
A Proof of Lemma 4.2554

Lemma A.1 (Restatement of Lemma 4.2). For any given input x 2 Rd and `2 norm perturbation limit ✏, if
m � max(d,⌦(H log(H))), Rp

m
+ ✏  c

H6(logm)3
for some sufficient small c, then with probability at least

1�O(H)e�⌦(m(R/
p
m+✏)2/3H), we have for any x0 2 B(x, ✏) and Lipschitz loss L, the input gradient norm

satisfies
krL(f(x0), y)k2 = O

�p
mH

�
.

Proof. The major part of this proof is inspired from [19]. Let D(h)(W,x) =
diag( {W(h)�(· · ·�(W(1)x)) > 0}) be a diagonal sign matrix. Then the neural network function
can be rewritten as follows:

f(x) = a>D(H)(W,x)W(H) · · ·D(1)(W,x)W(1)x.

By the chain rule of the derivatives, the input gradient norm can be further written as555

krL(f(x0), y)k2 = kL0(f(x0), y) ·rf(x0)k2
 kL0(f(x0), y)k2 · krf(x0)k2
= kL0(f(x0), y)k2 · ka>D(H)(W,x0)W(H) · · ·D(1)(W,x0)W(1)k2. (A.1)

Now let us focus on the term ka>D(H)(W,x0)W(H) · · ·D(1)(W,x0)W(1)k2. Note that by triangle inequal-556

ity,557

ka>D(H)(W,x0)W(H) · · ·D(1)(W,x0)W(1)k2
 ka>D(H)(W,x0)W(H) · · ·D(1)(W,x0)W(1) � a>D(H)(W0,x)W

(H)
0 · · ·D(1)(W0,x)W

(1)
0 k2

+ ka>D(H)(W0,x)W
(H)
0 · · ·D(1)(W0,x)W

(1)
0 k2. (A.2)

Note that W is updated via projected gradient descent with projection set B(R). Therefore, by Equation (12) in558

Lemma A.5 of [19] we have559

ka>D(H)(W,x0)W(H) · · ·D(1)(W,x0)W(1) � a>D(H)(W0,x)W
(H)
0 · · ·D(1)(W0,x)W

(1)
0 k2

= O
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m logm

◆
, (A.3)

and by Lemma A.3 in [19] we have560

ka>D(H)(W0,x)W
(H)
0 · · ·D(1)(W0,x)W

(1)
0 k2 = O(

p
mH). (A.4)

Combining (A.2), (A.3), (A.4), when Rp
m

+ ✏  c

H6(logm)3
, we have561

ka>D(H)(W,x0)W(H) · · ·D(1)(W,x0)W(1)k2 = O(
p
mH). (A.5)

By substituting (A.5) into (A.1) we have,562

krL(f(x0), y)k2  kL0(f(x0), y)k2 · ka>D(H)(W,x0)W(H) · · ·D(1)(W,x0)W(1)k2 = O(
p
mH),

where the last inequality holds since kL0(f(x0), y)k2 = O(1) due to the Lipschitz condition of loss L. This563

concludes the proof.564

B The Experimental Detail for Reproducibility565

All experiments are conducted on a single NVIDIA V100. It runs on the GNU Linux Debian 4.9 operating566

system. The experiment is implemented via PyTorch 1.6.0. We adopt the public released codes of PGD [39],567

TRADES [68], and RST [8] and adapt them for our own settings, including inspecting the loss value of robust568

regularization and the local Lipschitzness.569

CIFAR100 contains 50k images for 100 classes, which means that it has much fewer images for each class570

compared with CIFAR10. This makes the learning problem of CIFAR100 much harder. For DenseNet571

architecture, we adopt the 40 layers model with the bottleneck design, which is the DenseNet-BC-40. It572

has three building blocks, with each one having the same number of layers. This is the same architecture tested573

in the original paper of DenseNet for CIFAR10. For simplicity reason, we make the training schedule stay the574

same with the one used for WideResNet, which is the decay learning rate schedule. As DenseNet gets deeper, its575

channel number (width) will be multiplied with the growing rate k. Thus, as k gets larger, the width of DenseNet576

also does. Although this mechanism slightly differs from the widen factor of WideResNet, which amplify all577

layers with the same ratio.578
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Figure 5: The changing trend leanring rate against training epochs for different learning rate schedule.

C The Exponential Decay Learning Rate579

To demonstrate the fact that the over-fitting problem all comes from perturbation stability in Section 3.2(3), we580

use the training schedule of the original work for Figure 2. Aside from that, all the other experiments and plots581

are results under our proposed learning rate schedule, which halve the learning rate for every epochs after the582

75-th epoch and can prevent over-fitting. Different learning rate schedules are shown in Figure 5, including the583

step-wise [68], cosine [8], and our exp-decay learning rate schedule. Basically, our schedule is an early-stop584

version of the baseline of TRADES [68], which skips the small learning rate stage as soon as possible in the later585

stage. We found this schedule is the most effective one when only training on the original CIFAR10. However,586

when combined with the 500K unlabeled images from RST [8], we find that the over-fitting problem is much587

less severe and cosine learning rate is the best choice.588

D Boosting the Original Adversarial Training589

We further show that our strategy also applies to the original adversarial training [39]. Note that our generalized590

adversarial training framework (1.1) allow us to further boost the robust regularization for original (generalized)591

adversarial training. The only caveat is that in adversarial training formulation, the robust regularization term is592

not guaranteed to be non-negative in practice3. To avoid this problem, we manually set the robust regularization593

term in (1.1) to be non-negative by clipping the L(✓; bx, y)� L(✓;x, y) term. Let us denote x0 as the empirical594

maximization solution, the final loss function becomes:595

argmin
✓

E(x,y)⇠D

n
L(✓;x, y) + � · max

bxi2B(xi,✏)

�
L(✓;x0, y)� L(✓;x, y), 0

�o
.

The bottom part of Table 1 shows the experimental results for boosting the robust regularization parameter for596

(generalized) adversarial training models. We can observe that the boosting strategy still works in this method,597

and wider models indeed require larger � to obtain the best robust accuracy.598

E Verifying Our Findings on ImageNet599

We further test the model of Fast AT [63] on ImageNet dataset in Table 5, and it again verifies our conclusion600

that larger model width would increase natural accuracy but decrease perturbation stability.

Table 5: Fast Adversarial Training on ImageNet.

Models �
Robust

Accuracy
Top5-Natural

Accuracy
Perturbation

Stability

WideResNet-50-1 1.0 38.34 53.24 72.29
WideResNet-50-2 1.0 51.65 66.67 70.10

601
602

3Successfully solving the inner maximization problem in (1.1) is supposed to guarantee that L(✓;x0, y) >
L(✓;x, y), however, in practice, there still exist a very little chance that L(✓;x0, y) < L(✓;x, y) due to failure
in solving the inner maximization problem at the beginning of the training procedure with limited steps.

15



F Boosting the Regularization Parameter on Extra Adversarial Training603

Methods604

We also compare with other models from the AutoAttack [15] leaderboard. We focus on the AWP [64] and show605

the result in Table 6. We found that our conclusion still holds for the AWP method that using larger � (12.0606

rather than 6.0 in the default setting) can achieve even better robust accuracy.

Table 6: AWP on CIFAR10 dataset.

Models �
Robust

Accuracy
Natural

Accuracy
Perturbation

Stability

WideResNet-34-10 6.0 59.01 84.82 73.95
WideResNet-34-10 12.0 59.34 81.20 76.65
WideResNet-34-10 18.0 58.72 78.43 77.54

607

G Evaluating the Three Metrics on State-of-the-Art Models608

In the figure below, we evaluate nine state-of-the-art robust models against the PGD attack for the three metrics:609

the natural accuracy, the perturbation stability, and the robust accuracy (the size of the ball). Our dissection610

of these three metrics helps the researcher better understand how different approaches influence adversarial611

robustness. For instance, we can tell that HE [44] mainly helps the stability, Pretrain [28] mainly helps the612

natural accuracy and slightly hurts stability. Moreover, we can tell that methods like RST[8] simultaneously613

improve the natural accuracy and perturbation stability. This observation shows that it is possible to improve the614

two contradictory metrics.615

Figure 6: The changing trend leanring rate against training epochs for different learning rate schedule.
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H More Illustrations of Eqn. (1.1)616

In this part, we provide a complete visualization for the two parts in Eqn. (1.1). The figures below are an extension617

of Figure 1, where the models are those we trained in Table 2. We test WideResNet-34 on CIFAR10 and CIFAR10.618

We test DenseNet-BC-40 on CIFAR10. The two losses with respect to different robust regularization parameter619

� are shown. Again, we emphasize that the observation that wider neural networks achieve worse performance620

on stability with the same � can be found during the training stage. Therefore, this intriguing phenomenon is not621

an over-fitting problem, as previous works [51] pointed out.622

(a) Natural Risk, � = 6 (b) Natural Risk, � = 12 (c) Natural Risk, � = 18

(d) Robust Regularization, � = 6 (e) Robust Regularization, � = 12 (f) Robust Regularization, � = 18

Figure 7: WideResNet-34 on CIFAR10.
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(a) Natural Risk, � = 6 (b) Natural Risk, � = 12 (c) Natural Risk, � = 18

(d) Robust Regularization, � = 6 (e) Robust Regularization, � = 12 (f) Robust Regularization, � = 18

Figure 8: WideResNet-34 on CIFAR100.

(a) Natural Risk, � = 6 (b) Natural Risk, � = 12 (c) Natural Risk, � = 18

(d) Robust Regularization, � = 6 (e) Robust Regularization, � = 12 (f) Robust Regularization, � = 18

Figure 9: DenseNet-BC-40 on CIFAR10.
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