
Under review as a conference paper at ICLR 2021

Buffer Zone based Defense against Adversarial
Examples in Image Classification

Supplementary Material

A WHITE-BOX ATTACKS

As explained and motivated in the introduction, we restrict ourselves to the black-box setting where
the parameters of our defense are kept secret. Hence, this disallows direct white-box attacks and
zeroth order optimization based black-box attacks. However, it is important to note that once a
synthetic model has been trained, any white-box attack can be run on the synthetic model to create an
adversarial example. The adversary can then check if this example fools the defense.

Essentially any white-box attack can be run on the synthetic model to try to exploit the transferability
between classifiers (Papernot et al., 2016b). We briefly introduce the following commonly used
white-box attacks in the literature.

We briefly introduce the following commonly used white-box attacks in literature.

Fast Gradient Sign Method (FGSM) – (Goodfellow et al., 2014). x′ = x′+ε×sign(∇xL(x, l; θ)
where L is a loss function (e.g, cross entropy) of model f .

Basic Iterative Methods (BIM) – (Kurakin et al., 2017). x′i = clipx,ε(x
′
i−1 + ε

r ×
sign(∇x′i−1

L(x′i−1, l; θ)) where x′0 = x, r is the number of iterations, clip is a clipping opera-
tion.

Momentum Iterative Methods (MIM) – (Dong et al., 2018). This is a variant of BIM using
momentum trick to create the gradient gi, i.e., x′i = clipx,ε(x

′
i−1 +

ε
r × sign(gi)).

Projected Gradient Descent (PGD) – (Madry et al., 2018). This is also a variant of BIM where
the clipping operation is replaced by a projection operation.

Carlini and Wagner attack (C&W) –(Carlini & Wagner, 2017a). We define x′(ω) = 1
2 (tanhω+

1) and g(x) = max(max(si : i 6= l) − si,−κ) where f(x) = (s1, s2, . . .) is the score vector of
input x of classifier f and κ controls the confidence on the adversarial examples. The adversary
builds the following objective function for finding the adversarial noise.

min
ω
‖x′(ω)− x‖22 + cf(x′(ω)),

where c is a constant chosen by a modified binary search.

Elastic Net Attack (EAD) – (Chen et al., 2018). This is the variant of C&W attack with the
following objective function.

min
ω
‖x′(ω)− x‖22 + β‖x′(ω)− x‖1 + cf(x′(ω)).

B DEFENSES

B.1 BARRAGE OF RANDOM TRANSFORMS (BART) – (RAFF ET AL., 2019)

Barrage of Random Transforms (BaRT) by (Raff et al., 2019) is a defense based on applying
image transformations before classification. The defense works by randomly selecting a set of
transformations and a random order in which the image transformations are applied. In addition, the

12

Under review as a conference paper at ICLR 2021

parameters for each transformation are also randomly selected at run time to further enhance the
entropy of the defense. Broadly speaking, there are 10 different image transformations groups: JPEG
compression, image swirling, noise injection, Fourier transform perturbations, zooming, color space
changes, histogram equalization, grayscale transformations and denoising operations.

B.2 THE ODDS ARE ODD (ODDS) – (ROTH ET AL., 2019)

The Odds are Odd introduced in (Roth et al., 2019) is a defense based on a statistical test. This test
is motivated by the following observation: the behaviors of benign and adversarial examples are
different at the logits layer (i.e. the input to the softmax layer). The test works as follows: For a
given input image, multiple copies are created and a random noise is added to each copy. This creates
multiple random noisy images. The defense calculates the logits values of each noisy image and use
them as the input for the statistical test.

B.3 IMPROVING ADVERSARIAL ROBUSTNESS VIA PROMOTING ENSEMBLE DIVERSITY (ADP)
– (PANG ET AL., 2019)

Constructing ensembles of enhanced networks is one defense strategy to improve the adversarial
robustness of classifiers. However, in an ensemble model, the lack of interaction among individual
members may cause them to return similar predictions. This defense proposes a new notion of
ensemble diversity by promoting the diversity among the predictions returned by members of an
ensemble model using an adaptive diversity promoting (ADP) regularizer, which works with a
logarithm of ensemble diversity term and an ensemble entropy term, see (Pang et al., 2019). The
ADP regularizer helps non-maximal predictions of each ensemble member to be mutually orthogonal,
while the maximal prediction is still consistent with the correct label. This defense employs a different
training procedure where the ADP regularizer is used as the penalty term and the ensemble network
is trained interactively.

B.4 MADRY’S ADVERSARIAL TRAINING (MADRY) – (MADRY ET AL., 2018)

(Madry et al., 2018) proposed a new approach to build a robust defense based on an adversarial
training process. The training has many iterations and in each iteration there are two phases: (1) The
attack phase, where for a given dataset and a classifier the designer uses some adversarial attacks (i.e.,
white-box attacks) to derive an adversarial dataset. (2) In the defense phase a new training dataset is
constructed by combining the adversarial dataset together with the set of class labels of the original
dataset. Next, this is used to train the current network.

The authors showed that this training approach produces a high robust defense against adversarial
machine learning with respect to white-box and black-box attacks.

B.5 MULTI-MODEL-BASED DEFENSE (MUL-DEF) – (SRISAKAOKUL ET AL., 2018)

In unpublished work, (Srisakaokul et al., 2018) have proposed a defense against white-box attacks
based on multiple networks with the same architecture. The authors develop their defense based on
a retraining technique. First, the authors apply adversarial attacks on each network to generate a
set of adversarial examples. For example, for each network j a white-box attack produces a set of
adversarial examples Sj . Next network j will be retrained with the clean training data set together
with some of the adversarial sets Sh, h 6= j. The authors argue that all the networks cannot be fooled
at the same time for a given adversarial example and this leads to a low(er) attacker’s success rate.
The final outputted class label is the predicted label of one of the networks chosen at random among
all networks; this gives high clean accuracy.

B.6 COUNTERING ADVERSARIAL IMAGES USING INPUT TRANSFORMATIONS (GUO) – (GUO
ET AL., 2017)

In (Guo et al., 2017), the designer selects a set of possible image transformations for a single network
and keeps the selection of the chosen image transformation secret. The image transformation will
distort the noise as explained in (Guo et al., 2017). This is BUZz for a single protection layer (without
multiple networks and threshold voting).

13

Under review as a conference paper at ICLR 2021

B.7 ENSEMBLE ADVERSARIAL TRAINING: ATTACKS AND DEFENSES (TRAMER) – (TRAMÈR
ET AL., 2017)

(Tramèr et al., 2017) proposes another type of adversarial training method. The adversarial examples
are generated by doing attacks on different networks with different attack methods. After this the
designer trains the new network with the generated adversarial examples. The authors argued that
this adversarial training can make the adversarially trained network more robust against (pure) black-
box attacks because it is trained with adversarial examples from different sources (i.e., pre-trained
networks). In other words, the network is supposed to have better robustness against black-box attack
generalization across models. As shown in (Athalye et al., 2018b), the adversarially trained network
is vulnerable to white-box attack.

B.8 MIXED ARCHITECTURE – (LIU ET AL., 2017)

In (Liu et al., 2017), the authors study the transferability between different networks which have
different structures for the ImageNet dataset. The authors report that the transferability between the
networks is small (claimed to be ’close to zero’). For this reason, it may be possible to have a low
attack success rate for the BUZz defense where protected networks have different architectures.

B.9 MITIGATING ADVERSARIAL EFFECTS THROUGH RANDOMIZATION (XIE) – (XIE ET AL.,
2018)

(Xie et al., 2018) has a single network and uniformly selects an image transformation from an a-priori
fixed set of a small number of image transformations to defeat white-box attacks. In the white-box
setting (Athalye et al., 2018a) shows that this defense does not work. An open question is whether
this defense is secure against black-box attacks.

B.10 THRESHOLDING NETWORKS (CONCEPT DEVELOPED IN THIS PAPER)

This technique is proposed in this paper and is applied to a single classifier. The idea of the technique
is simple but it helps us to create buffer zones between the decision regions. For a given input x, if
the highest probability score in the score vector is smaller than a threshold T , then we output NULL
class label (⊥)

C PSEUDO ALGORITHMS: BLACK-BOX ATTACK & BUZZ

Synthetic network. Algorithm 1 depicts the construction of a synthetic network g for the oracle
based black-box attack from (Papernot et al., 2017). The attacker uses as input an oracle O which
represents black-box access to the target model f which only returns the final class label F (f(x)) for
a query x (and not the score vector f(x)). Initially, the attacker has (part of) the training data set X ,
i.e., he knows D = {(x, F (f(x))) : x ∈ X0} for some X0 ⊆ X . Notice that for a single iteration
N = 1, Algorithm 1 therefore reduces to an algorithm which does not need any oracle access to
O; this reduced algorithm is the one used in the pure black-box attack (Carlini & Wagner, 2017b;
Athalye et al., 2018a; Liu et al., 2017). In this paper we assume the strongest black-box adversary in
Algorithm 1 with access to the entire training data set X0 = X (notice that this excludes test data for
evaluating the attack success rate).

In order to construct a synthetic network the attacker chooses a-priori a substitute architecture G for
which the synthetic model parameters θg need to be trained. The attacker uses known image-label
pairs inD to train θg using a training method M (e.g., Adam (Kingma & Ba, 2014)). In each iteration
the known data is doubled using the following data augmentation technique: For each image x in the
current data set D, black-box access to the target model gives label l = O(x). The Jacobian of the
synthetic network score vector g with respect to its parameters θg is evaluated/computed for image x.
The signs of the column in the Jacobian matrix that correspond to class label l are multiplied with a
(small) constant λ – this constitutes a vector which is added to x. This gives one new image for each
x and this leads to a doubling of D. After N iterations the algorithm outputs the trained parameters
θg for the final augmented data set D.

14

Under review as a conference paper at ICLR 2021

Algorithm 1 Construction of synthetic network g in Papernot’s oracle based black-box attack
1: Input:
2: O represents black-box access to F (f(·)) for target model f with output function F ;
3: X0 ⊆ X , where X is the training data set of target model f ;
4: substitute architecture G
5: training method M;
6: constant λ;
7: number N of synthetic training epochs
8: Output:
9: synthetic model g defined by parameters θg

10: (g also has output function F which selects the max confidence score;
11: g fits architecture G)
12:
13: Algorithm: For N iterations
14: D ← {(x,O(x)) : x ∈ Xt}
15: θg = M(G,D)
16: Xt+1 ← {x+ λ · sgn(Jθg (x)[O(x)]) : x ∈ Xt} ∪ Xt
17: Output θg

The precise set-up for our experiments is given in Tables 2, 3, and 4. Table 2 details the used training
method M in Algorithm 1. For the evaluated data sets Fashion-MNIST and CIFAR-10 without data
augmentation, we enumerate in Table 3 the amount |X0| of training data together with parameters λ
and N in Algorithm 1 (λ = 0.1 and N = 6 are taken from the oracle based black-box attack paper of
(Papernot et al., 2017); notice that a test data set of size 10.000 is standard practice; all remaining
data serves training and this is entirely accessible by the attacker).

Table 4 depicts the architecture G of the CNN network of the synthetic network g for the different
data sets; the structure has several layers (not to be confused with ’protection layer’ in BUZz which
is an image transformation together with a whole CNN in itself). The adversary attempts to attack
BUZz and will first learn a synthetic network g with architecture G (used as input in Algorithm 1
that corresponds to Table 4. Notice that the image transformations are kept secret and for this reason
the attacker can at best train a synthetic vanilla network. Of course the attacker does know the set
from which the image transformations in BUZz are taken and can potentially try to learn a synthetic
CNN for each possible image transformation and do some majority vote (like BUZz) on the outputted
labels generated by these CNNs. However, there are exponentially many transformations making
such an attack infeasible. For future research we will investigate whether a small sized subset of
’representative’ image transformations can be used to generate a synthetic model which can be used to
attack BUZz in a more effective way. Nevertheless, we believe that BUZz will remain secure because
of the security argument given in Section 3.2 where is shown how a single perturbation η leads to
very different perturbations at each protected layer in BUZz. This leads to ’wide’ buffer zones and
their mere existence is enough to achieve our security goal – security is not derived from keeping
the image transformations private. Keeping these transformations private just makes it harder for the
adversary to construct a more effective attack but the resulting attack is expected to still have small
attacker’s success rates. We leave this study for future work.

Table 2: Training parameters used in the experiments

Training Parameter Value

Optimization Method ADAM
Learning Rate 0.0001

Batch Size 64
Epochs 100

Data Augmentation None

White-box attack on the synthetic network. We perform the white-box attacks as described in
Appendix A such as FGSM (Goodfellow et al., 2015), BIM (Kurakin et al., 2017), MIM (Dong et al.,

15

Under review as a conference paper at ICLR 2021

Table 3: Mixed black-box attack parameters
|X0| N λ

CIFAR-10 50000 4 0.1
Fashion-MNIST 60000 4 0.1

Table 4: Architectures of synthetic neural networks g from Carlini & Wagner (2017a)

Layer Type Fashion-MNIST and CIFAR-10

Convolution + ReLU 3 × 3 × 64
Convolution + ReLU 3 × 3 × 64

Max Pooling 2 × 2
Convolution + ReLU 3 × 3 × 128
Convolution + ReLU 3 × 3 × 128

Max Pooling 2 × 2
Fully Connected + ReLU 256
Fully Connected + ReLU 256

Softmax 10

2018), PGD (Madry et al., 2018), Carlini&Wagner(Carlini & Wagner, 2017a) and EAD (Chen et al.,
2018) attacks on synthetic model in the mixed black box attacks. Appendix A.

When a certain white-box attack is used as a pure black-box attack, then no oracle access is available
and comparison l′ = O(x) is replaced by comparison l′ = F (g(x)), which uses the synthetic
network.

The parameters of the white-box attacks used in our paper can be found in the following table 5.

Table 5: Attacks’ parameters. i - number of iterations, d - decaying factor, r radius of the ball for
generating the initial noise, c - constant value of C&W attack, ε - noise magnitude, β - constant value
of EAD attack. Binary Search = Bi.Sr

Attacks Fashion-MNIST CIFAR-10
FGSM ε = 0.15 ε = 0.05
BIM i = 10, ε = 0.015 i = 10, ε = 0.005
PGD i = 10, r = 0.031, ε = 0.015 i = 10, r = 0.031, ε = 0.005
MIM i = 10, d = 1.0, ε = 0.015 i = 10, d = 1.0, ε = 0.005
C&W i = 1000, c = Bi.Sr i = 1000, c = Bi.Sr
EAD i = 1000, c = Bi.Sr, β = 0.01 i = 1000, c = Bi.Sr, β = 0.01

Success rate black-box attack. In order to implement the black-box attack we first run Algorithm 1
which outputs the parameters of a synthetic network g. Next, out of the test data (each data set has
10.000 samples in our set-up) we select the first 1000 samples (x, l) which the target model f (i.e.,
BUZz in this paper) correctly classifies. For each of the 1000 samples we run a certain white-box
attack to produce 1000 adversarial examples. The attacker’s success rate is the fraction of adversarial
examples which change l to the desired new randomly selected l′ in a targeted attack or any other
label l′ 6= ⊥ for an untargeted attack.

Image transformations for BUZz. In the BUZz, we use image transformations that are composed
of a resizing operation i(x) and a linear transformation c(x) = Ax + b. An input image x at a
protected layer in BUZz is linearly transformed into an image i(c(x)) before it enters the correspond-
ing CNN network with ResNet architecture for CIFAR-10 and for Fashion-MNIST. In a network
implementation one can think of i(c(x)) as an extra layer in the CNN architecture of ResNet itself.

For the resize operations i(·) used in each of the protected layers in BUZz, we choose sizes that
are larger than the original dimensions of the image data. We do this to prevent loss of information
in the images that down sizing would create (and this would hurt the clean accuracy of BUZz).
In our experiments we use BUZz with 2, 4, and 8 protected layers. Each protected layer gets

16

Under review as a conference paper at ICLR 2021

its own resize operation i(·). When using 8 protected layers, we use image resizing operations
from 32 to 32, 40, 48, 64, 72, 80, 96, 104. Each protected layer will be differentiated from
each other protected layer due to the difference in how much resizing each layer implements.
This will lead to less transferability between the protected layers and as a result we expect to
see a wider buffer zone which diminishes the attacker’s success rate. When using 4 protected
layers, we use a copy of the 4 protected layers from BUZz with 8 networks that correspond to
the image resizing operations from 32 to 32, 48, 72, 96. When using 2 protected layers, we use a
copy of the 2 protected layers from BUZz with 8 networks that correspond to the image resizing
operations from 32 to 32 and 104. In our implementation we use resizing operation from github
https://github.com/cihangxie/NIPS2017_adv_challenge_defense (Xie et al.,
2018).

For each protected layer, the linear transformation c(x) = Ax+ b is randomly chosen from some
statistical distribution (the distribution is public knowledge and therefore known by the adversary).
Design of the statistical distribution depends on the complexity of the considered data set (in our case
we experiment with Fashion-MNIST and CIFAR-10). Transformation c(x) takes an image of size
n1 × n2×3 as input and considers this as a vector of length k = n1n2n3. Here, n1 and n2 denote
the horizontal and vertical width in pixels of image x; n3 = 3 means that each pixel has a red, blue,
and green values; n3 = 1 means that each pixel only has one black/white value. CIFAR-10 has
32 × 32 × 3 images and Fashion-MNIST has 28 × 28 × 1 images. All the values in vector x are
converted from integers [0..255] to the range [−0.5,+0.5] of real numbers. Notice that the entries of
c(x) may have their values outside of this range.

In our implementation we do not consider x to be in vector representation; we think of x as n3 times
a n1 × n2 matrix. For example, x = (X1, X2, X3) for n3 = 1. We restrict c(x) = Ax+ b to linear
operations

c(X1, X2, X3) = (X1A1 + b1, X2A2 + b2, X3A3 + b3),

where Ai are n2 × n2 matrices and bi are n1 × n2 matrices.

For CIFAR-10 we take matrices Ai to be identity matrices (this also makes A the identity matrix in
the vector representation of c(x)) and we use the same matrix b for each of the matrices bi, i.e.,

b′ = b1 = b2 = b3.

This means that we use the same random offset in the red, blue, and green values of a pixel. The
reason for making this design decision is because for CIFAR-10 we found that fully random A creates
large drops in clean accuracy, even when the network is trained to learn such distortions. As a result,
for data sets with high spatial complexity like CIFAR-10, we do not select A randomly. We choose A
to be the identity matrix. Likewise for b′ we only randomly generate 35% of the matrix values and
leave the rest as 0. For the randomly generated values, we choose them from a uniform distribution
from −0.5 to 0.5.

For datasets with less spatial complexity like Fashion-MNIST, we equate matrices A′ = A1 = A2 =
A3 and b′ = b1 = b2 = b3 and select A′ and b′ as random matrices: The values of A′ and b′ are
selected from a Gaussian distribution with µ = 0 and σ = 0.1.

D EXPERIMENTAL RESULTS

In this section, we present our experimental results, i.e., the mixed targeted and untargeted black
box attacks, pure targeted and untargeted black box attacks, and boundary attacks – untar-
geted HopSkipJump (Chen et al., 2020) and RayS (Chen & Gu, 2020) on eleven different defenses
strategies, i.e., Barrage of Random Transforms (BaRT) (Raff et al., 2019), The Odds are Odd
(Odds) (Roth et al., 2019), Ensemble Diversity (ADP) (Pang et al., 2019), Madry’s Adversarial Train-
ing (Madry) (Madry et al., 2018), Multi-model-based Defense (Mul-Def) (Srisakaokul et al., 2018),
Countering Adversarial Images using Input Transformations (Guo) (Guo et al., 2017), Ensemble
Adversarial Training: Attacks and Defenses (Tramer) (Tramèr et al., 2017), Mixed Architecture (Liu
et al., 2017), Mitigating adversarial effects through randomization (Xie) (Xie et al., 2018), Threshold-
ing Networks (a basic proof of concept defense developed in this paper) and Buffer Zones (BUZz)
with CIFAR-10 (Krizhevsky et al.) and Fashion-MNIST (Xiao et al., 2017) datasets. The six white-
box attacks on the synthetic models are FGSM (Goodfellow et al., 2014), BIM (Kurakin et al.,

17

Under review as a conference paper at ICLR 2021

2017), MIM (Dong et al., 2018), PGD (Madry et al., 2018), C&W (Carlini & Wagner, 2017a) and
EAD (Chen et al., 2018).

The last subsection explains our experiments that demonstrate the existence of buffer zones.

D.1 FASHION-MNIST

The results for Fashion-MNIST are described in Tables 6, 7 and 8. We recall the formula for the δ
metric:

δ = p− (p− γ)(1− α) = p− pd · β, (3)

where p is the clean accuracy of the vanilla classifier (i.e., no defense at all and without any adversarial
presence), γ is the drop in clean accuracy (i.e., γ = p− pd for pd representing the clean accuracy of
the defense while no attacker is present), α is the attacker’s success rate against the defense and β is
the defense success rate (also called defense accuracy) and is equal to 1− α.

δ can be used to measure the effectiveness of different defenses, the smaller the better. If two defenses
offer roughly the same δ, then it makes sense to consider their (γ, α) pairs and choose the defense
that either has the smaller α or the smaller γ.

For Fashion-MNIST and CIFAR-10, p = 0.94 and 0.93, respectively. The value of δ is computed
by combining p of the vanilla classifier and pd of the considered defense, and by looking at the best
attack among all implemented attacks on the given defense (this corresponds to the maximum over
the attacker’s success rates α for the specific set of attacks considered, similarly, this corresponds
to the minimum over the various defense success rates β). For example, the δ metric for BUZz-8
in Table 6 is computed as follows: we substitute p = 0.94, pd = 0.78, and the minimal β = 0.91
among all (currently known) mixed black-box attacks (in this case corresponding to the FGSM-U
attack) into formula (Eq. 3) for δ. This results in δ = 0.23.

Tables 6, 7 and 8 enumerate δ for mixed black-box attacks, pure black-box attacks, and boundary
attacks. As noted above, for mixed black-box attacks Table 6 shows δ = 0.23 for BUZz-8. Similarly,
Tables 7 and 8 show δ = 0.24 for pure black-box attacks and δ = 0.24 for boundary attacks. This
means that across the three classes of black-box attacks BUZz-8 achieves δ = 0.24.

As another example, Madry achieves δ = 0.54, δ = 0.41, and δ = 0.16, respectively. This shows
that Madry defends well (the best among all defenses) against boundary attacks but does not perform
well against mixed and pure black-box attacks. Across the three classes of black-box attacks Madry
only scores δ = 0.54 while BUZz-8 achieves δ = 0.24.

Table 6: Targeted (T) and Untargeted (U) mixed black-box attacks on different defenses for Fashion-
MNIST. Minimum defense efficiency - MIN β, Clean prediction accuracy pd, Drop in clean prediction
accuracy γ.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U MIN β pd γ δ
Vanilla 0.71 0.53 0.46 0.53 0.99 0.99 0.23 0.12 0.11 0.12 0.96 0.94 0.11 0.94 0.00 0.83
Guo (BUZz-1) 0.82 0.92 0.88 0.91 1.00 1.00 0.38 0.55 0.50 0.56 0.99 0.98 0.38 0.90 0.03 0.60
BUZz-2 0.93 0.96 0.95 0.96 1.00 1.00 0.70 0.78 0.73 0.77 1.00 1.00 0.70 0.85 0.08 0.34
BUZz-4 0.97 0.99 0.97 0.99 1.00 1.00 0.82 0.85 0.82 0.85 1.00 1.00 0.82 0.82 0.12 0.27
BUZz-8 0.99 1.00 1.00 1.00 1.00 1.00 0.91 0.94 0.92 0.95 1.00 1.00 0.91 0.78 0.16 0.23
Liu (Mixed Arch) 0.91 0.90 0.89 0.89 1.00 1.00 0.68 0.56 0.61 0.55 0.99 0.98 0.55 0.90 0.04 0.44
ADP 0.79 0.52 0.50 0.52 0.99 0.99 0.14 0.09 0.10 0.09 0.93 0.91 0.09 0.95 -0.01 0.85
VanillaT-0.7 0.76 0.60 0.52 0.59 0.99 0.99 0.35 0.17 0.18 0.18 0.97 0.95 0.17 0.92 0.01 0.78
VanillaT-0.95 0.85 0.77 0.72 0.79 1.00 1.00 0.57 0.31 0.34 0.30 0.99 0.99 0.30 0.89 0.04 0.66
VanillaT-0.99 0.94 0.89 0.86 0.89 1.00 1.00 0.72 0.50 0.52 0.50 0.99 1.00 0.50 0.84 0.09 0.51
Xie 0.71 0.62 0.58 0.63 0.96 0.95 0.21 0.20 0.19 0.20 0.79 0.77 0.19 0.82 0.12 0.78
Madry 0.96 1.00 1.00 1.00 0.98 0.96 0.49 0.96 0.95 0.96 0.92 0.87 0.49 0.81 0.13 0.54
Tramer 0.81 0.83 0.76 0.83 0.99 0.99 0.34 0.38 0.35 0.40 0.98 0.97 0.34 0.94 0.00 0.61
MulDef-4 0.83 0.80 0.76 0.81 0.99 0.98 0.35 0.42 0.36 0.40 0.95 0.94 0.35 0.94 0.00 0.61
MulDef-8 0.84 0.85 0.82 0.84 0.99 0.99 0.38 0.47 0.41 0.47 0.95 0.95 0.38 0.94 0.00 0.58
BaRT-1 0.84 0.81 0.76 0.81 0.98 0.98 0.36 0.38 0.34 0.38 0.86 0.88 0.34 0.90 0.03 0.63
BaRT-4 0.87 0.85 0.84 0.85 0.94 0.96 0.41 0.40 0.38 0.41 0.78 0.79 0.38 0.83 0.11 0.62
BaRT-6 0.88 0.88 0.86 0.88 0.94 0.95 0.37 0.44 0.42 0.41 0.72 0.73 0.37 0.78 0.15 0.65
BaRT-8 0.87 0.87 0.85 0.86 0.94 0.96 0.40 0.41 0.37 0.39 0.71 0.70 0.37 0.71 0.22 0.67
Odds 0.67 0.54 0.47 0.55 0.22 0.15 0.14 0.15 0.99 0.94 0.99 0.94 0.14 0.75 0.18 0.83

Discussion. We have the following observations from Tables 6, 7 and 8:

1. The BUZz family achieves the smallest δ for mixed black box attacks, the smallest δ for pure
black box attacks and the second smallest δ for boundary attacks. The BUZz family achieves

18

Under review as a conference paper at ICLR 2021

Table 7: Targeted (T) and Untargeted (U) Pure black-box attacks on different defenses for Fashion-
MNIST. Minimum defense efficiency - MIN β, Clean prediction accuracy pd, Drop in clean prediction
accuracy γ.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U MIN β pd γ δ
Vanilla 0.87 0.89 0.82 0.88 1.00 0.99 0.43 0.36 0.35 0.37 0.91 0.91 0.35 0.94 0.00 0.61
Guo (BUZz-1) 0.92 0.98 0.96 0.98 0.99 0.99 0.61 0.73 0.67 0.73 0.90 0.90 0.61 0.90 0.03 0.39
BUZz-2 0.97 0.99 0.98 0.99 1.00 1.00 0.79 0.85 0.80 0.84 0.95 0.96 0.79 0.85 0.08 0.26
BUZz-4 0.98 1.00 0.99 1.00 1.00 1.00 0.83 0.88 0.85 0.88 0.97 0.97 0.83 0.82 0.12 0.25
BUZz-8 0.99 1.00 0.99 1.00 1.00 1.00 0.90 0.93 0.90 0.94 0.98 0.98 0.90 0.78 0.16 0.24
Liu (Mixed Arch) 0.95 0.96 0.93 0.95 1.00 1.00 0.75 0.67 0.67 0.68 0.96 0.96 0.67 0.90 0.04 0.33
ADP 0.88 0.84 0.78 0.86 0.99 0.99 0.40 0.36 0.32 0.35 0.93 0.92 0.32 0.95 -0.01 0.63
VanillaT-0.7 0.89 0.91 0.85 0.91 1.00 0.99 0.54 0.42 0.40 0.42 0.94 0.93 0.40 0.92 0.01 0.57
VanillaT-0.95 0.94 0.95 0.90 0.94 1.00 1.00 0.69 0.51 0.51 0.51 0.96 0.96 0.51 0.89 0.04 0.49
VanillaT-0.99 0.96 0.97 0.94 0.97 1.00 1.00 0.80 0.62 0.62 0.63 0.98 0.98 0.62 0.84 0.09 0.41
Xie 0.88 0.90 0.84 0.91 0.97 0.97 0.39 0.40 0.40 0.41 0.79 0.75 0.39 0.82 0.12 0.62
Madry 0.95 0.97 0.97 0.97 0.95 0.94 0.66 0.79 0.79 0.79 0.72 0.71 0.66 0.81 0.13 0.41
Tramer 0.90 0.97 0.92 0.97 1.00 0.99 0.54 0.60 0.55 0.60 0.93 0.92 0.54 0.94 0.00 0.43
MulDef-4 0.90 0.94 0.89 0.94 0.99 0.99 0.53 0.55 0.52 0.56 0.93 0.92 0.52 0.94 0.00 0.45
MulDef-8 0.89 0.95 0.90 0.96 0.99 0.99 0.50 0.56 0.52 0.57 0.92 0.93 0.50 0.94 0.00 0.47
BaRT-1 0.91 0.94 0.91 0.94 0.99 0.99 0.55 0.54 0.49 0.53 0.89 0.89 0.49 0.90 0.03 0.49
BaRT-4 0.91 0.94 0.90 0.94 0.98 0.98 0.55 0.54 0.50 0.52 0.78 0.80 0.50 0.83 0.11 0.52
BaRT-6 0.91 0.93 0.90 0.93 0.97 0.95 0.52 0.50 0.47 0.51 0.74 0.73 0.47 0.78 0.15 0.57
BaRT-8 0.92 0.91 0.90 0.94 0.96 0.95 0.47 0.45 0.46 0.47 0.68 0.68 0.45 0.71 0.22 0.61
Odds 0.87 0.89 0.82 0.88 1.00 0.99 0.43 0.39 0.37 0.40 0.94 0.93 0.37 0.75 0.18 0.66

Table 8: Boundary attacks – HopSkipJump (HSJA) (Chen & Jordan, 2019) and RayS (Chen & Gu,
2020) attacks – on different defenses for Fashion-MNIST. Minimum defense efficiency - MIN β,
Clean prediction accuracy pd, Drop in clean prediction accuracy γ.

HSJA RayS MIN β pd γ δ
Vanilla 0 0.09 0 0.94 0.00 0.94
Guo (BUZz-1) 0 0.32 0 0.90 0.03 0.94
BUZz-2 0.1 0.61 0.1 0.85 0.08 0.85
BUZz-4 0.53 0.93 0.53 0.82 0.12 0.50
BUZz-8 0.89 1 0.89 0.78 0.16 0.24
Liu (Mixed Arch) 0 0.18 0 0.90 0.04 0.94
ADP 0 0.04 0 0.95 -0.01 0.94
VanillaT-0.7 0 0.1 0 0.92 0.01 0.94
VanillaT-0.95 0 0.18 0 0.89 0.04 0.94
VanillaT-0.99 0 0.47 0 0.84 0.09 0.94
Xie 0.85 0.63 0.63 0.82 0.12 0.42
Madry 0.99 0.96 0.96 0.81 0.13 0.16
Tramer 0 0.18 0 0.94 0.00 0.94
MulDef-4 0.82 0.66 0.66 0.94 0.00 0.32
MulDef-8 0.92 0.7 0.7 0.94 0.00 0.28

the smallest δ = 0.24 across the union of all three classes of attacks. Madry achieves the
second smallest δ = 0.54 across the union of all three classes of attacks – this shows the
significant improvement realized by the BUZz family for the Fashion-MNIST data set.

2. Many defenses (such as Guo, Liu, ADP, Tramer) have a very high clean accuracy (i.e., close
to the clean accuracy of the vanilla classifier), but have a very large δ. If we have a close
look at the results presented in Tables 6, 7 and 8, we can see that they are vulnerable to
black-box attacks. In other words, they offer no security.

3. Defenses that have poorer clean accuracy compared to that of the vanilla classifier achieve a
smaller δ such as Odds, Madry and BUZz. These defenses do offer some security. Among
them, BUZz is the best performing one in terms of security.

4. By combining the drop γ in clean accuracy and the increment in defense accuracy β, the
δ metric can be used for understanding how well a defense performs in the presence of
attackers. In order to have a further detailed evaluation, we need to separately look at the
attack success rate α (or, equivalently, defense accuracy β) and clean accuracy of the defense
pd. For example, in Table 8, we can see that Madry has a smaller δ than BUZz-8 but if we
have a close look at β and pd, then we can see that their performances are more alike than
what the δ metric alone would suggest.

19

Under review as a conference paper at ICLR 2021

5. From Tables 6 and 7 we conclude that mixed black-box attacks are more efficient than pure
black-box attacks and untargeted black-box attacks are stronger than targeted ones. When
looking at Table 8, boundary attacks are much stronger than mixed and pure black-box
attacks and this is understandable because boundary attacks use much more queries than the
other black-box attacks.

6. BUZz can realize different combinations of defender accuracy pd and attacker’s success
rate α by tuning the number of protected classifiers in the defense. We notice that BUZz
can adopt the strategy of MulDef to increase the robustness against boundary attacks. We
have not investigated this direction because we want to see how strong our defense stands
on itself. Nevertheless, this shows an advantage of BUZz, i.e., BUZz is can be combined
with other defense strategies in a flexible way.

D.2 CIFAR-10

The results for CIFAR-10 are described in Tables 9, 10 and 11.

Table 9: Targeted (T) and Untargeted (U) mixed black-box attacks on different defenses for CIFAR-
10. Minimum defense efficiency - MIN β, Clean prediction accuracy pd, Drop in clean prediction
accuracy γ.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U MIN β pd γ δ
Vanilla 0.87 0.86 0.78 0.85 0.99 0.99 0.33 0.39 0.26 0.37 0.99 0.99 0.26 0.93 0.00 0.69
Guo (BUZz-1) 0.89 0.90 0.83 0.90 0.99 0.99 0.48 0.57 0.45 0.56 0.99 0.99 0.45 0.91 0.02 0.52
BUZz-2 0.97 0.97 0.95 0.97 1.00 1.00 0.81 0.81 0.75 0.83 1.00 1.00 0.75 0.85 0.08 0.29
BUZz-4 0.99 0.99 0.98 0.98 1.00 1.00 0.92 0.90 0.88 0.91 1.00 1.00 0.88 0.81 0.12 0.21
BUZz-8 0.99 0.99 0.98 0.99 1.00 1.00 0.96 0.96 0.93 0.95 1.00 1.00 0.93 0.76 0.17 0.23
Liu (Mixed Arch) 0.94 0.94 0.88 0.94 1.00 1.00 0.73 0.70 0.63 0.71 0.99 1.00 0.63 0.85 0.08 0.39
ADP 0.84 0.70 0.61 0.71 1.00 0.99 0.33 0.22 0.15 0.23 0.99 0.99 0.15 0.94 -0.01 0.79
VanillaT-0.7 0.91 0.89 0.84 0.89 1.00 1.00 0.55 0.59 0.52 0.59 0.99 0.99 0.52 0.90 0.03 0.46
VanillaT-0.95 0.96 0.96 0.93 0.96 1.00 1.00 0.80 0.81 0.77 0.82 1.00 1.00 0.77 0.85 0.08 0.27
VanillaT-0.99 0.98 0.98 0.97 0.98 1.00 1.00 0.93 0.92 0.89 0.91 1.00 1.00 0.89 0.79 0.14 0.22
Xie 0.83 0.82 0.76 0.86 0.98 0.98 0.30 0.38 0.26 0.37 0.84 0.86 0.26 0.71 0.22 0.74
Madry 0.96 0.98 0.96 0.98 1.00 1.00 0.78 0.84 0.77 0.84 0.99 0.98 0.77 0.75 0.18 0.35
Tramer 0.90 0.93 0.85 0.94 1.00 1.00 0.57 0.62 0.44 0.64 0.99 0.98 0.44 0.85 0.08 0.55
MulDef-4 0.89 0.90 0.82 0.91 0.99 0.99 0.49 0.53 0.37 0.54 0.93 0.92 0.37 0.87 0.06 0.60
MulDef-8 0.89 0.91 0.82 0.89 0.98 0.99 0.49 0.57 0.40 0.56 0.92 0.92 0.40 0.86 0.07 0.59
BaRT-1 0.89 0.87 0.80 0.88 0.98 0.97 0.51 0.55 0.40 0.54 0.92 0.93 0.40 0.86 0.07 0.59
BaRT-4 0.91 0.91 0.87 0.90 0.97 0.97 0.48 0.55 0.44 0.58 0.80 0.79 0.44 0.75 0.18 0.59
BaRT-7 0.90 0.92 0.88 0.92 0.96 0.95 0.45 0.53 0.43 0.54 0.70 0.68 0.43 0.61 0.32 0.67
BaRT-10 0.91 0.91 0.90 0.92 0.93 0.94 0.39 0.47 0.38 0.49 0.58 0.58 0.38 0.49 0.44 0.74
Odds 0.94 0.94 0.91 0.93 1.00 0.99 0.65 0.66 0.58 0.67 0.97 0.98 0.58 0.71 0.22 0.52

Table 10: Targeted (T) and Untargeted (U) pure black-box attacks on different defenses for CIFAR-
10. Minimum defense efficiency - MIN β, Clean prediction accuracy pd, Drop in clean prediction
accuracy γ.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U MIN β pd γ δ
Vanilla 0.90 0.92 0.85 0.92 0.98 0.98 0.44 0.45 0.38 0.46 0.92 0.92 0.38 0.93 0.00 0.57
Guo (BUZz-1) 0.91 0.94 0.88 0.94 0.98 0.99 0.49 0.54 0.45 0.57 0.90 0.90 0.45 0.91 0.02 0.52
BUZz-2 0.96 0.97 0.95 0.97 1.00 1.00 0.80 0.76 0.70 0.79 0.97 0.97 0.70 0.85 0.08 0.33
BUZz-4 0.97 0.99 0.97 0.99 1.00 1.00 0.89 0.88 0.84 0.88 0.99 0.99 0.84 0.81 0.12 0.25
BUZz-8 0.99 0.99 0.98 0.99 1.00 1.00 0.95 0.93 0.89 0.93 1.00 1.00 0.89 0.76 0.17 0.25
Liu (Mixed Arch) 0.94 0.97 0.91 0.97 0.99 0.99 0.74 0.70 0.65 0.69 0.97 0.97 0.65 0.85 0.08 0.37
ADP 0.91 0.93 0.86 0.94 0.99 0.99 0.49 0.48 0.39 0.49 0.93 0.93 0.39 0.94 -0.02 0.56
VanillaT-0.7 0.93 0.95 0.90 0.95 0.99 0.99 0.59 0.59 0.54 0.61 0.95 0.94 0.54 0.90 0.02 0.44
VanillaT-0.95 0.96 0.97 0.95 0.97 1.00 1.00 0.80 0.77 0.72 0.78 0.97 0.97 0.72 0.85 0.08 0.32
VanillaT-0.99 0.98 0.99 0.96 0.99 1.00 1.00 0.90 0.86 0.83 0.86 0.99 0.99 0.83 0.79 0.14 0.27
Xie 0.90 0.93 0.87 0.93 0.96 0.96 0.41 0.44 0.35 0.41 0.69 0.71 0.35 0.71 0.22 0.68
Madry 0.90 0.92 0.89 0.91 0.90 0.85 0.55 0.60 0.53 0.60 0.69 0.66 0.53 0.75 0.18 0.53
Tramer 0.90 0.96 0.88 0.96 0.98 0.98 0.56 0.54 0.44 0.56 0.85 0.85 0.44 0.85 0.08 0.55
MulDef-4 0.88 0.93 0.84 0.94 0.98 0.98 0.50 0.49 0.36 0.48 0.86 0.86 0.36 0.87 0.06 0.61
MulDef-8 0.88 0.95 0.86 0.94 0.98 0.98 0.52 0.51 0.38 0.50 0.85 0.84 0.38 0.86 0.07 0.60
BaRT-1 0.91 0.94 0.88 0.96 0.98 0.98 0.59 0.59 0.47 0.61 0.85 0.85 0.47 0.86 0.07 0.52
BaRT-4 0.91 0.95 0.88 0.93 0.98 0.96 0.54 0.55 0.45 0.56 0.74 0.74 0.45 0.75 0.18 0.59
BaRT-7 0.91 0.93 0.89 0.92 0.95 0.95 0.48 0.48 0.38 0.48 0.59 0.57 0.38 0.61 0.32 0.70
BaRT-10 0.90 0.92 0.90 0.91 0.93 0.93 0.40 0.37 0.37 0.41 0.47 0.46 0.37 0.49 0.44 0.75
Odds 0.96 0.96 0.92 0.97 0.99 0.99 0.76 0.66 0.62 0.68 0.93 0.93 0.62 0.71 0.21 0.49

Discussion. We have the following observations from Tables 9, 10 and 11:

1. The BUZz family achieves the smallest δ for mixed black box attacks, the smallest δ for
pure black box attacks and ranks below Xie, Madry, and MulDef with a higher δ = 0.63 for
boundary attacks.

20

Under review as a conference paper at ICLR 2021

Table 11: Boundary attacks – HopSkipJump (HSJA) (Chen & Jordan, 2019) and RayS (Chen & Gu,
2020) attacks – on different defenses for CIFAR-10. Minimum defense efficiency - MIN β, Clean
prediction accuracy pd, Drop in clean prediction accuracy γ.

HSJA RayS MIN β pd γ δ
Vanilla 0 0.02 0 0.93 0.00 0.93
Guo (BUZz-1) 0 0.01 0 0.91 0.02 0.93
BUZz-2 0 0.04 0 0.85 0.08 0.93
BUZz-4 0.16 0.27 0.16 0.81 0.12 0.80
BUZz-8 0.39 0.6 0.39 0.76 0.17 0.63
Liu (Mixed Arch) 0 0.29 0 0.85 0.08 0.93
ADP 0 0.05 0 0.94 -0.02 0.93
VanillaT-0.7 0 0.12 0 0.90 0.02 0.93
VanillaT-0.95 0 1 0 0.85 0.08 0.93
VanillaT-0.99 0 1 0 0.79 0.14 0.93
Xie 0.84 0.85 0.84 0.71 0.22 0.33
Madry 0.52 0.66 0.52 0.75 0.18 0.54
Tramer 0 0.02 0 0.85 0.08 0.93
MulDef-4 0.83 0.7 0.7 0.87 0.06 0.32
MulDef-8 0.88 0.74 0.74 0.86 0.07 0.29

Vanilla

Guo (BUZz-1)

BUZz-2

BUZz-4

BUZz-8

Liu (Mixed Arch)

ADP

VanillaT-0.7

VanillaT-0.95

VanillaT-0.99

Xie

Madry

Tramer

MulDef-4

MulDef-8

0.45

0.55

0.65

0.75

0.85

0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
le

an
 A

cc
u

ra
cy

Delta Value

Vanilla

Guo (BUZz-1)

BUZz-2

BUZz-4

BUZz-8

Liu (Mixed Arch)

ADP

VanillaT-0.7

VanillaT-0.95

VanillaT-0.99

Xie

Tramer

MulDef-4

MulDef-8

0.45

0.55

0.65

0.75

0.85

0.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
le

an
 A

cc
u

ra
cy

Delta Value

Fashion-MNIST Boundary AttackCIFAR-10 Boundary Attack

Figure 4: The δ metric vs clean accuracy for boundary attacks. The BuZz results are shown in green
and the vanilla result is shown in gray.

2. The BUZz family achieves δ = 0.63 across the union of all three classes of attacks while Xie,
Madry, and MulDef achieve δ = 0.74, δ = 0.54 and δ = 0.60 making BUZz comparable to
Xie, Madry and MulDef in this sense. A more detailed look reveals that, while BUzz, Xie,
Madry and MulDef have similar overall δ, they perform differently among the three attack
classes: Xie and MulDef have low δ = 0.33 and δ = 0.29 for boundary attacks; BUZz
and Madry have low δ = 0.21 and δ = 0.35 for mixed black-box attacks; BUZz has low
δ = 0.25 for pure black-box attacks. We conclude that these defense strategies are different
and cover different strengths.

3. Many defenses (such as Guo, Liu, ADP, Tramer) have a very high clean accuracy (i.e., close
to the clean accuracy of the vanilla classifier), but have a very large δ. If we have a close
look at the results presented in Tables 9, 10 and 11, we can see that they are vulnerable to
black-box attacks. In other words, they offer no security.

4. By combining the drop γ in clean accuracy and the increment in defense accuracy β, the
δ metric can be used for understanding how well a defense performs in the presence of
attackers. In order to have a further detailed evaluation, we need to separately look at the
attack success rate α (or, equivalently, defense accuracy β) and clean accuracy of the defense
pd. For example, in Table 11, we can see that Madry has a smaller δ than BUZz-8 but if we
have a close look at β and pd, then we can see that their performances are more alike than
what the δ metric alone would suggest.

21

Under review as a conference paper at ICLR 2021

5. From Tables 9 and 10 we conclude that mixed black-box attacks are more efficient than pure
black-box attacks and untargeted black-box attacks are stronger than targeted ones. When
looking at Table 11, boundary attacks are much stronger than mixed and pure black-box
attacks and this is understandable because boundary attacks use much more queries than the
other black-box attacks.

6. BUZz can realize different combinations of defender accuracy pd and attacker’s success rate
α by tuning the number of protected classifiers in the defense.

7. Xie and MulDef have the smallest δ values for boundary attacks. The reason is that for
a given input x, for each evaluation, these defenses introduce some randomness. As a
consequence, the outputted class label can be changed. This strongly affects the efficiency of
boundary attacks which need to accurately estimate the gradients of many images (and due
to the introduced randomness these estimates become less accurate). We notice that we can
also adopt this approach to enhance the robustness of BUZz against boundary attacks. We
have not investigated this direction because we want to see how strong our defense stands
on itself. Nevertheless, this shows an advantage of BUZz, i.e., BUZz is can be combined
with other defense strategies in a flexible way.

D.3 BOUNDARY ATTACK COMPUTATIONAL COMPLEXITY

In the main body of the paper we mention that both the Odds are Odd (Odds) and Barrage of random
transforms (BaRT) are not applicable for boundary attacks. For pure and mixed black-box attacks we
can efficiently parallelize the evaluation of many samples using either the GPU or multiple CPUs
(in the case of image transformations). However, the boundary attacks require large number of
evaluations done sequentially (e.g. 10,000 queries) so we cannot take advantage of the previously
mentioned parallelism. This causes the run time of boundary attacks for these defenses with our
standard implementation to be on the order of weeks. These attacks are not applicable for our current
setup (28 core CPU machine and 2 Titan V GPUs).

D.4 BUFFER ZONE GRAPHS

In Figure 2 we show buffer zone graphs for various defenses. These graphs are based on the the
decision region graphs originally presented in Liu et al. (2017). In our graphs, each point on the
2D grid corresponds to the class label of an image I ′. Green represents that I ′ has been classified
correctly, while red and blue regions represent incorrect class labels. Gray represents that the null
(adversarial) class label has been assigned. The image I ′ is generated from the original image I using
the following equation: I ′ = I + x · g+ y · r. Here g represents the gradient of the loss function with
respect to I . In the equation, r represents a normalized random matrix that is orthogonal to I (note g
is also normalized). The other variables, x and y represent the magnitude of each matrix which is
determined based on the coordinates in the 2D graph.

In essence the graph can be interpreted in the following sense: At the origin I ′ is equal to I . The
origin is the original image without adversarial perturbations or random noise added. As we move
along the x-axis in the positive direction, the magnitude of the gradient matrix x increases. Moving
positively along only the x-axis is equivalent to the FGSM attack, where the image is modified by
adding the gradient of the loss function (with respect to the input). If we move along the y-axis only,
the magnitude of the random noise matrix y increases. This is equivalent to adding random noise to
the image. Moving along the positive x-axis and any direction in the y-axis means we are adding an
adversarial perturbation and a random noise to the original image I . The further from the origin, the
greater the magnitude of x and y and hence the larger the distortion that is applied to create I ′.

In the case where a defense uses multiple networks, each network j will have a different gradient
matrix gj . To compensate for this, we average the individual gj matrices together before normalizing
to get g. It is important to note that while the graphs shown in Figure 2 give experimental proof of
the concept of buffer zones, they cannot be used to attack BUZz defenses in practice. When creating
the graphs, we have knowledge of the individual gradient matrices gj for each individual network j.
This information is not available or obtainable by an adversary in a black-box setting, to the best of
our knowledge.

22

