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Cloth-aware Augmentation for Cloth-generalized Person
Re-identification

Anonymous Authors

ABSTRACT
Person re-identification (ReID) is crucial in video surveillance, aim-
ing to match individuals across different camera views while cloth-
changing person re-identification (CC-ReID) focuses on pedestri-
ans changing attire. Many existing CC-ReID methods overlook
generalization, crucial for universality across cloth-consistent and
cloth-changing scenarios. This paper pioneers exploring the cloth-
generalized person re-identification (CG-ReID) task and introduces
the Cloth-aware Augmentation (CaAug) strategy. Comprising do-
main augmentation and feature augmentation, CaAug aims to learn
identity-relevant features adaptable to both scenarios. Domain aug-
mentation involves creating diverse fictitious domains and simu-
lating various clothing scenarios. Supervising features from differ-
ent cloth domains enhances robustness and generalization against
clothing changes. Additionally, for feature augmentation, element
exchange introduces diversity concerning clothing changes. Reg-
ularizing the model with these augmented features strengthens re-
silience against clothing change uncertainty. Extensive experiments
on cloth-changing datasets demonstrate the efficacy of our approach,
consistently outperforming state-of-the-art methods. Our codes will
be publicly released soon.

CCS CONCEPTS
• Computing methodologies → Object identification.

KEYWORDS
Domain Augmentation; Feature Augmentation; Cloth-generalized
Person ReID.

1 INTRODUCTION
Person Re-identification (ReID) [67] is a traditional computer vi-
sion task, aiming to associate pedestrians with the same identity
across different scenes. In recent years, the surge in popularity of
deep learning has propelled ReID methods, leading to the develop-
ment of robust models that learn discriminative features. However,
many recent ReID methods have primarily addressed conventional
challenges, such as adapting to human pose changes [76], handling
camera view variations [39], overcoming occlusions [34, 56], and
addressing Visible Infrared ReID scenarios [63, 68]. Surprisingly,
these methods often overlook a crucial aspect: the possibility of
pedestrians changing their clothing.
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Figure 1: Illustrating our motivation: Cloth-changing ReID
tasks undergo more drastic appearance changes compared to
traditional (cloth-consistent) ReID tasks. In real-world applica-
tions, both cloth-consistent and cloth-changing scenarios coexist,
prompting our exploration of the cloth-generalized task. Our
cloth-aware augmentation strategy, in contrast to other mod-
els, adapts features to multiple fictitious domains, enabling the
learning of more generalizable and robust features.

In real-world applications, individuals frequently change clothes
in various situations, including long-term video surveillance or in-
stances involving suspects fleeing the scene. When confronted with
scenarios involving clothing changes, recent methods, primarily
appearance-based, prove less effective. This limitation significantly
compromises their performance, as highlighted in Figure 1. Clothing
changes introduce substantial alterations in appearance, making it
more challenging to re-identify individuals with the same identity.
Moreover, many traditional biometric techniques become imprac-
tical in these situations, where facial features may be unclear, and
gait analysis may not be feasible in surveillance videos. Hence, it is
imperative to address this specific challenge [73].

In response to the cloth-changing problem, researchers have intro-
duced datasets and explored solutions to mitigate variations caused
by clothing changes. Recent cloth-changing ReID methods aim to
obtain identity-discriminative and cloth-invariant feature representa-
tions, broadly categorized into three groups: (1) Designing learning
strategies to mitigate the influence of clothing changes: Methods like
[47] and [25] attempt to disentangle clothing-related information
using various strategies. This includes adversarial-based techniques
[18] and [59], as well as disentangle-based approaches [36] and
[59]. (2) Leveraging auxiliary clothing-invariant modality: Methods
in this category, such as [60], [47], [24], [7], [18], [8], [38], and
[19], incorporate additional information like pedestrian contours,
key points, and human parsing estimation results. (3) Applying aug-
mentation strategies to enhance model robustness: Methods involve
synthesizing cloth-changing images, as seen in [70] and [27], to
reinforce the feature learning process.

Despite advancements, existing methods often neglect the explo-
ration of generalization ability [82], a crucial aspect for achieving

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

universality in real-world applications. As depicted in Figure 1,
traditional cloth-consistent ReID overlooks clothing changes that
may occur when pedestrians alter their attires. Conversely, cloth-
changing methods may falter in cloth-consistent cases. Moreover,
when tackling ReID tasks, two critical problems arise: (1) When only
cloth-consistent data is available, how do we train a cloth-changing
model? (2) How do we ensure the cloth-changing model performs
well on cloth-consistent cases? Therefore, as illustrated in Figure 1,
we embark on an exploration of the cloth-generalized ReID task.
This task involves training a model with the versatility to adeptly han-
dle both cloth-consistent and cloth-changing scenarios. Recognizing
the potential of augmentation strategies in improving generalization
ability, we introduce Cloth-aware Augmentation (CaAug) strategies
specifically tailored for both types of scenarios. Traditional augmen-
tation methods such as cutout [15] and erasing [80] often fall short
in addressing domain differences. In contrast, our approach delib-
erately mimics various domain gaps, allowing learned features to
adapt seamlessly to diverse cloth-changing scenarios. To tackle the
uncertainties associated with generative networks [61], we enhance
generalization both from the latent domain and the feature aspect
overhead. CaAug comprises two essential components, each con-
tributing significantly to the model’s generalization ability: Domain
Augmentation (DomainAug) and Feature Augmentation (FeatAug).

Domain Augmentation (DomainAug): This component involves
the generation of fictitious domains, mirroring clothing domains
as depicted in Figure 1. Features learned within these domains are
supervised to be both discriminative and akin to real clothing do-
mains. It’s noteworthy that we emulate actual clothing domains using
four commonly employed data augmentation strategies: mixup [72],
cutmix [71], cutout [15], and color jittering [52]. This deliberate
choice stems from the rationale that each of these augmentation
techniques introduces distinct variations in the data, simulating the
diverse conditions encountered in real-world clothing domains. The
advantage of incorporating these diverse augmentation strategies
lies in the model’s exposure to a wide range of synthetic clothing
variations. To bridge the gap between fictitious and actual cloth-
ing domains, we employ domain alignment. By mimicking diverse
clothing domains through these fictitious domains, our model learns
discriminative clues and progressively adapts features to different
outfits. This adaptability enhances the model’s robustness against
clothing changes by capturing shared identity-discriminative clues.

Feature Augmentation (FeatAug): We randomly interchange fea-
ture elements of the same sample (Inner-sample Augmentation) and
the same identity (Inter-sample Augmentation), a strategy aimed
at enriching feature diversity and effectively addressing variability
in clothing changes. This intentional manipulation is grounded in
the rationale that different elements within a feature set inherently
carry distinct clues related to the identity being represented. By en-
couraging the random interchange of these elements, our approach
stimulates the exploration of various facets of the feature space. The
advantage of this strategy lies in its ability to foster a more com-
prehensive understanding of the underlying patterns and intrinsic
complexities present in the data. As the model engages in the ex-
ploration of different feature elements, it becomes more adept at
discerning subtle nuances and capturing the diverse manifestations
of identity within the context of clothing changes. This results in a

more robust and adaptable model, ultimately enhancing its perfor-
mance in cloth-changing re-identification scenarios by capturing a
broader spectrum of identity-related information.

Hence, the benefits of our CaAug approach are as follows: (1)
Versatility Across Tasks: This strategy can be readily applied to
various tasks, including scenarios where clothing consistency is
crucial. It also enhances generalization capabilities across different
conditions. (2) Comprehensive Approach: In contrast to simple data
augmentation, our method is more comprehensive, as it directly
transforms features, enhancing both robustness and generalizability.
In summary, our contributions encompass four key aspects:

We initiate the first exploration of CG-ReID and introduce a
Cloth-aware Augmentation (CaAug) strategy to tackle this task. The
core idea is to enhance the generalization ability of learned features
without the need for additional information.

We create fictitious domains to simulate clothing domains, en-
abling our model to learn features that are generalizable across
various cloth-changing scenarios and more comprehensive in nature.

We extend our approach by incorporating feature augmentation,
which involves random interpolation of different samples. This en-
hances feature diversity and equips learned features to handle the
uncertainties associated with varying degrees of clothing changes,
further enhancing generalization ability.

We conduct extensive evaluations of our method across cloth-
changing, cloth-consistent, and cloth-generalized scenarios. Our
method consistently outperforms state-of-the-art techniques, as demon-
strated by a robust set of experimental results.

2 RELATED WORKS
2.1 Person Re-identification
Person re-identification [67] has attracted much attention in real-
world surveillance systems, which aim to associate the same pedes-
trian under various scenarios in different camera environments. Note
that this task only relies on flexible surveillance videos, and it is more
feasible for human-relevant applications compared with other bio-
metric techniques. For example, in many scenarios, this additional
bio-information is usually unavailable in real-world applications.

Cloth-consistent Person Re-identification. Person Re-identification
[68, 86] has been explored much in recent years, which aims to
learn robust features against multiple variations. According to the
addressed challenges, traditional ReID methods can be roughly
listed: 1) Methods for camera view or pose changes [40, 45, 58, 74,
76]. These methods aim to learn robust features against view/pose
changes, which usually take vantage of domain adaptation methods.
For example, VCFL [40] takes advantage of adversarial learning
for learning view-invariant identity-discriminative features. 2) Meth-
ods for occlusion [16, 23, 35, 44, 54]. Methods in this category
aim to solve the challenging task as the appearance varies substan-
tially with various obstacles, especially in the crowd scenario. For
example, PVPM [16] aims to learn discriminative features with pose-
guided attention and part-aware visibility. 3) Methods for modality
changes [5, 11, 30, 37, 63–66]. These methods aim to match the
same pedestrian between the visible and infrared cameras and solve
modality gaps. With the development of deep learning, more and
more challenges have been widely explored. However, these meth-
ods are vulnerable to clothes changes more or less, because they rely
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heavily on appearance and do not explicitly consider the clothing
changes. Therefore, researchers begin to explore the cloth-changing
person re-identification and aim to learn robust features against cloth
changes, which is important in long-term surveillance.

Cloth-changing Person Re-identification. In recent years, there
have been several cloth-changing datasets for paving ways: LTCC
[47], PRCC [60], Celeb-ReID [25], COCAS [69], VC-Clothes [53]
and CCVID [18]. Recent methods aim to learn features robust
against cloth changes, which can be roughly categorized into three
groups: 1) Removing cloth-variant information: For example, CESD
[47] removes clothing-related information and focuses on body type
information that is unrelated to view/pose. CASE [36] learns body-
structural visual representations via adversarial learning and struc-
tural disentanglement. AFDNet [59] disentangle identity-related
and identity-unrelated features with intra-class reconstruction and
inter-class adversary. 2) Benefiting from cloth-variant information:
For example, SPT [60] uses contour sketches to learn discrimina-
tive features because the shape of pedestrians won’t change much
with cloth-changing. 3DSL [7] leverage SMPL [42] for learning
texture-insensitive 3D features. GI-ReID [28] learns cloth-agnostic
representations by leveraging personal unique and cloth-independent
gait information. 3) Benefiting from augmentation: For example,
PosNeg [27] designs both positive and negative augmentations for
enriching diversity. CCFA [20] augments feature with different se-
mantic directions in the feature space.

Current approaches primarily focus on cloth-changing tasks, over-
looking the potential for mining generalizable information. Besides,
augmentation-based methods, while effective, may introduce vary-
ing degrees of noise during the augmentation process, limiting their
comprehensiveness. In response, CaAug addresses these limitations:
(1) Capturing Generalizable Clues: Unlike previous methods, CaAug
aims to capture shared generalizable clues among multiple fictitious
domains, enhancing the model’s ability to generalize across diverse
conditions. (2) Enhancing Features with Generalizable Information:
Instead of introducing meaningless information, CaAug enhances
features by introducing exclusive information within the same sam-
ple and identity through random transformations at the feature level.

2.2 Augmentation-based Methods
In the ReID field, data augmentation strategies have been widely
explored. GAN-based methods [13, 57, 81] and VAE-based methods
[58] aim to generate multiple samples. Cutout [15], CutMix [71] and
MixUp [72] are all beneficial for increasing the diversity of samples.
However, some data augmentation may distort the discriminative
clues in pedestrian images as mentioned in [61]. Besides, genera-
tive networks usually need large computational costs. We originally
proposed domain augmentation, which alleviates the potential risk
that the quality of augmented data ruins learning discriminative
features. In [32], the effectiveness of feature augmentation is vali-
dated. We further design a feature augmentation strategy tailored for
cloth-generalized tasks, which improves the diversity of features and
handles the uncertainty that the cloth-changing degree varies.

2.3 Variational Auto-Encoder
Variational Auto-Encoder (VAE) [29] is an important generative neu-
ral network. It consists of an encoder that aims to reduce dimensions

and a decoder that aims to decrease the differences between original
and output contents. Besides, VAE is capable of disentangling the
latent factors of variations from the abstract representations. There
are many methods of improving VAE for better handling disentan-
gling problems. Abdi [1] focuses on representation learning and
disentanglement through developing a VAE library that consists of
a kind of improved VAE model. Seitzer [49] uses VAE to disen-
tangle latent factors of variation. This paper pioneers the use of
Variational Autoencoders (VAE) for generating fictitious domains:
(1) Unlike Generative Adversarial Networks (GAN) and diffusion
models, VAE offers a straightforward and cost-effective approach
to generating domains with distinct distributions. (2) In the context
of cloth-generalized problems, VAE facilitates the disentanglement
of useful information for fictitious domains, improving the model’s
ability to capture relevant features for domain generalization.

3 OUR APPROACH
Under the cloth-generalized setting, pedestrian appearances may
change greatly, and therefore the appearance-based ReID methods
become unreliable. Our goal is to learn robust features that resist
clothes changes. To achieve this, we designed the Cloth-aware Aug-
mentation (CaAug) strategy to alleviate the variations caused by
clothes changes. As illustrated in Figure 2, the whole framework
includes Domain Augmentation (DomainAug) for latent domain
learning and Feature Augmentation (FeatAug) for increasing the
diversity of features. We first introduce the methodology details of
the proposed strategy and then demonstrate the formulation of the
whole model employed in this method.

3.1 Domain Augmentation
Recent methods for changing clothes rely on either clothing-specific
information or other information unrelated to clothing, which is
often inaccessible in real-world applications. We propose the do-
main augmentation strategy as an alternative approach, aimed at
enhancing features without the need for additional information. The
core concept of domain augmentation is to adapt features to various
conditions, thereby promoting their generalizability and resilience
to significant variations induced by changes in clothing. Moreover,
domain augmentation is theoretically grounded. It is posited that
data augmentation can be approximated through first-order feature
averaging and second-order variance regularization components [12].
Consequently, regularizing the distribution of latent spaces with aug-
mented data provides a more appropriate means to capture essential
cues while mitigating the introduction of excessive noise. Specifi-
cally, this strategy comprises three key steps: Domain Generation,
Domain Alignment, and Domain Feature Learning.

Domain Generation: For domain generation, we generate fic-
titious domains by transforming the original domain, so that the
fictitious can maintain some discriminative clues. To achieve this,
we simply use variational auto-encoder (VAE) [29], mainly for two
reasons: 1) VAE can generate multiple domains with different distri-
butions, which meets our demands. 2) VAE is capable of disentan-
gling the latent factors of variations from the abstract representations.
The VAE network consists of an encoder network 𝐸𝑛𝑐 and a decoder
network 𝐷𝑒𝑐. Given 𝑁 samples 𝑋 = {𝑥𝑖 }𝑁𝑖=1, we can obtain the
feature representations 𝐹 = {𝑓𝑖 }𝑁𝑖=1 and logits 𝐺 = {𝑔𝑖 }𝑁𝑖=1 with the
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Figure 2: Illustration of our Cloth-aware Augmentation (CaAug) strategy. It comprises two key components: Domain Augmentation
consists of three steps: 1) Domain Generation: generating 𝐷 fictitious domains with 𝐷 VAEs. 2) Domain Alignment: supervising the
fictitious domains to be similar to different clothes domains. 3) Domain Feature Learning: supervising the learning of features in
different fictitious domains, aiming to learn robust and generalizable features. Feature Augmentation aims at enhancing feature diversity
and managing uncertainties associated with cloth-generalized problems. This is achieved through the incorporation of inner-sample
and inter-sample random interpolation techniques.

backbone network. Then, we can obtain the latent codes 𝐿 = {𝑙𝑖 }𝑁𝑖=1
through the encoder network 𝐸𝑛𝑐 and the reconstructive features
𝑅 = {𝑟𝑖 }𝑁𝑖=1 through the decoder network 𝐷𝑒𝑐. The whole process
can be formulated as below:

𝑙𝑖 = 𝐸𝑛𝑐 (𝑓𝑖 ), 𝑟𝑖 = 𝐷𝑒𝑐 (𝑙𝑖 ). (1)

Then, we can obtain 𝐷 fictitious domains using 𝐷 VAEs. In the
𝑑−𝑡ℎ domain, the latent features 𝐿𝑑 = {𝑙𝑑

𝑖
}𝑁
𝑖=1 and the reconstructive

features 𝑅 = {𝑟𝑑
𝑖
}𝑁
𝑖=1 are included.

Domain Alignment: To achieve the goal that the fictitious do-
mains can simulate different clothes domains, three demands should
be satisfied: 1) Clothes domains should be related to clothes ap-
pearance, which means features in different clothes domains can be
transformed back. 2) Different clothes domains should have different
distributions from each other. 3) Features in different clothes do-
mains should share some common information such as body shape,
and body contour. Therefore, we use the generated images with
different clothes to guide and align the fictitious distributions. First,
the intuitive change of cloth-changing is color-changing, therefore
we generate the images with different colors as guidance [10, 84].

Note that color affects the appearance more compared with the
effect of accessories since color occupies the main part of the pedes-
trian’s appearance. Therefore, for each sample 𝑥𝑖 , we also generate
guiding samples with different augmentation strategies including
color-jittering [52]. The feasibility of generating images with differ-
ent colors has been proved in [2], and it is a straightforward manner.
Second, we can obtain the corresponding features 𝐹𝑑 = {𝑓 𝑑

𝑖
}𝐷
𝑑=1

and logits 𝐺𝑑 = {𝑔𝑑
𝑖
}𝐷
𝑑=1 by passing the generated samples through

the backbone network. Third, we use the features of the generated
samples to guide the learning of fictitious domains, aiming to narrow
the gaps. We use KL divergence for domain alignment because of
its ability to measure the distribution gaps.

L𝑎𝑙𝑖𝑔𝑛 =
1
𝐷

∑︁𝐷

𝑑=1
𝐾𝐿(𝐹𝑑 , 𝑅𝑑 ), (2)

where 𝐾𝐿(·) denotes the KL divergence operation. Compared with
using the generated samples for data augmentation, our domain
augmentation has three advantages: 1) The features of the gener-
ated samples (𝐹𝑑 ) do not back-propagate gradients since they are
used as a reference distribution, and therefore we can save much
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computational cost. 2) We consider the overall distribution of the
generated samples rather than their discriminative clues, therefore
the quality of them does not influence the overall performance much.
3) Different kinds of augmentation methods are aggregated in this
manner, benefiting from the capturing of shared generalizable clues.

Domain Feature Learning: Our goal is to obtain robust features
that preserve discrimination under multiple conditions. To supervise
the features in fictitious domains, we introduce the commonly used
triplet loss. First, we give the formulation of triplet loss:

ℓ𝑡𝑟𝑖 (𝑓𝑖 , 𝑓𝑗 , 𝑓𝑘 ) = [ℎ(𝑓𝑖 , 𝑓𝑗 ) − ℎ(𝑓𝑖 , 𝑓𝑘 ) +𝑚]+, (3)

where 𝑓𝑖 , 𝑓𝑗 , 𝑓𝑘 form the triplets.ℎ(·) is the commonly used Euclidean
distance, and𝑚 is the margin for triplets. Then, the triplet loss for
the fictitious domains can be formulated:

L𝑡𝑟𝑖 =
∑︁𝐷

𝑑=1

∑︁
𝑖
ℓ𝑡𝑟𝑖 (𝑓 𝑑𝑖 , 𝑓

𝑑
𝑗 , 𝑓

𝑑
𝑘
) . (4)

The formulation of domain augmentation is described:

L𝐷−𝐴𝑢𝑔 = L𝑎𝑙𝑖𝑔𝑛 + L𝑡𝑟𝑖 . (5)

3.2 Feature Augmentation
It has been proved that feature augmentation can improve the gener-
alization ability [32]. To enhance the robustness of features against
clothes changes, we further design the Feature Augmentation strat-
egy, which mainly handles the uncertainty in the cloth-generalized
problem. The uncertainty in the cloth-generalized problem mainly
lies in two terms. 1) Under a cloth-unchanging setting, different
pedestrians may look similar to the same pedestrian. This problem is
more severe in a cloth-generalized setting, because the same pedes-
trian may wear different clothes while different pedestrians are with
similar clothes. 2) The degree of clothes changes varies a lot, for
example, some people only change their shirts while some people
change the whole suit. To cope with this problem, we design the
FeatAug with random interpolation.

Random Interpolation. This process is tailored for the cloth-
generalized task. The synthesized features are relevant to clothes
changes, thus the random interpolation is suitable for handling the
uncertainty in the cloth-generalized problem. This process enlarges
the feature diversity using the linear combination of two selected
instance features with different suits. In the first step, two feature se-
lection manners are included for better harnessing identity-relevant
clues. 1) Inner-sample: we select the features (F) and randomly
chosen refactoring codes (𝑅) of the same sample. 2) Inter-sample:
we select the features of the same pedestrian into different groups
from each sampled training batch. Then, we synthesize two aug-
mented features sets {𝑓 ′

𝑖
}𝑁
𝑖=1 and {𝑓 ′′

𝑖
}𝑁
𝑖=1 . Each sample feature 𝑓 ′

𝑖
is generated by the interpolation of selected instance pair < 𝑓𝑖 , 𝑓𝑗 >

with length 𝑡 while 𝑓 ′′
𝑖

is generated by the interpolation of selected
instance pair < 𝑓𝑖 , 𝑟𝑖 >, we random set 𝑚 ∗ 𝑡 (𝑚 ∈ [0, 1]) bits as
ones and the others as zeros to form the indicator vector 𝐼 . Then the
random interpolation for feature elements is formulated:

𝑓 ′𝑖 = 𝐿2 (𝐼 · 𝑓𝑖 + (1 − 𝐼 ) · 𝑓𝑗 ), 𝑓 ′′𝑖 = 𝐿2 (𝐼 · 𝑓𝑖 + (1 − 𝐼 ) · 𝑟𝑖 ), (6)

where 1 is the all one vector and 𝐿2 (·) is the normalization function.
We use triplet loss to supervise the augmented features:

L𝐹−𝐴𝑢𝑔 = ℓ𝑡𝑟𝑖 (𝑓 ′𝑖 , 𝑓
′
𝑗 , 𝑓

′
𝑘
) + ℓ𝑡𝑟𝑖 (𝑓 ′′𝑖 , 𝑓

′′
𝑗 , 𝑓

′′
𝑘
) . (7)

3.3 Loss Functions
For the backbone network, we use the commonly used ResNet-50
network and choose CAL [18] and AGW [67] as the baseline. The
baseline supervision losses L𝐵 are triplet loss ℓ𝑡𝑟𝑖 and classification
loss ℓ𝑐𝑙𝑠 as in CAL [18]. Domain Augmentation (Domain-Aug) is
supervised by L𝐷−𝐴𝑢𝑔, aiming to learn robust features that are gen-
eralizable to multiple clothes domains. For Feature Augmentation,
we use triplet loss L𝐹−𝐴𝑢𝑔 to supervise these augmented features,
aiming to increase the diversity of features and handle the uncertainty
of cloth-generalized problems.

L = L𝐵 + 𝜆1L𝐷−𝐴𝑢𝑔 + 𝜆2L𝐹−𝐴𝑢𝑔 . (8)

3.4 Implementation Details
Network Configuration. Throughout all experiments, we utilize
CAL [18] and AGW [18] for different cloth-generalized cases. This
choice underscores the versatility of our method as an easily in-
tegrable module for enhancing generalization capabilities. For do-
main generation (with 𝐷 = 4), we employ four commonly used data
augmentation strategies and utilize four VAE networks to generate
corresponding fictitious domains. The lengths of latent codes are set
equal to the number of classes, ensuring they adequately represent
the distribution. Feature augmentation comprises Random Interpo-
lation, with𝑚 set to 0.1 to regulate the number of exchanged bits.
These parameters are carefully selected through parameter analysis
(refer to the appendix for further details).

Training. The learning rate and the training strategy are the same
as that of CAL [18]. For Domain Alignment: we use the backbone
to extract features with the frozen model since they are used as the
reference distributions, and KL divergence is used for alignment. For
Domain Feature Learning: we supervise the reconstructed features
with triplet loss in fictitious domains, and the margin is set as 0.3. For
feature augmentation, the augmented features are obtained through
synthesizing features in the original domain and supervised by triplet
loss with a margin set as 0.3.

Inference. In the inference phase, neither domain augmentation
nor feature augmentation is necessary. Consequently, the trained
model is employed solely to extract features from query and gallery
images, facilitating feature matching.

4 EXPERIMENTS
4.1 Datasets and Evaluation Protocol
To cope with the cloth-changing and cloth-generalized problem in
the ReID field, two datasets are used for performance evaluation,
including LTCC [47] and PRCC [60]. A cloth-consistent dataset
(Market1501 [77] is used to prove the effectiveness of our method
for cloth-unchanged tasks.

LTCC [47] contains 17,138 person images of 152 identities,
which can be divided into two subsets: one cloth-changing set where
91 persons appear with 417 different sets of outfits in 14,756 im-
ages, and one cloth-consistent subset containing the remaining 61
identities with 2,382 images without outfit changes.

PRCC [60] consists of 221 identities with three camera views.
Each person in Cameras A and B wears the same clothes, and the
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Table 1: Comparison of Rank-k and mAP Performance with State-Of-The-Art (SOTA) Methods in LTCC and PRCC.

Method Venue
LTCC PRCC

General Cloth-changing Same-clothes Cross-clothes
Rank1 mAP Rank1 mAP Rank1 mAP Rank1 mAP

HACNN [33] CVPR18 60.2 26.7 21.6 9.3 82.5 84.8 21.8 23.2
PCB [51] ECCV18 65.1 30.6 23.5 10.0 99.8 97.0 41.8 38.7
MGN [55] ACMMM18 68.4 34.6 25.0 12.6 98.2 98.4 53.5 53.3
ISP [85] ECCV20 66.3 29.6 27.8 11.9 92.8 - 36.6 -
AGW [67] TPAMI21 61.4 21.5 27.0 8.4 97.8 91.5 44.7 37.1
SPT+ASE [60] TPAMI19 - - - - 64.2 - 34.4 -
CESD [47] ACCV20 71.4 34.3 26.2 12.4 - - - -
3DSL [7] CVPR21 - - 31.2 14.8 - - 51.3 -
FSAM [24] CVPR21 73.2 35.4 38.5 16.2 - - - -
GI-ReID [28] CVPR22 63.2 29.4 23.7 10.4 80.0 - 33.3 -
CAL [18] CVPR22 74.2 40.8 40.1 18.0 100.0 99.8 55.2 55.8
AIM [62] CVPR23 76.3 41.1 40.6 19.1 100.0 99.9 57.9 58.3
CCFA [20] CVPR23 75.8 42.5 45.3 22.1 99.6 98.7 61.2 58.4
SCNet [19] ACMMM23 76.3 43.6 47.5 25.5 100.0 97.8 61.3 59.9
CaAug (AGW) 75.4 37.1 38.8 17.0 100.0 99.9 55.5 56.4
CaAug (CAL) 78.3 45.9 50.5 25.8 99.9 98.7 63.9 60.1

person wears different clothes in Camera C. In general, approxi-
mately 152 images of each person are included in this dataset, for a
total of 33698 images.

Market1501 [77] contains 32,668 bounding boxes with six cam-
eras. The training set includes 12,936 images of 751 identities while
the testing set includes 19,732 images of 750 identities.

DukeMTMC-reID [48] is a subset of the large-scale multi-target
pedestrian tracking dataset DukeMTMC for image-based ReID. It
contains 16,522 images of 702 identities for training and 17,661
images of 702 identities for testing.

Evaluation Protocol follows the same protocol as the original
protocol of the dataset. For LTCC, to better analyze the results of
long-term cloth-changing Re-ID in detail, we introduce two test
settings: standard-setting (we use all the data for training) and cloth-
changing setting (we only match the cloth-changing pedestrians )
as in [47]. For PRCC, we also introduce two test settings: cross-
clothes (images of camera A and camera C are used as the gallery
and query sets) and same-clothes (images of camera A and camera B
are used as the gallery and query sets). Cumulative Matching Curves
(CMC) [17] and mean Average Precision (mAP) [3] are used as the
evaluation metrics.

4.2 Ablation Study
To gain more insights into CaAug, we conduct a set of ablative stud-
ies on LTCC [47] and PRCC [60], with ResNet-50 as the backbone
network. Specifically, we analyze the influence of Domain Augmen-
tation (DomainAug) and Feature Augmentation (FeatAug). When
we combine the two components, we obtain the best performance.
This suggests that these modules are complementary to each other,
and confirms the effectiveness of our whole design.

Effectiveness of Domain Augmentation (DomainAug). First,
we examine the impact of domain augmentation using L𝐷−𝐴𝑢𝑔
(Eq.(5)). The results are summarized in Table 2. For LTCC, we ob-
serve a significant improvement of 2.7% and 4.3% in Rank1 through

Table 2: Comparison Rank-k and mAP Performance with State-
Of-The-Art (SOTA) methods in Market1501 (Market).

Method Venue
Market

Rank1 mAP
MLFN [4] CVPR18 90.0 74.3

HACNN[33] CVPR18 91.2 75.7
PCB [51] ECCV18 92.3 77.4

Part-aligned [50] ECCV18 93.8 79.9
MGN [55] ACMMM18 95.7 86.9

DG-Net [79] CVPR19 94.4 85.2
BOT [43] CVPR19 94.5 85.9
ISP [85] ECCV20 95.3 88.6

SCSN [9] CVPR20 95.7 88.5
SBS [22] arxiv20 95.7 89.3

CDNet [31] CVPR21 95.1 86.0
AGW [67] TPAMI21 95.1 87.7

PGFL-KD [75] ACMMM21 95.3 87.2
Celeb [25] IJCNN19 91.2 77.2

ReIDcaps [26] TCSVT19 92.8 78.0
CASE-Net [36] WACV20 94.6 85.7

FSAM [24] CVPR21 94.6 85.6
CAL [18] CVPR22 94.7 87.5

CaAug (CAL) 95.1 88.3
CaAug (AGW) 95.9 89.2

a comparison between the baseline (CAL [18]) with and without
DomainAug. This suggests that learned features become more ro-
bust and comprehensive by adapting to multiple fictitious domains.
To further validate the superiority of the proposed DomainAug, we
compare it with directly applying data augmentation, as shown in
Table 4. The results indicate that our strategy effectively mitigates
the potential issue of augmenting data with poor quality. Moreover,
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Table 3: Ablation studies on different components of our method
in LTCC with the CAL Baseline.

L𝐷−𝐴𝑢𝑔 L𝐹−𝐴𝑢𝑔
General Cloth-changing

Rank1 mAP Rank1 mAP
- - 74.2 40.8 40.1 18.0
✓ - 76.9 44.6 44.4 23.2
✓ ✓ 78.3 45.9 50.5 25.8

Table 4: The Comparison with Other Augmentation Strategies
in LTCC with the CAL Baseline.

Strategy
General Cloth-changing

Rank1 mAP Rank1 mAP
Domain Augmentation 76.9 44.6 44.4 23.2
Mixed Augmentation 78.3 45.9 50.5 25.8

CutOut [15] 74.6 40.2 37.5 17.1
CutMix [71] 73.4 39.6 35.7 16.7
Mixup [72] 74.4 40.9 39.0 18.5

Color Jittering [52] 75.1 41.5 40.6 19.0

our domain augmentation approach saves computational resources
by utilizing a frozen model and serves as an efficient integration
strategy for various augmentation techniques.

Effectiveness of Feature Augmentation (FeatAug). Second, we
investigate the feature augmentation with L𝐹−𝐴𝑢𝑔 (Eq.(7)). Con-
cretely, for the LTCC dataset, we compare the results of the baseline
CAL [66] with/without L𝐹−𝐴𝑢𝑔 to evaluate its effectiveness. As
shown in Table 2, we gain 1.4% and 6.1% on Rank1 separately. This
indicates that we can improve the diversity of features and handle the
uncertainty of the cloth-changing problem, demonstrating that our
feature augmentation strategy is suitable for cloth-generalized tasks.
Besides, we also conduct experiments to explore the performance of
random noise and random interpolation.

Parameter Analysis. In our experiments, we explore the effect
of the loss weight parameter 𝜆1 and 𝜆2 by systematically varying
its values from 0 to 1 in increments of 0.1. The results, as shown
in Figure 3(a) and Figure 3(b), clearly demonstrate consistent im-
provements over the baselines. Therefore, we set 𝜆1 = 1 and 𝜆2 = 1.
This indicates that finding appropriate values for loss weights plays
a crucial role in optimizing the overall performance of our method
in cloth-generalized ReID tasks.

4.3 Comparison with State-Of-The-Art methods
We compare our method with cloth-changing methods and cloth-
consistent methods over multiple cases (cloth-changing cases, cloth-
consistent cases, and cloth-generalized cases), and prove its supe-
riority over discrimination and generalization ability.

1. Cloth-Changing Cases. These cases focus on the robustness
against cloth changes, and we conduct experiments on two com-
monly used cloth-changing datasets.

LTCC [47]. We evaluate our proposed method on the LTCC
dataset and compare it with several competitors. In Table 1, we re-
port the Rank1 and mAP, from which several observations can be
made: (1) Traditional ReID methods (designed for cloth-consistent
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Figure 3: Parameter Analysis of Feature Augmentation in LTCC.
We find that the feature augmentation strategy consistently im-
proves performance. Through (a) and (b), we find that setting
hyper-parameters 𝜆1 = 1 and 𝜆2 = 1 is better.

scenarios) such as AGW [67] are significantly impacted by the
cloth-changing problem. Our method notably improves upon AGW,
indicating its effectiveness in mitigating the negative impact of cloth-
ing changes and enhancing feature robustness. (2) By following the
same protocol of LTCC, we report results for both general and cloth-
changing settings, demonstrating the superiority of our method. For
instance, compared to the recent cloth-changing method SCNet [19],
we achieve an additional 2% gain in Rank1.

PRCC [60]. Following the protocol of PRCC, we report the
Rank1 and mAP results under cross-clothes and same-clothes set-
tings, which are shown and compared in Table 1. We have the fol-
lowing observations: (1) AGW [67] fails to achieve competitive
performance over the cloth-changing setting. Our method achieves
a significant increase with both Rank1 and mAP evaluation. (2)
Compared with other cloth-changing methods, our method reaches
SOTA under mAP and Rank1 evaluation metrics, which suggests
the effectiveness of our method.

2. Cloth-Consistent Cases. These cases focus on the robust-
ness against traditional ReID challenges (such as illumination, view
changes, and so on). These cases are also crucial since they are also
general in real-world applications, and we conduct experiments on a
commonly used cloth-consistent dataset.

Market1501[77]. To validate that our method is also suitable
for cloth-consistent cases, we further conduct experiments on Mar-
ket1501 (Market). As shown in Table 2, we can conclude that our
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Table 5: The Comparison of Rank1 and mAP Performance with
Other Methods for The Generalization Ability within Cloth-
Consistent Datasets.

Method Venue
Market → Duke
Rank1 mAP

ResNet50 [21] CVPR16 29.1 15.6
IDE [78] CVPR17 38.4 22.0

SPGAN [14] CVPR18 41.1 22.3
PCB [51] ECCV18 43.3 25.2
MGN [55] ACMMM18 56.6 37.4
BOT[43] CVPRw19 43.9 26.1
SBS [22] arxiv20 54.1 32.9
APNet [6] TIP21 37.7 22.8

FA-Net [41] TIP21 49.3 30.7
AGW [67] TPAMI21 53.4 33.4

Pos-Neg [27] TIP22 55.8 36.4
CAL [18] CVPR22 8.3 3.4

CaAug (AGW) 57.2 36.5
CaAug (CAL) 36.6 20.5

method is also suitable for cloth-consistent cases through the com-
parison with cloth-unchanging and cloth-changing methods. The ra-
tionale lies in two terms: 1) Domain Augmentation can still improve
the generalization ability and robustness of features under cloth-
consistent conditions, for adapting features to multiple fictitious
domains. 2) Feature Augmentation can still increase the diversity of
features with the introduction of random noises and capture more
discriminative information with random interpolation.

3. Cloth-Generalized Cases. These cases focus on the general-
ization ability, which is relevant to the scope of the application. We
design three settings that can roughly represent the generalizable set-
ting over cloth-changing and cloth-consistent datasets: Market1501
→ Duke, LTCC → Market1501, LTCC → PRCC.

Market1501 [77] → DukeMTMC-reID [48]. This setting ad-
dresses scenarios involving both cloth-consistent and cloth-changing
cases. In Table 5, we provide a comparison of our method with other
cloth-consistent techniques, demonstrating clear improvements. Ad-
ditionally, we compare the results of Market1501 [77] → LTCC [47]
with CAL and our method, yielding 15.6% and 5.1% versus 35.7%
and 12.3% in rank1 and mAP, respectively. These findings under-
score the enhanced generalization capability of our approach, partic-
ularly highlighting its efficacy in scenarios requiring the learning of
a cloth-generalized model with only cloth-consistent data available.

LTCC [47] → Market1501[77]. This setting effectively encom-
passes scenarios spanning both cloth-consistent and cloth-changing
cases. Table 6 demonstrates the efficacy of our method, showcasing
improvements. These results indicate our ability to discern discrim-
inative cues solely from cloth-changing data, thereby benefiting
scenarios where ensuring performance in the presence of unknown
cloth-changing occurrences is crucial.

LTCC [47] → PRCC[60]. This setting captures scenarios involv-
ing cloth-changing cases. Table 7 presents qualitative comparisons
within cloth-changing cases, clearly demonstrating our ability to

Table 6: The Comparison of Rank1 and mAP Performance
with Other Methods for The Generalization Ability cross Cloth-
Changing and Cloth-Consistent Datasets.

Method Venue
LTCC → Market
Rank1 mAP

ResNet50 [21] CVPR16 24.7 9.6
HACNN [33] CVPR18 26.9 10.4

PCB [51] ECCV18 31.2 13.4
MGN [55] ACMMM18 47.3 21.6
OSNet [83] ICCV19 34.3 15.6
BOT [43] CVPR19 42.4 19.5

MuDeep [46] TPAMI20 29.4 11.2
SBS [22] arxiv20 34.9 14.7

CESD [47] ACCV20 37.4 17.0
AGW [67] TPAMI21 46.7 20.7

Pos-Neg [27] TIP22 48.2 22.6
CAL [18] CVPR22 38.5 18.8

CaAug (AGW) 48.8 23.8
CaAug (CAL) 42.8 19.4

Table 7: The Comparison of Rank1 and mAP Performance with
Other Methods for The Generalization Ability.

Method Venue
LTCC → PRCC
Rank1 mAP

MGN [55] ACMMM18 29.5 40.5
BOT [43] CVPR19 30.1 39.6
SBS [22] arxiv20 28.9 39.3

AGW [67] TPAMI21 31.5 42.0
Pos-Neg [27] TIP22 31.6 42.5

CAL [18] CVPR22 37.9 36.3
CaAug (AGW) 33.5 42.8
CaAug (CAL) 42.3 38.1

learn generalizable features that adapt to various cloth-changing sce-
narios. These findings are particularly beneficial in scenarios where
pedestrians exhibit significant diversity in clothing styles.

5 CONCLUSION
We seek to tackle the formidable cloth-generalized problem in per-
son ReID, an area where existing cloth-changing methods often
overlook the extraction of generalizable insights. In this paper, we
introduce the Mixed Augmentation strategy, designed to guide fea-
ture learning and cultivate resilient features resistant to changes in
clothing. Our approach involves generating multiple fictitious do-
mains to emulate clothing variations and adapting features to these
domains, thereby fostering the acquisition of robust and versatile
features. Additionally, to address the uncertainty inherent in the
cloth-generalized problem, we synthesize features by incorporat-
ing inner-sample and inter-sample random interpolation techniques,
while also supervising the learning of augmented features. While
our method is tailored for the cloth-generalized problem, we firmly
believe that our model possesses the capability to contend with even
more intricate conditions characterized by significant variations.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Cloth-aware Augmentation for Cloth-generalized Person Re-identification ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Amir H. Abdi, Purang Abolmaesumi, and Sidney S. Fels. 2019. Varia-

tional Learning with Disentanglement-PyTorch. arXiv abs/1912.05184 (2019).
arXiv:1912.05184

[2] Mahmoud Afifi and Michael S Brown. 2019. What else can fool deep learning?
Addressing color constancy errors on deep neural network performance. In ICCV.
243–252.

[3] Song Bai, Xiang Bai, and Qi Tian. 2017. Scalable person re-identification on
supervised smoothed manifold. In CVPR. 2530–2539.

[4] Xiaobin Chang, Timothy M Hospedales, and Tao Xiang. 2018. Multi-level factori-
sation net for person re-identification. In CVPR. 2109–2118.

[5] Cuiqun Chen, Mang Ye, Meibin Qi, Jingjing Wu, Jianguo Jiang, and Chia-Wen
Lin. 2022. Structure-Aware Positional Transformer for Visible-Infrared Person
Re-Identification. IEEE TIP 31 (2022), 2352–2364.

[6] Guangyi Chen, Tianpei Gu, Jiwen Lu, Jin-An Bao, and Jie Zhou. 2021. Person
re-identification via attention pyramid. IEEE TIP 30 (2021), 7663–7676.

[7] Jiaxing Chen, Xinyang Jiang, Fudong Wang, Jun Zhang, Feng Zheng, Xing Sun,
and Wei-Shi Zheng. 2021. Learning 3d shape feature for texture-insensitive person
re-identification. In CVPR. 8146–8155.

[8] Jiaxing Chen, Wei-Shi Zheng, Qize Yang, Jingke Meng, Richang Hong, and
Qi Tian. 2022. Deep Shape-Aware Person Re-Identification for Overcoming
Moderate Clothing Changes. IEEE Transactions on Multimedia 24 (2022), 4285–
4300. https://doi.org/10.1109/TMM.2021.3114539

[9] Xuesong Chen, Canmiao Fu, Yong Zhao, Feng Zheng, Jingkuan Song, Rongrong
Ji, and Yi Yang. 2020. Salience-guided cascaded suppression network for person
re-identification. In CVPR. 3300–3310.

[10] Zhiyi Cheng, Xiaoxiao Li, and Chen Change Loy. 2017. Pedestrian color nam-
ing via convolutional neural network. In Asian Conference on Computer Vision.
Springer, 35–51.

[11] Seokeon Choi, Sumin Lee, Youngeun Kim, Taekyung Kim, and Changick Kim.
2020. Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-
Infrared Person Re-Identification. In CVPR.

[12] Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christo-
pher Ré. 2019. A kernel theory of modern data augmentation. In ICML. PMLR,
1528–1537.

[13] Weijian Deng, Liang Zheng, Qixiang Ye, Guoliang Kang, Yi Yang, and Jianbin
Jiao. 2018. Image-image domain adaptation with preserved self-similarity and
domain-dissimilarity for person re-identification. In CVPR. 994–1003.

[14] Weijian Deng, Liang Zheng, Qixiang Ye, Guoliang Kang, Yi Yang, and Jianbin
Jiao. 2018. Image-image domain adaptation with preserved self-similarity and
domain-dissimilarity for person re-identification. In CVPR. 994–1003.

[15] Terrance DeVries and Graham W Taylor. 2017. Improved regularization of
convolutional neural networks with cutout. arXiv (2017).

[16] Shang Gao, Jingya Wang, Huchuan Lu, and Zimo Liu. 2020. Pose-Guided Visible
Part Matching for Occluded Person ReID. In CVPR.

[17] Douglas Gray, Shane Brennan, and Hai Tao. 2007. Evaluating appearance models
for recognition, reacquisition, and tracking. In PETSw, Vol. 3. Citeseer, 1–7.

[18] Xinqian Gu, Hong Chang, Bingpeng Ma, Shutao Bai, Shiguang Shan, and Xilin
Chen. 2022. Clothes-Changing Person Re-identification with RGB Modality Only.
In CVPR. 1060–1069.

[19] Peini Guo, Hong Liu, Jianbing Wu, Guoquan Wang, and Tao Wang.
2023. Semantic-aware Consistency Network for Cloth-changing Person Re-
Identification. In ACMMM. 8730–8739.

[20] Ke Han, Shaogang Gong, Yan Huang, Liang Wang, and Tieniu Tan. 2023. Clothing-
Change Feature Augmentation for Person Re-Identification. In CVPR. 22066–
22075.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[22] Lingxiao He, Xingyu Liao, Wu Liu, Xinchen Liu, Peng Cheng, and Tao Mei. 2020.
Fastreid: A pytorch toolbox for general instance re-identification. arXiv (2020).

[23] Shuting He, Weihua Chen, Kai Wang, Hao Luo, Fan Wang, Wei Jiang, and Henghui
Ding. 2024. Region Generation and Assessment Network for Occluded Person
Re-Identification. IEEE TIFS 19 (2024), 120–132. https://doi.org/10.1109/TIFS.
2023.3318956

[24] Peixian Hong, Tao Wu, Ancong Wu, Xintong Han, and Wei-Shi Zheng. 2021.
Fine-grained shape-appearance mutual learning for cloth-changing person re-
identification. In CVPR. 10513–10522.

[25] Yan Huang, Qiang Wu, Jingsong Xu, and Yi Zhong. 2019. Celebrities-ReID: A
benchmark for clothes variation in long-term person re-identification. In IJCNN.
IEEE, 1–8.

[26] Yan Huang, Jingsong Xu, Qiang Wu, Yi Zhong, Peng Zhang, and Zhaoxiang
Zhang. 2019. Beyond scalar neuron: Adopting vector-neuron capsules for long-
term person re-identification. IEEE TCSVT (2019).

[27] Xuemei Jia, Xian Zhong, Mang Ye, Wenxuan Liu, and Wenxin Huang. 2022.
Complementary Data Augmentation for Cloth-Changing Person Re-Identification.
IEEE TIP (2022).

[28] Xin Jin, Tianyu He, Kecheng Zheng, Zhiheng Yin, Xu Shen, Zhen Huang, Ruoyu
Feng, Jianqiang Huang, Zhibo Chen, and Xian-Sheng Hua. 2022. Cloth-changing
person re-identification from a single image with gait prediction and regularization.
In CVPR. 14278–14287.

[29] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv (2013).

[30] Diangang Li, Xing Wei, Xiaopeng Hong, and Yihong Gong. 2020. Infrared-
visible cross-modal person re-identification with an x modality. In AAAI, Vol. 34.
4610–4617.

[31] Hanjun Li, Gaojie Wu, and Wei-Shi Zheng. 2021. Combined depth space based
architecture search for person re-identification. In CVPR. 6729–6738.

[32] Pan Li, Da Li, Wei Li, Shaogang Gong, Yanwei Fu, and Timothy M Hospedales.
2021. A simple feature augmentation for domain generalization. In ICCV. 8886–
8895.

[33] Wei Li, Xiatian Zhu, and Shaogang Gong. 2018. Harmonious Attention Network
for Person Re-Identification. In CVPR.

[34] Yulin Li, Jianfeng He, Tianzhu Zhang, Xiang Liu, Yongdong Zhang, and Feng Wu.
2021. Diverse part discovery: Occluded person re-identification with part-aware
transformer. In ICCV. 2898–2907.

[35] Yulin Li, Jianfeng He, Tianzhu Zhang, Xiang Liu, Yongdong Zhang, and Feng Wu.
2021. Diverse part discovery: Occluded person re-identification with part-aware
transformer. In CVPR. 2898–2907.

[36] Yu-Jhe Li, Zhengyi Luo, Xinshuo Weng, and Kris M Kitani. 2020. Learning
Shape Representations for Clothing Variations in Person Re-Identification. arXiv
(2020).

[37] Wenqi Liang, Guangcong Wang, Jianhuang Lai, and Xiaohua Xie. 2021.
Homogeneous-to-heterogeneous: Unsupervised learning for rgb-infrared person
re-identification. IEEE TIP 30 (2021), 6392–6407.

[38] Fangyi Liu, Mang Ye, and Bo Du. 2023. Dual Level Adaptive Weighting for
Cloth-Changing Person Re-Identification. IEEE TIP (2023).

[39] Fangyi Liu and Lei Zhang. 2019. View confusion feature learning for person
re-identification. In ICCV. 6639–6648.

[40] Fangyi Liu and Lei Zhang. 2019. View confusion feature learning for person
re-identification. In ICCV. 6639–6648.

[41] Yiheng Liu, Wengang Zhou, Jianzhuang Liu, Guo-Jun Qi, Qi Tian, and Houqiang
Li. 2021. An end-to-end foreground-aware network for person re-identification.
IEEE TIP 30 (2021), 2060–2071.

[42] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J Black. 2015. SMPL: A skinned multi-person linear model. TOG
34, 6 (2015), 1–16.

[43] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei Jiang. 2019. Bag of
tricks and a strong baseline for deep person re-identification. In CVPRw. 0–0.

[44] Jiaxu Miao, Yu Wu, Ping Liu, Yuhang Ding, and Yi Yang. 2019. Pose-guided
feature alignment for occluded person re-identification. In Proceedings of the
IEEE/CVF international conference on computer vision. 542–551.

[45] Yi-Xing Peng, Jile Jiao, Xuetao Feng, and Wei-Shi Zheng. 2022. Consistent
Discrepancy Learning for Intra-camera Supervised Person Re-identification. IEEE
TMM (2022), 1–1. https://doi.org/10.1109/TMM.2022.3146775

[46] Xuelin Qian, Yanwei Fu, Tao Xiang, YuGang Jiang, and Xiangyang Xue.
2019. Leader-based Multi-Scale Attention Deep Architecture for Person Re-
identification. IEEE TPAMI (2019).

[47] Xuelin Qian, Wenxuan Wang, Li Zhang, Fangrui Zhu, Yanwei Fu, Tao Xiang,
Yu-Gang Jiang, and Xiangyang Xue. 2020. Long-term cloth-changing person
re-identification. In ACCV.

[48] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi.
2016. Performance measures and a data set for multi-target, multi-camera tracking.
In ECCV. 17–35.

[49] Maximilian Seitzer. 2020. NeurIPS 2019 Disentanglement Challenge: Improved
Disentanglement through Aggregated Convolutional Feature Maps. arXiv (2020).
arXiv:2002.10003

[50] Yumin Suh, Jingdong Wang, Siyu Tang, Tao Mei, and Kyoung Mu Lee. 2018.
Part-aligned bilinear representations for person re-identification. In ECCV. 402–
419.

[51] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin Wang. 2018. Beyond
part models: Person retrieval with refined part pooling (and a strong convolutional
baseline). In ECCV. 480–496.

[52] Luke Taylor and Geoff Nitschke. 2018. Improving deep learning with generic
data augmentation. In SSCI. 1542–1547.

[53] Fangbin Wan, Yang Wu, Xuelin Qian, Yixiong Chen, and Yanwei Fu. 2020. When
person re-identification meets changing clothes. In CVPRw. 830–831.

[54] Guan’an Wang, Shuo Yang, Huanyu Liu, Zhicheng Wang, Yang Yang, Shuliang
Wang, Gang Yu, Erjin Zhou, and Jian Sun. 2020. High-order information matters:
Learning relation and topology for occluded person re-identification. In CVPR.
6449–6458.

[55] Guanshuo Wang, Yufeng Yuan, Xiong Chen, Jiwei Li, and Xi Zhou. 2018.
Learning Discriminative Features with Multiple Granularities for Person Re-
Identification. In ACMMM. 274–282.

https://arxiv.org/abs/1912.05184
https://doi.org/10.1109/TMM.2021.3114539
https://doi.org/10.1109/TIFS.2023.3318956
https://doi.org/10.1109/TIFS.2023.3318956
https://doi.org/10.1109/TMM.2022.3146775
https://arxiv.org/abs/2002.10003


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[56] Shujuan Wang, Run Liu, Huafeng Li, Guanqiu Qi, and Zhengtao Yu. 2023. Oc-
cluded Person Re-Identification via Defending Against Attacks From Obstacles.
IEEE Transactions on Information Forensics and Security 18 (2023), 147–161.
https://doi.org/10.1109/TIFS.2022.3218449

[57] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. 2018. Person transfer gan
to bridge domain gap for person re-identification. In CVPR. 79–88.

[58] Chao Wu, Wenhang Ge, Ancong Wu, and Xiaobin Chang. 2022. Camera-
Conditioned Stable Feature Generation for Isolated Camera Supervised Person
Re-IDentification. In CVPR. 20238–20248.

[59] Wanlu Xu, Hong Liu, Wei Shi, Ziling Miao, Zhisheng Lu, and Feihu Chen. 2021.
Adversarial Feature Disentanglement for Long-Term Person Re-identification.. In
IJCAI. 1201–1207.

[60] Qize Yang, Ancong Wu, and Wei-Shi Zheng. 2019. Person re-identification by
contour sketch under moderate clothing change. IEEE TPAMI (2019).

[61] Zizheng Yang, Xin Jin, Kecheng Zheng, and Feng Zhao. 2022. Unleashing
Potential of Unsupervised Pre-Training With Intra-Identity Regularization for
Person Re-Identification. In CVPR. 14298–14307.

[62] Zhengwei Yang, Meng Lin, Xian Zhong, Yu Wu, and Zheng Wang. 2023.
Good Is Bad: Causality Inspired Cloth-Debiasing for Cloth-Changing Person
Re-Identification. In CVPR. 1472–1481.

[63] Mang Ye, Cuiqun Chen, Jianbing Shen, and Ling Shao. 2022. Dynamic Tri-Level
Relation Mining With Attentive Graph for Visible Infrared Re-Identification. IEEE
TIFS 17 (2022), 386–398. https://doi.org/10.1109/TIFS.2021.3139224

[64] Mang Ye, Xiangyuan Lan, Qingming Leng, and Jianbing Shen. 2020. Cross-
modality person re-identification via modality-aware collaborative ensemble learn-
ing. IEEE TIP 29 (2020), 9387–9399.

[65] Mang Ye, Xiangyuan Lan, Zheng Wang, and Pong C. Yuen. 2020. Bi-Directional
Center-Constrained Top-Ranking for Visible Thermal Person Re-Identification.
IEEE TIFS 15 (2020), 407–419. https://doi.org/10.1109/TIFS.2019.2921454

[66] Mang Ye, Weijian Ruan, Bo Du, and Mike Zheng Shou. 2021. Channel Augmented
Joint Learning for Visible-Infrared Recognition. In ICCV. 13567–13576.

[67] Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling Shao, and Steven CH Hoi.
2021. Deep learning for person re-identification: A survey and outlook. IEEE
TPAMI 44, 6 (2021), 2872–2893.

[68] Mang Ye, Jianbing Shen, and Ling Shao. 2021. Visible-Infrared Person Re-
Identification via Homogeneous Augmented Tri-Modal Learning. IEEE TIFS 16
(2021), 728–739. https://doi.org/10.1109/TIFS.2020.3001665

[69] Shijie Yu, Shihua Li, Dapeng Chen, Rui Zhao, Junjie Yan, and Yu Qiao. 2020.
COCAS: A Large-Scale Clothes Changing Person Dataset for Re-identification.
In CVPR. 3400–3409.

[70] Zhengxu Yu, Yilun Zhao, Bin Hong, Zhongming Jin, Jianqiang Huang, Deng Cai,
Xiaofei He, and Xian-Sheng Hua. 2021. Apparel-invariant feature learning for
person re-identification. IEEE TMM (2021).

[71] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. 2019. Cutmix: Regularization strategy to train strong classifiers
with localizable features. In ICCV. 6023–6032.

[72] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond empirical risk minimization. arXiv p (2017).

[73] Peng Zhang, Jingsong Xu, Qiang Wu, Yan Huang, and Xianye Ben. 2021. Learning
Spatial-Temporal Representations Over Walking Tracklet for Long-Term Person
Re-Identification in the Wild. IEEE Transactions on Multimedia 23 (2021), 3562–
3576. https://doi.org/10.1109/TMM.2020.3028461

[74] Tianyu Zhang, Lingxi Xie, Longhui Wei, Yongfei Zhang, Bo Li, and Qi Tian.
2020. Single camera training for person re-identification. In AAAI, Vol. 34. 12878–
12885.

[75] Kecheng Zheng, Cuiling Lan, Wenjun Zeng, Jiawei Liu, Zhizheng Zhang, and
Zheng-Jun Zha. 2021. Pose-guided feature learning with knowledge distillation
for occluded person re-identification. In ACMMM. 4537–4545.

[76] Liang Zheng, Yujia Huang, Huchuan Lu, and Yi Yang. 2019. Pose-invariant
embedding for deep person re-identification. IEEE TIP 28, 9 (2019), 4500–4509.

[77] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian.
2015. Scalable person re-identification: A benchmark. In CVPR. 1116–1124.

[78] Liang Zheng, Hengheng Zhang, Shaoyan Sun, Manmohan Chandraker, Yi Yang,
and Qi Tian. 2017. Person re-identification in the wild. In CVPR. 1367–1376.

[79] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng, Yi Yang, and
Jan Kautz. 2019. Joint discriminative and generative learning for person re-
identification. In CVPR. 2138–2147.

[80] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2020. Random
erasing data augmentation. In AAAI, Vol. 34. 13001–13008.

[81] Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li, and Yi Yang. 2018. Camera
style adaptation for person re-identification. In CVPR. 5157–5166.

[82] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. 2022.
Domain generalization: A survey. IEEE TPAMI (2022).

[83] Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and Tao Xiang. 2019. Omni-
Scale Feature Learning for Person Re-Identification. In ICCV.

[84] Zihui Zhou, Hong Liu, Wei Shi, Hao Tang, and Xingyue Shi. 2022. A
Cloth-Irrelevant Harmonious Attention Network for Cloth-Changing Person Re-
identification. In ICPR. 989–995. https://doi.org/10.1109/ICPR56361.2022.

9956160
[85] Kuan Zhu, Haiyun Guo, Zhiwei Liu, Ming Tang, and Jinqiao Wang. 2020. Identity-

guided human semantic parsing for person re-identification. In ECCV. Springer,
346–363.

[86] Xiaoke Zhu, Xiao-Yuan Jing, Xinge You, Wangmeng Zuo, Shiguang Shan, and
Wei-Shi Zheng. 2018. Image to Video Person Re-Identification by Learning
Heterogeneous Dictionary Pair With Feature Projection Matrix. IEEE TIFS 13, 3
(2018), 717–732. https://doi.org/10.1109/TIFS.2017.2765524

https://doi.org/10.1109/TIFS.2022.3218449
https://doi.org/10.1109/TIFS.2021.3139224
https://doi.org/10.1109/TIFS.2019.2921454
https://doi.org/10.1109/TIFS.2020.3001665
https://doi.org/10.1109/TMM.2020.3028461
https://doi.org/10.1109/ICPR56361.2022.9956160
https://doi.org/10.1109/ICPR56361.2022.9956160
https://doi.org/10.1109/TIFS.2017.2765524

	Abstract
	1 Introduction
	2 Related Works
	2.1 Person Re-identification
	2.2 Augmentation-based Methods
	2.3 Variational Auto-Encoder

	3 Our Approach
	3.1 Domain Augmentation
	3.2 Feature Augmentation
	3.3 Loss Functions
	3.4 Implementation Details

	4 Experiments
	4.1 Datasets and Evaluation Protocol
	4.2 Ablation Study
	4.3 Comparison with State-Of-The-Art methods

	5 Conclusion
	References

