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1 EXPERIMENTS
The Effects of Consisting Components.We further assess the
efficacy of Domain Augmentation and Feature Augmentation with
AGW [3] and MGN [2] baselines, demonstrating that our module
serves as an easily integratable enhancement for models, result-
ing in improved generalization ability. Our experiments are con-
ducted using the LTCC dataset, and the results of the general setting
are summarized in Table 1. It is evident that our strategy consis-
tently enhances the overall generalization ability of other methods,
seamlessly integrating into existing frameworks. Additionally, we
perform experiments with CAL to showcase the performance of
inner-sample and inter-sample exchanging in Table ??, demonstrat-
ing the positive impact of both strategies on generalization ability
and robustness.

The Augmentation Strategy Comparison. As shown in Ta-
ble 3, the results indicate that our strategy effectively mitigates the
potential issue of augmenting data with poor quality. Moreover,
our domain augmentation approach saves computational resources
by utilizing a frozen model and serves as an efficient integration
strategy for various augmentation techniques.

Parameter Analysis. We further investigate the parameter𝑚,
which governs the probability of exchanging elements in the feature
augmentation strategy, as illustrated in Figure 1. The results demon-
strate a significant improvement in performance once the feature
augmentation strategy is applied to the Baseline. We determine
that setting𝑚=0.2 yields optimal performance.
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Figure 1: The parameter analysis for exchanging elements.
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Table 1: Ablation studies on different components of our
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- ✓ ✓ - 71.2 34.8
- ✓ ✓ ✓ 71.8 35.7
✓ - - - 71.8 34.9
✓ - ✓ - 74.5 36.6
✓ - ✓ ✓ 75.4 37.1

Table 2: Ablation studies on Feature Augmentation in LTCC
with the CAL Baseline.

Inner-sample Inter-sample General Cloth-changing
Rank1 mAP Rank1 mAP

- - 74.2 40.8 40.1 18.0
- ✓ 76.5 44.6 43.4 24.6
✓ ✓ 78.1 46.4 46.9 26.5

Table 3: The Comparison with Other Augmentation Strate-
gies in LTCC with the AGW Baseline.
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Feature Augmentation 74.7 36.5
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