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A Theoretical Proofs

Definition 4 (Structural Hamming Distance (SHD)). For any two DAGs G
C
1 ,G

C
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vertices set V , we define the following function SHD: G ⇥H ! R,
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where |PAj(GC
1 )� PAj(GC

2 )| is the number of the absolute difference in parental nodes for node j
between causal graph G

C
1 and G

C
2 .

Definition 5 (Nodes in Behavior Graph). Let Xj =
h
Vj , {Eij}i2{PAj(GC)[j}

i
, where Vi is the node

type of the j-th node, and E·i is the arrows that point in the j-th node. All these components form the
node Xj in the behavior graph.
Definition 6 (Respect the graph). For any given behavior graph G

B with a specific causal graph G
C ,

the transition model respects the graph if the distribution p�(GB
|G

C) can be factorized as:

p(GB
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where m is the number of factorized nodes, and PAj(·) is for Xj’s parents based on the causal graph.
Proposition 1 (CausalAF respects the graph).
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The node generation process of CausalAF combines two phases: firstly, we use COM to determine the
generation order of the node, which prevents the generation of child nodes before their parent nodes.
This COM can also be interpreted as a node ordering with topological sorting, therefore CausalAF
should always respect the term p(Vj |PAj(GC)), 8j in Equation (8).

On the other hand, CVM is used to guarantee that the output of the autoregressive flow model uses
proper structural information (i.e. the parents of the current node) to generate the self-loop edge
as well as edges between new nodes and their parents accordingly, the CVM trick thus guaran-
tees that CausalAF respects the term p(Ejj |Vj ,PAj(GC))

Q
i2PAj(GC) p(Eij |Vj ,PAj(GC)), 8j in

Equation (8).

Assumption 1 (Local Optimality). Let GC⇤ be the ground truth causal graph, for any nodes
Xj with its parental set PAj(GC

1 ) 6= PAj(GC⇤
). At convergence, CausalAF will have

max� p�(Vj |PAj(GC⇤
)) > max� p�(Vj |PAj(GC

1 )).

Assumption 2 (Local Monotonicity of Behavior Graph). For a single node Xj , its local
monotonicity of likelihood means for any conditional set PAj(GC
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Proof of Theorem 1. Given that GB
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|G
C), ⌧ = E(GB), by using the change of variable
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@⌧ |

�
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The optimization process of CausalAF can be rewritten as below:
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Since the CausalAF respects the graph, as is shown in Proposition 1, for true CG G
C⇤ and another

CG G
C
1 6= G

C⇤. By applying the local monotonicity in the previous assumptions, when CausalAF
converges, we will have
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Based on the derivation above, we conclude that p̂�(GB
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), which indicates that at convergence, the likelihood of collision samples converge with
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Table 3: Parameters of Environments

Parameter Description Value

Sego number of LiDAR sensor for ego vehicle 10
Sother number of LiDAR sensor for other vehicle 0
Sped number of LiDAR sensor for pedestrian 6
Mego maximal range (m) of LiDAR for ego vehicle 200
Mother maximal range (m) of LiDAR for other vehicle 200
Mped maximal range (m) of LiDAR for pedestrian 100

Dego braking factor of ego vehicle 0.1
Dother braking factor of other vehicle 0.05
Dped braking factor of pedestrian 0.01
Wego shape size (width, length) of ego vehicle [20, 40]
Wother shape size (width, length) of ego vehicle [20, 40]
Wped shape size (width, length) of ego vehicle [15, 15]
Vego initial velocity of ego vehicle 18
Vother initial velocity of other vehicle 18
Vped initial velocity of pedestrian 4

Tmax max number of step in one episode 100
C collision threshold 20
�t step size of running 0.3

B Environment Details

B.1 Simulator

We conduct all of our experiments in a 2D traffic simulator, where vehicles and pedestrians are
controlled by the Bicycle vehicle dynamics. The action is a two-dimensional continuous vector,
containing the acceleration and steering. The ego vehicle is controlled by a constant velocity
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model and it will decelerate if its Radar detects some obstacles in front of it. All other objects are
controlled by the scenario generation algorithm. The parameters of simulators and 3 environments
are summarized in Table 3.

B.2 Definitions of Nodes and Edges in Causal Graph and Behavior Graph

In our experiments, we pre-define the types of nodes and types for Causal Graph and Behavior Graph,
which is summarized in Table 4. Both of them share the same definition of node types. Causal Graph
does not have the type of edges since it only describes the structure.

Table 4: Definitions of Nodes and Edges

Notation Category Description

nN Node type empty node used as a placeholder in the vector
nE Node type represents ego vehicle
nV Node type represents non-ego vehicles
nB Node type represents static objects in the scenario
nP Node type represents pedestrian

eN Edge type empty edge used as a placeholder in the vector
eT Edge type the source node go toward the target node
eS Edge type self-loop edge that does not rely on target node

ep Edge attribute the initial 2D position of source node relative to target node
ev Edge attribute the initial velocity of source node relative to target node
ea Edge attribute the acceleration of source node relative to target node
es Edge attribute the shape size of the object in source node

C Model Training Details

Our model is implemented with PyTorch, using Adam as the optimizer. All experiments are conducted
on NVIDIA GTX 1080Ti and Intel i9-9900K CPU@3.60GHz. We summarize the parameters of our
model in Table 5. Note that the two variant models (Baseline and Baseline+COM) share the same
parameters.

Table 5: Parameters of Environments

Parameter Description Value

E episode number of REINFORCE 500
B Batch size of REINFORCE 128
↵ learning rate of REINFORCE 0.0001
T sample temperature 0.5

m maximal number of node 10
n number of node type 5
n number of node type 5
h1 number of edge type 2
h2 number of edge attribute 3
K number of flow layer 2
dh dimension of hidden layer 128
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Figure 6: Screenshots of three generated scenarios in our simulator. The pink color represents the
ego vehicle, the green color represents the pedestrian, and the blue color represents other vehicles.
The red rectangle indicates the occurrence of a collision.

D More Experiment Results

D.1 Qualitative Results of Generated Scenarios

We show three qualitative results of generated safety-critical scenarios in Figure 6.

D.2 Diversity of Generated Scenarios

By injecting the causality into the generation process, we also restrict the space of generated scenario.
Therefore, there usually exists a trade-off between the diversity and efficiency of generation. To
analyze the diversity we lose by using the causal graph, we plot the variances of velocity and position
of vehicles and pedestrians in Figure 7. We can see that the difference between the two models is
very small, which indicates that the diversity of our CausalAF method is not decreased due to the
injection of the causal graph.

Figure 7: Variance of position and velocity of generated scenarios from two different models. One is
with the causal graph and the other is without the causal graph.
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