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A. Additional Implementation Details

We optimize the pose fitting for 1 000 iterations. We initially
optimize only p0 and linearly increase the number of
optimized frames from 1 to L between iterations 0 and
500. We use a constant learning rate of 0.0005 and Adam
optimizer [33] in Pytorch [58]. Our MLP m consists of
6 layers, each with a hidden dimension size of 256, and
we scale the final output by a constant α = 0.01. We
apply a frequency encoding [51] for the input l: γ(.) =
(l, sin(20πl), cos(20πl), ..., sin(2k−1πl), cos(2k−1πl))
with k = 6.

For each input shape M, we define the canonical camera
C manually.

A.1. Video Diffusion models

We use the official implementations for VideoComposer [91]
(VC), DynamiCrafter [93] (DC), as well as for Stable Video
Diffusion [5] (SVD), where the latter two are accessed
through the Diffusers library [87]. We adopt the same hyper-
parameters for all wherever possible. We set the classifier-
free guidance [22] to 6 and we generate 16 frames with an
assumed framerate of 16 fps. We use the recommended
schedulers with T = 50 inference steps. We discuss the
choice of conditioning images for each model and the omis-
sion of SVD from our experiments in Appendix D.1. Finally,
we observe that VC provides faster inference than DC, which
is why we adopt it for our quantitative experiments that re-
quire large number of optimizations.

Matching rendered image to VDM features for DC Un-
like VC and SVD, Dynamicrafter does not enforce the input
image to be the first frame of the output video, which is
an assumption of our method. This is because all VDM
frames are initialized with the same embedded input image:
E(x) = z0 = z1 = ... = zL and then they drift during
the inference. We observe that this drift is minimized for
the output frame matching the input image and hence we
explicitly detect the frame l∗ where features change the least

between the inference steps t:

l∗ = argmax
l

∑
t

κ(Âl
t, Â

l
t−1)− µAκ,t

σÂκ,t

, (5)

where µÂκ,t
and σÂκ,t

are the mean and standard deviation

of the cosine similarities of activations Ât at step t. Finally,
l∗ can be used as the frame index for feature reprojection.

A.2. Animation Models

We experiment with four different animation models.

SMPL Skinned Multi-Person Linear [45] is a skinned
mesh-based human model that supports various body shapes
and human poses. Vertices are deformed based on forward
kinematics and linear blend skinning: uli =

∑
b wb,iT

l
bu

init
i ,

where Tl
b ∈ R4×4 is the roto-translation of bone b at time

step l and wb,i the skinning weight determining how strongly
vertex ui is attached to b. Tl

b is defined recursively by its
parent bone transformation according to a kinematic hierar-
chy.

SMAL SMAL [103] is another skinned model that can rep-
resent various quadrupedal animals, namely lions, cats, dogs,
horses, cows and hippos. It follows the sample approach of
forward kinematic and linear blend skinning for reposing as
SMPL. We make use of the SMALify [3] implementation in
our work.

FLAME FLAME [38] also adopts the SMPL formulation
but expands it by articulation of the jaw, and the eyes. It
utilizes blend-shapes to model facial expression offsets for

all vertices in the mesh: Uexp =
∑ ⃗|ψ|
n ψ⃗nEn, where ψ⃗n

denotes the n’th expression coefficient, E = [En, ...,E ⃗|ψ|] ∈

R3N× ⃗|ψ| is the orthonormal expression basis, and Uexp con-
tains the vertex expression offset for each un. We further
find it beneficial to scale the expression coefficient ψ⃗n by a
factor of 5 in FLAME



Note that we keep the shape parameters fixed for SMPL,
SMAL, and FLAME. Please refer to the corresponding work
for more details.

Neural Jacobian Fields (NJF) Our method also supports
arbitrary meshes that are neither rigged nor have blendshapes.
To animate these types of meshes we make use of NJF [1]. In
NJF, the deformation is obtained by indirectly optimizing the
per-triangle Jacobians Ji ∈ R3×3 for each face fi, instead of
directly regressing the displacement for each vertex. To re-
trieve the deformation map Φ∗, a Poisson problem is solved:
Φ∗ = minΦ

∑
fi
|fi| ∥ ∇i(Φ)− Ji ∥22, where ∇i(Φ) is the

Jacobian of Φ at triangle fi and |fi| represents the area of the
triangle. We follow the implementation of Gao et al. [14],
and initialize the Jacobians with identity matrices. Besides
the Jacobians, we additionally optimize root rotation, center
of rotation, and a global translation vector. We also makes
use of the Jacobian regularization [14] to avoid diverging too
far from the initial geometry. Consequently, we expand our
full optimization objective with an additional term

Lj = 1/(2M)
∑
i

(∥ Ji − I ∥2)+ ∥ Ji − I ∥1),

where M is the number of triangle faces. Therefore, for NJF,
we minimize L′ = L+ wjLj , where wj = 0.5.

Our requirements for the inputs mesh are entirely depen-
dent on the animation model. For NJF, we assume a mesh
with a single connected component. For multi-component
meshes, we adopt the preprocessing from Wang et al. [89]
and transform the mesh representation into an SDF and re-
sample the mesh based from this SDF. We additionally dec-
imate faces through Quadric edge collapse [15] to reach
8 000 vertices. In practice, we observe that this procedure is
robust even for meshes that are not perfectly watertight nor
2-manifold.

For all animation models, we scale the global translation
vector t by 0.1.

B. User Study
B.1. Baseline methods

DG4D We use the original implementation provided by
Ren et al. [68] but adapt two hyperparameters such that the
model can be trained with only 24 GB of VRAM. Namely,
we reduce the batch size from 14 to 8 and and the number
of views per step (n_views) from 4 to 2. In its original
setup, DG4D automatically removes the background of the
input image before passing it to a VDM with a tool Rembg1.
However, as we show in Appendix D.1, VC produces better
results for input images with background. Therefore, for VC,
we remove the background after the video generation instead

1https://github.com/danielgatis/rembg

by applying Rembg to each video frame. When using DC,
the pipeline of DG4D is unaffected.

MDM-MT We observe a lack of class-agnostic end-to-end
pure motion generators. Therefore, we combine a human-
specific motion generator with a general motion transfer
method while accepting that the performance of such solu-
tion will depend on morphological and semantic proximity
of the source and target shape class. To this goal, we first use
a pre-trained author’s implementation of the text-conditioned
motion diffusion by Tevet et al. [83] to generate a unique
2D skeletal human motion sequence for each example in
our study. We adapt the motion text prompts used for our
method (Tbl. 4) to the human domain using a template “a
person is [ACTION]” e.g., “a horse is walking” → “a person
is walking”. Next, we use a 2D-to-3D human body pose
uplifting method adapted from the code of Zuo et al. [104]
to obtain sequence of SMPL [45] meshes. Finally, we follow
the procedure and code of Liao et al. [41] to retarget the
SMPL animations to our target meshes. We aply this step
consistently even for the SMPL target mesh. Finally, we
render the first 16 frames of the resulting mesh sequences in
the same way as for our own method.

B.2. Stimuli

In our study we utilize 10 different shape-prompt pairs
(2 SMAL, 2 FLAME, 2 SMPL, and 4 Neural Jacobian
Field combinations) and combine them each with 2 differ-
ent VDMs resulting in 20 unique videos for each evaluated
method. We compare pairwise to 2 methods (DG4D and
MDM-MT) for the first 3 questions, and we similarly com-
pare to 2 methods (DG4D and VDM) for the last additional
question. In total this produces 3×2×20+1×2×20 = 160
study trials.

Meshes We extract the surface models for SMPL [45],
FLAME [103] and SMAL [38] from their official implemen-
tations. For SMPL, we opt to lower the arms to 45 degrees
from the original T-pose, while we use the default “zero”
pose parameters for others. For NJF [1], we use the 4 open
assets listed in Tbl. 3.

VDM Target Motion Prompts Tbl. 4 lists VDM prompts
used to generate the motion sequences for the stimuli in our
study.

Single-View Texturing Prompts Tbl. 5 shows the positive
and negative prompts used for Single-view Texturing as an
input for the ControlNet diffusion model [98] for each shape
in our experiments and the prompt for the Stable Diffusion
XL [62] background inpainting.



Table 3. Mesh assets used to evaluate our method with NJF.

Shape Author License URL
Bunny Stanford Stanford Public http://graphics.stanford.edu/data/3Ds

canrep/
Lego truck Mildenhall et al. [51] MIT License https://github.com/bmild/nerf
Raptor Gatzegar TurboSquid Stan-

dard
https://www.turbosquid.com/3d-models/r
aptor-dinosaur-model-1538088

Palm tree mr_zaza TurboSquid Stan-
dard

https://www.turbosquid.com/3d-models/3
d-tropic-palm-tree-model-2090490

Table 4. Prompts used to generate stimuli in our study.

Shape Prompt
SMPL “A person jumping up”
SMPL “A person walking forward”
Horse (SMAL) “A horse walking”
Horse (SMAL) “A horse jumping”
FLAME “A person laughing”
FLAME “A person being very angry”
Bunny “A bunny shaking its ears”
Lego truck “A yellow truck moving its shovel up and down”
Raptor “A raptor jumping”
Palm tree “A palm tree swaying in the wind”

Table 5. Prompts used for our Single-View Texturing and background inpainting.

Prompt Negative Prompt
SMPL “A photo of a clothed person wearing pants and tshirt in

front of a <background>, photorealistic, 4k, DLSR”
“grey, gray, monochrome, distorted, disfigured, naked,
nude”

FLAME “A portrait photo a face in front of a <background>, pho-
torealistic, 4k, DLSR, bokeh”

“grey, gray, monochrome, distorted, disfigured, render,
teeth, hat”

SMAL “A photo of a <animal> in front of a <background>, pho-
torealistic, 4k, DLSR”

“grey, gray, monochrome, distorted, disfigured, render”

Others “A photo of a <object> in front of a <background>, photo-
realistic, 4k, DLSR”

“grey, gray, monochrome, distorted, disfigured, render”

Inpainting “Background image of a <background>” “Person, face, animal, object”

B.3. Instructions

Fig. 9 shows the instructions as presented to each participant
before the start of the study. Fig. 10, Fig. 11, Fig. 12, Fig. 13
show screenshots of our study interface for each of the four
distinct questions (3 questions in the main part and one
additional question). The questions were presented in four
blocks sequentially always in the same order. There was an
instruction screen displaying the next question shown at the
beginning of each block. The order of blocks was fixed but
the order and layout of the trials was randomized for each
participant.

B.4. Detailed Results

Here, we present a break-down of the results from our user
study separately for the human stimuli (Fig. 14), where the
human-specific MDM-MT baseline performs well and for

the remaining stimuli (Fig. 15), where our class-agnostic
method dominates. We also offer a detailed breakdown in
Tbl. 6.

C. Pose Optimization Experiment Details

C.1. Data

We select the first 20 frames from 20 randomly selected hu-
man dancing motion sequences in the AIST++ dataset [37].
Since our goal is not to reproduce the original camera poses,
we use a single fixed camera C and position the first-frame
SMPL mesh into the center of its viewport. Then we render
the rest of the SMPL sequence with a fixed camera. An
example can bee seen in Fig. 16.

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://github.com/bmild/nerf
https://www.turbosquid.com/3d-models/raptor-dinosaur-model-1538088
https://www.turbosquid.com/3d-models/raptor-dinosaur-model-1538088
https://www.turbosquid.com/3d-models/3d-tropic-palm-tree-model-2090490
https://www.turbosquid.com/3d-models/3d-tropic-palm-tree-model-2090490


Study Information
The study will take approximately 15 minutes.
You can drop out of the study whenever you want.
You may voice concerns or ask questions throughout the study.
You may take breaks.

Study Procedure
You will go through 4 different blocks, each block associated with one question.

Before the start of each block, the question will be written on the screen and you will have to
press SPACE to initiate each block. Example:

The questions are:
- Which video has more natural motion?
- Which video has fewer visual artifacts?
- Which video captures the prompt better?
- Which video do you prefer overall?

After initiating a block, you will see two videos of rendered 3D objects. One on the left and
one on the right. Block one, two and three show two views of the scene. Example:

You will have to indicate your preference given the question of the block. For block one, two
and three, the question will also be displayed at the top of the screen.

You can choose your preference by pressing the RIGHT or LEFT arrow key.

Figure 9. Study instructions that were read out and explained to our participants before the study.



Figure 10. A screenshot of a trial for the 1st question in our user study.

Figure 11. A screenshot of a trial for the 2nd question in our user study.



Figure 12. A screenshot of a trial for the 3rd question in our user study.

Figure 13. A screenshot of a trial for the additional 4th question in our user study.



Table 6. Breakdown of our study results showing a relative preference of our method in %. Q1: Which video has more natural motion? Q2:
Which video has fewer visual artifacts? Q3: Which video captures the prompt better? Q4: Which video do you prefer overall?

Q1 Q2 Q3 Q4
DG4D MDM-MT DG4D MDM-MT DG4D MDM-MT DG4D VDM

SMPL 91.7 39.6 100.0 47.9 91.7 89.6 87.5 70.8
SMAL 54.2 64.6 100.0 100.0 77.1 64.6 85.4 31.3
FLAME 97.9 97.9 100.0 100.0 93.8 95.8 62.5 29.2
Others 93.8 55.2 100.0 89.6 84.8 47.9 95.8 56.3
All 86.25 62.5 100.0 85.4 86.3 69.2 85.4 48.8
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Figure 14. Study results for SMPL scenes only.
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Figure 15. Study result without SMPL scenes.
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Figure 16. Example of rendered AIST++ scenes. On the top: The untextured models. On the bottom: Models preprocessed by our
single-view texturing.



Table 7. Evaluating different alignment strategies for WHAM.

MPJPE PA-MPJPE PVE Accel
Textured (default)
WHAMalign .092 ± .038 .057 ± .015 .125 ± .047 8.0 ± 9.2
WHAMcopy .092 ± .038 .057 ± .015 .112 ± .046 8.0± 9.2
WHAMfull align .059 ± .029 .042 ± .016 .090 ± .039 7.9 ± 9.0
WHAMcopy&align .059 ± .029 .042 ± .016 .075 ± .036 7.9 ± 9.0
Untextured
WHAMalign .091 ± .037 .054 ± .014 .122 ± .043 7.4 ± 9.1
WHAMcopy .091 ± .037 .054 ± .014 .109 ± .044 7.4 ± 9.1
WHAMfull align .057 ± .028 .039 ± .015 .086 ± .038 7.4 ± 9.1
WHAMcopy&align .057 ± .028 .039 ± .015 .070 ± .035 7.4 ± 9.1

C.2. Methodology

We follow Tang et al. [80] to extract semantic features Â
from our rendered videos. First, we add noise corresponding
to a diffusion inference step t to the encoded the rendered
video x: zt = αtEnc(x) + σtϵ, where Enc() is a latent
encoder for Latent Diffusion Models [71] or identity for
RGB models. Then, we use zt as an input to the VDM
denoiser fθ and obtain Â as the U-Net activations in the
same manner as in our main method (Sec. 4).

Note that we utilize MSE loss when using RGB features
for optimization, as this results in better performance com-
pared to the cosine distance.

C.3. WHAM baseline

To offer a fair comparison, we evaluate four different align-
ment strategies for WHAM [75], because our method starts
with the known pose pinit. Results for either strategy can be
found in Tbl. 7. In strategy align, we find the rotation and
translation to align the wham output with the ground truth:

R̂ = R0T

whamR
0
gt, and T̂ = diag(t)0

−1

whamdiag(t)
0
gt. (6)

The transformations are then applied to the consecutive
frames l: R̃lwham = R̂lRlwham, and T̃ lwham = T̂ lT lwham,
where R̃ and T̃ are the new aligned root rotation and transla-
tion.

In copy, we copy ground truth root rotations and trans-
lations, i.e., we set R̃lwham := Rlgt and T̃ lwham := T lgt. In
full align, we transform not only root rotations, like in Eq. 6,
but every bone rotation. Lastly, in copy&align, we copy
all root rotations and translation vectors from the ground
truth and also transform the bone rotations as in full align.
Note that the WHAM prediction is in full correspondence at
l = 0 in full align and copy&align. We find that copy&align
performs the best for WHAM and, therefore, adopt this
alignment strategy in Sec. 5.2.

D. Additional Results

D.1. Effect of Texturing and Background for Dif-
ferent VDMs

In Fig. 17 and Fig. 18, we compare different image input
variants for the three different considered VDMs: Video-
Composer [91] (VC), DynamiCrafter [93] (DC), and Stable
Video Diffusion [5] (SVD). We observe that VC struggles
to produce coherent output for images without background
images, as the object often either disappears (Fig. 17 top) or
gets distorted (Fig. 18 top). DC exhibits resilience to this
problem and performs well both with and without a back-
ground image. Therefore, we opted to use images without
background for DC, since it makes the videos more similar
to the typical inputs of the DG4D baseline [68]. Finally,
the publicly accessible SVD model is conditioned by image
only without any text prompt input. We observe that the
motion produced by SVD for our image inputs often results
in a global camera motion with no object motion. This is
particularly prominent if no background is used. For this
reason, we excluded SVD from our other experiments.

D.2. Qualitative Comparison to Consistent4D

We further compare our method to Consistent4D [28].
Since this is a computationally significantly more expen-
sive method (50 minutes in its low VRAM setup versus less
than 3 minutes for ours), which ened-to-end produces both
the shape and the animation, we consider it a separate cat-
egory from method which is better suited for quick motion
prototyping and iterative animation development. This is
why we did not include Consistent4D in our user study and
instead provide a general discussion and a qualitative com-
parison here. A similar method DG4D was included in our
study instead.

As seen in Fig. 19 and Fig. 20, our method generally pro-
duces more plausible motion given the underlying geometry
in a faster manner. The evaluation of Consistent4D take on
average 32 minutes per object in its low VRAM setup, while
our motion fitting takes on average under 3 minutes on an
NVIDIA RTX 3090. Note that we exclude the time it takes
to generate the driving videos in both cases. Consistent4D’s
slower runtime can be explained by its adoption of SDS
which necessitates encoding the rendered RGB image into
the latent space repeatedly. In contrast, our method remains
in the semantic feature space.

Consistent4D utilizes a K-Plane [13] for their 4D repre-
sentation which allows for a higher flexibility when modeling
geometry distortions produced by the VDM. One such ex-
ample can be seen in the raptor sequence in Fig. 19. Here,
the raptor’s right and left legs rapidly alternate between the
foreground and background, creating a sense of motion, but
disrupting the raptor’s underlying topology. While the abil-
ity to fit such non-physical effects can be beneficial in some
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Figure 17. Comparison of 3 output video frames (columns 2–4) for 3 VDMs considered for our experiments given the same Horse 3D mesh
(1st column) rendered (from top to bottom) as an untextured shaded image, single-view textured image and a single-view textured image
with a synthesized background B (Sec. 4.1 for details of the texturing process).
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VideoComposer - ‘A person laughing’

DynamiCrafter - ‘A person laughing’
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Figure 18. Comparison of 3 output video frames (columns 2–4) for 3 VDMs considered for our experiments given the same FLAME 3D
mesh (1st column) rendered (from top to bottom) as an untextured shaded image, single-view textured image and a single-view textured
image with a synthesized background B (Sec. 4.1 for details of the texturing process).



scenarios, our explicit representation is more robust to fitting
to VDM artifacts and thus reduces the consequent visually
implausible transformations.

Furthermore, the K-plane representation entangles shape
and motion and hence it cannot be easily integrated into
common computer-graphics pipelines. This is in contrast
to our method which deforms an explicit canonical mesh,
where the time-dependent vertex deformations can be easily
exported.

Lastly, Consistent4D (as well as DG4D) adopts an image-
to-3D model Zero-1-to-3 [44] for 3D-Uplifting. However,
Zero-1-to-3 requires input images without background which
contradicts our observations that VDMs benefit from context
in the background for better results (see in Appendix D.1).
To tackle this, Consistent4D creates masks in an automated
fashion for videos with background which can, however,
introduce additional errors. In comparison, our method does
not rely on any such masks.

D.3. Comparing Semantic Featuring against RGB
for Optimization

Here, we complement our Pose estimation experiment from
the main paper and compare the RGB and semantic fea-
tures end-to-end in our full pipeline We find that modeling
temporal deformations with NJF in combination with RGB
features results in unstable optimization. Therefore, we only
showcase the kinematic models in Fig. 21. Similarly to pose
fitting, semantic features lead to superior results.

D.4. Ablation of Number of Vertices

Fig. 22 and Fig. 23 show additional results when varying
the number of vertices in our method with NJF. We find
that the output quality degrades gracefully and predictably,
when scaling down from 4000 to 500 vertices. Notice that
the VDM output slightly differs, due to the variations in
the conditioning input image when varying the number of
vertices.

D.5. Results with Stable Video Diffusion

As reported in Appendix D.1, SVD produces camera motion
rather than object motion. For completeness sake, we show
that our method produces plausible results in Fig. 24 when
fitting to the SVD semantic features.
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Figure 19. Comparing Consistent4D against our method.
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Figure 20. Comparing Consistent4D against our method.
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Figure 21. Comparison of semantic features against RGB used for pose optimization. Each column shows frames for a single sequence.
Note the red boxes, highlighting errors in the the pose optimization when utilizing RGB: 1) In case of SMPL (human), the hand gets stuck in
front of the torso, as the RGB features do not distinguish the body from the hand. 2) In case of SMAL (horse), the limbs of the horse assume
less realistic articulation with RGB features.
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Figure 22. Effect of vertex number on our method when adopting NJF for deformations with VC as VDM backbone. Each row shows the
output of our method with an increasing number of vertices. Prompt: ’An orc laughing.’
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Figure 23. Effect of vertex number on our method when adopting NJF for deformations with DC as VDM backbone. Each row shows the
output of our method with an increasing number of vertices. Prompt: ’A truck moving its shovel up and down.’
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Figure 24. Results when motion fitting using the SVD semantic features. While our method is well suited to work even with SVD features,
SVD videos tend to focus on a global camera rotation rather than actual object motion. Consequently, the fitted object motion is often
minimal or uninteresting. As a result we omitted SVD in our further studies in favor of other VDMs.


