
Published in Transactions on Machine Learning Research (01/2024)

Unsupervised Discovery of Steerable Factors
When Graph Deep Generative Models Are Entangled

Shengchao Liu shengchao.liu@umontreal.ca
Quebec AI Institute (Mila)
University de Montréal

Chengpeng Wang cw83@illinois.edu
University of Illinois Urbana-Champaign

Jiarui Lu jiarui.lu@umontreal.ca
Quebec AI Institute (Mila)
University de Montréal

Weili Nie wnie@nvidia.com
Nvidia Research

Hanchen Wang hw501@cam.ac.uk
University of Cambridge

Zhuoxinran Li zhuoxinran.li@mail.utoronto.ca
University of Toronto

Bolei Zhou bolei@cs.ucla.edu
University of California, Los Angeles

Jian Tang jian.tang@hec.ca
Quebec AI Institute (Mila)
HEC Montréal

Reviewed on OpenReview: https: // openreview. net/ forum? id= wyU3Q4gahM

Abstract

Deep generative models (DGMs) have been widely developed for graph data. However, much
less investigation has been carried out on understanding the latent space of such pretrained
graph DGMs. These understandings possess the potential to provide constructive guidelines
for crucial tasks, such as graph controllable generation. Thus in this work, we are interested
in studying this problem and propose GraphCG, a method for the unsupervised discovery
of steerable factors in the latent space of pretrained graph DGMs. We first examine the
representation space of three pretrained graph DGMs with six disentanglement metrics, and
we observe that the pretrained representation space is entangled. Motivated by this observa-
tion, GraphCG learns the steerable factors via maximizing the mutual information between
semantic-rich directions, where the controlled graph moving along the same direction will
share the same steerable factors. We quantitatively verify that GraphCG outperforms four
competitive baselines on two graph DGMs pretrained on two molecule datasets. Addition-
ally, we qualitatively illustrate seven steerable factors learned by GraphCG on five pretrained
DGMs over five graph datasets, including two for molecules and three for point clouds.

1

https://openreview.net/forum?id=wyU3Q4gahM

Published in Transactions on Machine Learning Research (01/2024)

1 Introduction

The graph is a general format for many real-world data. For instance, molecules can be treated as graphs (Du-
venaud et al., 2015; Gilmer et al., 2017) where the chemical atoms and bonds correspond to the topological
nodes and edges respectively. Processing point clouds as graphs is also a popular strategy (Shi & Rajkumar,
2020; Wang et al., 2020), where points are viewed as nodes and edges are built among the nearest neighbors.
Many existing works on deep generative models (DGMs) focus on modeling the graph data and improving
the synthesis quality. However, understanding the pretrained graph DGMs and their learned representa-
tions has been much less explored. This may hinder the development of important applications like graph
controllable generation (also referred to as graph editing) and the discovery of interpretable graph structure.

Concretely, the graph controllable generation task refers to modifying the steerable factors of the graph so
as to obtain graphs with desired properties easily (Drews, 2000; Pritch et al., 2009). This is an important
task in many applications, but traditional methods (e.g., manual editing) possess inherent limitations under
particular circumstances. A typical example is molecule editing: it aims at modifying the substructures of
molecules (Mihalić & Trinajstić, 1992) and is related to certain key tactics in drug discovery like functional
group change (Ertl et al., 2020) and scaffold hopping (Böhm et al., 2004; Hu et al., 2017). This is a routine
task in pharmaceutical companies, yet, relying on domain experts for manual editing can be subjective or
biased (Drews, 2000; Gomez, 2018). Different from previous works, this paper starts to explore unsupervised
graph editing on pretrained DGMs. It can act as a complementary module to conventional methods and
bring many crucial benefits: (1) It enables efficient graph editing in a large-scale setting. (2) It alleviates
the requirements for extensive domain knowledge for factor change labeling. (3) It provides a constructive
perspective for editing preference, which can reduce biases from the domain experts.

Disentanglement for editing. One core property relevant to the general unsupervised data editing using
DGMs is disentanglement. While there does not exist a widely-accepted definition of disentanglement,
the key intuition (Locatello et al., 2019) is that a disentangled representation should separate the distinct,
informative, and steerable factors of variations in the data. Thus, the controllable generation task would
become trivial with the disentangled DGMs as the backbone. Such a disentanglement assumption has been
widely used in generative modeling on the image data, e.g., β-VAE (Higgins et al., 2017) learns disentangled
representation by forcing the representation to be close to an isotropic unit Gaussian. However, it may
introduce extra constraints on the formulations and expressiveness of DGMs (Higgins et al., 2017; Ridgeway
& Mozer, 2018; Eastwood & Williams, 2018; Wu et al., 2021).

Entanglement on pretrained graph DGMs. Thus for graph data, one crucial question arises: Is the
latent representation space from pretrained graph DGMs disentangled or not? In image generation, a series
of work (Collins et al., 2020; Shen et al., 2020a; Härkönen et al., 2020; Tewari et al., 2020; Wu et al., 2021)
has shown the disentanglement properties on pretrained DGMs. However, such property of pretrained
graph DGMs is much less explored. In Section 3, we first study the latent space of three pretrained graph
DGMs and empirically illustrate that the learned space is not perfectly disentangled or entangled. In what
follows, we adopt the term “entangled” for graph DGMs.

Our approach. This observation then raises the second question: Given a pretrained yet entangled DGM
for graph data, is there a flexible framework enabling the graph controllable generation in an unsupervised
manner? To tackle this problem, we propose a model-agnostic framework coined GraphCG for unsupervised
graph controllable generation. GraphCG has two main phases, as illustrated in Figure 1. During the
learning phase (Figure 1(a)), GraphCG starts with the assumption that the steerable factors can be learned
by maximizing the mutual information (MI) among the semantic directions. We formulate GraphCG using an
energy-based model (EBM), which offers a large family of solutions. Then during the inference phase, with the
learned semantic directions, we can carry out the editing task by moving along the direction with certain step
sizes. As the example illustrated in Figure 1(b), the graph structure (hydroxyl group) changes consistently
along the learned editing direction. For evaluation, we qualitatively verify the learned directions of five
pretrained graph DGMs. Particularly for the molecular datasets, we propose a novel evaluation metric called
sequence monotonic ratio (SMR) to quantitatively measure the structure change over the output sequences.

2

Published in Transactions on Machine Learning Research (01/2024)

(a) Learning phase of GraphCG. (b) Inference phase of GraphCG.

Figure 1: (a) The learning phase. Given two latent codes zu and zv, we edit the four latent representations
along i-th and j-th direction with step size α and β respectively. The goal of GraphCG, is to align the positive pair
(z̄u

i,α and z̄v
i,α), and contrast them with z̄u

j,β and z̄v
j,β respectively. (b) The inference phase. We will first sample an

anchor molecule and adopt the learned directions in the learning phase for editing. With step size α ∈ [−3, 3], we
can generate a sequence of molecules. Specifically, after decoding, there is a functional group change shown up: the
number of hydroxyl groups decreases along the sequence in the decoded molecules.

Our contributions. (1) We conduct an empirical study on the disentanglement property of three
pretrained graph DGMs using six metrics, and we observe that the latent space of these pretrained graph
DGMs is entangled. (2) We propose a model-agnostic method called GraphCG for the unsupervised graph
controllable generation or graph editing. GraphCG aims at learning the steerable factors by maximizing
the mutual information among corresponding directions, and its outputs are sequences of edited graphs.
(3) We quantitatively verify that GraphCG outperforms four competitive baselines when evaluated on two
pretrained graph DGMs over two molecule datasets. (4) We further qualitatively strengthen the effectiveness
of GraphCG by illustrating seven semantic factors on five pretrained graph DGMs over five graph datasets,
including two for molecular graphs and three for point clouds.

Related work. Recent works leverage the DGMs for various controllable generation tasks (Chen et al.,
2018a; Xia et al., 2021), where the inherent assumption is that the learned latent representations encode
rich semantics, and thus traversal in the latent space can help steer factors of data (Jahanian et al., 2019;
Shen et al., 2020b; Härkönen et al., 2020). Among them, one research direction (Shen et al., 2020b; Nie
et al., 2021) is using supervised signals to learn the semantic-rich directions, and most works on editing the
graph data focus on the supervised setting (Jin et al., 2020a; Veber et al., 2002; You et al., 2018). However,
these approaches can not be applied to many realistic scenarios where extracting the supervised labels is
difficult. Another research line (Härkönen et al., 2020; Shen & Zhou, 2021; Ren et al., 2021) considers
discovering the latent semantics in an unsupervised manner, but these unsupervised methods are designed
to be either model-specific or task-specific, making them not directly generalizable to the graph data. A
more comprehensive discussion is in Appendix B.

2 Background and Problem Formulation

Graph and deep generative models (DGMs). Each graph data (including nodes and edges) is denoted
as x ∈ X , where X is the data space, and DGMs learn the data distribution, i.e., p(x). Our proposed graph
editing method (GraphCG) is model-agnostic or DGM-agnostic, so we briefly introduce the mainstream
DGMs for graph data as below. Variational auto-encoder (VAE) (Kingma & Welling, 2013; Higgins
et al., 2017) measures a variational lower bound of p(x) by introducing a proposal distribution; flow-based
model (Dinh et al., 2014; Rezende & Mohamed, 2015) constructs revertible encoding functions such that
the data distribution can be deterministically mapped to a prior distribution. Note that these mainstream
DGMs, either explicitly or implicitly, contain an encoder (f(·)) and a decoder (g(·)) parameterized by
neural networks:

z = f(x), x′ = g(z), (1)

where z ∈ Z is the latent representation, Z is the latent space, and x′ is the reconstructed output graph.
Since in the literature (Shen & Zhou, 2021; Shen et al., 2020b), people also call latent representations as latent

3

Published in Transactions on Machine Learning Research (01/2024)

codes or latent vectors, in what follows, we will use these terms interchangeably. Note that the encoding
and decoding functions in Equation (1) (f, g) can be stochastic depending on the DGMs we are using.

Steerable factors. The steerable factors are key attributes of DGMs, referring to the semantic information
of data that we can explicitly discover from the pretrained DGMs. For instance, existing works (Shen &
Zhou, 2021; Ren et al., 2021) have shown that using unsupervised methods on facial image DGM can discover
factors such as the size of eyes, smiles, noses, etc. In this work, we focus on the steerable factors of graph
data, which are data- and task-specific. Yet, there is one category of factor that is commonly shared among
all the graph data: the structure factor. Concretely, these steerable factors can be the functional groups in
molecular graphs and shapes or sizes in point clouds. The details of these steerable factors are in Appendix C.

Semantic direction and step size. To learn the steerable factors using deep learning tools, we will
introduce the semantic directions defined on the latent space of DGM. In such a space Z, we assume there
exist D semantically meaningful direction vectors, di with i ∈ {0, 1, . . . , D − 1}.1 There is also a scalar
variable, step size α, which controls the degree to edit the sampled data with desired steerable factors (as
will be introduced below), and we follow the prior work (Shen & Zhou, 2021) on taking α ∈ [−3, 3]. Each
direction corresponds to one or multiple factors, such that by editing the latent vector z along di with step
size α, the reconstructed graph will possess the desired structural modifications. The editing with a sequence
of step sizes α ∈ [−3, 3] along the same direction di leads to a sequence of edited graphs.

Problem formulation: graph editing or graph controllable generation. Given a pretrained DGM
(i.e., the encoder and decoder are fixed), our goal is to learn the most semantically rich directions (di) in
the latent space Z. Then for each latent code z, with the i-th semantic direction and a step size α, we can
get an edited latent vector z̄i,α and edited data x̄′ after decoding z̄i,α, as:

z = f(x), z̄i,α = h(z, di, α), x̄′ = g(z̄i,α), (2)

where di and h(·) are the edit direction and edit functions that we want to learn. We expect that z̄i,α can
inherently possess certain steerable factors, which can be reflected in the graph structure of x̄′.

Energy-based model (EBM). EBM is a flexible framework for distribution modeling:

p(x) = exp(−E(x))
A

= exp(−E(x))∫
x

exp(−E(x))dx
, (3)

where E(·) is the energy function and A is the partition function. In EBM, the bottleneck is the estimation
of partition function A. It is often intractable due to the high cardinality of X . Various methods have been
proposed to handle this issue, including but not limited to contrastive divergence (Hinton, 2002), noise-
contrastive estimation (Gutmann & Hyvärinen, 2010; Che et al., 2020), and score matching (Hyvärinen &
Dayan, 2005; Song & Ermon, 2019; Song et al., 2020).

3 Entanglement of Latent Representation for Graph DGMs

In this section, we quantify the degree of disentanglement of the existing DGMs for graph data. Recall that
the key intuition (Locatello et al., 2019) behind disentanglement is that a disentangled representation space
should separate the distinct, informative, and steerable factors of variations in the data. In other words, each
latent dimension of the disentangled representation corresponds to one or multiple factors. Therefore, the
change of the disentangled dimension can lead to the consistent change in the corresponding factors of the
data. This good property has become a foundational assumption in many existing controllable generation
methods (Shen et al., 2020b; Shen & Zhou, 2021; Härkönen et al., 2020).

In the computer vision domain, StyleGAN (Karras et al., 2019) is one of the most recent works on image
generation, and several works have proven its nice disentanglement property (Collins et al., 2020; Shen et al.,
2020a; Härkönen et al., 2020; Tewari et al., 2020; Wu et al., 2021). In image generation, (Locatello et al.,
2019) shows that without inductive bias, the representation learned by VAEs is not perfectly disentangled.
Then the next question naturally arises: Is the latent space of pretrained graph DGMs disentangled or not?
To answer this question, we conduct the following experiment.

1In unsupervised editing, the steerable factors on each semantic direction is known by post-training human selection.

4

Published in Transactions on Machine Learning Research (01/2024)

Table 1: The six disentanglement metrics on three pretrained DGMs and two graph types. All measures range
from 0 to 1, and higher scores mean more disentangled representation.

Graph Type DGM Dataset BetaVAE ↑ FactorVAE ↑ MIG ↑ DCI ↑ Modularity ↑ SAP ↑

Molecular Graph MoFlow ZINC250K 0.260 0.175 0.031 0.953 0.620 0.009
HierVAE ChEMBL 0.178 0.165 0.022 0.114 0.606 0.026

Point Cloud PointFlow Airplane 0.022 0.025 0.029 0.160 0.745 0.022

There have been a series of works exploring the disentanglement of the latent space in DGMs, and here we
take six widely-used ones: BetaVAE (Higgins et al., 2017), FactorVAE (Kim & Mnih, 2018), MIG (Chen
et al., 2018b), DCI (Eastwood & Williams, 2018), Modularity (Ridgeway & Mozer, 2018), and SAP (Kumar
et al., 2018). Each measure has its own bias, and we put a detailed comparison in Appendix C. Meanwhile,
they all share the same high-level idea: given the latent representation from a pretrained DGM, they are
proposed to measure how predictive it is to certain steerable factors.

To adapt them to our setting, first, we need to extract the steerable factors in graph DGMs, which requires
domain knowledge. For instance, in molecular graphs, we can extract some special substructures called
fragments or functional groups. These substructures can be treated as steerable factors since they are the
key components of the molecules and are closely related to certain molecular properties (Seybold et al., 1987).
We use RDKit (Landrum et al., 2013) to extract the 11 most distinguishable fragments as steerable factors for
disentanglement measurement. For point clouds, we use PCL tool (Rusu & Cousins, 2011) to extract 75 VFH
descriptors (Rusu et al., 2010) as steerable factors, which depicts the geometries and viewpoints accordingly.

Then to measure the disentanglement on graph DGMs, we consider six metrics on three datasets and two
data types with three backbone models. All the metric values range from 0 to 1, and the higher the value,
the more disentangled the DGM is. According to Table 1, we can observe that most of the disentanglement
scores are quite low, except the DCI (Eastwood & Williams, 2018) on MoFlow. Thus, we draw the conclusion
that, generally, these graph DGMs are entangled. More details of this experiment (the steerable factors on
two data types and six disentanglement metrics) can be found in Appendix C.

4 Our Method

The analysis in Section 3 naturally raises the next research question: Given an entangled DGM, is there a
flexible way to do the graph data editing in an unsupervised manner? The answer is positive. We propose
GraphCG, a flexible model-agnostic framework to learn the semantic directions in an unsupervised manner.
It starts with the assumption that the latent representations edited with the same semantic direction and step
size should possess similar information (with respect to the factors) to a certain degree, thus by maximizing
the mutual information among them, we can learn the most semantic-rich directions. Then we formulate this
editing task as a density estimation problem with the energy-based model (EBM). As introduced in Section 2,
EBM covers a broad range of solutions, and we further propose GraphCG-NCE by adopting the noise-
contrastive estimation (NCE) solution.

4.1 GraphCG with Mutual Information

Motivation: learning semantic directions using MI on entangled DGM. Recall that our ultimate
goal is to enable graph editing based on semantic vectors. Existing deep generative models are entangled,
thus obtaining such semantic vectors is a nontrivial task. To handle this problem, we propose using mutual
information (MI) to learn the semantics. MI measures the non-linear dependency between variables. Here
we set the editing condition as containing both the semantic directions and step sizes. We assume that
maximizing the MI between different conditions can maximize the shared information within each condition,
i.e., graphs moving along the same condition share more semantic information. The pipeline is as follows.

We first sample two latent codes in the latent space, zu and zv. Such two latent codes will be treated as
positive pairs, and their construction will be introduced in Section 4.3. Then we pick up the i-th semantic
direction and one step size α to obtain the edited latent codes in the latent space Z as:

z̄u
i,α = h(zu, di, α), z̄v

i,α = h(zv, di, α). (4)

5

Published in Transactions on Machine Learning Research (01/2024)

Under our assumption, we expect that these two edited latent codes share certain information with respect to
the steerable factors. Thus, we want to maximize the MI between z̄u

i,α and z̄v
i,α. Since the MI is intractable

to compute, we adopt the EBM lower bound from (Liu et al., 2022) as:

LMI(z̄u
i,α, z̄v

i,α) =
1
2
E
[

log p(z̄u
i,α|z̄v

i,α) + log p(z̄v
i,α|z̄u

i,α)
]
. (5)

The detailed derivation is in Appendix D. Till this step, we have transformed the graph data editing task
into the estimation of two conditional log-likelihoods.

4.2 GraphCG with Energy-Based Model

Following Equation (5), maximizing the MI between I
(
z̄u

i,α; z̄v
i,α

)
is equivalent to estimating the summation

of two conditional log-likelihoods. We then model them using two conditional EBMs. Because these two
views are in the mirroring direction, we may as well take one for illustration. For example, for the first
conditional log-likelihood, we can model it with EBM as:

p(z̄u
i,α|z̄v

i,α) =
exp(−E(z̄u

i,α, z̄v
i,α))∫

exp(−E(z̄u′
i,α, z̄v

i,α))dz̄u′
i,α

=
exp(f(z̄u

i,α, z̄v
i,α))

Aij
, (6)

where E(·) is the energy function, Aij is the intractable partition function, and f(·) is the negative energy.
The energy function is flexible and we use the dot-product:

f(z̄u
i,α, z̄v

i,α) = ⟨h(zu, di, α), h(zv, di, α)⟩, (7)

where h(·) is the editing function introduced in Equation (2). Similarly for the other conditional log-likelihood
term, and the objective becomes:

LGraphCG = E
[

log
exp(f(z̄u

i,α, z̄v
i,α))

Aij
+ log

exp(f(z̄v
i,α, z̄u

i,α))
Aji

]
. (8)

With Equation (8), we are able to learn the semantically meaningful direction vectors. We name this
unsupervised graph controllable generation framework as GraphCG. In specific, GraphCG utilizes EBM for
estimation, which yields a wide family of solutions, as introduced below.

4.3 GraphCG with Noise Contrastive Estimation

We solve Equation (8) using the noise contrastive estimation (NCE) (Gutmann & Hyvärinen, 2010). The
high-level idea of NCE is to transform the density estimation problem into a binary classification problem
that distinguishes if the data comes from the introduced noise distribution or from the true distribution.
NCE has been widely explored for solving EBM (Song & Kingma, 2021), and we adopt it as GraphCG-NCE
by optimizing the following objective function:

LGraphCG-NCE = −
(
Epn(z̄u

j,β
|z̄v

i,α
)
[

log
(
1 − σ(f(z̄u

j,β , z̄v
i,α))

)
] + Epdata(z̄u

i,α
|z̄v

i,α
))[log σ(f(z̄u

i,α, z̄v
i,α)))

]
+ Epn(z̄v

j,β
|z̄u

i,α
)
[

log
(
1 − σ(f(z̄v

j,β , z̄u
i,α)))

)
] + Epdata(z̄v

i,α
|z̄u

i,α
))[log σ(f(z̄v

i,α, z̄u
i,α)))

])
,

(9)

where pdata is the empirical data distribution and pn is the noise distribution (derivations are in Appendix D).
Recall that the latent code pairs (zu, zv) are given in advance, and the noise distribution is on the semantic
directions and step sizes. In specific, the step sizes (α ̸= β) are randomly sampled from [-3, 3], and the
latent direction indices (i ̸= j) are randomly sampled from {0, 1, ..., D-1}. Equation (9) is for one latent
code pair, and we take the expectation of it over all the pairs sampled from the dataset. Besides, we would
like to consider extra similarity and sparsity constraints as:

Lsim = Ei,j [sim(di, dj)], Lsparsity = Ei[∥di∥], (10)

where sim(·) is the similarity function between two latent directions, and we use the dot product. By
minimizing these two regularization terms, we can make the learned semantic directions more diverse and
sparse. Putting them together, the final objective function is:

L = c1 · Eu,v[LGraphCG-NCE] + c2 · Lsim + c3 · Lsparsity, (11)

6

Published in Transactions on Machine Learning Research (01/2024)

where c1, c2, c3 are coefficients, and we treat them as three hyperparameters (check Appendix E). The above
pipeline is illustrated in Figure 1, and for the next we will discuss certain key modules.

Latent code pairs, positive and negative views. We consider two options for obtaining the latent
pairs. (1) Perturbation (GraphCG-P) is that for each data point x, we obtain its latent code z = f(x).
Then we apply two perturbations (e.g., adding Gaussian noise) on z to get two perturbed latent codes as
zu and zv, respectively. (2) Random sampling (GraphCG-R) is that we encode two randomly sampled data
points from the empirical data distribution as zu and zv respectively. Perturbation is one of the widely-used
strategies (Karras et al., 2019) for data augmentation, and random sampling has been widely used in the
NCE (Song & Kingma, 2021) literature. Then we can define the positive and negative pairs in GraphCG-
NCE, where the goal is to align the positives and contrast the negatives. As described in Equation (9), the
positive pairs are latent pairs moving with the same semantic direction and step size, while the negative
pairs are the edited latent codes with different semantic directions and/or step sizes.

Semantic direction modeling. We first randomly draw a basis vector ei, and then model the semantic
direction di as di = MLP(ei), where MLP(·) is the multi-layer perceptron network.

Design of editing function. Given the semantic direction and two views, the next task is to design
the editing function h(·) in Equation (2). Since our proposed GraphCG is flexible, and the editing function
determines the energy function Equation (7), we consider both the linear and non-linear editing functions as:

z̄i = z + α · di, z̄i = z + α · di + MLP(z ⊕ di ⊕ [α]), (12)

where ⊕ is the concatenation of two vectors. Noticing that for the non-linear case, we are adding an extra
term by mapping from the latent code, semantic direction, and step-size simultaneously. We expect that
this could bring in more modeling expressiveness in the editing function. For more details, e.g., the ablation
study to check the effect on the design of the views and editing functions, please refer to Appendices F
and G, while more potential explorations are left for future work.

4.4 Implementations Details

During training, the goal of GraphCG is to learn semantically meaningful direction vectors together with an
editing function in the latent space, as in Algorithm 1. Then we need to manually annotate the semantic
directions concerning the corresponding factors using certain post-training evaluation metrics. Finally, for
the inference phase, provided with the pretrained graph DGM and a selected semantic direction (together
with a step size) learned by GraphCG, we can sample a graph -> conduction editing in the latent space ->
decoding to generate the edited graph, as described in Equation (2). The detailed algorithm is illustrated
in Algorithm 2. Next, we highlight several key concepts in GraphCG and briefly discuss the differences from
other related concepts.

Algorithm 1 Learning Phase of GraphCG
1: Input: Given a pretrained generative model encoder, f(·).
2: Output: Learned direction vector di and function h(·).
3: Select latent codes zu, zv ∈ Z from empirical dataset and f(·).
4: for each step size α and each direction i do
5: Set z̄u

i,α = h(zu, di, α).
6: Set z̄v

i,α = h(zv, di, α).
7: Assign positive to pair (z̄u

i,α, z̄v
i,α).

8: for step size β ̸= α and direction j ̸= i do
9: Set z̄u

j,β = h(zu, dj , β).
10: Set z̄v

j,β = h(zv, dj , β).
11: Assign negative to pair (z̄u

i,α, z̄v
j,β).

12: Assign negative to pair (z̄u
j,β , z̄v

i,α).
13: end for
14: Do SGD w.r.t. GraphCG in Equation (11).
15: end for

NCE and contrastive representa-
tion learning. GraphCG-NCE is ap-
plying EBM-NCE, which is essentially
a contrastive learning method, and an-
other dominant contrastive loss is the In-
foNCE (Oord et al., 2018). We sum-
marize their relations below. (1) Both
contrastive methods are doing the same
thing: align the positive pairs and con-
trast the negative pairs. (2) EBM-
NCE (Hassani & Khasahmadi, 2020; Liu
et al., 2022) has been found to outper-
form InfoNCE on certain graph appli-
cations like representation learning. (3)
What we want to propose here is a flex-
ible framework. Specifically, EBM pro-
vides a more general framework by designing the energy functions, and EBM-NCE is just one effective so-

7

Published in Transactions on Machine Learning Research (01/2024)

lution. Other promising directions include the denoising score matching or denoising diffusion model (Song
et al., 2020), while InfoNCE lacks such a nice extensibility attribute.

Algorithm 2 Inference Phase of GraphCG
1: Input: Given a pre-trained generative model, f(·) and g(·),

a learned direction vector d.
2: Output: A sequence of edited graphs.
3: Sample z with DGM or x from a graph dataset.
4: If the latter, get a latent code z = f(x).
5: for step size α ∈ [−3, 3] do
6: Do graph edit in the latent space to get z̄i,α = h(z, d, α).
7: Decode to the graph space with x̄′ = g(z̄i,α).
8: end for
9: Output is thus a sequence of edited graphs, {x̄′}.

GraphCG and contrastive self-
supervised learning (SSL). GraphCG
shares certain similarities with the self-
supervised learning (SSL) method, how-
ever, there are some inherent differences,
as summarized below. (1) SSL aims at
learning the data representation by op-
erating data augmentation on the data
space, such as node addition and edge
deletion. GraphCG aims at learning
the semantically meaningful directions by
editing on the latent space (the represen-
tation function is pretrained and fixed). (2) Based on the first point, SSL aims at using different data
points as the negative samples. GraphCG, on the other hand, is using different directions and step-sizes as
negatives. Namely, SSL is learning data representation in the inter-data level, and GraphCG is learning the
semantic directions in the inter-direction level.

Output sequence in the discrete space. Recall that during inference time (Algorithm 2), GraphCG
takes a DGM and the learned semantic direction to output a sequence of edited graphs. Compared to the
vision domain, where certain models (Shen & Zhou, 2021; Shen et al., 2020b) have proven their effectiveness
in many tasks, the backbone models in the graph domain have limited discussions. This is challenging
because the graph data is in a discrete and structured space, and the evaluation of such space is non-trivial.
Meanwhile, GraphCG essentially provides another way to verify the quality of graph DGMs. GraphCG
paves the way for this potential direction, and we would like to leave this for future exploration.

5 Experiments

In this section, we show both the qualitative and quantitative results of GraphCG, on two types of graph
data: molecular graphs and point clouds. Due to the page limit, We put the experiment and implementation
details in Appendix E.

5.1 Graph Data: Molecular Graphs

Background of molecular graphs. A molecule can be naturally treated as a graph, where the atoms
and bonds are nodes and edges, respectively. The unsupervised graph editing tasks can thus be formulated
as editing the substructures of molecular graphs. In practice, people are interested in substructures that
are critical components of molecules, which are called the ‘fragments‘. In recent years, graph representation

ϕSMR
(

{s(x̄′)}m
i , γ, τ

)
=

{
1, len

(
set

(
{s(x̄′)}m

i

))
≥ γ

∧ monotonicτ

(
{s(x̄′)}m

i

)
0, otherwise

, (13)

ϕSMR(γ, τ)i =
1

M

M∑
m=1

ϕSMR
(

{s(x̄′)}m
i , γ, τ

)
, (14)

top-K(γ, τ) =
1
K

∑
i∈top-K directions

(
ϕSMR(γ, τ)i

)
. (15)

Figure 2: This illustrates the sequence monotonic ratio (SMR) on calibrated Tanimoto similarity (CTS). Equa-
tions (13) and (14) are the SMR on each sequence and each direction respectively, where M is the number of
generated sequences for the i-th direction and {s(x̄′)}m

i is the CTS of the m-th generated sequence with the i-th
direction. Equation (15) is the average of top-K SMR on D directions.

8

Published in Transactions on Machine Learning Research (01/2024)

learning has been extensively explored on the molecular graph (Duvenaud et al., 2015; Gilmer et al., 2017;
Liu et al., 2018; Yang et al., 2019b; Corso et al., 2020).

Backbone DGMs. We consider two state-of-the-art DGMs for molecular graph generation. MoFlow (Zang
& Wang, 2020) is a flow-based generative model on molecules that adopts an invertible mapping between
the input molecular graphs and a latent prior. HierVAE (Jin et al., 2020a) is a hierarchical VAE model that
encodes and decodes molecule atoms and motifs in a hierarchical manner. Besides, the pretrained checkpoints
are also provided, on ZINC250K (Irwin & Shoichet, 2005) and ChEMBL (Mendez et al., 2019), respectively.

Editing sequences and anchor molecule. As discussed in Section 4, the output of the inference in
GraphCG, is a sequence of edited molecules with the i-th semantic direction, {x̄′}i. We first randomly
generate a molecule using the backbone DGMs (without the editing operation), and we name such molecule
as the anchor molecule, x̄∗. Then we take 21 step sizes from -3 to 3, with interval 0.3, to obtain a sequence of
21 molecules following Equation (2). Note that the edited molecule with step size 0 under the linear editing
function is the same as the anchor molecule, i.e., x̄∗.

Change of structure factors and evaluation metrics. We are interested in the change of the graph
structure (the steerable factors) along the output sequence edited with the i-th semantic direction. To
evaluate the structure change, we apply the Tanimoto similarity between each output molecule and the
anchor molecule. Besides, for the ease of evaluating the monotonicity, we apply a Tanimoto similarity
transformation on the output molecules with positive step sizes by taking the deduction from 2. We call this
calibrated Tanimoto similarity (CTS) sequence, marked as {s(x̄′)}i. An illustration is shown in Figure 2.
Further, we propose a metric called Sequence Monotonic Ratio (SMR), ϕSMR(γ, τ)i, which measures the
monotonic ratio of M generated sequences edited with the i-th direction. It has two arguments: the diversity
threshold γ constrains the minimum number of distinct molecules, and the tolerance threshold τ controls
the non-monotonic tolerance ratio along each sequence.

Evaluating the diversity of semantic directions. SMR can evaluate the monotonic ratio of output
sequences generated by one direction. To better illustrate that GraphCG is able to learn multiple directions
with diverse semantic information, we also consider taking the average of top-K SMR to reveal that all the
best K directions are semantically meaningful, as in Equation (15).

Baselines. For baselines, we consider four unsupervised editing methods. (1) The first is Random. It
randomly samples a normalized random vector in the latent space as the semantic direction. (2) The second
one is Variance. We analyze the variance on each dimension of the latent space, and select the highest one
with one-hot encoding as the semantic direction. (3) The third one is SeFa (Shen & Zhou, 2021). It first
decomposes the latent space into lower dimensions using PCA, and then takes the most principal components
(eigenvectors) as the semantic-rich direction vectors. (4) The last one is DisCo (Ren et al., 2021). It maps
each latent code back to the data space, followed by an encoder for contrastive learning, so it requires the
backbone DGMs to be end-to-end and is infeasible for HierVAE.

Quantitative results. We take D = 10 to train GraphCG, and the optimal results on 100 sampled
sequences are reported in Table 2. We can observe that GraphCG, can show consistently better structure
change with both top-1 and top-3 directions. This can empirically prove the effectiveness of our proposed
GraphCG. More comprehensive results are in Appendix F.

Analysis on steerable factors in molecules: functional group change. For visualization, we sample
8 molecular graph sequences along 4 selected directions in Figure 3, and the backbone DGM is HierVAE
pretrained on ChEMBL. The CTS holds a good monotonic trend, and each direction shows certain unique
changes in the molecular structures, i.e., the steerable factors in molecules. Some structural changes are
reflected in molecular properties. We expand all the details below. In Figures 3(a) and 3(b), the number of
halogen atoms and hydroxyl groups (in alcohols and phenols) in the molecules decrease from left to right,
respectively. In Figure 3(c), the number of amides in the molecules increases along the path. Because amides
are polar functional groups, the topological polar surface area (tPSA) of the molecules also increases, which
is a key molecular property for the prediction of drug transport properties, e.g., permeability (Ertl et al.,
2000). In Figure 3(d), the flexible chain length, marked by the number of ethylene (CH2CH2) units, increases

9

Published in Transactions on Machine Learning Research (01/2024)

Table 2: This table lists the sequence monotonic ratio (SMR, %) on calibrated Tanimoto similarity (CTS) for the
top-1 and top-3 directions. The best performances are marked in bold.

Model Dataset
Tanimoto top-1 Tanimoto top-3

diversity γ 3 4 3 4

tolerance τ 0 0.2 0 0.2 0 0.2 0 0.2

MoFlow ZINC250k

Random 23.0 25.0 12.0 15.0 22.0 24.0 11.0 13.7
Variance 24.0 28.0 12.0 16.0 20.0 25.0 10.0 15.0
SeFa Shen & Zhou (2021) 4.0 4.0 0.0 0.0 3.3 3.3 0.0 0.0
DisCo Ren et al. (2021) 7.0 14.0 2.0 8.0 5.3 11.7 2.0 7.7

GraphCG-P 32.0 34.0 16.0 18.0 29.0 31.0 13.7 16.3
GraphCG-R 25.0 26.0 11.0 14.0 22.0 24.3 10.3 13.3

HierVAE ChEMBL

Random 14.0 45.0 14.0 43.0 10.0 42.3 9.3 41.7
Variance 23.0 59.0 19.0 55.0 18.3 52.7 15.7 50.3
SeFa Shen & Zhou (2021) 4.0 41.0 4.0 41.0 2.3 36.0 2.3 36.0

GraphCG-P 40.0 73.0 32.0 65.0 36.0 64.3 26.3 57.7
GraphCG-R 42.0 67.0 30.0 55.0 38.0 62.3 28.7 53.7

(a) Steerable factor: number of halogens. (b) Steerable factor: number of hydroxyls.

(c) Steerable factor: number of amides. (d) Steerable factor: chain length.

Figure 3: GraphCG for molecular graph editing. We visualize the output molecules and CTS in four directions
with two sequences each, where each sequence consists of five steps. The five steps correspond to five step sizes: -3,
-1.8, 0, 1.8, and 3, where 0 marks the anchor molecule (center point of reach sequence). Figure 3(a) visualizes how
the number of halogens (marked in green) decreses from -3 to 3. Figure 3(b) visualizes how the number of hydroxyls
(marked in red) decreases from -3 to 3. Figure 3(c) visualizes how the number of amides (marked in red and blue)
increases from -3 to 3. Figure 3(d) visualizes how the number of chains (marked in green) increases from -3 to 3.
Notably, certain properties change with molecular structures accordingly, like topological polar surface area (tPSA)
and the number of rotatable bonds (NRB).

from left to right. Since the number of rotatable bonds (NRB) measures the molecular flexibility, it also
increases accordingly (Veber et al., 2002).

5.2 Graph Data: Point Clouds

Background of point clouds. A point cloud is represented as a set of points, where each point Pi is
described by a vector of 3D Euclidean coordinates possibly with extra channels (e.g., colors, surface normals,
and returned laser intensity). In 2017, Qi et. al (Qi et al., 2017) designed a deep learning framework called
PointNet that directly consumes unordered point sets as inputs and can be used for various tasks such as
classification and segmentation.

10

Published in Transactions on Machine Learning Research (01/2024)

(a) Steerable factor: engine. (b) Steerable factor: engine.

(c) Steerable factor: size. (d) Steerable factor: leg height.

Figure 4: GraphCG for point clouds editing. We show four editing sequences, where each sequence consists of
five point clouds, and the center one is the anchor point clouds, i.e., with step size 0. The other four point clouds
correspond to step size with -3, -1.8, 1.8, and 3, respectively. Figure 4(a) and Figure 4(b) refer the same semantic
direction, and they are showing how to steer the factor engine: the number of engines will be decreased and increased
with the negative (left) and positive (right) step size respectively. Similarly, Figures 4(c) and 4(d) illustrate the effect
of the steerable factors on the car size and the chair leg height.

Backbone DGMs. We consider one of the latest DGMs on point clouds, PointFlow (Yang et al., 2019a).
It is using the normalizing flow model for estimating the 3D point cloud distribution. Then we consider
PointFlow pretrained on three datasets in ShapeNet (Chang et al., 2015): Airplane, Car, and Chair. All
point clouds are obtained by sampling points uniformly from the mesh surface.

Analysis on steerable factors in point clouds: shape change. To train GraphCG, we take D = 10
directions, and we sample 8 point cloud sequences along 3 directions for visualization in Figure 4. More
results are in Appendix G. It is observed that GraphCG, can steer the shape of the point clouds, e.g., the size
of cars and the height of chair legs. We also find it interesting that GraphCG, can steer more finger-trained
factors, like modifying the number of jet engines.

6 Conclusion and Discussion

In this work, we are interested in unsupervised graph editing. It is a well-motivated task for various real-
world applications, and we discuss two mainstream data types: molecular graphs and point clouds. We
start with exploring the latent space of mainstream deep generative models and propose GraphCG, a model-
agnostic unsupervised method for graph data editing. The key component of GraphCG, is EBM, and we
take the GraphCG-NCE as the solution for now. For future work, we may as well extend it to more advanced
solutions like denoising diffusion model (Ho et al., 2020).

One limitation of GraphCG, (as well as the solutions to general unsupervised data editing) (Härkönen et al.,
2020; Shen & Zhou, 2021; Ren et al., 2021) is that we may need some post-training human selection (as
shown in Algorithm 2) to select the most promising semantic vectors to steer factors. Another issue is the
lack of open-sourced evaluation metrics. This requires both a deep understanding of the representation space
of deep generative models and domain knowledge of the problem. For instance, activity cliff is a challenging
task (Hu & Jurgen, 2012) for editing, while current measures fail to capture it. To set up constructive
evaluation metrics can help augment our understandings from both the domain and technique perspectives.
This is beyond the scope of our work, yet would be interesting to explore as a future direction.

11

Published in Transactions on Machine Learning Research (01/2024)

Code and Data Availability

The codes and data download scripts are available at this GitHub repository.

References
Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based models. arXiv:2003.05033, 2020.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins. Quantifying
the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Hans-Joachim Böhm, Alexander Flohr, and Martin Stahl. Scaffold hopping. Drug discovery today: Tech-
nologies, 1(3):217–224, 2004.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, et al. Shapenet: An
information-rich 3d model repository. arXiv:1512.03012, 2015.

Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, et al. Your gan is secretly
an energy-based model and you should use discriminator driven latent sampling. arXiv:2003.06060, 2020.

Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas Blaschke. The rise of deep
learning in drug discovery. Drug discovery today, 23(6):1241–1250, 2018a.

Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. In NeurIPS, 2018b.

Edo Collins, Raja Bala, Bob Price, and Sabine Susstrunk. Editing in style: Uncovering the local semantics
of gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5771–5780, 2020.

John Comer and Kin Tam. Lipophilicity profiles: theory and measurement. Pharmacokinetic optimization
in drug research: biological, physicochemical, and computational strategies, pp. 275–304, 2001.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood
aggregation for graph nets. arXiv:2004.05718, 2020.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation.
arXiv:1410.8516, 2014.

Jürgen Drews. Drug discovery: a historical perspective. Science, 287(5460):1960–1964, 2000.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel,
et al. Convolutional networks on graphs for learning molecular fingerprints. arXiv:1509.09292, 2015.

Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of disentangled
representations. In ICLR, 2018.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based
on molecular complexity and fragment contributions. Journal of cheminformatics, 1(1):1–11, 2009.

Peter Ertl, Bernhard Rohde, and Paul Selzer. Fast calculation of molecular polar surface area as a sum of
fragment-based contributions and its application to the prediction of drug transport properties. Journal
of medicinal chemistry, 43(20):3714–3717, 2000.

Peter Ertl, Eva Altmann, and Jeffrey M McKenna. The most common functional groups in bioactive
molecules and how their popularity has evolved over time. Journal of medicinal chemistry, 63(15):8408–
8418, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In ICML, 2017.

12

https://github.com/chao1224/GraphCG

Published in Transactions on Machine Learning Research (01/2024)

Laurent Gomez. Decision making in medicinal chemistry: The power of our intuition. ACS Medicinal
Chemistry Letters, 9(10):956–958, 2018.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for un-
normalized statistical models. In AISTATS, 2010.

Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and Enhua Wu. Vision gnn: An image is worth graph
of nodes. arXiv preprint arXiv:2206.00272, 2022.

Erik Härkönen, Aaron Hertzman, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering interpretable
gan controls. In NeurIPS, 2020.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on graphs. In
ICML, 2020.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, et al. beta-vae: Learning basic
visual concepts with a constrained variational framework. In ICLR, 2017.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

Ye Hu and Bajorath Jurgen. Extending the activity cliff concept: structural categorization of activity
cliffs and systematic identification of different types of cliffs in the chembl database. Journal of chemical
information and modeling, 52(7):1806–1811, 2012.

Ye Hu, Dagmar Stumpfe, and Jurgen Bajorath. Recent advances in scaffold hopping: miniperspective.
Journal of medicinal chemistry, 60(4):1238–1246, 2017.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

John J Irwin and Brian K Shoichet. Zinc: a free database of commercially available compounds for virtual
screening. Journal of chemical information and modeling, 45(1):177–182, 2005.

Ali Jahanian, Lucy Chai, and Phillip Isola. On the" steerability" of generative adversarial networks. In
ICLR, 2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs using
structural motifs. In ICML, 2020a.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using interpretable
substructures. In ICML, 2020b.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In CVPR, 2019.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In ICML, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114, 2013.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of disentangled latent
concepts from unlabeled observations. In ICLR, 2018.

Greg Landrum et al. RDKit: A software suite for cheminformatics, computational chemistry, and predictive
modeling, 2013.

Shengchao Liu, Mehmet Furkan Demirel, and Yingyu Liang. N-gram graph: Simple unsupervised represen-
tation for graphs, with applications to molecules. arXiv:1806.09206, 2018.

13

Published in Transactions on Machine Learning Research (01/2024)

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, et al. Pre-training molecular
graph representation with 3d geometry. In ICLR, 2022.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, et al. Challenging common
assumptions in the unsupervised learning of disentangled representations. In ICML, 2019.

David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen De Veij, et al. Chembl: towards
direct deposition of bioassay data. Nucleic acids research, 47(D1):D930–D940, 2019.

Zlatko Mihalić and Nenad Trinajstić. A graph-theoretical approach to structure-property relationships.
Journal of Chemical Education, 69(9):701, 1992.

Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic language
models. arXiv preprint arXiv:1206.6426, 2012.

Weili Nie, Arash Vahdat, and Anima Anandkumar. Controllable and compositional generation with latent-
space energy-based models. In NeurIPS, 2021.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo design through
deep reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv:1807.03748, 2018.

Yael Pritch, Eitam Kav-Venaki, and Shmuel Peleg. Shift-map image editing. In ICCV, 2009.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In CVPR, 2017.

Xuanchi Ren, Tao Yang, Yuwang Wang, and Wenjun Zeng. Do generative models know disentanglement?
contrastive learning is all you need. arXiv:2102.10543, 2021.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In ICML, 2015.

Karl Ridgeway and Michael C Mozer. Learning deep disentangled embeddings with the f-statistic loss. In
NeurIPS, 2018.

Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In ICRA, 2011.

Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu. Fast 3d recognition and pose using the
viewpoint feature histogram. In IROS, 2010.

Paul G. Seybold, Michael May, and Ujjvala A. Bagal. Molecular structure: Property relationships. Journal
of Chemical Education, 64(7):575, 1987.

Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In CVPR, 2021.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for semantic
face editing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
9243–9252, 2020a.

Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. Interfacegan: Interpreting the disentangled face
representation learned by gans. IEEE TPAMI, 2020b.

Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point cloud.
In CVPR, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
arXiv:1907.05600, 2019.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv:2101.03288, 2021.

14

Published in Transactions on Machine Learning Research (01/2024)

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, et al. Score-based
generative modeling through stochastic differential equations. arXiv:2011.13456, 2020.

Jiangming Sun, Nina Jeliazkova, Vladimir Chupakhin, Jose-Felipe Golib-Dzib, Ola Engkvist, et al. Excape-
db: an integrated large scale dataset facilitating big data analysis in chemogenomics. Journal of chemin-
formatics, 9(1):1–9, 2017.

Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian Bernard, Hans-Peter Seidel, Patrick Pérez,
Michael Zollhofer, and Christian Theobalt. Stylerig: Rigging stylegan for 3d control over portrait im-
ages. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6142–6151, 2020.

Daniel F Veber, Stephen R Johnson, Hung-Yuan Cheng, Brian R Smith, Keith W Ward, and Kenneth D
Kopple. Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal
chemistry, 45(12):2615–2623, 2002.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, et al. Dynamic graph cnn for
learning on point clouds. ACM ToG, 2020.

Zichao Wang, Weili Nie, Zhuoran Qiao, Chaowei Xiao, Richard Baraniuk, and Anima Anandkumar.
Retrieval-based controllable molecule generation. arXiv preprint arXiv:2208.11126, 2022.

Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disentangled controls for stylegan
image generation. In CVPR, 2021.

Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, et al. Gan inversion: A survey.
arXiv:2101.05278, 2021.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, et al. Pointflow: 3d point cloud
generation with continuous normalizing flows. In ICCV, 2019a.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, et al. Analyzing learned molecular
representations for property prediction. Journal of chemical information and modeling, 59(8):3370–3388,
2019b.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy network
for goal-directed molecular graph generation. Advances in neural information processing systems, 31, 2018.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In KDD,
2020.

15

Published in Transactions on Machine Learning Research (01/2024)

Reproducibility Statement

To ensure the reproducibility of the empirical results, we provide the implementation details (hyperparam-
eters, dataset specifications, pretrained checkpoints, etc.) in Section 5 and Appendices C and E to G, and
the source code will be released in the future. Besides, the complete derivations of equations and clear
explanations are given in Section 4 and Appendix D.

Specifically, we provide the details for reproducing the results:

• In Table 5, GraphCG-P with Equation (26) and GraphCG-R with Equation (24) are reported
in Table 2.

• In Table 6, GraphCG-P with Equation (25) and GraphCG-R with Equation (25) are reported
in Table 2.

For the visualization in Figure 3, we take the GraphCG-P with Equation (25), and the backbone generative
model is HierVAE pretrained on ChEMBL. Further, we provide an anonymous link here. In these CSV files:

• Direction 0 is the halogen fragment (data 4, 71).
• Direction 5 is the amide fragment (data 95, 61).
• Direction 6 is the chain length (data 57, 14).
• Direction 7 is the alcohol and phenol fragments (data 10, 8).

For the visualization in Figure 4, we take the GraphCG-R with Equation (25) on PointFlow, for all three
datasets.

Scope of GraphCG: Why Not Image

In the current main story, we do not include GraphCG for image editing. We would like to highlight that
image editing is indeed a different story in terms of editing with pretrained DGMs, and the details reasons
are as follows:

• We want to clarify that graph is a very general data structure, including the molecular graph and
point clouds.

• In this sense, the image is a very special case of graph/structured data. It has a very tight spatial
correlation, which is in a rigid form. Feel free to check (Han et al., 2022; Corso et al., 2020) for recent
explorations on GNNs on images. Such a nice spatial correlation enables disentangled generative
model. For example, in vision, StyleGAN (Karras et al., 2019) has proven with nice disentanglement
property (Collins et al., 2020; Shen et al., 2020a; Härkönen et al., 2020; Tewari et al., 2020; Wu et al.,
2021).

• But possessing such a nice generative model is not the case for general graph data. I.e., we typically
don’t have such a nice disentangled generative model, as discussed in Sections 1 and 3.

– If the pretrained graph DGMs have the nice disentanglement property, like StyleGAN, then the
unsupervised steerable exploration can be quite straightforward, like SeFa. SeFa is the SOTA
unsupervised editing method on the image, and it only needs a simple PCA operation.

– But, in reality, and in the general setting, the generative models fail to provide nice properties
like disentanglement (for the general graph data). Then we need GraphCG. It is a general
framework for less ordered graph data (compared to images).

– Further, when we compare SeFa with GraphCG, we can observe that GraphCG is better by a
large margin. This also verifies that the general graph controllable generation is more challeng-
ing.

• So to get back to this question, GraphCG is indeed a general graph-specific method, aiming at
exploring the steerable factors in the entangled generative model setting. And obviously, the image
generation task is not included in the current draft because the SOTA image generative model is
good enough (well-disentangled (Collins et al., 2020; Shen et al., 2020a; Härkönen et al., 2020; Tewari
et al., 2020; Wu et al., 2021)) with simple yet efficient methods like SeFa.

16

https://anonymous.4open.science/r/GraphCG_outputs-075A

Published in Transactions on Machine Learning Research (01/2024)

A Graph Data

This section will be merged with Section 5 in the final version.

A.1 Molecules

Molecules can be naturally represented as the 2D molecular graphs, where atoms and bonds are nodes and
edges in the graph, respectively. For the recent years, graph representation learning has been extensively
explored on the molecular graph (Duvenaud et al., 2015; Gilmer et al., 2017; Liu et al., 2018; Yang et al.,
2019b; Corso et al., 2020). Based on the graph representation of molecules, a variety of work have been done
for molecule generation. The state-of-the-art ones include MoFlow (Zang & Wang, 2020) and HierVAE (Jin
et al., 2020a).

A.2 Point Clouds

A point cloud is represented as a set of points, where each point Pi is described by a vector of 3D Euclidean
coordinates possibly with extra channels (e.g., colors, surface normals and returned laser intensity). In
2017, Qi et. al (Qi et al., 2017) designed a deep learning framework called PointNet that directly consumes
unordered point sets as inputs and can be used for various tasks such as classification and segmentation. For
the generative models on point clouds, we consider one of the latest work, PointFlow (Yang et al., 2019a).

B Related Work

Image editing and image controllable generation Many existing works on controllable generation
with DGMs mainly focus on image data. With the assumption that the learned latent space already includes
rich semantic information (Karras et al., 2019; Jahanian et al., 2019; Shen et al., 2020b; Härkönen et al.,
2020), the question then becomes how to identify semantic-rich directions from the latent space of DGMs.
Depending on whether or using supervised signals to discover the semantic directions, existing works can be
divided into two settings: supervised and unsupervised.

The supervised setting relies on the supervised signals to learn the pre-defined semantic-rich directions. For
instance, InterfaceGAN (Shen et al., 2020b) identifies the semantic directions in the latent space via linear
models that recognize semantic boundaries among data. LACE (Nie et al., 2021) uses energy-based models
to learn the joint distribution of data and properties (i.e., semantics) and formulate the sampling process as
to solve an ordinary differential equation.

As supervised signals usually require domain knowledge and laborious annotations, the latest works are more
focused on the unsupervised setting, either model-specific or data-specific. Specifically, GANSpace (Härkönen
et al., 2020) applies PCA on the intermediate layers of GANs (instead of latent space) for learning the
semantic-rich directions. SeFa (Shen & Zhou, 2021) exploits the pretrained GANs and extracts the semantic-
rich directions by using PCA on the backbone layers. Nevertheless, as both methods are specifically designed
for StyleGAN (Karras et al., 2019), it is nontrivial to generalize them to other DGMs. A more recent work
DisCo (Ren et al., 2021) employs a different pipeline: it trains a new encoder after reconstruction and maps
the generated images to another latent space for editing. However, training a new encoder introduces extra
complexities.

Graph editing and graph controllable generation This is an emerging field with many downstream
applications (Drews, 2000; Shi & Rajkumar, 2020). However, existing works are mainly focusing on the su-
pervised setting. For example, conventional approaches, such as genetic algorithms (GAs), edit the molecule
graphs in the data space via hand-crafted heuristics with the guidance of molecular property predictors.
More recent learning-based methods perform the latent direction discovery, either by training a classifier on
the latent space of DGMs on the graph data (Jin et al., 2020a) or by learning to retrieve exemplar samples
from a retrieval database for guidance (Wang et al., 2022). Other works fine-tune a pre-trained graph DGM
using the supervised property annotations as rewards, resulting in a controllable DGM specifically for the
considered task (Olivecrona et al., 2017; You et al., 2018). To the best of our knowledge, our work is the first

17

Published in Transactions on Machine Learning Research (01/2024)

to explore unsupervised graph editing in an unsupervised manner. Besides, different from many previous
approaches that may only work for molecule graphs or point cloud graphs, our method is generic and thus
can be applied to various graph modalities.

C Analysis Experiments on Disentanglement

In Section 3, we conduct three analysis experiments to conclude that the representation space is not perfectly
disentangled in such setting. In this section, we provide more details and complementary information of these
experiments.

Table 3: The six mainstream disentanglement metrics on five DGMs and three data types. All measures
range from 0 to 1, and higher scores mean more disentangled representation. MoFlow and HierVAE are for
molecular graphs, PointFlow is for point clouds.

Data Type Model Dataset BetaVAE ↑ FactorVAE ↑ MIG ↑ DCI ↑ Modularity ↑ SAP ↑

Molecular Graphs
MolFlow QM9 0.251 0.165 0.038 0.727 0.599 0.017

ZINC250k 0.264 0.175 0.030 0.958 0.620 0.009

HierVAE QM9 0.165 0.135 0.044 0.241 0.626 0.076
ChEMBL 0.159 0.130 0.023 0.113 0.604 0.026

Point Clouds PointFlow
Airplane 0.022 0.025 0.029 0.160 0.745 0.022
Chair 0.019 0.014 0.032 0.149 0.721 0.019
Car 0.019 0.023 0.021 0.120 0.713 0.021

C.1 Steerable Factors

As mentioned in Section 3, we consider measuring the disentanglement with respect to three types of struc-
tured data: molecular graphs and point clouds. Recall that we need to define steerable factors first, so as to
measure the disentanglement.

Molecular Graph For molecular graphs, we treat the important substructures (a.k.a., motifs or frag-
ments) as factors, and they are extracted using RDKit. To calculate the disentanglement for molecules,
we randomly sample 10k molecules on QM9-MolFlow, ZINC250K-MolFlow, QM9-HierVAE, and ChEMBL-
HierVAE, respectively. Most of the fragments do not show up or with very few times (less than 1% occurrence
frequency). Removing these fragments leads to the following 11 motifs, and we consider the existence of
them as binary labels:

• aliphatic hydroxyl groups.
• aliphatic hydroxyl groups excluding tert-OH.
• aromatic nitrogens.
• aromatic amines.
• carbonyl O.
• carbonyl O, excluding COOH.
• Tertiary amines.
• Secondary amines.
• amides.
• ether oxygens (including phenoxy).
• nitriles.

Point Clouds For point clouds, we adopt the viewpoint feature histogram (VFH) (Rusu et al., 2010)
implemented in PCL (Rusu & Cousins, 2011). There are 308 bins in total, where each bin is a histogram
of the angles that viewpoint direction makes with each normal. VFH has been widely used as point cloud
descriptors, and here we binarize it into factors with:

18

Published in Transactions on Machine Learning Research (01/2024)

• We collect the shared non-zero bins from all three datasets (Airplane, Car, and Chair), and ignore
the bins where the values distribution are highly skewed. This can give us 75 bins.

• Then for each of these selected bins, we use the median value as the threshold to generate the binary
factor labels.

C.2 Disentanglement Measures

We follow the (Locatello et al., 2019) on considering the following six disentanglement measures:

• β-VAE (Higgins et al., 2017) evaluates the prediction accuracy of a linear classifier for the index of
a fixed factor of variation.

• FactorVAE (Kim & Mnih, 2018) addresses the limitations (i.e. corner case) of β-VAE via introducing
a majority voting classifier on a different feature vector.

• MIG (Chen et al., 2018b) measures the normalized difference between the highest and second highest
mutual information between latent dimensions and each steerable factor.

• DCI (Eastwood & Williams, 2018) disentanglement score measures the average difference from one
of the entropy of probability that a latent dimension is useful for predicting a steerable factor
(computed by the relative importance score).

• Modularity (Ridgeway & Mozer, 2018) measures whether each latent dimension is dependent on
at most one single steerable factor. It computes the average normalized squared difference over
the highest and second-highest mutual information between each steerable factor and each latent
dimension.

• SAP (Kumar et al., 2018) calculates the R2 score of the linear models trained to predict each
steerable factor from each latent dimension.

Recall that all six disentanglement measures range from 0 to 1, and a higher value means the corresponding
space is more disentangled. The results can be found in Table 3. We can conclude that all the values are
indeed low on all datasets and models, revealing that DGMs are entangled in general.

D Mutual Information

In this section, we will briefly introduce mutual information (MI), and also a lower bound for maximizing MI.
This has been previously proposed in (Liu et al., 2022) for self-supervised learning, and the comprehensive
derivations are as follows. First for notation, without loss of generality, we use X and Y as the two views.

D.1 Formulation

The standard formulation for mutual information (MI) is

I(X; Y) = Ep(x,y)
[

log p(x, y)
p(x)p(y)

]
. (16)

Mutual information (MI) between random variables measures the corresponding non-linear dependence. As
can be seen in the first equation in Equation (16), the larger the divergence between the joint (p(x, y) and
the product of the marginals p(x)p(y), the stronger the dependence between X and Y .

D.2 A Lower Bound to MI

First we can get a lower bound of MI. Assuming that there exist (possibly negative) constants a and b such
that a ≤ H(X) and b ≤ H(Y), i.e., the lower bounds to the (differential) entropies, then we have:

I(X; Y) = 1
2

(
H(X) + H(Y) − H(Y |X) − H(X|Y)

)
≥ 1

2
(
a + b − H(Y |X) − H(X|Y)

)
≥ 1

2
(
a + b

)
+ LMI.

(17)

19

Published in Transactions on Machine Learning Research (01/2024)

Thus, we transform the MI maximization problem into maximizing the following objective:

LMI = 1
2Ep(x,y)

[
log p(x|y)

]
+ 1

2Ep(x,y)

[
log p(y|x)

]
. (18)

Empirically, we use energy-based models to model the distributions. The existence of a and b can be
understood as the requirements that the two distributions (px, py) are not collapsed. For the next, we will
try to model the two conditional data distributions p with model distributions pθ.

D.3 Derivation of conditional EBM with NCE

WLOG, let’s consider modeling the pθ(x|y) first, and by EBM it is as follows:

pθ(x|y) = exp(−E(x|y))∫
exp(−E(x̃|y))dx̃

= exp(fx(x, y))∫
exp(fx(x̃|y))dx̃

= exp(fx(x, y))
Ax|y

. (19)

Then we solve this using NCE. NCE handles the intractability issue by transforming it as a binary classi-
fication task. We take the partition function Ax|y as a parameter, and introduce a noise distribution pn.
Based on this, we introduce a mixture model: z = 0 if the conditional x|y is from pn(x|y), and z = 1 if x|y
is from pdata(x|y). So the joint distribution is:

pn,data(x|y) = p(z = 1)pdata(x|y) + p(z = 0)pn(x|y)

The posterior of p(z = 0|x, y) is

pn,data(z = 0|x, y) = p(z = 0)pn(x|y)
p(z = 0)pn(x|y) + p(z = 1)pdata(x|y) = ν · pn(x|y)

ν · pn(x|y) + pdata(x|y) ,

where ν = p(z=0)
p(z=1) .

Similarly, we can have the joint distribution under EBM framework as:
pn,θ(x) = p(z = 0)pn(x|y) + p(z = 1)pθ(x|y)

And the corresponding posterior is:

pn,θ(z = 0|x, y) = p(z = 0)pn(x|y)
p(z = 0)pn(x|y) + p(z = 1)pθ(x|y) = ν · pn(x|y)

ν · pn(x|y) + pθ(x|y)

We indirectly match pθ(x|y) to pdata(x|y) by fitting pn,θ(z|x, y) to pn,data(z|x, y) by minimizing their
KL-divergence:

min
θ

DKL(pn,data(z|x, y)||pn,θ(z|x, y))

= Epn,data(x,z|y)[log pn,θ(z|x, y)]

=
∫ ∑

z

pn,data(x, z|y) · log pn,θ(z|x, y)dx

=
∫ {

p(z = 0)pn,data(x|y, z = 0) log pn,θ(z = 0|x, y)

+ p(z = 1)pn,data(x|z = 1, y) log pn,θ(z = 1|x, y)
}

dx

= ν · Epn(x|y)

[
log pn,θ(z = 0|x, y)

]
+ Epdata(x|y)

[
log pn,θ(z = 1|x, y)

]
= ν · Epn(x|y)

[
log ν · pn(x|y)

ν · pn(x|y) + pθ(x|y)

]
+ Epdata(x|y)

[
log pθ(x|y)

ν · pn(x|y) + pθ(x|y)

]
.

(20)

This optimal distribution is an estimation to the actual distribution (or data distribution), i.e., pθ(x|y) ≈
pdata(x|y). We can follow the similar steps for pθ(y|x) ≈ pdata(y|x). Thus following Equation (20), the
objective function is to maximize

ν · Epdata(y)Epn(x|y)

[
log ν · pn(x|y)

ν · pn(x|y) + pθ(x|y)

]
+ Epdata(y)Epdata(x|y)

[
log pθ(x|y)

ν · pn(x|y) + pθ(x|y)

]
. (21)

20

Published in Transactions on Machine Learning Research (01/2024)

The we will adopt three strategies to approximate Equation (21):

1. Self-normalization. When the EBM is very expressive, i.e., using deep neural network for model-
ing, we can assume it is able to approximate the normalized density directly (Mnih & Teh, 2012; Song
& Kingma, 2021). In other words, we can set the partition function A = 1. This is a self-normalized
EBM-NCE, with normalizing constant close to 1, i.e., p(x) = exp(−E(x)) = exp(f(x)).

2. Exponential tilting term. Exponential tilting term (Arbel et al., 2020) is another useful trick.
It models the distribution as p̃θ(x) = q(x) exp(−Eθ(x)), where q(x) is the reference distribution.
If we use the same reference distribution as the noise distribution, the tilted probability is p̃θ(x) =
pn(x) exp(−Eθ(x)).

3. Sampling. For many cases (Liu et al., 2022), we only need to sample 1 negative points for each
data, i.e., ν = 1.

Following these three disciplines, the objective function to optimize pθ(x|y) becomes

Epn(x|y)

[
log pn(x|y)

pn(x|y) + p̃θ(x|y)

]
+ Epdata(x|y)

[
log p̃θ(x|y)

pn(x|y) + p̃θ(x|y)

]
=Epn(x|y)

[
log 1

1 + pθ(x|y)

]
+ Epdata(x|y)

[
log pθ(x|y)

1 + pθ(x|y)

]
=Epn(x|y)

[
log exp(−fx(x, y))

exp(−fx(x, y)) + 1

]
+ Epdata(x|y)

[
log 1

exp(−fx(x, y)) + 1

]
=Epn(x|y)

[
log

(
1 − σ(fx(x, y))

)]
+ Epdata(x|y)

[
log σ(fx(x, y))

]
.

(22)

Thus, the final EBM-NCE contrastive SSL objective is

LEBM-NCE = −1
2Epdata(y)

[
Epn(x|y) log

(
1 − σ(fx(x, y))

)
+ Epdata(x|y) log σ(fx(x, y))

]
− 1

2Epdata(x)

[
Epn(y|x) log

(
1 − σ(fy(y, x))

)
+ Epdata(y,x) log σ(fy(y, x))

]
.

(23)

21

Published in Transactions on Machine Learning Research (01/2024)

E Implementation and Experiment Details

Editing function. For the editing function, we consider both linear (Equations (24) and (25)) and non-
linear (Equation (26)) cases as below, i.e., for z̄i,α = h(z, di, α):

z̄i,α = z + α · di, di = norm ◦ Linear(ei), (24)
z̄i,α = z + α · di, di = sqrt ◦ norm ◦ ReLU ◦ Linear(ei), (25)
z̄i,α = z + α · di + norm ◦ Linear ◦ ReLU ◦ Linear(z ⊕ di ⊕ [α]), di = norm ◦ Linear ◦ ReLU ◦ Linear(ei), (26)

where ◦ means the composition of two functions.

Objective function. The objective function is given as:

L = c1 · Eu,v[LGraphCG-NCE] + c2 · Lsim + c3 · Lsparsity, (27)

where LGraphCG-NCE is the MI estimation defined in Equation (9), Lsim is the direction similarity defined
in Equation (10), and Lsparsity. c1, c2 and c3 are three coefficients accordingly.

Hyperparameters. We list the key hyperparameters in Table 4, and all the results are evaluated on 100
sampled sequences. We also want to highlight that DisCo is an unstable baseline, in the sense that once we
add more training data (e.g., from 100 to 500) or more training epochs (e.g., from 1 epoch to 5 epochs), the
model will collapse, with the nan loss. Thus, here we are reporting the most reasonable results for DisCo,
i.e., 100 training data with 1 epoch.

Table 4: Hyperparameter specifications.
Hyperparameter Value

Random D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}

Variance
D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}
training data {100, 500}

SeFa
D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}
training data {100, 500}

DisCo
D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}
training data {100}
epochs {1}

GraphCG

D {10}
α {-3, -2.7, -2.4, ..., 2.7, 3}
training data {100, 500}
epochs {20, 100}
coefficient c1 {1, 2}
coefficient c2 {0, 1}
coefficient c3 {0, 1}

Hardware. We use V100 GPU cards, and each job (w.r.t. different hyperparameters) for GraphCG can be
finished within 3 hours on a single GPU card.

Time complexity. The time complexity of GraphCG is O(B × D2) for GraphCG-P and O(B2 × D2) for
GraphCG-R, where B is the number of data points for each batch. Here we omit the constants for step-sizes.

22

Published in Transactions on Machine Learning Research (01/2024)

F Results: Molecular Graph

F.1 Evaluation Metrics

Change of Structure Factors and Calibrated Tanimoto Similarity (CTS). We are interested in
the change of the graph structure (the steerable factors) along the output sequence edited with the i-th
direction. To evaluate the structure change, we apply the Tanimoto similarity between each output molecule
and the anchor molecule, as shown in Figure 5(a). Besides, for the ease of evaluating the monotonicity, we
utilize a transformation (on the Tanimoto similarity) of output molecules with positive step size by taking
the deduction from 2. We call this calibrated Tanimoto similarity sequence (CTS), i.e., {s(x̄′)}i, as shown
in Figure 5(b).

(a) Tanimoto Similarity Sequence (b) Calibrated Tanimoto Similarity Sequence

Figure 5: Figure 5(a) is the original Tanimoto similarity sequence w.r.t. the anchor molecule, i.e., step size with 0
in the figure. Yet, this is not easy to compute the monotonicity. We thus propose the calibrated Tanimoto similarity
sequence, by taking the deduction from 2 for output molecules with positive step size, as shown in Figure 5(b).

Sequence Monotonic Ratio (SMR). For evaluation, we propose a metric called Sequence Monotonic
Ratio (SMR), ϕSMR(γ, τ)i. It measures the monotonic ratio of M generated sequences edited with the i-
th direction. It has two arguments: the diversity threshold γ constrains the minimum number of distinct
molecules, and the tolerance threshold τ controls the non-monotonic tolerance ratio along each sequence.

In specific, for each learned semantic direction i, we will generate M sequences of edited molecules, and the
calibrated Tanimoto similarity for each sequence is marked as {s(x̄′)}m

i . Then we can define the SMR on
each direction as:

ϕSMR(γ, τ)i =
1

M

M∑
m=1

ϕSMR
(

{s(x̄′)}m
i , γ, τ

)
,

ϕSMR
(

{s(x̄′)}m
i , γ, τ

)
=

{
1, len

(
set

{
s(x̄′)}m

i

))
≥ γ ∧ monotonicτ

(
{s(x̄′)}m

i

)
0, otherwise

.

(28)

Evaluating the Diversity of Semantic Directions. SMR can evaluate all the output sequences generated
by one direction. To better illustrate that GraphCG is able to learn multiple directions with various semantic
information, we also consider taking the average of top-K SMR w.r.t. directions to reveal that all the best
K directions are semantically meaningful, as in Equation (29):

top-K(γ, τ) =
1
K

∑
i∈top-K directions

(
ϕSMR(γ, τ)i

)
. (29)

23

Published in Transactions on Machine Learning Research (01/2024)

F.2 Results on Molecular Structures

Next we would like to show the comprehensive SMR on the CTS results with respect to different backbone
models, as in Tables 5 and 6.

Table 5: This table lists the sequence monotonic ratio (SMR, %) on calibrated Tanimoto similarity (CST) w.r.t.
the top-1, top-2, and top-3 directions. The backbone model is the pretrained MoFlow on ZINC250k.

Edit Method
top-K Tanimoto top-1 Tanimoto top-2 Tanimoto top-3

γ 2 3 4 2 3 4 2 3 4

τ 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2

Random 35.0 36.0 23.0 25.0 12.0 15.0 34.5 36.0 22.5 25.0 11.5 14.0 34.0 36.0 22.0 24.0 11.0 13.7
Variance 32.0 36.0 24.0 28.0 12.0 16.0 31.5 35.5 21.0 26.5 10.5 16.0 30.3 35.3 20.0 25.0 10.0 15.0
SeFa 23.0 23.0 4.0 4.0 0.0 0.0 19.0 19.0 4.0 4.0 0.0 0.0 17.3 17.3 3.3 3.3 0.0 0.0
DisCo 8.0 15.0 7.0 14.0 2.0 8.0 7.5 13.5 6.0 12.5 2.0 8.0 7.0 13.0 5.3 11.7 2.0 7.7

GraphCG-P
Equation (24) 39.0 40.0 27.0 28.0 15.0 18.0 38.5 40.0 26.0 28.0 15.0 18.0 37.0 39.0 24.7 27.3 14.3 17.3
Equation (25) 35.0 37.0 19.0 22.0 8.0 11.0 33.5 36.5 18.5 21.5 7.0 10.5 31.7 34.7 17.7 20.7 6.3 9.3
Equation (26) 44.0 46.0 32.0 34.0 16.0 18.0 42.5 44.5 30.0 32.0 15.0 17.5 41.7 44.0 29.0 31.0 13.7 16.3

GraphCG-R
Equation (24) 37.0 42.0 25.0 26.0 11.0 14.0 37.0 40.0 23.0 25.5 11.0 13.5 36.3 39.0 22.0 24.3 10.3 13.3
Equation (25) 35.0 37.0 19.0 22.0 8.0 11.0 33.5 36.5 18.5 21.5 7.0 10.5 31.7 34.7 17.7 20.7 6.3 9.3
Equation (26) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6: This table lists the sequence monotonic ratio (SMR, %) on calibrated Tanimoto similarity (CST) w.r.t.
the top-1, top-2, and top-3 directions. The backbone model is the pretrained HierVAE on ChEMBL.

Edit Method
top-K Tanimoto top-1 Tanimoto top-2 Tanimoto top-3

γ 2 3 4 2 3 4 2 3 4

τ 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2

Random 14.0 45.0 14.0 45.0 14.0 43.0 11.0 43.5 11.0 43.5 11.0 42.5 10.0 42.3 10.0 42.3 9.3 41.7
Variance 28.0 64.0 23.0 59.0 19.0 55.0 22.5 59.5 19.5 57.0 17.5 55.0 20.3 54.3 18.3 52.7 15.7 50.3
SeFa 4.0 41.0 4.0 41.0 4.0 41.0 3.0 41.0 3.0 41.0 3.0 41.0 2.3 36.0 2.3 36.0 2.3 36.0

GraphCG-P
Equation (24) 23.0 61.0 19.0 57.0 15.0 53.0 19.0 59.0 16.5 56.5 13.5 53.0 17.0 55.3 15.3 53.7 12.7 50.7
Equation (25) 62.0 77.0 40.0 73.0 32.0 65.0 60.5 74.0 38.5 67.5 29.0 61.0 59.3 70.3 36.0 64.3 26.3 57.7
Equation (26) 29.0 71.0 28.0 70.0 27.0 69.0 22.0 62.0 21.5 61.5 20.5 61.0 18.7 57.7 18.3 57.3 17.7 56.7

GraphCG-R
Equation (24) 16.0 56.0 16.0 56.0 15.0 55.0 13.5 47.0 13.5 47.0 12.0 47.0 11.7 44.7 11.7 44.7 10.7 43.3
Equation (25) 61.0 74.0 42.0 67.0 30.0 55.0 59.0 69.5 40.0 64.0 29.5 54.5 57.7 67.7 38.0 62.3 28.7 53.7
Equation (26) 25.0 57.0 24.0 57.0 21.0 55.0 20.0 55.0 19.5 54.5 17.0 52.0 17.3 52.7 17.0 52.3 15.0 50.0

24

Published in Transactions on Machine Learning Research (01/2024)

F.3 Results on Molecular Properties

By far, we have been mainly focusing on the structure change of the output sequence of molecules. Yet, some
works (Seybold et al., 1987) also proved that certain key components of the molecules can be closely related
to the molecular properties. We summarize the properties into roughly three categories, and the SMR on 8
properties with different γ, τ are listed below.

1. Physical properties, including water-octanol partition coefficient (LogP) (Comer & Tam, 2001),
topological polar surface area (tPSA) (Ertl et al., 2000)), and molecular weight (MW).

2. Drug-related molecular properties, including drug-likeness (QED) (Bickerton et al., 2012) and syn-
thetic accessibility (SA) (Ertl & Schuffenhauer, 2009).

3. Biological properties, including three binding affinity tasks (DRD2, JNK3, GSK3β). All the oracle
labels are provided from the previous works (Olivecrona et al., 2017; Jin et al., 2020b; Sun et al.,
2017).

Table 7: This table lists the sequence monotonic ratio (SMR, %) on 8 molecule properties with γ = 2, τ = 0.
Model &
Dataset Edit Method h

Physical Drug-related Bioactivity
LogP ↑ tPSA ↑ MW ↑ QED ↑ SA ↑ DRD2 ↑ JNK3 ↑ GSK3β ↑

MoFlow
ZINC250k

Random – 22.0 28.0 23.0 24.0 24.0 21.0 27.0 24.0
Variance – 24.0 24.0 18.0 21.0 19.0 20.0 26.0 22.0
SeFa – 20.0 20.0 23.0 21.0 22.0 22.0 21.0 22.0
DisCo – 5.0 5.0 5.0 4.0 4.0 5.0 6.0 5.0

GraphCG-P
Equation (24) 26.0 30.0 24.0 25.0 22.0 23.0 27.0 26.0
Equation (25) 25.0 29.0 25.0 24.0 27.0 24.0 25.0 27.0
Equation (26) 27.0 39.0 28.0 27.0 28.0 26.0 39.0 32.0

GraphCG-R
Equation (24) 27.0 27.0 26.0 26.0 25.0 23.0 33.0 28.0
Equation (25) 25.0 29.0 25.0 24.0 27.0 24.0 25.0 27.0
Equation (26) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HierVAE
ChEMBL

Random – 3.0 5.0 4.0 2.0 2.0 1.0 11.0 8.0
Variance – 9.0 9.0 8.0 11.0 9.0 7.0 25.0 22.0
SeFa – 1.0 0.0 2.0 0.0 0.0 0.0 1.0 2.0

GraphCG-P
Equation (24) 7.0 12.0 9.0 6.0 5.0 7.0 21.0 15.0
Equation (25) 52.0 56.0 50.0 50.0 54.0 52.0 55.0 53.0
Equation (26) 7.0 12.0 3.0 3.0 4.0 2.0 30.0 20.0

GraphCG-R
Equation (24) 2.0 6.0 3.0 2.0 2.0 2.0 11.0 9.0
Equation (25) 52.0 54.0 49.0 49.0 52.0 51.0 54.0 53.0
Equation (26) 6.0 10.0 4.0 6.0 3.0 3.0 24.0 19.0

Table 8: This table lists the sequence monotonic ratio (SMR, %) on 8 molecule properties with γ = 2, τ = 0.2.
Model &
Dataset Edit Method h

Physical Drug-related Bioactivity
LogP ↑ tPSA ↑ MW ↑ QED ↑ SA ↑ DRD2 ↑ JNK3 ↑ GSK3β ↑

MoFlow
ZINC250k

Random – 24.0 28.0 26.0 27.0 25.0 22.0 29.0 26.0
Variance – 25.0 25.0 22.0 23.0 21.0 22.0 27.0 23.0
SeFa – 20.0 20.0 23.0 21.0 22.0 22.0 21.0 22.0
DisCo – 7.0 7.0 8.0 7.0 5.0 8.0 9.0 9.0

GraphCG-P
Equation (24) 31.0 32.0 27.0 27.0 26.0 28.0 29.0 27.0
Equation (25) 28.0 29.0 27.0 25.0 28.0 26.0 27.0 29.0
Equation (26) 29.0 39.0 31.0 30.0 29.0 27.0 39.0 33.0

GraphCG-R
Equation (24) 28.0 29.0 28.0 28.0 27.0 25.0 34.0 29.0
Equation (25) 28.0 29.0 27.0 25.0 28.0 26.0 27.0 29.0
Equation (26) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HierVAE
ChEMBL

Random – 12.0 14.0 13.0 10.0 11.0 9.0 18.0 16.0
Variance – 24.0 16.0 20.0 24.0 24.0 18.0 31.0 26.0
SeFa – 18.0 4.0 35.0 1.0 14.0 3.0 7.0 3.0

GraphCG-P
Equation (24) 19.0 20.0 24.0 15.0 16.0 13.0 25.0 20.0
Equation (25) 53.0 56.0 52.0 51.0 56.0 53.0 57.0 54.0
Equation (26) 16.0 29.0 15.0 16.0 17.0 22.0 32.0 25.0

GraphCG-R
Equation (24) 14.0 14.0 26.0 8.0 15.0 12.0 20.0 16.0
Equation (25) 53.0 54.0 51.0 50.0 54.0 52.0 56.0 54.0
Equation (26) 21.0 21.0 16.0 18.0 21.0 17.0 29.0 27.0

25

Published in Transactions on Machine Learning Research (01/2024)

Table 9: This table lists the sequence monotonic ratio (SMR, %) on 8 molecule properties with γ = 3, τ = 0.
Model &
Dataset Edit Method h

Physical Drug-related Bioactivity
LogP ↑ tPSA ↑ MW ↑ QED ↑ SA ↑ DRD2 ↑ JNK3 ↑ GSK3β ↑

MoFlow
ZINC250k

Random – 10.0 17.0 9.0 10.0 10.0 9.0 15.0 11.0
Variance – 10.0 10.0 6.0 7.0 6.0 6.0 18.0 11.0
SeFa – 1.0 1.0 4.0 2.0 3.0 3.0 2.0 3.0
DisCo – 3.0 3.0 3.0 2.0 2.0 3.0 4.0 4.0

GraphCG-P
Equation (24) 11.0 16.0 9.0 10.0 7.0 9.0 15.0 13.0
Equation (25) 10.0 13.0 9.0 8.0 11.0 8.0 11.0 11.0
Equation (26) 14.0 26.0 14.0 14.0 16.0 10.0 26.0 16.0

GraphCG-R
Equation (24) 10.0 17.0 8.0 13.0 10.0 10.0 16.0 12.0
Equation (25) 10.0 13.0 9.0 8.0 11.0 8.0 11.0 11.0
Equation (26) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HierVAE
ChEMBL

Random – 3.0 5.0 4.0 2.0 2.0 1.0 11.0 8.0
Variance – 5.0 6.0 4.0 7.0 6.0 4.0 21.0 17.0
SeFa – 1.0 0.0 2.0 0.0 0.0 0.0 1.0 2.0

GraphCG-P
Equation (24) 5.0 8.0 8.0 2.0 2.0 3.0 17.0 13.0
Equation (25) 11.0 16.0 14.0 11.0 16.0 8.0 26.0 20.0
Equation (26) 6.0 11.0 2.0 3.0 3.0 2.0 30.0 19.0

GraphCG-R
Equation (24) 2.0 6.0 3.0 2.0 2.0 2.0 11.0 9.0
Equation (25) 14.0 17.0 15.0 12.0 14.0 13.0 24.0 21.0
Equation (26) 6.0 9.0 3.0 5.0 3.0 3.0 23.0 19.0

Table 10: This table lists the sequence monotonic ratio (SMR, %) on 8 molecule properties with γ = 3, τ = 0.2.
Model &
Dataset Edit Method h

Physical Drug-related Bioactivity
LogP ↑ tPSA ↑ MW ↑ QED ↑ SA ↑ DRD2 ↑ JNK3 ↑ GSK3β ↑

MoFlow
ZINC250k

Random – 13.0 17.0 12.0 14.0 11.0 12.0 16.0 12.0
Variance – 12.0 11.0 9.0 9.0 8.0 8.0 19.0 14.0
SeFa – 1.0 1.0 4.0 2.0 3.0 3.0 2.0 3.0
DisCo – 5.0 6.0 6.0 5.0 5.0 6.0 8.0 8.0

GraphCG-P
Equation (24) 16.0 18.0 11.0 13.0 11.0 13.0 15.0 17.0
Equation (25) 12.0 13.0 11.0 9.0 12.0 10.0 13.0 13.0
Equation (26) 16.0 26.0 16.0 17.0 17.0 12.0 26.0 17.0

GraphCG-R
Equation (24) 12.0 17.0 10.0 14.0 12.0 11.0 18.0 12.0
Equation (25) 12.0 13.0 11.0 9.0 12.0 10.0 13.0 13.0
Equation (26) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HierVAE
ChEMBL

Random – 12.0 14.0 13.0 10.0 11.0 9.0 18.0 15.0
Variance – 20.0 15.0 16.0 20.0 20.0 14.0 27.0 21.0
SeFa – 18.0 4.0 35.0 1.0 14.0 3.0 7.0 3.0

GraphCG-P
Equation (24) 15.0 17.0 23.0 14.0 15.0 12.0 21.0 19.0
Equation (25) 23.0 24.0 23.0 22.0 28.0 21.0 30.0 31.0
Equation (26) 15.0 28.0 14.0 16.0 16.0 21.0 32.0 24.0

GraphCG-R
Equation (24) 14.0 14.0 26.0 8.0 15.0 12.0 20.0 16.0
Equation (25) 23.0 27.0 23.0 23.0 23.0 24.0 33.0 32.0
Equation (26) 20.0 20.0 15.0 17.0 20.0 16.0 29.0 27.0

26

Published in Transactions on Machine Learning Research (01/2024)

Table 11: This table lists the sequence monotonic ratio (SMR, %) on 8 molecule properties with γ = 4, τ = 0.
Model &
Dataset Edit Method h

Physical Drug-related Bioactivity
LogP ↑ tPSA ↑ MW ↑ QED ↑ SA ↑ DRD2 ↑ JNK3 ↑ GSK3β ↑

MoFlow
ZINC250k

Random – 3.0 7.0 4.0 4.0 3.0 3.0 6.0 5.0
Variance – 3.0 4.0 2.0 2.0 2.0 2.0 7.0 4.0
SeFa – 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DisCo – 1.0 1.0 1.0 1.0 2.0 1.0 2.0 2.0

GraphCG-P
Equation (24) 6.0 6.0 4.0 5.0 2.0 5.0 6.0 7.0
Equation (25) 3.0 4.0 2.0 1.0 3.0 2.0 5.0 3.0
Equation (26) 4.0 12.0 5.0 4.0 4.0 3.0 11.0 6.0

GraphCG-R
Equation (24) 4.0 6.0 2.0 3.0 4.0 3.0 7.0 3.0
Equation (25) 3.0 4.0 2.0 1.0 3.0 2.0 5.0 3.0
Equation (26) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HierVAE
ChEMBL

Random – 2.0 4.0 3.0 2.0 1.0 1.0 9.0 7.0
Variance – 2.0 6.0 3.0 5.0 4.0 2.0 17.0 14.0
SeFa – 1.0 0.0 2.0 0.0 0.0 0.0 1.0 2.0

GraphCG-P
Equation (24) 4.0 6.0 5.0 1.0 2.0 2.0 15.0 11.0
Equation (25) 5.0 7.0 6.0 5.0 5.0 4.0 17.0 15.0
Equation (26) 5.0 10.0 1.0 2.0 2.0 2.0 28.0 18.0

GraphCG-R
Equation (24) 1.0 5.0 3.0 2.0 1.0 2.0 10.0 9.0
Equation (25) 4.0 9.0 6.0 5.0 5.0 6.0 17.0 15.0
Equation (26) 4.0 7.0 2.0 4.0 2.0 2.0 20.0 18.0

Table 12: This table lists the sequence monotonic ratio (SMR, %) on 8 molecule properties with γ = 4, τ = 0.2.
Model &
Dataset Edit Method h

Physical Drug-related Bioactivity
LogP ↑ tPSA ↑ MW ↑ QED ↑ SA ↑ DRD2 ↑ JNK3 ↑ GSK3β ↑

MoFlow
ZINC250k

Random – 6.0 8.0 7.0 8.0 6.0 6.0 7.0 6.0
Variance – 6.0 6.0 5.0 4.0 4.0 4.0 8.0 7.0
SeFa – 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DisCo – 4.0 4.0 4.0 4.0 5.0 6.0 6.0 5.0

GraphCG-P
Equation (24) 10.0 11.0 6.0 9.0 9.0 8.0 7.0 7.0
Equation (25) 4.0 6.0 5.0 5.0 7.0 3.0 5.0 5.0
Equation (26) 8.0 12.0 8.0 7.0 6.0 6.0 11.0 10.0

GraphCG-R
Equation (24) 6.0 6.0 5.0 6.0 6.0 5.0 8.0 4.0
Equation (25) 4.0 6.0 5.0 5.0 7.0 3.0 5.0 5.0
Equation (26) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HierVAE
ChEMBL

Random – 10.0 14.0 13.0 10.0 11.0 9.0 18.0 15.0
Variance – 16.0 15.0 14.0 16.0 19.0 11.0 23.0 18.0
SeFa – 18.0 4.0 35.0 1.0 14.0 3.0 7.0 3.0

GraphCG-P
Equation (24) 14.0 16.0 20.0 13.0 15.0 12.0 19.0 17.0
Equation (25) 17.0 19.0 17.0 20.0 17.0 19.0 27.0 28.0
Equation (26) 14.0 27.0 13.0 15.0 15.0 21.0 30.0 24.0

GraphCG-R
Equation (24) 13.0 13.0 25.0 8.0 14.0 11.0 19.0 16.0
Equation (25) 19.0 20.0 21.0 19.0 18.0 18.0 24.0 26.0
Equation (26) 20.0 18.0 14.0 16.0 20.0 16.0 29.0 26.0

27

Published in Transactions on Machine Learning Research (01/2024)

F.4 Visualization

For a more comprehensive visualization of the steerable factors in molecular graphs, we demonstrate 16
molecular graph paths along the 4 selected directions in Figure 6, and the backbone DGM is HierVAE
pretrained on ChEMBL. The CTS holds good monotonic trend in all these sequences. Each direction shows
certain unique changes in the molecular structures, i.e., the steerable factors in molecules. Some structural
changes are reflected in molecular properties. We expand all the details below. In Figure 6(a) and Figure 6(b),
the number of halogen atoms and hydroxyl groups (in alcohols and phenols) in the molecules decrease from
left to right, respectively. In Figure 6(c), the number of amides in the molecules increases along the path.
As a result, the topological polar surface area (tPSA) of the molecules increase accordingly, which is a key
molecular property for the prediction of drug transport properties, e.g., permeability (Ertl et al., 2000).
In Figure 3(d), the flexible chain length, marked by the number of ethylene (CH2CH2) units, increases from
left to right. Since the number of rotatable bonds (NRB) measures the molecular flexibility, it also increases
accordingly (Veber et al., 2002).

(a) Steerable factor: number of halogens. (b) Steerable factor: number of hydroxyls.

(c) Steerable factor: number of amides. (d) Steerable factor: chain length.

Figure 6: GraphCG for molecular graph editing. We visualize the output molecules and CTS on four directions
with four sequences each, where each sequence consists of five steps. The center point is the anchor molecule, and
the other four points correspond to step size with -3, -1.8, 1.8, and 3 respectively. Figure 6(a) to Figure 6(c) show
how functional groups in the molecules can be viewed as the steerable factors as they change along the path, such
as halogen atoms, hydroxyl groups and amides. Figure 6(d) illustrates the effect on the steerable factor on the
length of flexible chains in the molecules. Notebly, certain properties change together with molecular structures, like
topological polar surface area (tPSA) and number of rotatable bonds (NRB).

28

Published in Transactions on Machine Learning Research (01/2024)

Since we have determined four directions with semantic information matching with the domain knowledge
(fragments), then we can check if the disentanglement measure changes before and after editing. We show
the results in Table 13.

Table 13: Disentanglement measure before and after editing. The corresponding model is the GraphCG-P with
Equation (25), and the backbone generative model is HierVAE pretrained on ChEMBL. The better performance is
marked in bold.

Fragment BetaVAE ↑ MIG ↑ SAP ↑

Halogen after editing 0.617 0.010 0.017
before editing 0.950 0.062 0.017

Hydroxyls after editing 0.833 0.031 0.017
before editing 0.933 0.113 0.067

Amide after editing 0.400 0.041 0.017
before editing 0.933 0.136 0.017

Chain length after editing 0.400 0.051 0.000
before editing 0.700 0.020 0.017

29

Published in Transactions on Machine Learning Research (01/2024)

F.5 Ablation Studies on Coefficients c1, c2, c3

Table 14: Ablation studies on coefficients c1, c2, c3. Backbone DGM is MoFlow, dataset is ZINC250K, and the
editing model is GraphCG-R with Equation (24). The optimal values are c1 = 2, c2 = 1, c3 = 1, and they are reported
in Tables 2 and 5.

c1 c2 c3

Tanimoto top-1 Tanimoto top-3

3 4 3 4

0 0.2 0 0.2 0 0.2 0 0.2

1 0 0 22.0 23.0 11.0 13.0 19.7 21.0 10.7 12.7
1 0 1 19.0 20.0 10.0 12.0 18.0 19.0 9.0 10.7
1 1 0 24.0 26.0 11.0 13.0 21.3 24.7 9.3 12.3
1 1 1 25.0 26.0 11.0 14.0 21.7 24.3 10.3 13.3
2 0 0 20.0 22.0 9.0 11.0 19.0 20.7 8.7 10.7
2 0 1 21.0 21.0 9.0 12.0 19.0 20.0 8.7 10.3
2 1 0 24.0 26.0 11.0 13.0 21.3 24.0 9.3 12.0
2 1 1 25.0 26.0 11.0 14.0 22.0 24.3 10.3 13.3

Table 15: Ablation studies on coefficients c1, c2, c3. Backbone DGM is HierVAE, dataset is ChEMBL, and the
editing model is GraphCG-P with Equation (25). The optimal values are c1 = 2, c2 = 1, c3 = 1, and they are reported
in Tables 2 and 6.

c1 c2 c3

Tanimoto top-1 Tanimoto top-3

3 4 3 4

0 0.2 0 0.2 0 0.2 0 0.2

1 0 0 28.0 55.0 16.0 55.0 23.3 54.3 16.0 54.3
1 0 1 28.0 55.0 16.0 55.0 23.3 54.3 16.0 54.3
1 1 0 34.0 61.0 26.0 55.0 32.0 59.0 23.3 53.3
1 1 1 34.0 61.0 26.0 55.0 32.0 59.0 23.3 53.3
2 0 0 28.0 55.0 16.0 55.0 23.3 54.3 16.0 54.3
2 0 1 28.0 55.0 16.0 55.0 23.3 54.3 16.0 54.3
2 1 0 40.0 73.0 32.0 65.0 36.0 64.3 26.3 57.7
2 1 1 40.0 73.0 32.0 65.0 36.0 64.3 26.3 57.7

30

Published in Transactions on Machine Learning Research (01/2024)

G Results: Point Clouds

Here we compare two editing functions, i.e., the key function design in GraphCG. We provide the visualiza-
tions for the linear editing function in Equation (25), and non-linear editing function in Equation (26).

First, we want to highlight that all the samples are generated randomly. In the linear case in Appendix G.1,
we can observe that the shape of the airplanes, cars, and chairs, are steerable using GraphCG. We also
find it interesting that GraphCG can steer more finger-trained factors, like modifying the airplane engines.
However, in the non-linear case, the diversity of the edited data is smaller. This can be observed from the
middle columns in Appendix G.2. We conjecture that this is also related to the backbone DGMs and datasets
since GraphCG on molecular data does not have this issue. We will leave this for future exploration.

G.1 Linear Editing Function

(a) Steerable factor: size (direction 1). (b) Steerable factor: size (direction 2).

Figure 7: GraphCG for point clouds (Car) editing. The steerable factors on this dataset are not obvious,
and here we only plot the car size editable with two directions.

(a) Steerable factor: leg height (direction 1). (b) Steerable factor: seat size (direction 2).

Figure 8: GraphCG for point clouds (Chair) editing. It can successfully reflect these steerable factors: leg
height, and seat size.

31

Published in Transactions on Machine Learning Research (01/2024)

(a) Steerable factor: engine (direction 1). (b) Steerable factor: engine (direction 1).

(c) Steerable factor: fuselage length (direction 2). (d) Steerable factor: wing size (direction 3).

(e) Steerable factor: wing shape(direction 4). (f) Steerable factor: wing thickness (direction 5).

Figure 9: GraphCG for point clouds (Airplane) editing. It can successfully reflect these steerable factors:
engine, fuselage length, wing size, wing shape, and wing thickness.

32

Published in Transactions on Machine Learning Research (01/2024)

G.2 Non-linear Editing Function

(a) Steerable factor: wing shape (direction 1). (b) Steerable factor: wing length (direction 2).

Figure 10: GraphCG for point clouds (Airplane) editing. It can successfully reflect these steerable factors:
wing shape and wing length.

(a) Steerable factor: size (direction 1). (b) No obvious steerable factor (direction 2).

Figure 11: GraphCG for point clouds (Car) editing. The steerable factors on this dataset are not obvious,
and here we only plot the car size editable with one directions.

(a) Steerable factor: leg height (direction 1). (b) Steerable factor: seat size (direction 2).

Figure 12: GraphCG for point clouds (Chair) editing. It can successfully reflect these steerable factors: leg
height, and seat size.

33

	Introduction
	Background and Problem Formulation
	Entanglement of Latent Representation for Graph DGMs
	Our Method
	GraphCG with Mutual Information
	GraphCG with Energy-Based Model
	GraphCG with Noise Contrastive Estimation
	Implementations Details

	Experiments
	Graph Data: Molecular Graphs
	Graph Data: Point Clouds

	Conclusion and Discussion
	Graph Data
	Molecules
	Point Clouds

	Related Work
	Analysis Experiments on Disentanglement
	Steerable Factors
	Disentanglement Measures

	Mutual Information
	Formulation
	A Lower Bound to MI
	Derivation of conditional EBM with NCE

	Implementation and Experiment Details
	Results: Molecular Graph
	Evaluation Metrics
	Results on Molecular Structures
	Results on Molecular Properties
	Visualization
	Ablation Studies on Coefficients c1, c2, c3

	Results: Point Clouds
	Linear Editing Function
	Non-linear Editing Function

