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S1 Additional figures

Figure S1: The averaged root mean square error (RMSE) (mean with 2×s.d. error bars) of each
algorithm on multiple simulation datasets with different levels of the confounding bias parameter β.

S2 Pre-processing of the real-world data

In the STAR dataset, each of the pre-treatment covariate Xj (1 ≤ j ≤ p) was standardized to a range
of −1 to 1, and the outcome variable Y was standardized to a range of 0 to 100.

S3 Proof of Theorem 1

The proof follows the similar arguments as in Györfi et al. [2002] and Scornet et al. [2015]. It
is sufficient to show the result at the root node given the recursive nature of the partitioning. We
will use the following notations in the sequel. We denote ET ,PT and EO,PO as the expectation
and probability under trial data and observational data, respectively. We let Z = (X, Ỹ ). For
any q ∈ [p] and c ∈ R, let θ = (q, c) and the corresponding two partitioned notes are denoted as
QL(θ) = {x|xq ≤ c} and QR(θ) = {x|xq > c}. The parameter space of θ is denoted as Θ = [p]×R.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Let µL and µR be the predictions for Y on QL(θ) and QR(θ), respectively and denote τ = (τL, τR).
Let M i(θ) and M i

of (θ) be the MSEs of the conventional HTE estimator and the fused HTE estimator
on the child nodes of Qi(θ), respectively, for i ∈ {R,L}.

(i).

For any θ ∈ Θ, according to Equation (2) in the main paper we have

M i
of (θ) = (1− wi(θ))M

i(θ),

for i ∈ {R,L}, where the weight wi(θ) satisfies

wi(θ) ≍
σ2
u(Qi)/n

σ2
u(Qi)/n+ b2(θ)

,

by Equation (5) in the main paper, which is lower bounded by σ2
min

σ2
min+nb

2
max

, where σ2
min <

Var(Ỹ |X = x, S = 0) and bmax = supx∈Qj
|{E(Ỹ |X = x, S = 0) − E(Ỹ |X = x, S = 1)}|

Therefore, we conclude that

Mof (θ)

M(θ)
− 1 ≤ − σ2

min

σ2
min + nb2max

,

which reveals the MSE reduction effect of the proposed split criterion.

(ii). The proof includes two parts. In Part 1, we will derive the bounds for the discrepancies between
the MSEs under the empirically estimated split and the oracle split under the conventional criterion,
and in Part 2 the similar results under the proposed split criterion.

Part 1. We define the following criterion function:

ℓn(θ, τ,Rt
n) =

1

n

n∑
i=1

{
(Ỹ0,i − τL)

2I{X0,i ∈ QL(θ)}+ (Ỹ0,i − τR)
2I{X0,i ∈ QR(θ)}

}
=: ℓLn(θ, τL,Rt

n) + ℓRn (θ, τR,Rt
n).

For i ∈ {L,R}, let

Li(θ, τi) = ET
{
ℓin(θ, τi,Rt

n)
}

and L(θ, τ) = LLn(θ, τL) + LRn (θ, τR) (S1)

Then Li(θ, τi) represents the MSE of τi on the region Qi(θ). For a given split θ = (q, c), it is
straightforward to see that the optimal τ(θ) = (τL(θ), τR(θ)) is given by

τi(θ) = argmin
τi∈R

ℓin(θ, τi,Rt
n) = En

{
Ỹ0|X0 ∈ Qi(θ)

}
for i ∈ {L,R}, which is the sample mean of Y on the region Qi(θ). Therefore, by the definition of
M i(θ), it holds that Li(θ, τi(θ)) = M i(θ) for i ∈ {L,R}. The optimal split θ0 = (q0, c0) on the
population level is defined via minimizing the profiled criterion function:

(q0, c0) = argmin
q∈[p],c∈R

{
ML(θ) +MR(θ)

}
= argmin
q∈[p],c∈R

M(θ).

Define M i
n(θ) = ℓin(θ, τi(θ),Rt

n) for i ∈ {L,R} and the empirical optimal split θ̂ = (q̂, ĉ) is defined
via minimizing the sample criterion function:

(q̂, ĉ) = argmin
q∈[p],c∈R

{
ML
n (θ) +MR

n (θ)
}
=: argmin

q∈[p],c∈R
Mn(θ).

Step 1 (Main error decomposition).

Now we will bound M(θ̂) −M(θ0), which represents the discrepancy of the MSEs of the oracle
and empirical split. To apply empirical process theories for stochastic error analysis, we will
use a truncation argument. We let M i

n,βn
(θ, πi,Rt

n) = En(Tβn
Ỹ − Tβn

πi(θ))
2I(X ∈ Qi(θ))
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and M i
βn
(θ) = ET

{
M i
n,βn

(θ, πi(θ),Rt
n)
}

, where Tβn
x =: (|x| ∧ βn)sign(x) for any βn > 0.

Correspondingly, let Mβn
(θ) = ML

βn
(θ) +MR

βn
(θ) and Mn,βn

(θ) = ML
n,βn

(θ) +MR
n,βn

(θ). Then
we have the following error decomposition:

0 < M(θ̂)−M(θ0)

=M(θ̂)−Mβn
(θ̂)−M(θ0) +Mβn

(θ0)

+Mβn
(θ̂)−Mβn

(θ0)− 2Mn,βn
(θ̂) + 2Mn,βn

(θ0)

+ 2Mn,βn
(θ̂)− 2Mn(θ̂)− 2Mn,βn

(θ0) + 2Mn(θ0)

+ 2Mn(θ̂)− 2Mn(θ0)

=:S1,n + S2,n + S3,n + S4,n.

By the definition of θ̂, we have S4,n ≤ 0. In following steps, we will bound S1,n, S2,n and S3,n,
respectively. The truncation level βn is chosen as βn = β0 log(n) for β0 ≥ 2σY .

Step 2 (Bounding S1,n).

For any θ, it holds that

M i(θ)−M i
βn
(θ) =ET

{
(Ỹ − τ̂i(θ))

2 − (Tβn Ỹ − Tβn τ̂i(θ))
2I{X ∈ Qi(θ)}

}
=ET

{
(Ỹ − Tβn Ỹ )(Ỹ + Tβn Ỹ − 2π̂i(θ))I{X ∈ Qi(θ)}

}
+ ET

{
(Tβn π̂i(θ)− π̂i(θ))(Tβn Ỹ + Tβn π̂i(θ)− 2π̂i(θ))I{X ∈ Qi(θ)}

}
=:S5,n + S6,n.

For T1,n, by Cauchy-Schwarz inequality we have

|S5,n| ≤
√

ET (Ỹ − Tβn
Ỹ )2

√
ET (Ỹ + Tβn

Ỹ − 2π̂i(θ))2 ≲
√
ET (Ỹ − Tβn

Ỹ )2,

where the second inequality is because ET (Ỹ 2) ≤ ∞ and ET
{
π̂2
i (θ)

}
≤ ET (Ỹ 2)/|Qi(θ)|. Since

I(|Ỹ | > βn) ≤
exp(σY |Y |2/2)

σY β2
n/2

,

therefore,

|T1,n| ≲
√
ET (Ỹ − Tβn

Ỹ )2 ≤

√
ET

{
|Y |2 exp(σY |Y |2/2)

σY β2
n/2

}
≤

√
2

σY
ET exp(σY |Y |2) exp(−σY β

2
n

4
).

Since ET exp(σY |Y |2) < ∞ and βn = β0 log(n), we conclude that |S5,n| ≲ 1
n . With the same

argument, we have S6,n ≲ 1
n , implying that

M(θ)−Mβn
(θ) ≲

1

n
(S2)

for any θ ∈ Θ. Therefore, the truncation error S1,n ≲ 1
n .

Step 3 (Bounding S2,n).

Let MN,of =
{
f = (Tβn

Ỹ − Tβn
π)I(X ∈ Qi(θ)) : θ = (q, c) ∈ [p]× R

}
. By applying Lemma 2

we obtain

N1(δ,MN,of , z
n
1 ) ≤ (pn)2

(
cβn
δ

)4

,
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where zn1 is any set {z1, · · · , zn} ∈ [0, 1]p × Y and c > 0 is a universal constant. It follows from
Lemma 1 that

PT
{
∃θ ∈ Θ : |Mβn(θ)−Mn,βn(θ)| ≥

1

2
(α+ γ +Mβn(θ))

}
≤28(pn)2

(
80cβ2

n

γ

)4

exp

(
− αn

1284β4
n

)
≲ exp

(
−αn

β4
n

+ log(pn)− log(γ)

)
.

Taking γ = 1/n and α = (t + log(pn))β4
n/n implies that with probability at least 1 − C1e

−t for
some universal constant C1 > 0,

∀θ ∈ Θ, |Mβn(θ)− 2Mn,βn(θ)| ≲
t+ log(pn) log4(n)

n
. (S3)

Therefore, we conclude that with probability at least 1 − C1e
−t, the stochastic error S2,n ≲{

t+ log(pn) log4(n)
}
/n.

Step 4 (Bounding S3,n). According to (S2), we have

∀θ ∈ Θ : ET {Mn,βn
(θ)−Mn(θ)} ≲

1

n

Since Ỹ is sub-Gaussian by assumption, it is straightforward to see that (Tβn
Ỹ − Tβn

πi(θ))
2I(X ∈

Qi(θ)) and (Ỹ − πi(θ))
2I(X ∈ Qi(θ)) are sub-exponential for i ∈ {L,R} . Suppose∥∥∥(Tβn

Ỹ − Tβn
πi(θ))

2I(X ∈ Qi(θ))
∥∥∥
ψ1

≤ σ0 and
∥∥∥(Ỹ − πi(θ))

2I(X ∈ Qi(θ))
∥∥∥
ψ1

≤ σ0 for all

θ ∈ Θ, where ∥·∥ψ1
is the sub-exponential norm operator. By applying Bernstein’s inequality, for

any s > 0, we have

PT
{∣∣M i

n,βn
(θ)−M i

n(θ)− ET
{
M i
n,βn

(θ)−M i
n(θ)

}
≥ s

∣∣}
≤2 exp

(
−cmin

(
ns2

σ2
0

,
ns

σ0

))
,

for i ∈ {R,L}, where c > 0 is a universal constant. Taking s = σ0t
cn = C2t, for any t ≥ 0 we obtain

PT
{∣∣M i

n,βn
(θ)−M i

n(θ)− ET
{
M i
n,βn

(θ)−M i
n(θ)

}
≥ C2t

∣∣} ≤ 2 exp(−t) (S4)

for any n > t/c. Since the above result holds for any θ ∈ Θ, we conclude that for any t > 0, with
probability at least 1− 4e−t, we have S3,n ≲ (t+ 1)/n.

Combining the results on S1,n, S2,n and S3,n, we conclude that for any t > 0, with probability at
least 1− C3e

−t, it holds that

Li(θ̂, π̂i(θ̂))− Li(θ0, π(θ0)) ≲
t+ log(pn) log4(n)

n
, (S5)

for some universal constants C3, C4 > 0.

Part 2. The proposed scale criterion can reformulated as follows. For i ∈ {L,R}, let

F0,i(θ) = {1− wi(θ)} (Ỹ0 − τ0,i(θ))
2I(X0 ∈ Qi(θ))

F1,i(θ) =wi(θ)(Ỹ1 − τ1,i(θ))
2I(X1 ∈ Qi(θ)) and

where τ0,i(θ) = En(Ỹ0|X0 ∈ Qi(θ)) and τ1,i(θ) = Em(Ỹ1|X1 ∈ Qi(θ)), and

wi(θ) = σ2
u(Qi(θ))/

{
σ2
u(Qi(θ)) + σ2

b (Qi(θ)) + b2(Qi(θ))
}
,

where σ2
u(Qi(θ)) = Varn(τ0,i(θ)), σ2

b (Qi(θ)) = Varm(τ1,i(θ)) and b(Qi(θ)) = τ1,i(θ) − τ0,1(θ).
Let Fs,i(θ) = Es(Fs,i(θ)) for s ∈ {0, 1} and Fs(θ) = Fs,L(θ) + Fs,R(θ), the population criterion
is defined as Mof (θ) = F0(θ) + F1(θ). For the empirical criterion, we first define Fn,i(θ) =
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En(FRi (θ)) and Fm,i(θ) = Em(FRi (θ)). Let MN,of (θ) = Fn,L(θ) + Fn,R(θ) and Fm(θ) =
Fm,L(θ)+Fm,R(θ), the empirical criterion is the denoted as MN,of (θ) = MN,of (θ)+Fm(θ). The
population and empirical optimal splits are defined by

θof = argmin
θ∈Θ

Mof (θ) and θ̂f = argmin
θ∈Θ

MN,of (θ).

We first have the following error decomposition:

Mof (θ̂)−Mof (θ0) =Mof (θ̂)−Mof,βn
(θ̂of ) +Mof (θ0)−Mof,βn

(θof )

+Mof,βn
(θ̂of ) +Mof,βn

(θof )− 2MN,of,βn
(θ̂of ) + 2MN,of,βn

(θof )

+ 2MN,of,βn
(θ̂of )− 2MN,of (θ̂of )− 2MN,of,βn(θof ) + 2MN,of (θof )

+ 2MN,of (θ̂of )− 2MN,of (θof )

=:T1,n + T2,n + T3,n + T4,n.

By the definition of θ̂of , we have T4,n ≤ 0. In the following steps, we will bound T1,n, T2,n and
T3,n, respectively. Following the same argument as for S1,n, it can be obtained that T1,n ≲ 1

n .
We now bound T2,n Let Gn = {g : g(y, x) =

√
1− w(θ)ỹ − τ)I(x ∈ Q(θ), θ ∈ Θn)} and

Hn = {h : h(y, x) =
√
w(θ)(ỹ − τ)I(x ∈ Q(θ), θ ∈ Θn)}, then via Lemma 2 we have

N1(δ,Gn, zn1 ) ≤ (pn)2
(
cβn
δ

)4

and N1(δ,Hn, z
n
1 ) ≤ (pn)2

(
cβn
δ

)4

,

for any δ > 0, where zn1 is any set {z1, · · · , zn} ∈ [0, 1]p × Y and c > 0 is a universal constant. It
follows from Lemma 1 that for any α1, γ1 > 0

PT
{
∃θ ∈ Θn : |F0,βn

(θ)−Fn,βn
(θ)| ≥ 1

2
(α1 + γ1 +Mof,βn

(θ))

}
≤28(pn)2

(
80cβ2

n

γ1

)4

exp

(
− α1n

1284β4
n

)
≲ exp

(
−α1n

β4
n

+ log(pn)− log(γ1)

)
.

Taking γ1 = 1/n and α1 = (t+ log(pn))β4
n/n implies that with probability at least 1− C4e

−t for
some universal constant C4 > 0,

∀θ ∈ Θn, |Mof,βn
(θ)− 2Fn,βn

(θ)| ≲ t+ log(pn) log4(n)

n
. (S6)

Similary, for any α2, γ2 > 0,

PO
{
∃θ ∈ Θn : |F1,βn

(θ)−Fm,βn
(θ)| ≥ 1

2
(α1 + γ1 + F1,βn

(θ))

}
≲ exp

(
−α1m

β4
n

+ log(pn)− log(γ1)

)
.

Taking γ2 = 1/n and α2 = (t+ log(pn))β4
n/m implies that with probability at least 1− C5e

−t for
some universal constant C5 > 0,

∀θ ∈ Θn, |F1,βn
(θ)− 2Fm,βn

(θ)| ≲ t+ log(pn) log4(n)

m
. (S7)

Combining (S6) and (S7) delivers that with probability at least 1− 2C1e
−t,

T2,n ≲
log(pn) log4(n)

m
+

t+ log(pn) log4(n)

n
, (S8)

for ant t > 0, since θ̂of , θf ∈ Θn and Mof,βn
(θ) = F0,βn

(θ) + F1,βn
(θ) and MN,of,βn

(θ) =
Fn,βn

(θ) + Fm,βn
(θ) for any θ ∈ Θn.
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Now we turn to T3,n, the truncation error for the empirical loss. With the similar argument as in (S3),
we have with probability at least 1− 4e−t, it holds that T3,n ≲ (t+ 1)/n+ (t+ 1)/m for any t > 0.

Combining the results for T1,n, T2,n and T3,n, we conclude that for any t > 0, with probability at
least 1− C6e

−t,

Mof (θ̂of )−Mof (θof ) ≲
t+ log(pn) log4(n)

m
+

t+ log(pn) log4(n)

n
, (S9)

which completes our proof.

S4 Supporting lemmas

The following to lemmas are from Section 11.3 and Section 13.1 of Györfi et al. [2002], which are
useful for our proofs.
Lemma S1. (Deviation inequality of quadratic process). Suppose that G is a class of uniformly
bounded functions G =

{
g : Rd → R ∥g∥∞ ≤ M

}
. Let F =

{
g2 : g ∈ G

}
. Then for any n ≥ 1, it

holds that

P {∃f ∈ F : |E {f(z)} − En {f(z)}| ≥ ε(α+ γ) + E {f(z)}}

≤28 sup
zn1

N1(
γε

20M
,G, xn1 ) exp

(
− ε2(1− ε)αn

214(1 + ε)M4

)
,

where zn1 = (z1, · · · , zn) ∈ Rd, α, γ > 0 and 0 < ε ≤ 1/2.

Lemma S2. (Covering number of piece-wise constant functions). Let Π be the family of partitions
of [0, 1]p. For any set xn1 = {x1, · · · , xn} ⊂ [0, 1]p, let ∆(Π) be the maximal number of partitions
of xn1 induced by elements of Π. Let M(Π) be the maximal number of sets contained in a partition
P ∈ Π. Denote the piece-wise constant functions on [0, 1]p be F(Π) with ∥f∥∞ ≤ βn for any
f ∈ F(Π). Then using Lemma 13.31 and Theorem 9.4 of Györfi et al. [2002] we have

N1(δ,F(Π), xn1 ) ≤ ∆n(Π)

(
c1βn
δ

)2M(Π)

,

for any δ > 0, where c1 > 0 is some univiersal constant. Specifically, in each partition for a node Ck
of a tree, we have M(Π) = 2 and ∆n(Π) ≤ (pan)

2, where an is the sample size of Ck.
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