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Abstract

Contrastive learning (CL) has emerged as a powerful framework for learning
representations of images and text in a self-supervised manner while enhancing
model robustness against adversarial attacks. More recently, researchers have
extended the principles of contrastive learning to graph-structured data, giving birth
to the field of graph contrastive learning (GCL). However, whether GCL methods
can deliver the same advantages in adversarial robustness as their counterparts in
the image and text domains remains an open question. In this paper, we introduce
a comprehensive robustness evaluation protocol tailored to assess the robustness of
GCL models. We subject these models to adaptive adversarial attacks targeting the
graph structure, specifically in the evasion scenario. We evaluate node and graph
classification tasks using diverse real-world datasets and attack strategies. With our
work, we aim to offer insights into the robustness of GCL methods and hope to
open avenues for potential future research directions.

1 Introduction
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Figure 1: Average robustness improve-
ment of graph contrastive learning meth-
ods w.r.t. the GCN baseline, across graph
classification datasets. All assessed con-
trastive methods seem to lower the robust-
ness in evasion scenarios, hence making
the models more susceptible to adversar-
ial attacks (see Table 1, and Equation (5)).

Contrastive learning (CL) (Hadsell et al., 2006; Bachman
et al., 2019; Chen et al., 2020; Jaiswal et al., 2021; Liu et al.,
2021; Khan et al., 2022) has emerged as a powerful frame-
work within the field of self-supervised representation learn-
ing. Contrastive learning is primarily applied to text and
images, and aims at learning latent representations by lever-
aging information inherent to the data. In contrastive learning,
a common strategy involves generating multiple augmenta-
tions or views of an input entity and training the network to
maximize the mutual information across these views (Bach-
man et al., 2019). This approach pushes the network to learn
latent representations that are invariant to data perturbations
similar to the augmentations used during training (Bachman
et al., 2019). Notably, the choice of augmentations plays a
pivotal role in influencing the performance of the model on
downstream predictive tasks (Chen et al., 2020).

Despite not consistently matching the performance of fully
supervised learning (SL) methods, CL exhibits remarkable
potential in improving model robustness, as observed in previous works (Hendrycks et al., 2019; Shi
et al., 2022). This advantage is especially pronounced when compared to the target-driven objective
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of SL methods. The benefits introduced by CL extend to various aspects of robustness, including
robustness to adversarial examples (Kim et al., 2020), label corruptions (Xue et al., 2022), and
distribution shifts (Shi et al., 2022).

While extensive research has investigated and demonstrated the advantages of CL in computer vision
and natural language processing domains, its effectiveness in the realm of graph-structured data
remain uncertain. Only recently, graph contrastive learning (GCL) methods have emerged to address
this challenge (Veličković et al., 2018; Sun et al., 2019; You et al., 2020; Zhu et al., 2020, 2021; Xie
et al., 2022). Analogous to CL, the choice of augmentations in GCL profoundly influences model
accuracy, and researchers have introduced novel augmentation strategies to enhance the performance
of GCL models on downstream tasks (Li et al., 2022; Suresh et al., 2021; Wang et al., 2022).

However, despite similarities with CL and the apparent impact of augmentations, the extent to which
augmentations contribute to enhancing the robustness of learned representations in GCL remains
an open question. Furthermore, works aiming to improve robustness by employing adversarially
crafted augmentations often lack robustness evaluations (Suresh et al., 2021). Those that do assess
robustness (Jovanović et al., 2021; Li et al., 2023) typically rely on simplistic proxies, such as random
noise or transfer attacks (Zügner et al., 2018; Zügner and Günnemann, 2019), which can potentially
overestimate actual robustness (Mujkanovic et al., 2022). Therefore, there exists a research gap
necessitating a consistent evaluation of the robustness of GCL methods to adversarial attacks.

In this paper, we introduce the robustness evaluation protocol (Figure 2) designed to empirically assess
the robustness of various GCL methods. These methods are evaluated against adaptive adversarial
attacks that target the structure of graphs. Our focus include both node and graph classification tasks,
particularly in the evasion (test time) scenario. We present our findings across multiple real-world
datasets and diverse attack strategies. It is important to note that comparing the robustness of two
models using an attack is a challenging task, as it essentially provides upper bounds on the worst-case
perturbed robustness. However, we posit that these upper bounds provide valuable insights into the
relative robustness of GCL models, even if they do not capture the entire landscape of robustness
scenarios. Through extensive empirical analysis, our goal is to asses the efficacy of GCL methods
in adversarial scenarios, thereby contributing to a deeper understanding of their practical utility and
limitations in real-world applications. Our investigations shows the inadequacy of naive proxies often
used to assess the robustness of GCL methods, highlighting how they tend to overestimate actual
robustness under more realistic and adaptive attack conditions.

2 Background

Notation. We define G = (V,E) as an undirected graph, where V represents the set of nodes with
n = |V | nodes, and E represents the set of edges with m = |E| edges. In this representation, we
allow for a node features matrix X ∈ Rn×f and denote the graph structure through a symmetric
adjacency matrix A ∈ {0, 1}n×n. Here, Aij = 1 if there exists an edge between nodes i and j, and
Aij = 0 otherwise. For node-level tasks within a given graph G, our objective is to learn the latent
representation hv for each node v ∈ V . Instead, for graph-level tasks involving a collection of graphs
G = {G1, G2, . . . }, our goal is to learn the latent representation hG for each graph G ∈ G. We let P
denote the distribution of unlabeled graphs over the input space G. To maintain simplicity and clarity
throughout this paper, we consistently refer to both node and graph representations as h.

Graph contrastive learning. Graph contrastive learning (GCL) has emerged as a framework
specifically designed to train graph neural networks (GNNs) (Scarselli et al., 2009; Kipf and Welling,
2016; Gilmer et al., 2017; Bronstein et al., 2017) in a self-supervised manner. The fundamental
concept behind GCL involves generating augmented views of an input graph and maximizing the
agreement between these views pertaining to the same node or graph. This agreement is commonly
quantified by the mutual information I(hi,hj) = DKL(p(hi,hj)∥p(hi)p(hj)) between a pair of
representations hi and hj , where DKL represents the Kullback-Leibler divergence (Kullback and
Leibler, 1951). Contrastive learning aims to maximize the mutual information between two views
treated as random variables. Specifically, it trains the encoders to be pull together representations of
positive pairs drawn from the joint distribution p(hi,hj) and push apart representations of negative
pairs derived from the product of marginals p(hi)p(hj). To computationally estimate and maximize
mutual information in contrastive learning, three lower bounds are commonly used (Hjelm et al.,
2019): Donsker-Varadhan (DV) (Donsker and Varadhan, 1975), Jensen-Shannon (JS) (Nowozin
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et al., 2016), and noise-contrastive estimation (InfoNCE) (Gutmann and Hyvärinen, 2010). A mutual
information estimation is usually computed based on a discriminator D : Rq × Rq → R that
maps the representations of two views to an agreement score between them. In particular, given
two representations hi and hj computed from the graph G = (A,X) and a discriminator D, the
Jensen-Shannon estimator is defined as follows:

Î(JS)(hi,hj) = EG∼P [log(D(hi,hj))] + E[G,G′]∼P×P [log(1−D(hi,h
′
j))],

while the InfoNCE estimator can be written as:

Î(NCE)(hi,hj) = E[G,K]∼P×PN

[
log

eD(hi,hj)∑
G′∈K eD(hi,h′

j)

]
+ logN,

where N is the number of negative samples, and K consists of N i.i.d. graphs sampled from P . In
practice we compute the InfoNCE over mini-batches of size N + 1 and minimize the following loss:

LInfoNCE = − 1

N + 1

∑
G∈B

[
log

eD(hi,hj)∑
G′∈B/{G} e

D(hi,h′
j)

]
, (1)

where G ∈ B is a graph in the mini-batch B, and hi,hj are representations computed from the graph.
Intuitively, the optimization of Equation (1) aims at making the agreement between the representations
hi and hj of views from the same graph G higher, while decreasing the agreement between the
representation hi of a view of graph G and the representation h′

j of a view from the N negative
samples B/{G}. A common contrastive loss that follows this principle is the NT-Xent loss (Sohn,
2016; Wu et al., 2018; Oord et al., 2018), which uses D = ⟨g(hi), g(hj)⟩/τ , where g : Rq → Rs

projects the representations to a lower dimensional space, τ is a temperature parameter, and ⟨·, ·⟩
represents the dot product.

For a description of the models considered in our evaluation, please refer to Appendix A. We also
refer the reader to Xie et al. (2022, and references therein) for a comprehensive introduction to GCL.

Adversarial robustness. In the field of machine learning (ML), adversarial examples have become
a significant concern (Goodfellow et al., 2014). Adversarial examples are perturbed inputs that,
albeit being indistinguishable from the original input, lead to a change in the prediction of the
model. Adversarial robustness (Carlini and Wagner, 2017; Madry et al., 2018), therefore, refers
to the capability of an ML model to withstand such attacks and maintain accuracy, especially in
important safety-critical applications. Various techniques have been developed to enhance adversarial
robustness, including adversarial training, feature engineering, gradient masking, and ensemble
methods (Chakraborty et al., 2018). Notably, contrastive learning has emerged as a promising
approach to improve model robustness (Kim et al., 2020).

While much of the research has been focused on traditional data types like images and text, there is a
growing interest in studying and enhancing the robustness of ML models applied to graph data (Dai
et al., 2018; Günnemann, 2022). Graphs are used to represent complex relationships, and ensuring
their robustness is critical in domains such as social network analysis, recommendation systems, and
fraud detection. Addressing adversarial attacks in graph-based ML models is an evolving area, with
methods tailored to graph structures, including node and edge perturbations (Zügner et al., 2018;
Bojchevski and Günnemann, 2019), being actively explored to secure these systems.

Refer to Appendix B for a comprehensive description of the attacks considered in our evaluation. We
also refer the reader to Günnemann (2022) for an introduction to adversarial robustness on graphs.

3 Evaluating adversarial robustness of graph contrastive learning methods

Problem setup. Our focus is on evaluating the adversarial robustness w.r.t. both structural and
feature-based attacks on graph neural networks (GNNs) trained using graph contrastive learning
methods for node and graph classification tasks. Specifically, we assess adversarial robustness during
test time, i.e., evasion attacks.

3.1 Robustness evaluation protocol

Inspired by the linear evaluation protocol proposed by Veličković et al. (2019), we introduce our
robustness evaluation protocol as illustrated in Figure 2. This protocol establishes a general yet
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Figure 2: The three steps of our proposed robustness evaluation protocol for graph contrastive learning methods:
(1) encoder training, (2) linear classifier training, (3) evasion attack.

consistent framework for assessing the robustness of self-supervised (or unsupervised) models against
adversarial attacks across various attack schemes. The proposed robustness evaluation protocol can
be applied to both node and graph classification tasks and is adaptable to different loss functions
employed in the self-supervised encoder, linear classifier, and adversarial attack, respectively.

This evaluation protocol serves as a foundational structure that enables standardized and comprehen-
sive evaluations of model robustness. By encompassing various loss functions and attack types, it
ensures that the assessment is applicable to a wide range of scenarios. The evaluation consists of
three steps, as described in the following paragraphs.

(Step 1) Encoder training. The initial step of the evaluation protocol is the training of the GCL
encoder. The encoder, fθ : Rn×f × {0, 1}n×n → H, takes an input graph characterized by its node
attributes and adjacency matrix, and outputs latent representations h ∈ H for either the entire graph
or its individual nodes, depending on the specific task it is trained on. Training the encoder is a critical
phase where the model learns to capture meaningful graph structure and representation. This phase is
guided by minimizing a contrastive loss function Lcntr(h; θ), as the one defined in Equation (1). The
objective is to ensure that similar instances in the graph result in representations that are close in the
latent space, while dissimilar instances are pushed apart.

(Step 2) Linear classifier training. In this phase, we train a linear classifier, gϕ : H → Y , that
takes as input the latent representations h∗ generated by the encoder fθ∗ with learned fixed parameters
θ∗, and outputs the downstream predictions y ∈ Y . In the classification setting, the classifier is
trained by minimizing the cross-entropy loss:

Lcls = −
n∑

i=1

|Y|∑
j=1

ȳij log(yij), (2)

where ȳij represents the ground truth label for node i with respect to class j, and yij is the predicted
probability assigned by the classifier to node i belonging to class j. It is important to highlight that
the parameters θ∗ of the encoder are kept fixed during this phase, and only the parameters of the
linear classifier ϕ are updated, hence preserving the self-supervised nature of the encoder.

(Step 3) Adversarial attack. The last step of the evaluation protocol consists of attacking the
encoder and the linear classifier. We perturb the input graph G = (X,A) by approximating:

G̃ = (X̃, Ã) = argminG̃∈φ(G) Latk(gϕ∗(fθ∗(X̃, Ã))), (3)

where φ(G) defines the admissible perturbations that the attack optimizes over. Following the
established literature on adversarial robustness of GNNs, we focus on perturbations related to the
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structure of the graphs: φ(G) = {G̃ | ∥Ã−A∥0 ≤ 2∆ ∧ Ã⊤ = Ã}. This choice of φ(G) permits
up to ∆ edge additions/removals while ensuring symmetry in Ã, hence, that the perturbed graph
is still undirected. In our study, we keep the parameters θ∗ of the fθ∗ and the parameters ϕ∗ of the
gϕ∗ fixed (evasion scenario). However, our framework naturally extends to training-time attacks
(poisoning). We employ various attack methods, including random edge flips as a baseline, Projected
Gradient Descent (PGD) (Xu et al., 2019), and two variants of Randomized Block Coordinate Descent
(R-BCD) (Geisler et al., 2021). Furthermore, we use these attacks as global attacks, i.e., they attack
the graph-level prediction or target the prediction of all test nodes jointly. This is in contrast to
Nettack (Zügner et al., 2018), which is a local attack targeting individual nodes.

An important distinction in our evaluation, as opposed to prior GCL work, is that the PGD and
R-BCD attacks are adaptive (Mujkanovic et al., 2022). That is, the attacks are fully white-box and
capable of adapting to the different representations learned by GCL models, as opposed to supervised
graph learning. As we will see in our empirical evaluation, employing adaptive and global attacks for
assessment raises questions about the robustness benefits claimed by many GCL methods.

3.2 Measuring Adversarial Robustness

In machine learning, particularly in the context of evaluating adversarial robustness across diverse
datasets and models, it is crucial to establish standardized metrics for comparative analysis.

Relative Adversarial Accuracy Drop. We introduce a new metric that provides a standardized
approach for assessing adversarial robustness, enabling meaningful comparisons across different
datasets and machine learning models, the Relative Adversarial Accuracy Drop, defined as follows:

Rclean
adv = R(accclean, accadv) =

accclean − accadv

accclean
. (4)

Rclean
adv quantifies the relative reduction in accuracy between clean (accclean) and adversarial (accadv)

predictions. The normalization by accclean confines R within the interval [0, 1], ensuring fair compar-
isons, even when models exhibit varying levels of performance on clean data. Our primary objective
is to evaluate the robustness of the models rather than their absolute performance on a specific dataset.
A lower value of R indicates higher robustness against adversarial attacks, signifying a smaller
decrease in accuracy when exposed to adversarial inputs compared to clean data.

Model comparison. When comparing a model m to a reference model r across various datasets
D = {Di | i = 1, . . . }0, we employ the following metric:

δmr =
1

|D|
∑
D∈D

(RD
m −RD

r ). (5)

Here, RD
m and RD

r represent the Rclean
adv of model m and the reference model r on dataset D,

respectively. A positive δmr indicates that model m consistently outperforms the reference model
across the datasets, while a negative δmr suggests the opposite. Therefore, the δmr serves as a
comprehensive measure of the overall comparative performance of the model of interest with respect
to the reference model across diverse datasets.

4 Empirical Evaluation

Our empirical evaluation encompasses a comprehensive analysis involving multiple node and graph
classification datasets, as well as a variety of graph contrastive learning (GCL) models. We measure
both clean accuracy and perturbed accuracy under various static and adaptive attack scenarios and
report the relative drop in accuracy compared to the clean accuracy.

4.1 Setup

In our evaluation, we use the model architectures as reported in the reference implementations.
This includes the type and sequence of layers, choice of activation functions, and the application

0For instance, D = {PROTEINS, NCI1, DD}.
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Table 1: Graph classification performance: clean and perturbed accuracy mean ± std., and Rclean
adv (percentage),

averaged over 15 runs with different weight initializations. The results include the accuracy for different
contrastive and non-contrastive models, and different datasets under the attack scheme that most influences
accuracy. The attacks are allowed (∆) to change 5% of edges. Models achieving the three highest relative drop
are highlighted as first, second, and third. The higher the worse.

Model PROTEINS NCI1 DD

GCN CLEAN 73.98 ± 1.00 ↓ 8.04
74.67 ± 0.80 ↓ 54.59

70.02 ± 0.54 ↓ 87.57ATTACK 68.04 ± 0.90 33.91 ± 1.36 8.58 ± 7.35

GIN CLEAN 66.02 ± 4.60 ↓ 30.24
76.04 ± 0.91 ↓ 49.17

63.44 ± 3.19 ↓ 74.51ATTACK 46.05 ± 6.86 38.65 ± 2.48 16.17 ± 6.16

InfoGraph CLEAN 63.93 ± 6.43 ↓ 50.83
66.87 ± 3.72 ↓ 78.10

64.77 ± 2.41 ↓ 68.92ATTACK 31.53 ± 7.67 14.71 ± 4.13 20.11 ± 4.24

GraphCL CLEAN 65.93 ± 4.02 ↓ 38.89 73.09 ± 3.50 ↓ 55.94 68.85 ± 4.83 ↓ 75.34ATTACK 40.29 ± 9.61 32.20 ± 3.48 15.74 ± 7.66

AD-GCL CLEAN 73.66 ± 1.36 ↓ 64.28 71.79 ± 0.94 ↓ 80.01 76.71 ± 2.07 ↓ 61.71ATTACK 26.31 ± 4.33 14.35 ± 1.34 29.17 ± 5.27

of dropout. Given that our primary objective is to assess the extent to which GCL methods are
affected by adversarial attacks, we do not perform hyperparameter tuning. Instead, we employ the
best hyperparameters for each model as documented in their original implementations. We utilize
the Adam optimizer (Kingma and Ba, 2014) across all models, and set the learning rate as defined
in the reference papers (see Appendix E). Our results are averaged over 15 different initializations
of the GCL encoder and linear classifier. We follow the robustness evaluation protocol, introduced
in Section 3.1, for all contrastive-based models. For non-contrastive models, such as GCN (Kipf
and Welling, 2016) and GIN (Xu et al., 2018), we train the network in a supervised manner, and
then apply Step 3 of the protocol. Additionally, we compute the Relative Adversarial Accuracy Drop
Rclean

adv (Section 3.2) and identify the minimum value across different attack schemes.

Graph classification. In the context of graph classification, we are given a dataset
D = {(Gi, yi) | i = 1, . . . , g} that comprises a collection of g graphs Gi along with their respective
labels yi. The central objective of this task is to assign entire graphs to specific classes. To evaluate
the performance of GCL models in this task, we employ three benchmark datasets: PROTEINS,
NCI1, and DD (Morris et al., 2020). Table 3 in Appendix D reports detailed description of the dataset
statistics. To ensure a consistent evaluation process across all datasets, we employ a random data
split strategy, allocating 80% of the nodes for training and reserving the remaining 20% for testing.
We perform mini-batch training with batch size of 64.

Node classification. In semi-supervised node classification, we are given a graph G = (V,E), with
V = {vi | i = 1, . . . , n} and we assume only a subset of nodes Ṽ ⊂ V are labeled, with node labels
yj for j ∈ Ṽ . The aim is to assign unlabeled nodes within a graph to specific classes. We conduct
experiments on well-established node classification datasets, namely Cora, Citeseer Sen et al. (2008),
Pubmed (Namata et al., 2012). We also include in our analysis the large-scale graph OGB-arXiv
(Hu et al., 2020) (see Table 4 for a description of the dataset statistics). We adhere to the data splits
proposed in (Yang et al., 2016) for Cora, Citeseer, and Pubmed, while opting for a random split in the
case of OGB-arXiv. The random split allocates 80% of nodes for training and reserves the remaining
20% for testing. We perform full-batch training, using all nodes in the training set at every epoch.

4.2 Discussion

The results for graph and node classification tasks are presented in Tables 1 and 2. These tables report
the model accuracies under two conditions: (i) clean, unperturbed data and (ii) data subjected to
various adversarial attack schemes. Specifically, we report the minimum accuracy achieved across
different attack schemes for each dataset and model. A more detailed report of the results across
various attack schemes can be found in Tables 5 and 6. We emphasize the models that exhibit the
worst three Rclean

adv values.
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Table 2: Node classification performance: clean and perturbed accuracy mean ± std., and Rclean
adv (percentage),

averaged over 15 runs with different weight initializations. The results include the accuracy for different
contrastive and non-contrastive models, and different datasets under the attack scheme that most influences
accuracy. The attacks are allowed (∆) to change 5% of edges. Models achieving the three highest relative drop
are highlighted as first, second, and third. The higher the worse.

Model CORA CITESEER PUBMED OGB-ARXIV

GCN CLEAN 77.57 ± 1.11 ↓ 23.50
63.99 ± 1.27 ↓ 25.46

75.31 ± 0.80 ↓ 24.31 52.39 ± 0.79 ↓ 82.67ATTACK 59.35 ± 1.70 47.69 ± 2.06 57.01 ± 1.28 9.08 ± 2.10

DGI CLEAN 83.24 ± 1.37 ↓ 9.08
72.91 ± 1.99 ↓ 7.47

81.46 ± 0.79 ↓ 5.23
60.18 ± 0.72 ↓ 11.45ATTACK 75.69 ± 1.86 67.46 ± 2.13 77.19 ± 0.92 53.28 ± 0.69

GraphCL CLEAN 71.99 ± 1.35 ↓ 24.00 59.57 ± 1.45 ↓ 21.89 74.29 ± 1.75 ↓ 27.33
52.32 ± 0.22 ↓ 72.65ATTACK 54.71 ± 1.46 46.53 ± 1.87 53.99 ± 1.77 14.31 ± 0.19

GCA CLEAN 79.07 ± 1.36 ↓ 22.08 60.14 ± 2.24 ↓ 27.51 78.62 ± 0.98 ↓ 27.80 OOMATTACK 61.63 ± 3.18 43.61 ± 2.13 56.77 ± 1.69

In our analysis of graph classification, we observe that the GCL methods used in our evaluation
(InfoGraph (Sun et al., 2019), GraphCL (You et al., 2020), AD-GCL (Suresh et al., 2021)) do not
succeed in enhancing adversarial robustness. Notably, on PROTEINS and NCI1 datasets, these three
GCL models consistently achieve the first, second, and third worst results, indicating a significant
drop in accuracy under adversarially perturbed data compared to non-contrastive models like GCN
and GIN. The DD dataset, however, shows slightly different results, with GCN being the weakest
model in terms of robustness, while GraphCL, a GCL model, takes the second position.

Moving to node classification experiments, the results are mixed. GCL models (DGI (Veličković
et al., 2018), GraphCL (You et al., 2020), GCA (Zhu et al., 2021)) generally perform as the worst or
second-worst models across Cora, Citeseer, and Pubmed datasets. However, they show improved
robustness when compared to GCN on the large-scale OGB-arXiv dataset. An interesting observation
is that GCA goes out of memory (OOM) on the OGB-arXiv dataset due to the high complexity of
loss computation. It is worth noting that DGI consistently performs the best across all datasets. This
behavior might be attributed to DGI’s particular training strategy, which involves creating corruptions
of the original graph and forcing the network to recognize them as different, as opposed to many
contrastive methods that are based on identifying different views as similar. A more in-depth analysis
of this behavior remains a direction for future research.

When analyzing the impact of adaptive versus static attacks, and global versus local attacks, it
becomes evident from both Table 5 and Table 6 that adaptive attacks generate perturbed graph
structures that are more detrimental to every model. This reinforces our argument that static attacks,
such as random flipping, or local attacks like Nettack (Zügner et al., 2018), are insufficient for
evaluating the robustness of a method.

In summary, our findings indicate that in both graph and node classification tasks, GCL methods do
not show a clear advantage in terms of improving the adversarial robustness of graph neural networks.
In some instances, contrastive training can even lead to a further deterioration in performance.

5 Conclusion

We thoroughly evaluated the robustness of graph contrastive learning (GCL) methods to adaptive
adversarial attacks on graph structures. Our investigation included node and graph classification tasks
across multiple real-world datasets and various attack strategies.

Our results show that GCL methods do not consistently exhibit improved adversarial robustness
compared to non-contrastive methods. In specific datasets and attack scenarios, GCL models perform
even worse in robustness. This finding challenges the common belief that CL methods, successful in
other domains, automatically translate to enhanced robustness in graph-structured data.

One notable discovery is the varying performance of GCL models, with DGI consistently outper-
forming others in node classification tasks. This behavior may be attributed to DGI’s unique training
strategy, differentiating between corruptions and the original graph instead of maximizing mutual
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information between augmentations. This aspect deserves further investigation to comprehend its
implications for adversarial robustness.

In conclusion, our findings suggest that while GCL methods hold promise for representation learning
on graph-structured data, they do not inherently guarantee improved adversarial robustness. The
effectiveness of GCL methods in adversarial scenarios is nuanced and context-dependent, necessitat-
ing further research to uncover the precise conditions under which they excel or falter. Exploring
additional models, datasets, and a broader range of adversarial attacks should be considered in future
research to comprehensively understand GCL robustness in practice.
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Appendix

A Graph contrastive learning models

Deep graph infomax (DGI) (Veličković et al., 2018) is a self-supervised approach for learning node
representations in graph-structured data. It aims to maximize mutual information between patch
representations and high-level graph summaries. DGI does not rely on random walk objectives,
making it suitable for both transductive and inductive learning.

In the single-graph setup, the authors propose to corrupt the input graph (X,A) with a cor-
ruption function C, and obtain a negative sample (X̃, Ã) ∼ C(X,A). They then use a train-
able encoder E for both clean and corrupted input to obtain patch representations hi and h̃i

for each node i in the clean and corrupted graph, respectively: H = E(X,A) = {h1, . . . ,hN},
and H̃ = E(X,A) = {h̃1, . . . , h̃M}. The encoder is a one-layer graph convolutional network
(GCN) (Kipf and Welling, 2016), but the framework is general enough to use different models.The
patch representations of the input graph are then used to create a summary of the graph itself
s = R(H) = σ((

∑N
i=0 hi)/N), where R is a non-linear readout function. Patch representations

coming from the input graph and those coming from the corrupted graph are then passed through a
discriminator function D that scores summary-patch representation pairs by applying a simple bilinear
scoring function. Scores are then converted to probabilities of (hi, s) being a positive example, and
(h̃i, s) being a negative example. The whole network is trained end-to-end via cross-entropy, with
label +1 assigned to positive examples, and −1 assigned to negative ones.

InfoGraph (Sun et al., 2019) learns graph-level representations by maximizing the mutual information
between the representation of the whole graph and the representations of substructures of different
scales (e.g., nodes, edges, triangles).

Given a set of N training graphs {Gj ∈ G}Nj=1 with empirical probability distribution P on the input
space, InfoGraph behaves similarly to DGI, as it learns patch representations hi

j for each node i in
graph Gj and uses them to learn a representation for the whole graph sj = R(Hj) through a readout
function R. The network is trained by maximization of the mutual information (MI) as:

θ∗ = argmax
θ

∑
Gj∈G

1

|Gj |
∑
i∈Gj

MI(hj
j , sj)

The authors use the Jensen-Shannon MI estimator (Nowozin et al., 2016):

MI(hj
j , sj):=EP

[
−σ

(
−T (hi

j , sj)
)]

− EP×P̃

[
σ
(
T (h̃i

j , sj)
)]

,

where σ is the softplus function, hi
j ∼ P is an input sample, h̃i

j ∼ P̃ = P is a “negative” sample
generated using all possible combinations of global and local patch representations across all graph
instances in a batch, and T is a discriminator. Since sj is encouraged to have high MI with patches
that contain information at all scales, this favors encoding aspects of the data that are shared across
patches and aspects that are shared across scales. Differently from DGI (Veličković et al., 2018),
InfoGraph uses GIN (Xu et al., 2018) as graph convolutional encoders, and use the sum as the
aggregator in R instead of the mean.

GraphCL (You et al., 2020) learns representation of graph data by proposing four different types
of graph-level data augmentations techniques, namely node dropping, edge perturbation, attribute
masking and subgraph sampling.

Given a set of N graphs {Gj ∈ G}Nj=1, the authors formulate the augmented graph Ĝ ∼ q(Ĝ|G),
where q(·|G) is the augmentation distribution conditioned on the original graph. As common
in contrastive learning, the authors propose to generate two augmented views Ĝi ∼ qi(·|G) and
Ĝj ∼ qj(·|G). A GNN-based encoder f extracts graph-level representations vectors hi,hj for the
augmented graphs Ĝi, Ĝj , and a non-linear transformation g projects the representations to another
latent space where the contrastive loss is computed. The parameters of the network are optimized via
minimization of the NT-Xent loss Equation (1). The authors claim that GraphCL boost adversarial
robustness, but their evaluation is only based on synthetic dataset, hence not capturing the complexity
of real-world scenarios.

In GCA, Zhu et al. (2021) revisit the concept of augmentations in graph contrastive learning by
arguing that data augmentation schemes should preserve intrinsic structures and attributes of graphs,
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which will force the model to learn representations that are insensitive to perturbation on unimportant
nodes and edges. They propose a novel graph contrastive representation learning method with
adaptive augmentation that incorporates various priors for topological and semantic aspects of the
graph.

For topology-level augmentations, the authors propose to corrupt the input graph by randomly
removing edges. They sample a modified edge set Ẽ from the original set of edges E as
P{(u, v)Ẽ} = 1− ρuv, where (u, v) ∈ E and ρuv is the probability of removing (u, v). ρuv
should reflect the importance of edge (u, v) in the graph, hence augmentations are more likely to
corrupt unimportant edges while keeping important ones. The authors propose to compute ρuv based
on (i) degree centrality, (ii) eigenvector centrality, and (iii) PageRank centrality.

Regarding node-attribute-level augmentations, the authors perform random node attributes masking.
Each node feature vector is perturbed as x̃ = x ◦m, where m ∈ {0, 1}d, mi ∼ Bernoulli(1− ρi).
Similarly to ρuv, ρi should capture the importance of the i− th feature dimension. To do so, they
define specific weights for each feature. The training procedure follows the same pipeline as the one
introduced by (You et al., 2020), where the types of augmentations are the only difference.

In AD-GCL, Suresh et al. (2021) argue that related works in GCL are based on pre-determined
data augmentation strategies that may capture redundand information about the graph. The author
propose to optimize adversarial graph augmentation strategies used in GCL by minimization of the
information bottleneck (Tishby et al., 2000; Tishby and Zaslavsky, 2015).

Given a graph G ∈ G, T (G) denotes a graph data augmentation of G, which is a distribution defined
over G and conditioned on G. t(G) ∈ G is a sample of T (G). Let T denote a family of different
graph data augmentations Tϕ(·), with Tϕ(·) being a specific augmentation scheme with parameters ϕ.
AD-GCL optimizes the following objective over a graph data augmentation family T :

min
T∈T

max
f

MI (f(G); f(t(G))) , where G ∼ PG , t(G) ∼ T (G),

where f is a graph neural network encoder. Compared to the two graph augmentations usually
adopted in GCL, AD-GCL views the original graph G as the anchor while pushing its perturbation
T (G) as far from the anchor as it can. The automatic search over T ∈ T saves a great deal of effort
evaluating different combinations of graph augmentations.

For each graph G = (V,E), the sample t(G) ∼ Tϕ(·) is a graph that shares the same node set with
G while the edge set of t(G) is only a subset of E. Each edge e ∈ E is associated with a random
variable pe ∼ Bernoulli(ωe), where e ∈ t(G) if pe = 1, and is dropped otherwise. To train T (G) in
an end-to-end fashion, the Bernoulli weights ωe are parameterized through a GNN augmenter. and
the discrete pe are relaxed to be continuous variables in [0, 1]. Gumbel-Max reparametrization trick
(Maddison et al., 2017; Jang et al., 2017) is use to perform sampling.

B Adversarial attacks

In our evaluation, we consider various adaptive gradient-based adversarial attack schemes, such as
PGD (Xu et al., 2019), PR-BCD and GR-BCD (Geisler et al., 2021), and static adversarial attacks as
simple baselines. While we only consider a single global budget ∆, it is straightforward to include
more sophisticated constraints when beneficial for the application at hand (Gosch et al., 2023b,a).

Random Edge Flipping is a straightforward attack scheme in which edges are randomly flipped with
a given perturbation probability ρ. Formally, this can be expressed as Ãij = flip(Aij , ρ), where Aij

represents the edge (i, j) in the original adjacency matrix of the graph, and Ãij is the perturbed edge.

Projected Gradient Descent (PGD) (Xu et al., 2019) uses continuous relaxation to approximate
Equation (3). Specifically, the adjacency is relaxed from {0, 1}n×n → [0, 1]n×n. Due to this
relaxation, first-order methods can be applied as long as the targeted model can handle weighted
edges (i.e., gϕ∗(fθ∗(X, Ã))). Following, gradient descent is used with an additional projection to
ensure that the budget is not exceeded and that the value range [0, 1] is not violated. The last step of
the attack, then, discretizes the perturbed adjacency [0, 1]n×n → {0, 1}n×n.

Projected Randomized Block Coordinate Descent (PR-BCD) (Geisler et al., 2021) works similar
to the PGD attack of Xu et al. (2019), while avoiding its quadratic space complexity. The quadratic
memory requirement arises from the fact that A has up to n2 non-zero entries and PGD (typically)
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Table 3: Graph classification datasets.

Dataset # Graphs # Nodes # Edges
(min, max, median) (min, max, median)

DD 1178 (30, 5748, 241) (126, 28534, 1220)
NCI1 3327 (3, 111, 27) (4, 238, 58)
PROTEINS 19717 (4, 620, 26) (10, 2098, 98)

Table 4: Node classification datasets.

Dataset # Nodes # Edges # Features # Classes
Planetoid-Cora 2708 10556 1433 7
Planetoid-Citeseer 3327 9104 3703 6
Planetoid-Pubmed 19717 88648 500 3
OGB-arXiv 169343 1166243 128 40

optimizes over all of them. To circumvent the quadratic cost, PR-BCD performs the gradient update
only for a random and non-contiguous block of entries in A at a time. Thereafter, in a survival-of-the-
fittest manner, the random block is resampled. Specifically, relevant entries are kept in the next block,
and the remainder is discarded as well as resampled. This way, the additional space complexity is
linear in the random block size. In other words, PR-BCD uses randomization in the gradient update
to obtain scalability. Geisler et al. (2021) apply the PR-BCD attack to graphs of up to 100 million
nodes.

Greedy Randomized Block Coordinate Descent (GR-BCD) (Geisler et al., 2021) works similar to
PR-BCD, with the notable exception of pursuing a greedy objective. First, the budget ∆ is distributed
over the desired number of greedy updates. Then, in each greedy update, the desired amount of edges
in the randomly drawn block is flipped. The edges to be flipped are chosen based on the gradient
∇Latk(gϕ∗(fθ∗(X, Ã))). Due to the greediness, GR-BCD does not require the random block size to
be larger than ∆, and, thus, GR-BCD is even more scalable than PR-BCD.

C Datasets

For graph classification, we utilize three datasets of graphs: PROTEINS, NCI1, and DD (Morris
et al., 2020). For node classification, we conduct experiments on well-established node classification
datasets, namely Cora, Citeseer Sen et al. (2008), Pubmed (Namata et al., 2012). We also include in
our analysis the large-scale graph OGB-arXiv (Hu et al., 2020).

Tables 3 and 4 report the statistics for the datasets used in our empirical evaluation, for graph and
node classification, respectively.
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D Complete results

Here we report the extensions of Tables 1 and 2 to different attack schemes. As a general observation,
we can notice that adaptive adversarial attacks (PGD, R-BCD), increase the drop in accuracies of the
models in every dataset, compared to static attacks (random edge flipping).

Table 5: Graph classification performance: clean and perturbed accuracy mean ± std., and Rclean
adv (percentage),

averaged over 15 runs with different weight initializations. Results include accuracy for different contrastive and
non-contrastive models under various attack schemes and datasets. The attacks are allowed (∆) to change 5% of
edges. Models achieving the three highest relative drop are highlighted as first, second, and third.

Model Attack PROTEINS NCI1 DD

GCN CLEAN 73.98 ± 1.00 74.67 ± 0.80 70.02 ± 0.54

RAND. EDGE FLIP. 73.41 ± 0.97 (↓ 0.78) 68.12 ± 1.29 (↓ 8.77) 60.29 ± 2.23 (↓ 13.98)
PGD 68.68 ± 0.86 (↓ 7.16) 52.69 ± 1.05 (↓ 29.43) 51.21 ± 2.75 (↓ 26.85)
PR-BCD 68.04 ± 0.90 (↓ 8.04) 33.91 ± 1.36 (↓ 54.59) 8.58 ± 7.35 (↓ 87.57)
GR-BCD 72.50 ± 1.47 (↓ 2.00) 49.47 ± 4.21 (↓ 33.75) 57.33 ± 2.56 (↓ 18.24)

MIN 68.04 ± 0.90 (↓ 8.04) 33.91 ± 1.36 (↓ 54.59) 8.58 ± 7.35 (↓ 87.57)

GIN CLEAN 66.02 ± 4.60 76.04 ± 0.91 63.44 ± 3.19

RAND. EDGE FLIP. 59.71 ± 4.63 (↓ 9.55) 54.47 ± 1.56 (↓ 28.37) 56.73 ± 3.61 (↓ 10.57)
PGD 61.12 ± 4.76 (↓ 7.42) 71.59 ± 0.83 (↓ 5.86) 58.23 ± 3.23 (↓ 8.21)
PR-BCD 48.34 ± 6.74 (↓ 26.77) 38.65 ± 2.48 (↓ 49.17) 16.17 ± 6.16 (↓ 74.51)
GR-BCD 46.05 ± 6.86 (↓ 30.24) 43.99 ± 1.77 (↓ 42.15) 34.83 ± 8.31 (↓ 45.10)

MIN 46.05 ± 6.86 (↓ 30.24) 38.65 ± 2.48 (↓ 49.17) 16.17 ± 6.16 (↓ 74.51)

InfoGraph CLEAN 63.93 ± 6.43 66.87 ± 3.72 64.77 ± 2.41

RAND. EDGE FLIP. 56.85 ± 6.22 (↓ 11.10) 50.88 ± 3.37 (↓ 23.83) 58.84 ± 2.66 (↓ 9.15)
PGD 51.65 ± 7.50 (↓ 19.42) 30.68 ± 4.89 (↓ 54.18) 55.12 ± 3.81 (↓ 14.87)
PR-BCD 31.53 ± 7.67 (↓ 50.83) 14.71 ± 4.13 (↓ 78.10) 20.11 ± 4.24 (↓ 68.92)
GR-BCD 47.23 ± 7.55 (↓ 26.19) 41.13 ± 4.40 (↓ 38.45) 24.99 ± 5.33 (↓ 61.44)

MIN 31.53 ± 7.67 (↓ 50.83) 14.71 ± 4.13 (↓ 78.10) 20.11 ± 4.24 (↓ 68.92)

GraphCL CLEAN 65.93 ± 4.02 73.09 ± 3.50 68.85 ± 4.83

RAND. EDGE FLIP. 61.62 ± 4.94 (↓ 6.53) 59.43 ± 2.36 (↓ 18.69) 58.43 ± 5.11 (↓ 8.48)
PGD 60.86 ± 4.02 (↓ 7.68) 68.32 ± 2.54 (↓ 10.63) 58.35 ± 6.21 (↓ 8.61)
PR-BCD 49.48 ± 6.39 (↓ 24.95) 32.20 ± 3.48 (↓ 55.94) 15.74 ± 7.66 (↓ 75.34)
GR-BCD 40.29 ± 9.61 (↓ 38.89) 37.09 ± 3.37 (↓ 49.26) 32.82 ± 6.93 (↓ 48.60)

MIN 40.29 ± 9.61 (↓ 38.89) 32.20 ± 3.48 (↓ 55.94) 15.74 ± 7.66 (↓ 75.34)

AD-GCL CLEAN 73.66 ± 1.36 71.79 ± 0.94 76.71 ± 2.07

RAND. EDGE FLIP. 65.37 ± 2.24 (↓ 11.25) 58.12 ± 1.49 (↓ 19.04) 75.18 ± 2.03 (↓ 1.95)
PGD 61.44 ± 2.57 (↓ 16.59) 50.32 ± 2.32 (↓ 29.91) 44.36 ± 5.41 (↓ 42.18)
PR-BCD 26.31 ± 4.33 (↓ 64.28) 14.35 ± 1.34 (↓ 80.01) 29.17 ± 5.27 (↓ 61.71)
GR-BCD 63.96 ± 2.90 (↓ 13.17) 54.52 ± 1.44 (↓ 24.06) 37.48 ± 7.03 (↓ 50.98)

MIN 26.31 ± 4.33 (↓ 64.28) 14.35 ± 1.34 (↓ 80.01) 29.17 ± 5.27 (↓ 61.71)
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Table 6: Node classification performance: clean and perturbed accuracy mean ± std., and Rclean
adv (percentage),

averaged over 15 runs with different weight initializations. Results include accuracy for different contrastive and
non-contrastive models under various attack schemes and datasets. The attacks are allowed (∆) to change 5% of
edges. Models achieving the three highest relative drop are highlighted as first, second, and third.

Model Attack CORA CITESEER PUBMED OGB-ARXIV

GCN CLEAN 77.57 ± 1.11 63.99 ± 1.27 75.31 ± 0.80 68.22 ± 1.15

RAND. EDGE FLIP. 76.55 ± 1.19 (↓ 1.32) 62.65 ± 1.58 (↓ 2.09) 74.34 ± 0.88 (↓ 1.31) 66.07 ± 1.09 (↓ 3.15)
PR-BCD 59.35 ± 1.70 (↓ 23.50) 47.69 ± 2.06 (↓ 25.46) 57.01 ± 1.28 (↓ 24.31) 52.54 ± 1.08 (↓ 22.99)
GR-BCD 70.37 ± 1.61 (↓ 9.29) 55.31 ± 2.21 (↓ 13.57) 64.33 ± 1.97 (↓ 14.59) 49.58 ± 1.37 (↓ 27.33)

MIN 59.35 ± 1.70 (↓ 23.50) 47.69 ± 2.06 (↓ 25.46) 57.01 ± 1.28 (↓ 24.31) 49.58 ± 1.37 (↓ 27.33)

DGI CLEAN 83.24 ± 1.37 72.91 ± 1.99 81.46 ± 0.79 60.18 ± 0.72

RAND. EDGE FLIP. 82.65 ± 1.25 (↓ 0.71) 72.64 ± 1.96 (↓ 0.39) 80.72 ± 0.844 (↓ 0.91) 59.14 ± 0.76 (↓ 1.72)
PR-BCD 75.69 ± 1.86 (↓ 9.08) 67.47 ± 2.13 (↓ 7.47) 77.19 ± 0.92 (↓ 5.23) 53.28 ± 0.69 (↓ 11.45)
GR-BCD 80.13 ± 1.55 (↓ 3.73) 70.36 ± 2.44 (↓ 3.52) 77.12 ± 0.89 (↓ 5.33) 54.19 ± 0.87 (↓ 9.96)

MIN 75.69 ± 1.86 (↓ 9.08) 67.47 ± 2.13 (↓ 7.47) 77.12 ± 0.89 (↓ 5.33) 53.28 ± 0.69 (↓ 11.45)

GraphCL CLEAN 71.99 ± 1.35 59.57 ± 1.45 74.29 ± 1.75 62.78 ± 0.44

RAND. EDGE FLIP. 70.86 ± 1.27 (↓ 1.57) 58.61 ± 1.76 (↓ 1.62) 72.86 ± 1.52 (↓ 1.92) 60.37 ± 0.43 (↓ 3.83)
PR-BCD 54.71 ± 1.46 (↓ 24.00) 46.53 ± 1.87 (↓ 21.89) 58.71 ± 1.45 (↓ 20.96) 49.07 ± 0.37 (↓ 21.84)
GR-BCD 60.15 ± 1.26 (↓ 16.44) 48.99 ± 1.75 (↓ 17.77) 53.99 ± 1.77 (↓ 27.33) 36.57 ± 0.55 (↓ 41.75)

MIN 54.71 ± 1.46 (↓ 24.00) 46.53 ± 1.87 (↓ 21.89) 53.99 ± 1.77 (↓ 27.33) 36.57 ± 0.55 (↓ 41.75)

GCA CLEAN 79.07 ± 1.36 60.14 ± 2.24 78.62 ± 0.98

OOM
RAND. EDGE FLIP. 78.30 ± 1.63 (↓ 0.98) 59.21 ± 2.15 (↓ 1.54) 76.09 ± 1.07 (↓ 3.22)
PR-BCD 61.63 ± 3.18 (↓ 22.08) 43.61 ± 2.13 (↓ 27.51) 56.77 ± 1.69 (↓ 27.80)
GR-BCD 72.59 ± 2.75 (↓ 8.22) 50.45 ± 2.65 (↓ 16.14) 57.67 ± 1.87 (↓ 26.67)

MIN 61.63 ± 3.18 (↓ 22.08) 43.61 ± 2.13 (↓ 27.51) 56.77 ± 1.69 (↓ 27.80)
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E Hyperparameters

We report the hyperparameters we used for our evaluation in Table 7.

Table 7: Models hyperparameters.

Model Dataset Hyperparameters
lr epochs patience dropout layers hid. dim.

GCN CORA 1e-2 200 10 0.5 2 16
CITESEER 1e-2 200 10 0.5 2 16
PUBMED 1e-2 200 10 0.5 2 16
OGB-ARXIV 1e-2 500 10 0.5 3 256
PROTEINS 5e-3 50 4 128
NCI1 5e-3 50 4 128
DD 5e-3 50 4 32

GIN PROTEINS 1e-3 10 8 512
NCI1 1e-4 10 12 512
DD 1e-4 20 4 32

DGI CORA 1e-3 1000 20 1 512
CITESEER 1e-3 1000 20 1 512
PUBMED 1e-3 1000 20 1 256
OGB-ARXIV 1e-3 1000 20 2 512

GraphCL CORA 1e-3 1000 20 1 512
CITESEER 1e-3 1000 20 1 512
PUBMED 1e-3 1000 20 1 512
OGB-ARXIV 1e-3 1000 20 1 512
PROTEINS 1e-3 10 8 512
NCI1 1e-4 10 12 512
DD 1e-4 20 4 32

GCA CORA 1e-3 500 20 256
CITESEER 1e-3 500 20 256
PUBMED 1e-3 500 20 256
OGB-ARXIV 1e-3 500 20 256 (OOM)

InfoGraph PROTEINS 1e-3 100 8 256
NCI1 1e-3 100 8 256
DD 1e-3 100 8 256

AD-GCL PROTEINS 1e-2 150 20 0.5 5 32
NCI1 1e-2 150 20 0.5 5 32
DD 1e-2 150 20 0.5 5 32
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