Appendix: Twice regularized MDPs and the equivalence between robustness
and regularization

This appendix provides proofs for all of the results stated in the paper. We first recall the following
theorem used in the sequel and referred to as Fenchel-Rochafellar duality [4, Thm 3.3.5].

Theorem (Fenchel-Rockafellar duality). Let X,Y two Euclidean spaces, f : X — Randg:Y — R
two proper convex functions, and A : X — Y a linear mapping such that 0 € core(dom(g) —
A(dom(f E] Then, it holds that

min f(z) +g(Az) = max —f (=A%) — g"(y)- 4)

A Reward-Robust MDPs

A.1 Proof of Proposition 3.1]

Proposition. For any policy m € Af\, the robust value function v™Y is the optimal solution of the
robust optimization problem:

max(v po) 5. t. v < Tp v forall (P,r) € U. Py)
vERS

Proof. Let v* an optimal point of (Py). By definition of the robust value function, v™¥ =
T™Hy™ " = min p ey T(”Pyr)vﬂvu. In particular, v™¥ < T(Trpm)v”’” for all (P,7) € U, so the
robust value is feasible and by optimality of v*, we get (v*, 1) > (v 11y). Now, we aim to show

that any feasible v € RS satisfies v < v™¥. Let an arbitrary € > 0. Then, there exists (P,,r.) € U
such that

T ™ e > Tfp, , v™Y. (5)
This yields:
v — ,UT(‘,Z/{ — - TTK‘,Z/{/UW,Z/{ [1} — T L{ T U]
<v+e—Tlp , v [By Eq. @)]
< T Uy e — T{Tpﬁrf)vﬂ’u [v is feasible for (Py)]
< T Uy 4 e — U™ U [T”v”u = (Pngrelu T(P7)u < T(P U Yu € RS]

=T (v —v™) +e.
Thus, v — v™Y < T™H (v — v™H) + ¢, which we iteratively apply as follows:
v— ™Y <TTU(y —p™U) ¢
< T”’M(T”’u(v — U”’u) +e)+e By 271, v < w = Ty < T”’uw]
= (T™)* (v = ™) +ye + e
< (T™HM2(T™H (v — ™) +€) +ve+ e

n

< (TW,ZA)nJrl(,U _ Uw,u) + Z ,Yke

k=0
n
= (T”’“)”Hv — o™ 4 Z’yke. [v”’u = T”’UU”’M]
k=0
Setting n — oo yields v — v™ Y < 1= . Since both € > 0 and v were taken arbitrarily, v* < v™
while we have already shown that ( , ,u0> > (v™" o). By positivity of the probability dlStI’lbuthIl
Hos it results that (v*, po) = (v, o), and since uo > 0, we obtain v = v*. O

Given C' C R¥, we say that z € core(C) if forall d € RS there exists a small enough ¢ € R such that
x4+ td € C [4].
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A.2  Proof of Theorem 3.1]

Theorem (Reward-robust MDP). Assume that U = {Py} x (o + R). Then, for any policy m € A3,
the robust value function v™Y is the optimal solution of the convex optimization problem:

gré%)é(v,uo) s. . v(s) < T(p, oyv(8) — or, (=) forall s € S .

Proof. Forall s € S, define: F'(s) := maxp,yey {v(s) — r"(s) —yP7v(s)}. It corresponds to
the robust counterpart of (Py) at s € S. Thus, the robust value function v™ is the optimal solution
of:

ma{g(v,,u()) s.t. F(s) <Oforalls € S. (6)
veR

Based on the structure of the uncertainty set/ = { Py} % (19+7R), we compute the robust counterpart:
F _ T _ PTr
(5) = max_ {v(s) = 1'"(s) = YFFv(s)}

= T _ PTr
T”rT’:rE)i)i,reR{v(S) ' (s) =Py u(s)}

= max {v(s) — (1] () + 17 (s) — T v(s)} [(ro+7)" = 1§ ++7 Ve AY]
= max {v(s) =" (s) = 1§ (s) = VP u(s))

= max {v(s) = 17 (5) = I, v(5)} Ty oy 0(8) = 75 (5) + 7Py o(s)]
= max{—r"(s)} + v(s) = T{p, ) v(s)

= mag{~17() = 0r()} + () = Tp, r,y0(s)

= — min {17 () + 0 (1)} + (s) — Tfp, . v(5)

= = min {{ro ) + 0 (1)} +0(s) = Tp, r,y0(9) [r™(s) = (re, )]

By the rectangularity assumption, R = X scsR and for all r := (r,)scs € RY, we have o (r) =
> wes Or, (rs). As such,
F(S) = — Iélﬂig/,{,{<rs; 7Ts> + Z 5725/ (rs/)} + 'U(S) — T(T}')O,T‘o)v(s)
' s'eS

= — min{(rs, 7)) + 6r, (rs)} +v(s) = T(p, 1)V (5),
reR¥ ’

where the last equality holds since the objective function is minimal if and only if r; € Rs.

We now aim to apply Fenchel-Rockafellar duality to the minimization problem. Let the function
I RA — R defined as r, — (rs,ms), and consider the support function d%, : RA SR together
with the identity mapping Id4 : R* — R*. Clearly, dom(f) = R*, dom(éz.) = R, and
dom(dg,) — Id4(dom(f)) = Ry — R = RA. Therefore, core(dom(dg,) — A(dom(f))) =
core(RA) =R* and 0 € R*. We can thus apply Fenchel-Rockafellar duality: noting that Id 4 =
(Id4)" and (6%, )"(y) = or. (y), we get

min, (7(r2) 05 (1)} = = min {f (=y) + 0=.)" @)} = = min (7" (~9) +ox. ()}

It remains to compute

Fr(=y) = max —(re,y) = (rs, ms) = max (r, =y —75) =

0if —y—ms=0
+o00 otherwise
and obtain
F(s) = yfgﬂi%g{f*(—y) +or, (W)} +0(s) = T(p, 1) 0(s) = o, (=7s) +v(5) = T(p, v v(s)-
We can thus rewrite the optimization problem (6)) as:

mag(v,mﬁ s. toR, (—7s) +0(s) — T(p, ,v(s) < Oforalls € S,
vER ’

which concludes the proof. O
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A.3 Proof of Corollary

Corollary. Let m € A5 andU = {Py} x (ro + R). Further assume that for all s € S, the reward
uncertainty set at s is Ry := {rs € R : ||r|| < a}. Then, the robust value function v™" is the
optimal solution of the convex optimization problem:

Ir)ré?é(v,,ug) s. . v(s) < T(p, o v(8) — agl[ms|| forall s € S .

Proof. We evaluate the support function:

OR, (_773) =

max

@

(rs, =ms) = ail|=msll = agims|l,

ro€RA |7, || <ar

where equality (1) holds by definition of the dual norm. Applying Thm. (3.1} the robust value function

v™H is the optimal solution of: max,cgs (v, 1) s. t. o ||7s||+v(s)—

which concludes the proof.

(Po,ro)

T v(s) <Oforalls €S,

Ball-constraint with arbitrary norm. In the case where reward ball-constraints are defined according

to an arbitrary norm ||-||, with dual norm |||

OR, (_WS) =

max

(rs,

rs€ERA|rs|[o <ol

—7s) = ag || =]

o, the support function becomes:

* .

_ T
a* = as||7T8| a

A.4 Related Algorithms: Uncertainty sets from regularizers

Table 2: Summary table of existing policy regularizers and generalization to our R? function.

Negative Shannon

KL divergence

Negative Tsallis

R? function

Regularizer 2

1 2
2 mo(@)n(m(a) | $™ 7 (a)1n (“(“)) gUIml=1) Imal(@i+al Al
acA ac A d((l)
Conjugate Q* Not in closed-form
11 2 2
In (Z eqsm)) In (Z d(a)e%(”) 575 2 (as(a)’=7(g)’)
acA acA o
Gradient VQ* Not in closed-form
(@) = <] ) = | (@) = (g:(@) = Tlae))
s Speacls® | Sy €l ®
Reward Uncer- | (s, a)-rectangular (s, a)-rectangular (s, a)-rectangular s-rectangular
tainty

RY% (7) =

(=) +)

In (d(a)) + R, (7)

3

B”'H (Tos,a;)

Transition Un-
certainty

(s, a)-rectangular

(s, a)-rectangular

(s, a)-rectangular

s-rectangular

{Po(-]s,a)}

{Po(-[s,a)}

{Po(-[s,a)}

By (Pos,al)
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Negative Shannon entropy. Each (s, a)-reward uncertainty set is R} () := [In (/r.(a)) , +00). We
compute the associated support function:

TR () = | B )

= max Z —r(s,a)ms(a)

e TN T NS /
r(s,a’):r(s,a )GRSVQI(W),(J/ cA acA

= max — Tsla)r\s,a
r(s,a’):r(s,a’)>In(1/xs(a)),a’ €A % é( ) ( ’ )

= Z 7s(a) In(ms(a)), @)
acA

where the last equality results from the fact that 7, > 0, and —r(s, a)7s(a) is maximal when r(s, a)
is minimal. We thus obtain the negative Shannon entropy.

KL divergence. Similarly, given d € A 4, let REY; () :=In(d(a)) + RYS (7) V(s,a) € X. Then

ORkL(m) (—Ts) = max —r(s,a)ms(a)
2 (m) ® r(s,a/):r(s,a/)ER?La,(Tr),aIEA;

= max —r(s,a)ms(a)
r(s,a’)+In(d(a)): ;4
r(s,a")eRLS , (m).a’ €A

- max > —(r(s,a) + In(d(a))ms(a)

r(s,a’):
r(s,a/)ERgsa, (m),a’€eA a€A

max {(= > mula)r(s,a)} = Y mi(a) In(d(a))

r(s,a’):
r(s,a')Gsta,(ﬂ'),a'eA a€A acA

> mi(a)In(my(a)) = Y ms(a) In(d(a)),

acA acA

where the last equality uses Eq. (7). We thus recover the KL divergence Q(m) =
Y aca Ts(a) In (ms(a)/a(a)).

. . . 1—ms
Negative Tsallis entropy. Given RY () := [ﬂi@

2 i

+oo) Y(s,a) € X, we compute:

ORI (n) (—Ts) = max —r(s,a)ms(a)
2(m) r(s,a'):r(s,a')ERZ,a,(7r),a/€.AGGZA

= max Z —r(s,a)ms(a)
r(s,a’)r(s,a’)e [1_+§(a),+00) a'€A gen

-y L ®)

acA
=3 Z ms(a) + 2 Z ms(a)® = ) + §||7rs||2,

acA acA

where Eq. () also comes from the fact that w5 > 0, and —r(s, a)7s(a) is maximal when r(s, a) is
minimal. We thus obtain the negative Tsallis entropy Q(ms) = (||, * — 1).

The reward uncertainty sets associated to both KL and Shannon entropy are similar, as the former
amounts to translating the latter by a negative constant (translation to the left). As such, both yield
reward values that can be either positive or negative. This is not the case of the negative Tsallis, as its
minimal reward is 0, attained for a deterministic action policy, i.e., when 74(a) = 1.

Table [2] summarizes the properties of each regularizer. For the Tsallis entropy, we denote

%’ where Q[(qs) - A is a subset

of actions: A(gs) = {a € A : 1+ ig(ay)) > Zj':o gs(a¢y),i € {1,---,|A|}}, and
a(;) is the action with the -th maximal value [20].

by 7 : R* — R the function qs —
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A.5 Proof of Proposition3.2]

Proposition. Assume that U = {Py} x (1o + R) with Ry = {r, € R : ||ry|| < aZ}. Then, the
gradient of the reward-robust objective Jy () := (v™Y o) is given by

Viu(r) = E(s o, [v (@) <qmu(s,a) 7ﬁ(all)ﬂ

where |1, is the occupancy measure under the nominal model Py and policy .

We prove the following more general result. To establish Prop. we then set af’ = 0 and apply
Thm.to replace v™% = v, and g% = g™ H

Theorem. Set (), .2 (ms) := ||7s]|(af + al'~||v||). Then, the gradient of the R? objective Jy:(m) :=
(U 25 Ho) 5 gtven by

Ve (m) = Esna,, . [Z Ws(a)Vlnﬂs(a)q”’Rz(s,a) - VQU7R2(F5)] ,
acA

RSXI

where d,,, » := pg (Is — yPF) ™1, with po € the initial state distribution.

Proof. By linearity of the gradient operator, VJ,:(7) = <vva2’ o). We thus need to compute
VR Using the fixed point property of v™®" w.r.t. the R2 Bellman operator yields:

Vv”’Rz(s)
=V (1 () + AT () = @ ()

- (Z ﬂ-“"(a)(TO(Sva) + '7<P0('|37 a)a Uﬂl’R2>) - QU,RZ (Ws)>

acA
=Y Vn(a ( s,a) +7(Po("]s,a), v 2>)
acA
+ 7 Z 7s(a)(Po(+]s,a), Vo™ R ) = VQ, 2 (ms) [Linearity of gradient and product rule]
acA

=" V()™ (s,a) + 7 > we(a){Pol-]s,a), Vo) = VQ, e(ms) g™ (s,a) = ro(s, a) +y(Po(-|s, a),v™)]
ac€A a€A

= Z ms(a)(Vinrs(a )q“’R2(5, a) +v{Py(-|s, a), VUW’R2>) = VQ, 2 (ms) [Vrs = 7,V In(7s)]
acA

- Z 7T5 v In 7Té( )qﬂ-’Rz(Sa Cl) - VQ@,RZ (7'('3) + ’Y<PO(|57 CL), VUW7R2>)'
acA

Thus, the components of Vo™ are the non-regularized value functions corresponding to the modified

reward R(s,a) := VInm,(a)g™® (s,a) — VQ, w2 (7s). By the fixed point property of the standard
Bellman operator, it results that:

Vo (s) = (Is — 7FF) ! (Z 7.()(VInm.(a)g™ (-.a) - VQU,R2<7T.>>> (s)

acA
and
=3 po(s) V0™ (s)
SES
= po(s)(Is —vF5) " (Z . (a)(VInr(a)g™ (-,a) — VY, o (M)) (s)
seES acA
= Zduom(s) (Z 7s(a)VIn ﬂs(a)q”’Rz(s,a) - VQmRz(ﬂ'S)) ,
sES acA
by definition of d,, . O
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The subtraction by VQU’Rz(wS) also appears in [10]. However, here, the gradient includes partial
derivatives that depend on both the policy and the value itself. Let’s try to compute the gradient of
the double regularizer Q,, .2 (7s) = [|7s/| (o + aPy|lv™%|)). By the chain-rule we have that:

an,RZ .
() = 2 gy T +Zam Vo)

ac

= Y (ot + ol VA @) + T ol (”) " (5)
a€A sES

o + aP~|lv™ R? g R .

- Y ma) ( ”jH' Iy (a) + 3~ bl C gy )) .

a€EA S seS | ||

We remark here an interdependence between V2, .2 (ms) and Vu™R’ (s): computing the gradient

VQ, .

2 () requires to know AL (s) and vice versa. There may be a recursion that still enables

to compute these gradients, which we leave for future work.

B General robust MDPs

B.1 Proof of Theorem 4.1

Theorem (General robust MDP). Assume thatUd = (Py + P) x (ro + R). Then, for any policy
7 € AS, the robust value function v™! is the optimal solution of the convex optimization problem:

max (v, pio) 5. 1. v(s) < T{p, .\v(s) — or, (=7s) — op,(—yv - 7s) forall s € S,
vERS 0o

where [v - 5] (s, a) == v(s")ms(a) V(s a) € X.

Proof. The robust value function v™# is the optimal solution of:

ma)s(@,uo) s.t. F(s) <Oforall s € S, )
veER

where F'(s) := max(p ey {v(s) —r™(s) —yP™v(s)} is the robust counterpart of ats € S.
Let’s compute it based on the structure of the uncertainty set i = (Py + P) X (ro + R):

F(s) =

ma; v(s) —r'™(s) — vP™u(s
(P',r’)e(Po+7)§)><(ro+R){ (s) (8) —vP"u(s)}

max {v(s) = 7" (s) —yP'™v(s)}
P':P'=Py+P,PEP
r"r'—roJrr reR

pamax{o(s) = (15 () + 17(s) = /(B + PTe(s)} (Py+ P)" = Pf + P~,

(ro+7)" =15 +17]

pamax {o(s) = 15(s) = 17() = P v(s) — 7Pu(s)}

panse {0(s) = Tk, y0(s) = 17() = yP70(s) } [Ty 0y 0(8) = 15 (5) + 7Py v (s)]

max{—y P v(s)} + max{—r7(s)} + v(s) = T(p, ) v(s)
= min{yP"v(s)} — min{r™(s)} +v(s) = I(p, r,)v(s)

_ Per]ginx S{’YP””U(S) +0p(P)} — Trgﬂiag{rﬂ(s) +or(r)}

+0(8) = T(py ry0(3)

= puin Ay(PTv) +0p(P)} — min {(ra, ) + 0r (1)}

+0(s) = T{h, ryy0(5)- [PTu(s) = (P, 0),77(s) = (rs, ms)]
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As shown in the proof of Thm. 3.1} min, e {(rs, 7s) + 0 (r)} = min, cga{(rs,ms) + oz, (rs)}
thanks to the rectangularity assumption. Similarly, by rectangularity of the transition uncertainty set,

forall P := (Ps)ses € RY, we have op(P) =3 cs0p. (Ps). Assuch,

poin, Jy(BSv) +0p(P)) = | min {y(P5v) + 526@ (Py)}

in_ {y(PT 5p.(P.)},
PTEID?X{W <> v) +0p, (Ps)}

where the last equality holds since the objective function is minimal if and only if P € P;. Finally,

F(s)=— Pmiﬂg){{*y(Psﬂ,U) +0p, (Ps)} — 7-22}1§IA{<T5’7TS> + R, (rs)} +v(s) — T(rPo,ro)v(S)-

s

Referring to the proof of Thm.[3.1] we know that — min, cpx {(rs, 75) + 0 (r)} = or,(—7s), SO

F(s) = = min {1(PF,0) +8p, ()} + 0%, (~7,) & 0(s) = T 1,006

s

Let the matrix v - 7, € RY defined as [v - 7,](s', a) := v(s')m4(a) for all (s',a) € X. Further define
©(Ps) := v(PT,v), which we can rewrite as ¢(Ps) = v(Ps, v - m4). Then, we have that:

Piréiélx{%PS, v) +0p,(Ps)} = Pzr}eiﬂlgx{so(Ps) +0p,(Ps)} = — min {¢"(=B) + op.(B)},

where the last equality results from Fenchel-Rockafellar duality and the fact that (dp,)* = op,. It
thus remains to compute the convex conjugate of :

(= B) = max {(Ps, = B) = ¢(P)}

= Psa_B - Ps; *Ts
p%?x“ ) = (Ps,v-7s)}

= max (Ps,— B —yv - 7y)
P.eRX

_J0if = B—yv -7, =0
" | 400 otherwise,

which yields mingcpx {¢*(—B) + op,(B)} = op,(—yv - 7). Finally, the robust counterpart

rewrites as: F(s) = op, (—yv - ms) + o, (=7s) + v(s) — T, . v(s), and plugging it into the

optimization problem (9) yields the desired result. O

B.2 Proof of Corollary[4.1]

Corollary. Assume that U = (Py + P) x (ro + R) with Py := {P, € R : ||P|| < o’} and
Rs:={rs € R4 : llrsll < o’} forall s € S. Then, the robust value function v™ is the optimal
solution of the convex optimization problem:

max (v, fip) 5. 1. v(s) < T, ) v(s) — ag|Imsll - agvllllm| forall s € S.
v

Proof. As we already showed in Cor. [3.1] the support function of the reward uncertainty set is
or.(—ms) = al||ms||. For the transition uncertainty set, we similarly have:

op, (—yv-ms) = max (Pg, —yv - 7s)
P;eR™:
[Pl <er?

= o [|-yv - |

— aPrllo -l
= af |||l |- llv-mal®> =Y (u(s)ms(a))?
(s’,a)eX
= > v ) me(a@)® = o] lms ]
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Now we apply Thm @ and replace each support function by their explicit form to get that the robust
value function v™¥ is the optimal solution of:

IIé%)§<’l),u()> s. L o(s) < Tp, )0(s) — agllms|| — al||lms|l - y|v| forall s € S.
v

Ball-constraints with arbitrary norms. As seen in the proof of Thm. and Cor. @ for ball-

constrained rewards defined with an arbitrary norm ||-||, , the corresponding support
function is og_ (—7s) = af||ms||4~. Similarly, for ball- constralned transmons based on a norm |||,
of dual |||+, we have:

OPS(_'Y’U . 7Ts) = max <P87 —YU - 7TS> = afH_
P,eR™:
I1Psllp<al

in which case the robust value function v™ is the optimal solution of:

Jl-

ma)§<v7u0> s. to(s) < Tp, )v(s) — aglms

veER

o — Q YU - Ts||p- forall s € S.

C R2MDPs

C.1 Proof of Proposition [5.1]

Proposition. Suppose that Asm.[5.1| holds. Then, we have the following properties:

(i) Monotonicity: For all vi,v9 € RS such that v1 < w9, we have T”’szl < T”’szg and
T*’Rz’ljl < T*’RZ’UQ.

(ii) Sub-distributivity: For all v; € R® ¢ € R, we have TR (v1 + clg) < T”’szl + yelg and
T*sz(vl +cls) < T*’szl + vclg, Ve € R

(iii) Contraction: Let €, := mingeses > 0. Then, for all vi,v9 € ]RS,
T vy = T™ sl < (1= €2)l[v1 = vallo and [|T*F vy = T*F va|og < (1 = &) 01 = va|oc-

Proof. Proof of (i). Consider the evaluation operator and let v1, vy € RS such that v; < v. For all
s€S,

[T vy — T™ 03](s)

= T(py ry)01(8) — Al Il — e yl[vr |||

= (T, iy v2(s) = adllmsll = alyllva | 7)

= T{5y,0)V1(5) = Ty gy v2(s) + adyllms [ ([fval] = [los )
= YPF (v1 = v2)(s) + av[Ims [l (lv2]l = [los )
= {75, Pos(v1 = v2)) + oyl ([lval| = [loall) Vo e RS, Pfu(s) = Y ms(a)Po(s'|s,a)u(s")

(s',a)eX

Z POs ) = <7Tsv POSU>]
cA

=l ({257 PosCon = 20 ) + o (el = o)

s
<l ({5 Poston =) )+l e —ul)) o € R, ol = ol < ol = ol < o = ]
9

By Asm.[5.1} we also have

P . T . Ts ('UZ _Ul)
a, < min u,bBy(-ls, ) vs = min uy, Py(ls,)vs §<P0-s->

7 ik lual=1 Cle.) uAeRﬁ,uuA\|:1< Foltls. Jvs) sl (ls. )Ilvz*mll ’

vs€R] |vs|=1 vs€R] |lvs[=1
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so that

(77 = T a)(6) < sl ({227 Poon =) )+ (2 ol ) 2 o = )

s s

= ||| (<||77::||7P05(v1 - U2)> + <|77::”,P0('|57 (w2 — U1)>> =0,

where we switch notations to designate Py(-|s,-) = Py, € RS This proves monotonicity.

Proof of (ii). We now prove the sub-distributivity of the evaluation operator. Let v € RS, ¢ € R. For
all s € S,

[T™% (v + cls)](s)
=[T{py vy (v + 1s))(5) — o ||ms || — afy|[v + clLs || |||
=T{py vy 0(8) + ¢ — af||msl| = @ yllv + cls]l||ms]| [Ty re) (v + cLs) = T, )0 +vLs]
Ty gy 0(8) + 7¢ = sl = @f yllms | (o]l + [leLs )
=Ty 0y 0 (8) +v¢ = a5 ]| = al |l

—aly|mllcls]

2
[T 0)(s) +ve — a v ms][[eLs |
S[T”’sz](s) + ve. [y >0,af >0,]-] > 0]

Proof of (iii). We prove the contraction of a more general evaluation operator with £, regularization,

p > 1. This will establish contraction of the R? operator ™% by simply setting p = 2. Define as ¢
the conjugate value of p, i.e., such that % + % = 1. As seen in the proof of Thm. for balls that are

constrained according to the ¢,-norm |||, the robust value function v™ is the optimal solution of:

m%}g(u,;m} s. L v(s) < Tp, )0(8) — agllmslly — al||l—vyv - my|, forall s € S,
v
because |-, is the dual norm of ||-||,,, and we can define the R? operator accordingly:

2 .
[T 0)(8) 1= T, 4y 0(5) — alllmslly — afvllo - mill, Vo e RS s€S.

We make the following assumption:

Assumption (A,). Forall s € S, there exists e; > 0 such that of < 1=0=f=
vIS|a
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Let vy, vy € R®. Forall s € S,

2 2
1T 0n](s) = [T 0s](5)
= | Ty g1 (5) = allimllg — afrlfon -l

— (Tpy gy v2(s) = alimsllg = alyllv2 - msllg) |

=‘T{rpo,7-0)v1(8) = Tlpy oy v2(8) | + [ad v (lJvz - llg = lor - 7sl) |

=T 21 (5) = Tl ry2()| a3l 7l = lon -

S‘T&o,m)vl(s) - T(rpo,ro)vz(s)‘ +agylvg - w5 — o1 -7l VA, B eRY,[|All, — 1Bl < |A-B],
<yllor = vall o + al Aoz - T — 1 - sl TRy ey v1 = TPy ) V2lloe < 1 — w2l
=yl[or = vall o, + @ ll(v2 = v1) - sl Vo, w e R vy —w -7y = (v —

<llor = val o + alyllvz = vy Vv € RS, ||v- 7yl < HUHq
<yllvr = vall o + LS| o1 — 2| Vo, w € R, [|lv — wlly < [S]7]|v — wl|oo

1
=y(1+ o |S|9)[lv1 = vz

1y —e 1—y—
<~y (1 + ’;) lvr — v2llco [of < — L= by Asm. (A,)]

'VIS\

(1 —ed)l[vr — valloo
<(1 = e)flr = v2leo,

where €, := mingegs €5. Setting ¢ = 2 and remarking that: (i) the first bound in Asm. @recovers

Asm. (Ap); (i) Ty R T’T*Rz, establishes contraction of the R? evaluation operator. For the
optimality operator, the proof is exactly the same as that of [10, Prop. 3], using Prop.[2.1} O

C.2 Proof of Theorem

Theorem (R? optimal policy). The greedy policy TR = QQRZ (v*’Rz) is the unique optimal R policy,

i.e., forall m e Ai,v”*’R = R > TR’

Proof. By strong convexity of the norm, the R? function Q, > : 75 — ||ms]|(af + alv[jv|) is

strongly convex in 7. As such, we can invoke Prop. to state that the greedy policy 7% is the
. e 2 .

unique maximizing argument for v** . Moreover, by construction,

*,R2

K 2 2 2 2 2
T7T ,R ,U*,R — T*,R ,U*,R — ,U*,R

Supposing that Asm .holds the evaluation operator 7™ R is contracting and has a unique

,R ,R2 2 2 .
fixed point v™ . Therefore, v* X being also a fixed point, we have v™ = *®" = v™*"_ It remains

to show the last 1nequahty. the proof is exactly the same as that of [10, Thm. 1], and relies on the
monotonicity of the R? operators. O

C.3 Proof of Remark[5.1]

Remark C.1. An optimal R? policy may be stochastic. This is due to the fact that our R> MDP
framework builds upon the general s-rectangularity assumption. Robust MDPs with s-rectangular un-
certainty sets similarly yield an optimal robust policy that is stochastic [40, Table 1]. Nonetheless, the
R?> MDP formulation recovers a deterministic optimal policy in the more specific (s, a)-rectangular
case, which is in accordance with the robust MDP setting.
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Proof. Inthe (s, a)-rectangular case, the uncertainty set is structured asif = X (5 q)cxU(s, a), where
U(s,a) := Py(-|s,a) x ro(s,a) + P(s,a) x R(s,a). The robust counterpart of problem (Pyy) is:

F(s) = max {v(s) =17(s) = 7PTv(s)}

3

= max v(s) =1l (s) —r"(s) — yPlv(s) — vP"v(s
(P(~|s,a),r(s,a))€73(s,a)XR(s,a){ (s) =715 (s) (s) —vFgv(s) —vPTo(s)}

— T — ~PT + T — ~PT
(P(.ls’a)vr(s;gggg(sﬂ)XR(W){ 7 (s) —yPT(s)} + v(s) —rg(s) — v 7 v(s)

= max —r"(s)} + max —P"u(s)} +v(s) —T(p . yv(s
T(s,a)GR(s,a){ ( )} ’YP(-\s,a)GP(s,a){ ( )} ( ) (Fo,ro) ( )

= max — ws(a)r(s,a) p + max — ws(a)(P(:|s,a),v
T(S,a)ER(s,a){ Z ( ) ( )} PyP(~|s,a)E”P(s,a){ Z ( )< (‘ ) >}

acA acA
+v(s) — T(’;o,m)v(s)
= ms(a max —r(s,a)} + max P(:|s,a),—v )—l—vs—T“ oy 0(8).
o (o, Crea) e e (PCs a0 ) +006) = T, 00)
In particular, if we have ball uncertainty sets P(s,a) := {P(:|s,a) € R® : | P(-|s,a)|| < al’,} and
R(s,a) :={r(s,a) € R: |r(s,a)| < af ,} forall (s,a) € &, then we can explicitly compute the

support functions:

max —r(s,a) = o’ and max P(-s,a),—v) = ol |v]|.
r(s,a)lr(s.a)|<ar, (5:8) = o P<-|s,a>:nP<-\s,a>n<aP< Clera), =0 = el

Therefore, the robust counterpart rewrites as:
F(s)= ) ms(a)(af o +ralaloll) +v(s) = T, rv(s),
acA
and the robust value function v™ is the optimal solution of the convex optimization problem:
rrel]zlgg(v, po) s- tv(s) < Tp ,)v(s) — Z ms(a) (g, + 'yaia\\v||) foralls € S.
v acA

This derivation enables us to derive an R? Bellman evaluation operator for the (s, a)-rectangular case.
Indeed, the R? regularization function now becomes Q,, .2 (7s) 1= >, 4 ws(a)(al , + vl [Jv]]),
which yields the following R? operator:

[T™%0)(s5) i= Tl 10y 0(5) = Q2 (ms), Vs€S.

We aim to show that we can find a deterministic policy 7¢ € A% such that [T ®p)(s) = [T ](s)
for all s € S. Given an arbitrary policy 7 € A%, we first rewrite:

[T 0](s) = 75 (5) +yPo(s) — Q ()

> ml@rol(s,a) +v ) mo(a)(Pol-|s,a),0) — (Z ms(a)(afq + wf,allv)>

acA acA acA
5 (@) (ros.0) = L + (s, 0) — oL o) )
acA

By [30, Lemma 4.3.1], we have that:

S m(a) (ro<s,a> ol A((Po( s ), ) — aiawn))

acA

< madro(s,0) = a4 2 (BoCs o) — Lol .

and since the action set is finite, there exists an action a* € 4 reaching the maximum. Setting
7?(a*) = 1 thus gives the desired result. We just derived a regularized formulation of robust MDPs
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with (s, a)-rectangular uncertainty set and ensured that the corresponding R? Bellman operators yield
a deterministic optimal policy. In that case, the optimal R? Bellman operator becomes:

[T%0](s) = I,flea}{m(s’a) — g, +Y((Po(]s,a),v) — O‘iaU”)}'

D Numerical experiments

Table 3: Hyperparameter set to obtain the results from Table|T]

Number of seeds per experiment 5
Discount factor v 0.9
Convergence Threshold 6 le-3
Reward Radius o le-3
Transition Radius 5 le-5

In the following experiment, we play with the radius of the uncertainty set and analyze the distance
of the robust/R? value function to the vanilla one obtained after convergence of MPI. Except for the
radius parameters of Table 3] all other parameters remain unchanged. In both figures[T]and 2] we see
that the distance norm converges to 0 as the size of the uncertainty set gets closer to O: this sanity
check ensures an increasing relationship between the level of robustness and the radius value. As
shown in Fig. |1} the plots for robust MPI and R?> MPI coincide in the reward-robust case, but they
diverge from each other as the transition model gets more uncertain. This does not contradict our
theoretical findings from Thms. [3.T}4.1] In fact, each iteration of robust MPI involves an optimization
problem which is solved using a black-box solver and yields an approximate solution. As such, errors
propagate across iterations and according to Fig. 2] they are more sensitive to transition than reward
uncertainty. This is easy to understand: as opposed to the reward function, the transition kernel
interacts with the value function at each Bellman update, so errors on the value function also affect
those on the optimum and vice versa.

—F— R2 MPI

R2 MPI
~F- Robust MPI =

71 -T- Robust MPI

o
N

o
o

0.000 0.002 0.004 0.006 0.008 0.010
Radius of transition uncertainty set

Distance to the optimal vanilla value function

0.000 0.002 0.004 0.006 0.008 0.010
Radius of reward uncertainty set

Distance to the optimal vanilla value function

Figure 1: Distance norm between the optimal 1gure 2: Distance norm between the optimal
robust/R2 value and the vanilla one as a function robust/R? value and the vanilla one as a function

of & (8 = 0) after 5 runs of robust/R> MPI of 8 (a = 0) after 5 runs of robust/R> MPI
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