 β1 = 0.8, β2 = 0.9
23.6411 145.7700 24.2124 20.4485

Table 1: We perform 9 AdamW base runs at a batch size of 256 sequences of length 2048 (first
column). A total of 4800 steps are performed, for a total of 2.5B tokens. For these runs, we always
select a learning rate of 0.004 and weight decay θ of 0.1. We report results (test perplexity) for 9
different combinations of β1, β2. In the three right-most columns, we scale each setting according
either to Malladi et al. (2022) or according to Lemma 3.13. Since Malladi et al. (2022) does not give
prescriptions on the weight decay value θ, we either scale it as we propose or leave it at 0.1. Scaled
up runs process 4× the number of tokens, i.e. 10B tokens: the algorithm performs the same number
of steps but with a batch size of 1024 sequences (factor 4). Test accuracy results indicate that our
scaling is more effective in terms of final test perplexity compared to (Malladi et al., 2022).
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