
Under review as a conference paper at ICOMP 2024

NEAR-OPTIMAL ALGORITHM WITH COMPLEXITY SEP-
ARATION FOR STRONGLY CONVEX-STRONGLY CON-
CAVE COMPOSITE SADDLE POINT PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we revisit the saddle-point problem minx maxy p(x)+R(x, y)−q(y),
where the function R(x, y) is LR-smooth, µx-strongly convex, and µy-strongly
concave, and the functions p(x), q(y) are convex and Lp, Lq-smooth, respectively.
We develop a new algorithm that achieves separation of complexities with respect
to the computation of the gradients ∇R(x, y) and ∇p(x), ∇q(y). In particular,

our algorithm requires O
((√

Lp

µx
+
√

Lq

µy
+ LR√

µxµy

)
log 1

ε

)
computations of the

gradient ∇R(x, y) and O
((√

Lp

µx
+
√

Lq

µy

)
log 1

ε

)
computations of the gradients

∇p(x), ∇q(y) to find an ϵ-accurate solution to the problem. Moreover, under
the condition LR ≥

√
µxLq + µyLp, the algorithm becomes optimal (up to

logarithmic factors), i.e., it cannot be improved due to the existing lower complexity
bounds. To the best of our knowledge, our algorithm is the first to achieve near-
optimal complexity separation in the case when µx ̸= µy .

1 INTRODUCTION

In this paper, we consider the following composite saddle-point problem:

min
x∈Rdx

max
y∈Rdy

p(x) +R(x, y)− q(y), (1)

where p(x) : Rdx → R, q(y) : Rdy → R and R(x, y) : Rdx × Rdy → R are smooth functions.
Problems of the form (1) have been actively studied in economics, game theory, statistics, and
computer science (Başar & Olsder, 1998; Roughgarden, 2010; Von Neumann & Morgenstern, 1947;
Facchinei & Pang, 2007; Berger, 2013). In addition, many applications of such problems have
recently appeared in machine learning, including prediction and regression problems (Taskar et al.,
2005; Xu et al., 2009), reinforcement learning (Du et al., 2017; Dai et al., 2018), adversarial training
(Madry et al., 2017; Sinha et al., 2017), and generative adversarial networks (Goodfellow et al., 2014;
Arjovsky et al., 2017).

1.1 CONVEX-CONCAVE SETTING AND SEPARATION OF COMPLEXITIES

In this work, we are interested in solving problem (1) in the fundamental strongly-convex-strongly-
concave setting. In particular, we assume that the function R(x, y) is strongly convex in the variable
x and strongly concave in the variable y, while the regularization functions p(x) and q(y) are convex.
Under these assumptions, problem (1) has a unique solution. Although saddle-point problems of this
type have been studied for many years in the optimization literature, it turns out that there are very
important questions related to these problems that have yet to be answered.

The natural goal of our paper is to provide an efficient algorithm for solving problem (1). In particular,
we aim to develop an algorithm that can find an approximate solution to the problem using the fewest
possible number of computations of the gradients ∇R(x, y) and ∇p(x), ∇q(y). The existing results
of Nesterov (2018); Zhang et al. (2019) suggest that to find an ε-accurate solution (see Definition 3)
to problem (1), any first-order optimization algorithm requires at least the following number of

1

Under review as a conference paper at ICOMP 2024

computations of the gradient ∇R(x, y):

Ω
(

LR√
µxµy

log 1
ε

)
, (2)

and at least the following number of computations of the gradients ∇p(x) and ∇q(y):

Ω
(
max

{√
Lp

µx
,
√

Lq

µy

}
log 1

ε

)
, (3)

where µx and µy are the strong convexity constants (see Definition 2) associated with the functions
p(x) and q(y), respectively, and Lp, Lq, and LR are the smoothness constants (see Definition 1)
associated with the functions p(x), q(y), and R(x, y), respectively. Unfortunately, the existing
state-of-the-art algorithms (Kovalev & Gasnikov, 2022; Jin et al., 2022; Li et al., 2023) are unable to
reach these lower complexity bounds. The algorithm of Kovalev & Gasnikov (2022) requires

O
(
max

{√
LpLq

µxµy
, LR√

µxµy

}
log 1

ε

)
(4)

and the algorithms of Jin et al. (2022); Li et al. (2023) require

O
(
max

{√
Lp

µx
,
√

Lq

µy
, LR

µx
, LR

µy

}
log 1

ε

)
(5)

computations of the gradients of both ∇R(x, y) and ∇p(x), ∇q(y). One can observe that there is a
significant gap between these upper bounds and the lower bounds (2) and (3).

The key problem with the existing state-of-the-art algorithms is that they have the same gradient
computation complexity for both ∇R(x, y) and ∇p(x), ∇q(y). However, lower bounds on these
computation complexities (eqs. (2) and (3), respectively) can be largely unbalanced, for instance,
when LR/

√
µxµy ≫

√
Lp/µx + Lq/µy. Hence, to reach (or at least come closer to) both lower

complexity bounds (2) and (3), an efficient iterative algorithm for solving problem (1) would need to
skip evaluations of ∇R(x, y) or ∇p(x), ∇q(y) from time to time. This would help to achieve different
gradient computation complexities for ∇R(x, y) and ∇p(x), ∇q(y), which is called complexity
separation. Thus, we arrive at the crucial task of developing an efficient algorithm with complexity
separation for solving problem (1) which is able to reach one of the lower complexity bounds (2)
or (3), or, under some circumstances, even both of them. Further, we provide an additional motivation
for this task.

1.2 ON THE IMPORTANCE OF COMPLEXITY SEPARATION

The development of efficient algorithms with complexity separation for solving problem (1) is
an important challenge. It is motivated by theoretical interest in various aspects of optimization
techniques, as well as numerous applications in practice. Further, we provide a few examples of such
applications.

Distributed optimization. One of the common applications of problem (1) is decentralized dis-
tributed optimization. Let G = (V, E) be a graph, which represents a communication network of n
compute nodes i ∈ V = {1, . . . , n}. The nodes can communicate across the communication links
e ∈ E in the network and aim to solve the following finite-sum minimization problem:

min
x∈Rd

∑
i∈Vfi(x), (6)

where each function fi(x) : Rd → R is stored locally by the corresponding node i ∈ V . Problem (6)
is often reformulated as the following saddle-point problem (Kovalev et al., 2020):

min
x∈Rnd

F (x) + ⟨x, (W ⊗ Id)y⟩, (7)

where W ∈ Rn×n is the so-called gossip matrix associated with the network G, and F (x) : Rnd → R
is a block-separable function, which is defined as F (x1, . . . , xn) =

∑n
i=1 fi(xi). It is easy to observe

that reformulation (7) is indeed a special case of problem (1) with R(x, y) = ⟨x, (W ⊗ Id)y⟩ and
p(x) = F (x), q(y) = 0. Moreover, one can observe that computing ∇p(x) corresponds to the local
computation of the gradients of the objective functions fi(x), while computing ∇R(x, y) corresponds
to decentralized communication in the network. In this setting, the complexity separation is a highly

2

Under review as a conference paper at ICOMP 2024

desired property. Indeed, in some cases, the communication network can be very slow, thus we would
like to save communication rounds by performing multiple local gradient computations between them
(Savazzi et al., 2020; Brown et al., 2020). On the other hand, the opposite scenario is also possible,
where we want to save local gradient computations instead. For instance, this could occur during
the training of a large machine learning model on a cluster of compute nodes connected over a fast
communication network.

Personalized federated learning. Another important special case of problem (1) is the following
personalized federated saddle-point problem (Smith et al., 2017; Wang et al., 2018; Li et al., 2020;
Gorbunov et al., 2019):

min
x∈Rndx

max
y∈Rndy

λ
2 ∥x∥

2
W⊗Idx

+
∑

i∈Vfi(xi, yi)− λ
2 ∥y∥

2
W⊗Idy

, (8)

where we use the notation x = (x1, . . . , xn) and y = (y1, . . . , yn), (xi, yi) corresponds to the
weights of the local model stored by the node i ∈ V , and fi(xi, yi) : Rdx × Rdy → R are the
objective functions. Similarly to the previous example, the complexity separation is desired to
efficiently balance the costs of communication and local computation.

Empirical risk minimization. Finally, one of the most popular examples of problem (1) is the
classical Empirical Risk Minimization problem (Shalev-Shwartz & Ben-David, 2014)

min
x∈Rdx

[
p(x) + ℓ(B⊤x)

]
= min

x∈Rdx
max
y∈Rdy

[p(x) + ⟨x,By⟩ − ℓ∗(y)] , (9)

where ℓ(y) : Rdy → R is some convex loss function, ℓ∗(y) : Rdy → R is its Fenchel conjugate,
p(x) is a regularizer, and B ∈ Rdx×dy is the feature matrix. Once again, the desire for complexity
separation could be motivated by reducing communication costs (Xiao et al., 2019), or computation
costs, for instance when the gradients ∇p(x), ∇ℓ(y), or ∇ℓ∗(y) are hard to compute.

1.3 MAIN CONTRIBUTIONS

In this paper, we resolve the task of finding an efficient algorithm with complexity separation for
solving problem (1). In particular, we provide the following main contributions:

• We develop a new state-of-the-art Algorithm 1. This algorithm achieves (up to a logarithmic
factor) the lower gradient computation complexity bound (3) for the gradients ∇p(x),
∇q(y), while improving the state-of-the-art gradient computation complexities (4) and (5)
of Kovalev & Gasnikov (2022); Jin et al. (2022); Li et al. (2023) for the gradient ∇R(x, y).
Moreover, under the condition LR ≥

√
µxLq + µyLp, the proposed algorithm becomes

near-optimal, that is, it achieves both lower bounds (2) and (3) (up to logarithmic factors).
• We use our approach and the proposed Algorithm 1 to obtain state-of-the-art complexity

results for solving saddle-point problems with a bilinear coupling function in the Appendix.

2 NOTATION AND ASSUMPTIONS

In this paper, we use the following notation: Id denotes the d × d identity matrix, ∥·∥ denotes the
standard Euclidean norm, ⟨·, ·⟩ denotes the standard scalar product. For vectors x, x′ ∈ Rd and a
symmetric positive definite matrix A ∈ Rd×d, ⟨x, x′⟩A = ⟨x,Ax′⟩ denotes the weighted scalar
product, and ∥x∥A =

√
⟨x, x⟩A denotes the weighted Euclidean norm. For a differentiable function

f(x) : Rd → R, by Df (x1, x2) : Rd × Rd → R we denote the Bregman divergence associated with
the function f(x), which is defined as follows:

Df (x1, x2) = f(x1)− f(x2)− ⟨∇f(x2), x1 − x2⟩. (10)

For a proper lower semi-continuous function f(x) : Rd → R and η > 0, by proxηf (x) : Rd → Rd

we denote the proximal operator which is defined as follows:

proxηf (x) = arg min
x′∈Rd

[
f(x′) + 1

2η∥x
′ − x∥2

]
. (11)

We say that the function f(x) is proximal-friendly if the proximal operator proxηf (x) can be
computed efficiently. As mentioned in Section 1, we assume that the saddle-point problem (1) is
smooth and strongly-convex-strongly-concave. We formalize this through the following definitions
and assumptions.

3

Under review as a conference paper at ICOMP 2024

Definition 1. A differentiable function f(z) : Rd → R is called L-smooth for L ≥ 0, if its gradient
is L-Lipschitz continuous. That is, for all z1, z2 ∈ Rd, the following inequality holds:

∥∇f(z1)−∇f(z2)∥ ≤ L∥z1 − z2∥. (12)

Definition 2. A differentiable function f(z) : Rd → R is called µ-strongly convex for µ ≥ 0 if, for
all z1, z2 ∈ Rd, the following inequality holds:

Df (z1, z2) ≥ µ
2 ∥z1 − z2∥2. (13)

When µ = 0, we say that f(x) is a convex function.
Assumption 1. Function p(x) : Rdx → R is differentiable, Lp-smooth and convex.

Assumption 2. Function q(y) : Rdy → R is differentiable, Lq-smooth and convex.

Assumption 3. Function R(x, y) : Rdx × Rdy → R is differentiable and LR-smooth. Moreover, for
all x ∈ Rdx and y ∈ Rdy , the function R(·, y) : Rdx → R is µx-strongly convex and the function
R(x, ·) : Rdy → R is µy-strongly concave, where µx ≤ Lp, µy ≤ Lq and √

µxµy ≤ LR.

Finally, to specify the quality of an arbitrary approximate solution to problem (1), we use the following
definition.
Definition 3. A vector (x, y) ∈ Rdx × Rdy is called an ϵ-accurate solution to problem (1) if the
following inequality holds:

∥x− x∗∥2 + ∥y − y∗∥2 ≤ ε, (14)
where (x∗, y∗) is the unique solution to problem (1).

3 OPTIMAL ALGORITHM

In this section, we present the key idea used to develop Algorithm 1. Subsequently, we provide the
convergence theorem (Theorem 1) and the complexity theorem (Theorem 3) of Algorithm 1. Lastly,
we express these complexities for problem (1), specifically when p(x) = 0 or q(y) = 0.

3.1 IDEA

To understand the idea of Algorithm 1, we temporarily switch from the composite saddle point
problem (1) to the minimization one:

min
x

u(x) + v(x). (15)

For simplicity, we assume that function u(x) + v(x) is µ-strongly convex and functions u(x), v(x)
are Lu, Lv-smooth, respectively. A fundamental and intuitive approach to solve this problem is to
apply Nesterov’s Accelerated Gradient Descent Nesterov (1983), Nesterov (2018):

xk
g = αxk + (1− α)xk

f

xk+1 = xk − η(∇u(xk
g) +∇v(xk

g))

xk+1
f = xk

g + α(xk+1 − xk).

(16)

This method requires O
(√

Lu+Lv

µ log 1
ε

)
computations of the gradients of both ∇u(x) and ∇v(x)

to find an ε-solution to (15). This method uses the fewest possible number of computations for
both gradients: ∇u(x) and ∇v(x). However, it does not allow separation of the number of gradient
computations for each function. This lack of separation could be significant in certain scenarios,
as previously discussed. One of the ideas for obtaining a complexity-separated algorithm is to use
proximal point methods. These methods use a proximal step instead of a gradient one. For example,
the Accelerated Proximal Point Algorithm Rockafellar (1976), Guler (1991), Auslender & Teboulle
(2006), Tseng (2008), Lewis & Wright (2016):

xk
g = αxk + (1− α)xk

f

xk+1 = proxηv(x
k − η∇u(xk

g))

xk+1
f = xk

g + α(xk+1 − xk),

4

Under review as a conference paper at ICOMP 2024

References Oracle calls of ∇p(x),∇q(y) Oracle calls of ∇R(x, y) or B,BT Compl. Sep.

Korpelevich (1976)
Tseng (2000)

Nesterov & Scrimali (2006)
Gidel et al. (2018)

✗

Alkousa et al. (2019) ∇p(x) : O
(√

Lp

µx
log 1

ε

)
, ∇q(y): O

(
LR√
µxµy

√
Lq

µy
log3 1

ε

)
O
(

LR

√
LR

µy
√
µx

log3 1
ε

)
✓

Lin et al. (2020) ✗

Wang & Li (2020) ✗

Kovalev & Gasnikov (2022) ✗

Jin et al. (2022)
Li et al. (2023) ✗

This paper O
(
max

{√
Lp

µx
,
√

Lq

µy

}
log 1

ε

)
O
(
max

{√
Lp

µx
,
√

Lq

µy
, LR√

µxµy

}
log LR

min{µx,µy} log
1
ε

)
✓

Zhang et al. (2019) – Ω
(

LR√
µxµy

log 1
ε

)
–

Nesterov (2018) Ω
(
max

{√
Lp

µx
,
√

Lq

µy

}
log 1

ε

)
– –

Korpelevich (1976)
Tseng (2000)

Monteiro & Svaiter (2010)
✗

Chen et al. (2017) ✗

Lan & Ouyang (2021) O
(√

max{Lp,Lq}
ε D

)
O
(
max

{√
max{Lp,Lq}

ε D, LR

ε D2

})
✓

This paper O
(
max

{√
Lp

ε Dx,
√

Lq

ε Dy

}
log 1

ε

)
O
(
max

{√
Lp

ε Dx,
√

Lq

ε Dy,
LR

ε DxDy

}
log2 1

ε

)
✓

Zhang et al. (2019) – Ω
(
LR

ε DxDy

)
–

Nesterov (2018) Ω

(√
Lp

ε Dx +
√

Lq

ε Dy

)
– –

Korpelevich (1976)
Nesterov & Scrimali (2006)

Mokhtari et al. (2019)
✗

Cohen et al. (2021) ✗

Wang & Li (2020) ✗

Xie et al. (2021) ✗

Kovalev et al. (2022)
Thekumparampil et al. (2022)

Jin & Sidford (2020)
Du et al. (2022)
Li et al. (2023)

✗

This paper O

(
max

{√
Lp

µp
,

√
Lq

µq

}
log

1

ε

) O
(
min {K1,K2} log

√
λmax(BBT)

min{µp,µq} log 1
ε

)
K1 = max

{√
Lpλmax(BBT)
µpλmin(BBT)

,
√

Lqλmax(BBT)
µqλmin(BBT)

}
K2 = max

{√
Lp

µp
,
√

Lq

µq
,
√

λmax(BBT)
µpµq

} ✓

Zhang et al. (2019) – Ω
(√

λmax(BBT)
µpµq

log 1
ε

)
–

Nesterov (2018) Ω
(
max

{√
Lp

µp
,
√

Lq

µq

}
log 1

ε

)
– –

Kovalev et al. (2020)
Kovalev et al. (2022) ✗

This paper O
(√

Lp

µp
log 1

ε

)
O
(
min

{√
Lpλmax(BBT)
µpλmin(BBT)

,max
{√

Lp

µp
,
√

λmax(BBT)
µpε

Dy

}}
log2 1

ε

)
✓

Salim et al. (2022) – Ω
(√

Lpλmax(BBT)
µpλmin(BBT)

log 1
ε

)
–

Nesterov (2018) Ω
(√

Lp

µp
log 1

ε

)
– –

Azizian et al. (2020) ✗

This paper O
(
log 1

ε

)
O
(√

λmax(BBT)
λmin(BBT)

log2 1
ε

)
✓

Ibrahim et al. (2020) – Ω
(√

λmax(BBT)
λmin(BBT)

log 1
ε

)
–

Strongly convex-strongly concave case

U
pp

er
O
((

LR + Lp

µx
+

LR + Lq

µy

)
log

1

ε

)

O
(

LR+
√

LpLq√
µxµy

log3 1
ε

)
O
(
max

{√
Lp

µx
,
√

Lq

µy
,
√

LRL
µxµy

}
log3

(Lp+LR)(Lq+LR)
µxµy

log 1
ε

)
O
(

LR+
√

LpLq√
µxµy

log 1
ε

)
O
(
max

{√
Lp

µx
,
√

Lq

µy
, LR

µx
, LR

µy

}
log 1

ε

)
1

L
ow

er

Convex-concave case

U
pp

er

O
(
LD2

ε

)

O
(√

max{Lp,Lq}
ε D + LR

ε D2

)

L
ow

er

Bilinear strongly convex-strongly concave case

U
pp

er

O
(

L

min{µp, µq}
log

1

ε

)
O
(
max

{
Lp

µp
,
Lq

µq
,
√

λmax(BBT)
µpµq

}
log 1

ε

)
O

(
max

{√
Lp

µp
,
√

Lq

µq
,

√
L
√

λmax(BBT)

µpµq

}
log 1

ε

)

O
(
max

{
4

√
L2

pLq

µ2
pµq

, 4

√
L2

qLp

µ2
qµp

,
√

λmax(BBT)
µpµq

}
log 1

ε

)

O

(
max

{√
Lp

µp
,

√
Lq

µq
,

√
λmax(BBT)

µpµq

}
log

1

ε

)

L
ow

er

Affinely constrained minimization case

U
pp

er O
(√

Lpλmax(BBT)
µpλmin(BBT)

log 1
ε

)

L
ow

er

Bilinear case with linear composites

U
pp

er O
(√

λmax(BBT)
λmin(BBT)

log 1
ε

)

L
ow

er

Table 1: Comparison of our results for finding an ε-solution with other works. In the strongly convex-strongly concave case, convergence
is measured by the distance to the solution. In the convex-concave case, convergence is measured in terms of the gap function. Notation:
Lp, Lq, LR - smoothness constants of functions p(x), q(y) and R(x, y) respectively, L = max{Lp, Lq, LR}, µx - strong convexity
constant of R(x, y) for fixed y, µy - strong concavity constant of R(x, y) for fixed x, Dx,Dy - constants such that ∥x∗∥ ≤ Dx,
∥y∗∥ ≤ Dy , D = max{Dx,Dy}. For bilinear case λmax(BBT) > 0 and λmin(BBT) ≥ 0 are maximum and minimum eigenvalue
of BBT respectively, L = max(Lp, Lq,

√
λmax(BBT)), µp, µq - strong convexity and strong concavity constants of p(x), q(y)

respectively.

1In these papers, results close to the lower bounds were obtained but a slightly different notation was used. For more details see Section 4.1.

which uses a proximal step in function v(x) and a gradient one in function u(x). The stumbling
block of this method is the computation of the proximal operator for the function v(x), which
can be computed precisely only for proximal-friendly functions. To adapt Accelerated Proximal

5

Under review as a conference paper at ICOMP 2024

Point Algorithm for Lv-smooth and non-proximal friendly function v(x), the proximal operator
can be computed inexactly. Firstly, to present this idea in detail, we rewrite the line xk+1 =
proxηv(x

k − η∇u(xk
g)), using (11) and the first optimal condition for the differentiable function

v(x), in implicit form:
xk+1 = xk − η

(
∇v(xk+1) +∇u(xk

g)
)
. (17)

Usually, the addition sequence x̂k+1 is used to compute xk+1 for non-proximal friendly function.
This sequence updates as x̂k+1 ≈ proxηv(x

k − η∇u(xk
g)) and stores the approximated value of the

proximal operator, which can be found by solving problem (11) with algorithm A. After that, the
sequence xk+1 is updated by (17) using x̂k+1. Summing up the above, we get the following method,
which is based on the sliding technique Lan (2016):

xk
g = αxk + (1− α)xk

f

x̂k+1 ≈ argmin
x

{
v(x) + ⟨∇u(xk

g), x⟩+
1

2η
∥x− xk∥2

}
xk+1 = xk − η(∇u(xk

g) +∇v(x̂k+1))

xk+1
f = xk

g + α(x̂k+1 − xk).

(18)

If Nesterov’s Accelerated Gradient Descent Nesterov (1983), Nesterov (2018) is used as algorithm
A, Accelerated Proximal Point Algorithm requires O

(√
Lu

µ log 1
ε

)
computations of the gradient

of ∇u(x) and O
(√

Lv

µ log 1
ε

)
computations of the gradient of ∇v(x) to find an ε-solution. The

application of the proximal method to the composite optimization problem (15) enables us to achieve
complexity separation. Importantly, this is accomplished without compromising the method’s
optimality. We are now prepared to revisit the composite saddle point problem (1). It should be noted
that for problem (15), our objective is to find a point x̂ that satisfies the equation ∇u(x̂)+∇v(x̂) = 0.
Note that for problem (15), it is enough to find a point x̂ such that ∇u(x̂)+∇v(x̂) = 0. Similarly, for

problem (1), our goal is to find a point (x̂, ŷ) such that
(
∇p(x̂) +∇xR(x̂, ŷ)
∇q(ŷ)−∇yR(x̂, ŷ)

)
=

(
0
0

)
. This fact

allows us to adapt approach (18) to problem (1) by replacing ∇u(x) with operator A =

(
∇p(x)
∇q(y)

)
and ∇v(x) with operator B =

(
∇xR(x, y)
−∇yR(x, y)

)
, and develop Algorithm 1.

Algorithm 1

1: Input: x0 = x0
f ∈ Rdx , y0 = y0f ∈ Rdy

2: Parameters: α ∈ (0, 1), ηx, ηy .
3: for k = 0, 1, 2, . . . ,K − 1 do
4: xk

g = αxk + (1− α)xk
f , ykg = αyk + (1− α)ykf

5: (x̂k+1, ŷk+1) ≈ argminx∈Rdx argmaxy∈Rdy Ak
η(x, y)

Ak
η(x, y) := ⟨∇p(xk

g), x⟩+
1

2ηx
∥x− xk∥2 +R(x, y)− ⟨∇q(ykg), y⟩ −

1

2ηy
∥y − yk∥2 (19)

6: xk+1 = xk − ηx
(
∇p(xk

g) +∇xR(x̂k+1, ŷk+1)
)

yk+1 = yk − ηy
(
∇q(ykg)−∇yR(x̂k+1, ŷk+1)

)
7: xk+1

f = xk
g + α(x̂k+1 − xk), yk+1

f = ykg + α(ŷk+1 − yk)
8: end for
9: Output: xK , yK

3.2 CONVERGENCE OF ALGORITHM 1

Now we are ready to present the linear convergence of Algorithm 1 when applied to problem 1 under
Assumptions 1-3.

6

Under review as a conference paper at ICOMP 2024

Theorem 1. Consider the application of Algorithm 1 to solve problem 1 under Assumptions 1-3, with
one of the following tuning

1. If Lp

µx
≥ Lq

µy
: α = min

{
1,

√
µx

Lp

}
, ηx = min

{
1

3µx
,

1

3Lpα

}
, ηy =

µx

µy
ηx; (20)

2. If Lq

µy
>

Lp

µx
: α = min

{
1,

√
µy

Lq

}
, ηy = min

{
1

3µy
,

1

3Lqα

}
, ηx =

µy

µx
ηy. (21)

Additionally, the point (x̂k+1, ŷk+1) in line 5 should satisfy the following condition:∥∥∥∥ ∇xA
k
η(x̂

k+1, ŷk+1)
−∇yA

k
η(x̂

k+1, ŷk+1)

∥∥∥∥2
P−1

≤ 1

6

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

, where P :=

(
1
ηx
Idx

0

0 1
ηy
Idy

)
. (22)

Then, for any

K ≥ 3max
{
1,
√

Lp

µx
,
√

Lq

µy

}
log C

ε

with C defined as follows

C =
1

ηx
∥x0 − x∗∥2 + 1

ηy
∥y0 − y∗∥2 + 2

α
Dp(x

0
f , x

∗) +
2

α
Dq(y

0
f , y

∗),

we have the following estimate for the distance to the solution (x∗, y∗):
1

ηx
∥xK − x∗∥2 + 1

ηy
∥yK − y∗∥2 ≤ ε. (23)

Proof of Theorem 1 you can find in Appendix A.1.

Complexity of solving auxiliary subproblems. In each iteration k of Algorithm 1, we are required
to find a point

(
x̂k+1, ŷk+1

)
that is an approximate solution to problem (19) and satisfies condition

(22). According to Assumption 3, the function 1
2ηx

∥x− xk∥2 +R(x, y)− 1
2ηy

∥y − yk∥2 is smooth
and strongly convex-strongly concave, while the composites ⟨∇p(xk

g , x)⟩, ⟨∇q(ykg), y⟩ are proximal-
friendly. The FOAM algorithm (Algorithm 4 from Kovalev & Gasnikov (2022)) is optimal for finding
the solution to problem (19). This implies that it can be applied from the initial point (xk, yk) to find
point

(
x̂k+1, ŷk+1

)
. The complexity of this procedure is outlined in the following theorem.

Theorem 2. Consider the application of Algorithm 4 from Kovalev & Gasnikov (2022) to solve
problem (19) under Assumption 3. Then, this algorithm requires the following number of gradient
evaluations

T = O
(√

(1 + LRηx)(1 + LRηy) log
max{(1+LRηx)(1+LRηy)}

min{1/ηx,1/ηy}

)
(24)

to find a point
(
x̂k+1, ŷk+1

)
, that satisfies condition (22).

Proof of Theorem 2 you can find in Appendix A.2.
Remark 1. Note that the stopping criterion (22) for solving the auxiliary problem (19) is practical
due to it does not depend on point (x̂k+1

∗ , ŷk+1
∗) (solution to (19)).

Overall complexity. We are now prepared to present the number of gradient computations for ∇p(x),
∇q(y), and ∇R(x, y), which are sufficient for finding a solution to problem (1) by Algorithm 1. It
should be noted that finding the solution to the auxiliary subproblem (19) does not require the oracle
calls of ∇p(x),∇q(y). These oracles are only called in line 6 of Algorithm 1. By combining the
results from Theorems 1 and 2, we can present the following theorem.
Theorem 3. Consider the application of Algorithm 1 to solve problem 1 under Assumptions 1-3, with
tuning (20) or (21). Also, to find point (x̂k+1, ŷk+1), that satisfy condition (22), the FOAM algorithm
will be used at each iteration of Algorithm 1. Then, this method requires

O
(
max

{
1,
√

Lp

µx
,
√

Lq

µy

}
log 1

ε

)
gradient calls of ∇p(x), ∇q(y) and

O
(
max

{√
Lp

µx
,
√

Lq

µy
, LR√

µxµy

}
log LR

min{µx,µy} log
1
ε

)
gradient calls of ∇R(x, y) to find an ε-solution to problem (1).

7

Under review as a conference paper at ICOMP 2024

Proof of this theorem you can find in Appendix A.3.

SPP with one composite. The important particular case of problem (1) is the composite saddle point
problem with one composite, denoted as q(y) = 0 (or equivalently, p = 0). This implies that in this

scenario, Lq = 0. According to Theorem 3, Algorithm 1 requires O
(√

Lp

µx
log 1

ε

)
gradient calls

of ∇p(x) and O
(
max

{√
Lp

µx
, LR√

µxµy

}
log 1

ε

)
gradient calls of ∇R(x, y) to find an ε-solution to

problem (1).

3.3 CONVEX-CONCAVE AND STRONGLY CONVEX-CONCAVE COMPOSITE SPP

For the convex-concave composite saddle point problem, we assume that µx = µy = 0. This implies
that the function R(x, y) is convex-concave. Similarly, for the strongly convex-concave composite
saddle point problem, we assume that µx > µy = 0, which means that the function R(x, y) is
strongly convex-concave. To present the results for these problems, we adopt the standard assumption
that the solution (x∗, y∗) is bounded, i.e., ∥x∗∥ ≤ Dx, ∥y∗∥ ≤ Dy. We use this assumption and
consider problem (1), which includes regularization terms. For the strongly convex-concave case, we
apply regularization to the function q(y) and consider the problem

min
x∈Rdx

max
y∈Rdy

{
p(x) +R(x, y)− q(y)− ε

12D2
y

∥y∥2
}

(25)

as opposed to the problem (1). Similarly, for the convex-concave case, we introduce regularization
terms for the functions p(x) and q(y), and consider this modified problem

min
x∈Rdx

max
y∈Rdy

{
p(x) +

ε

16D2
x

∥x∥2 +R(x, y)− q(y)− ε

16D2
y

∥y∥2
}

(26)

instead of problem (1). To demonstrate the equivalence of problems (25), (26) with regularization
terms to problem (1), we present the following lemma.
Lemma 1. Consider problem (1) under Assumptions 1 to 3. If µx > 0, µy = 0 (strongly convex-
concave case) and (x̂, ŷ) is a 2ε

3 -solution to problem (25) or if µx = 0, µy = 0 (convex-concave
case) and (x̂, ŷ) is a ε

2 -solution to problem (26) with ∥x∗∥ ≤ Dx, ∥y∗∥ ≤ Dy. Then, (x̂, ŷ) is an
ε-solution to problem (1).

Due to this lemma, we need to find a 2ε
3 -solution to problem (25) or a ε

2 -solution to problem
(26). To find them, we apply Algorithm 1 with composites p(x), q(y). According to Theorem 3,

Algorithm 1 demands O
(
max

{√
Lp

µx
,
√

Lq

ε Dy,
LR√
µxε

Dy

}
log LR

min{µx,µy} log
1
ε

)
gradient calls

of ∇R(x, y) and O
(
max

{√
Lp

µx
,
√

Lq

ε Dy

}
log 1

ε

)
gradient calls of ∇p(x),∇q(y) to find an

ε-solution to problem (1) in the context of a strongly convex-concave case. Conversely, it re-

quires O
(
max

{√
Lp

ε Dx,
√

Lq

ε Dy,
LR

ε DxDy

}
log LR

min{µx,µy} log
1
ε

)
gradient calls of ∇R(x, y)

and O
(
max

{√
Lp

ε Dx,
√

Lq

ε Dy

}
log 1

ε

)
gradient calls of ∇p(x),∇q(y) to find an ε-solution to

(1) in a convex-concave scenario.
Remark 2. Also, we analyze the important particular case of (1), when R(x, y) = xTBy. Results
for this case can be found in Appendix B.

4 DISCUSSION OUR RESULTS AND RELATED WORKS

In this section, we compare complexity results for Algorithm 1 stated in Theorem 3 with related
works.

4.1 STRONGLY CONVEX-STRONGLY CONCAVE AND STRONGLY CONVEX-CONCAVE CASE

In the case of strong convexity and strong concavity, Algorithm 1 has the following oracle complexity

O
(
max

{
1,
√

Lp

µx
,
√

Lq

µy

}
log 1

ε

)
gradient calls of ∇p(x),∇q(y)

8

Under review as a conference paper at ICOMP 2024

and
O
(

LR√
µxµy

log LR

min{µx,µy} log
1
ε

)
gradient calls of ∇R(x, y)

to find an ε-solution to (1). Furthermore, the iteration complexity of Algorithm 1 is equal to

O
(
max

{
1,
√

Lp

µx
,
√

Lq

µy
, LR√

µxµy

}
log LR

min{µx,µy} log
1
ε

)
. This achieves the lower bounds up to a

logarithmic factor and improves the existing results

O
(
max

{√
Lp

µx
,
√

Lq

µy
,
√

LR max{Lp,Lq,LR}
µxµy

}
log3

(Lp+LR)(Lq+LR)
µxµy

log 1
ε

)
from Wang & Li (2020),

O
(

LR+
√

LpLq√
µxµy

log3 1
ε

)
according to Lin et al. (2020),

O
(

LR+
√

LpLq√
µxµy

log 1
ε

)
from Kovalev & Gasnikov (2022) and

O
(
max

{√
Lp

µx
,
√

Lq

µy
, LR

µx
, LR

µy

}
log 1

ε

)
according to Jin et al. (2022). It is important to note that the works Jin et al. (2022) have examined
problem (1) under Assumptions 1, 2 and a more detailed assumption on the function R(x, y).
Assumption 4. R(x, y) is twice differentiable function and ∥∇xxR(x, y)∥ ≤ Lxx

R , ∥∇yyR(x, y)∥ ≤
Lyy
R and ∥∇xyR(x, y)∥ ≤ Lxy

R , where ∥ · ∥ is spectral norm.

Using this assumption, the authors of Jin et al. (2022) obtained the following iteration complexity for
problem (1):

O
(
max

{√
Lp

µx
,
√

Lq

µy
,
Lxx

R

µx
,
Lyy

R

µy
,

Lxy
R√

µxµy

}
log 1

ε

)
.

This iteration complexity achieves the lower bounds if Lxx
R = Lyy

R = 0. Meanwhile, Algorithm 1
effectively separates the number of gradient calls of ∇p(x),∇q(y) from the number of gradient calls
of ∇R(x, y) up to a logarithmic factor.

In work Alkousa et al. (2019), the authors separate the number of gradient calls of ∇p(x), ∇q(y)
from the number of gradient calls of ∇R(x, y). However, these bounds do not achieve the lower
bounds even for iteration complexity. Due to these facts, to the best of our knowledge, Algorithm 1 is
the first algorithm that achieves the lower bounds on iteration and effectively separates the number of
gradient calls to (1). For the strongly convex-concave case, we get the same results with regularization
by changing µy to ε/D2

y .

4.2 CONVEX-CONCAVE CASE

In the scenario of a convex-concave case, Algorithm 1 requires

O
(
max

{√
Lp

ε Dx,
√

Lq

ε Dy

}
log 1

ε

)
gradient calls of ∇p(x),∇q(y)

and

O
(
max

{√
Lp

ε Dx,
√

Lq

ε Dy,
LR

ε DxDy

}
log2 1

ε

)
gradient calls of ∇R(x, y)

to find an ε-solution to (1). This result meets the lower bounds on iteration complexity

Ω

(
max

{√
Lp

ε Dx,
√

Lq

ε Dy,
LR

ε DxDy

}
log 1

ε

)
up to a logarithmic factor and generalizes results

O

(√
max{Lp, Lq}

ε
D

)
gradient calls of ∇p(x),∇q(y)

and

O
(
max

{√
max{Lp,Lq}

ε D, LR

ε D2

})
gradient calls of ∇R(x, y)

from Lan & Ouyang (2021), where D = max {Dx,Dy}.
Remark 3. The discussion of our results for the bilinear case can be found in Appendix C.

9

Under review as a conference paper at ICOMP 2024

REFERENCES

Mohammad Alkousa, Darina Dvinskih, Fedor Stonyakin, Alexander Gasnikov, and Dmitry Kovalev.
Accelerated methods for composite non-bilinear saddle point problem. arXiv preprint arXiv:
1906.03620, 2019.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Alfred Auslender and Marc Teboulle. Interior gradient and proximal methods for convex and conic
optimization. siam journal on optimization. SIAM Journal on Optimization, 16(3):697–725, 2006.

Waïss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien, and Gauthier Gidel.
Accelerating smooth games by manipulating spectral shapes. 01 2020.

Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM, 1998.

James O Berger. Statistical decision theory and Bayesian analysis. Springer Science & Business
Media, 2013.

Alexander Beznosikov, Valentin Samokhin, and Alexander Gasnikov. Distributed sadde-point
problems: lower bounds, optimal and robust algorithms. arXiv preprint arXiv:2010.13112, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, and Amanda Askell et al. Language models are
few-shot learners. ArXiv, abs/2005.14165, 2020.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of mathematical imaging and vision, 40:120–145, 2011.

Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang. Accelerated schemes for a class of variational
inequalities. Mathematical programming, 165:113–149, 2017.

Savelii Chezhegov, Alexander Rogozin, and Alexander Gasnikov. On decentralized nonsmooth
optimization. arXiv preprint arXiv:2303.08045, 2023.

Michael B. Cohen, Aaren Sidfort, and Kevin Tian. Relative lipschitzness in extragradient methods
and a direct recipe for acceleration. arXiv preprint arXiv: 2011.06572, 2021.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song. Sbeed:
Convergent reinforcement learning with nonlinear function approximation. In International
conference on machine learning, pp. 1125–1134. PMLR, 2018.

Simon S Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic variance reduction
methods for policy evaluation. In International Conference on Machine Learning, pp. 1049–1058.
PMLR, 2017.

Simon S. Du, Gauthier Gidel, Michael I. Jordan, and Chris Junchi Li. Optimal extragradient-based
bilinearly-coupled saddle-point optimization. arXiv preprint arXiv: 2206.08573, 2022.

F. Facchinei and J.S. Pang. Finite-Dimensional Variational Inequalities and Complementarity
Problems. Springer Series in Operations Research and Financial Engineering. Springer New
York, 2007. ISBN 9780387218151. URL https://books.google.ru/books?id=lX_
7Rce3_Q0C.

Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A varia-
tional inequality perspective on generative adversarial networks. arXiv preprint arXiv:1802.10551,
2018.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Eduard Gorbunov, Darina Dvinskikh, and Alexander Gasnikov. Optimal decentralized distributed
algorithms for stochastic convex optimization. arXiv preprint arXiv:1911.07363, 2019.

10

https://books.google.ru/books?id=lX_7Rce3_Q0C
https://books.google.ru/books?id=lX_7Rce3_Q0C

Under review as a conference paper at ICOMP 2024

Osman Guler. On the convergence of the proximal point algorithm for convex minimization. SIAM
Journal on Optimization, 29(2):403–419, 1991.

Adam Ibrahim, Waïss Azizian, Gauthier Gidel, and Ioannis Mitliagkas. Linear lower bounds and
conditioning of differentiable games. In Hal Daumé III and Aarti Singh (eds.), Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 4583–4593. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/ibrahim20a.html.

Yujia Jin and Aaron Sidford. Efficiently solving MDPs with stochastic mirror descent. In Proceedings
of the 37th International Conference on Machine Learning (ICML), volume 119, pp. 4890–4900.
PMLR, 2020.

Yujia Jin, Aaron Sidford, and Kevin Tian. Sharper rates for separable minimax and finite sum
optimization via primal-dual extragradient methods. In Po-Ling Loh and Maxim Raginsky (eds.),
Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of Machine
Learning Research, pp. 4362–4415. PMLR, 02–05 Jul 2022.

G. M. Korpelevich. The extragradient method for finding saddle points and other problems. 1976.

Dmitry Kovalev and Alexander Gasnikov. The first optimal algorithm for smooth and strongly-convex-
strongly-concave minimax optimizatio. Advances in Neural Information Processing Systems, 2022.

Dmitry Kovalev, Adil Salim, and Peter Richtarik. Optimal and practical algorithms for
smooth and strongly convex decentralized optimization. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 18342–18352. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/d530d454337fb09964237fecb4bea6ce-Paper.pdf.

Dmitry Kovalev, Alexander Gasnikov, and Peter Richtárik. Accelerated primal-dual gradient method
for smooth and convex-concave saddle-point problems with bilinear coupling. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=FncDhRcRYiN.

Guanghui Lan. Gradient sliding for composite optimization. Mathematical Programming, 159(1):
201–235, 2016.

Guanghui Lan and Yuyuan Ouyang. Mirror-prox sliding methods for solving a class of monotone
variational inequalities. arXiv preprint arXiv: 2111.00996, 2021.

Adrian S Lewis and Stephen J Wright. A proximal method for composite minimization. Mathematical
programming, 158(1-2):501–546, 2016.

Chris Junchi Li, Huizhuo Yuan, Gauthier Gidel, Quanquan Gu, and Michael Jordan. Nesterov meets
optimism: rate-optimal separable minimax optimization. In International Conference on Machine
Learning, pp. 20351–20383. PMLR, 2023.

Huan Li, Cong Fang, Wotao Yin, and Zhouchen Lin. Decentralized accelerated gradient methods
with increasing penalty parameters. IEEE Transactions on Signal Processing, 68:4855–4870,
2020.

Tianyi Lin, Chi Jin, and Michael I. Jordan. Near-optimal algorithms for minimax optimization. Thirty
Third Conference on Learning Theory, 125:2738–2779, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and
optimistic gradient methods for saddle point problems: Proximal point approach. International
Conference on Artificial Intelligence and Statistics, pp. 1497–1507, 2019.

11

https://proceedings.mlr.press/v119/ibrahim20a.html
https://proceedings.mlr.press/v119/ibrahim20a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/d530d454337fb09964237fecb4bea6ce-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d530d454337fb09964237fecb4bea6ce-Paper.pdf
https://openreview.net/forum?id=FncDhRcRYiN

Under review as a conference paper at ICOMP 2024

Renato D. C. Monteiro and B. F. Svaiter. Complexity of variants of tseng’s modified f-b splitting and
korpelevich’s methods for generalized variational inequalities with applications to saddle point and
convex optimization problems. SIAM Journal on Optimization, 21(4):1688–1720, 2010.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence o(1/k2). 1983.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Yurii Nesterov and Laura Scrimali. Solving strongly monotone variational and quasi-variational
inequalities. 2006.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. siam journal on control
and optimization. SIAM Journal on Optimization, 14(5):877–898, 1976.

Alexander Rogozin, Demyan Yarmoshik, Ksenia Kopylova, and Alexander Gasnikov. Decentralized
strongly-convex optimization with affine constraints: Primal and dual approaches. In Advances
in Optimization and Applications: 13th International Conference, OPTIMA 2022, Petrovac,
Montenegro, September 26–30, 2022, Revised Selected Papers, pp. 93–105. Springer, 2023.

Tim Roughgarden. Algorithmic game theory. Communications of the ACM, 53(7):78–86, 2010.

Adil Salim, Laurent Condat, Dmitry Kovalev, and Peter Richtarik. An optimal algorithm for strongly
convex minimization under affine constraints. In Gustau Camps-Valls, Francisco J. R. Ruiz, and
Isabel Valera (eds.), Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine Learning Research, pp. 4482–4498. PMLR,
28–30 Mar 2022. URL https://proceedings.mlr.press/v151/salim22a.html.

Stefano Savazzi, Monica Nicoli, and Vittorio Rampa. Federated learning with cooperating devices:
A consensus approach for massive iot networks. IEEE Internet of Things Journal, 7:4641–4654,
01 2020. doi: 10.1109/JIOT.2020.2964162.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in networks. In Proceedings of
the 34th International Conference on Machine Learning (ICML), 2017.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distributional
robustness with principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. arXiv preprint arXiv:1705.10467, 2017.

Ben Taskar, Simon Lacoste-Julien, and Michael Jordan. Structured prediction via the extragradient
method. Advances in neural information processing systems, 18, 2005.

Kiran K. Thekumparampil, Niao He, and Sewoong Oh. Lifted primal-dual method for bilinearly
coupled smooth minimax optimization. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel
Valera (eds.), Proceedings of The 25th International Conference on Artificial Intelligence and Statis-
tics, volume 151 of Proceedings of Machine Learning Research, pp. 4281–4308. PMLR, 28–30
Mar 2022. URL https://proceedings.mlr.press/v151/thekumparampil22a.
html.

P. Tseng. A modified forward-backward splitting method for maximal monotone mappings. Journal
on Control and Optimization, 38 (2):431–446, 2000.

Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization. submitted
to SIAM Journal on Optimization, 2008.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior, 2nd rev. 1947.

Weiran Wang, Jialei Wang, Mladen Kolar, and Nathan Srebro. Distributed stochastic multi-task
learning with graph regularization. arXiv preprint arXiv:1802.03830, 2018.

12

https://proceedings.mlr.press/v151/salim22a.html
https://proceedings.mlr.press/v151/thekumparampil22a.html
https://proceedings.mlr.press/v151/thekumparampil22a.html

Under review as a conference paper at ICOMP 2024

Yuanhao Wang and Jian Li. Improved algorithms for convex-concave minimax optimization. Neural
Information Processing Systems 33 (NeurIPS 2020), 33:4800–4810, 2020.

Lin Xiao, Adams Wei Yu, Qihang Lin, and Weizhu Chen. Dscovr: Randomized primal-dual block
coordinate algorithms for asynchronous distributed optimization. Journal of Machine Learning
Research, 20(43):1–58, 2019. URL http://jmlr.org/papers/v20/17-608.html.

Guangzeng Xie, Yuze Han, and Zhihua Zhang. Dippa: An improved method for bilinear saddle point
problems. arXiv preprint arXiv: 2103.08270, 2021.

Huan Xu, Constantine Caramanis, and Shie Mannor. Robustness and regularization of support vector
machines. Journal of machine learning research, 10(7), 2009.

Junyu Zhang, Mingyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for the
saddle point problems. arXiv preprint arXiv:1912.07481, 2019.

13

http://jmlr.org/papers/v20/17-608.html

Under review as a conference paper at ICOMP 2024

A MISSING PROOFS

A.1 PROOF OF THEOREM 1

Lemma 2. Consider Algorithm 1 for Problem 1 under Assumptions 1-3 and Lp

µx
≥ Lq

µy
, with the

following tuning:

α = min

{
1,

√
µx

Lp

}
, ηx = min

{
1

3µx
,

1

3Lpα

}
, ηy =

µx

µy
ηx, (27)

and let (x̂k+1, ŷk+1) in line 5 satisfy∥∥∥∥ ∇xA
k
η(x̂

k+1, ŷk+1)
−∇yA

k
η(x̂

k+1, ŷk+1)

∥∥∥∥2
P−1

≤ 1

6

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

, where P :=

(
1
ηx
Idx 0

0 1
ηy
Idy

)
. (28)

Then, the following inequality holds

Ψk+1 ≤
(
1− α

6

)
Ψk, (29)

where
Ψk :=

1

ηx
∥xk − x∗∥2 + 1

ηy
∥yk − y∗∥2 + 2

α
Dp(x

k
f , x

∗) +
2

α
Dq(y

k
f , y

∗). (30)

Proof. Using line 6 of Algorithm 1, we get∥∥∥∥xk+1 − x∗

yk+1 − y∗

∥∥∥∥2
P

=

∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

+ 2

〈
xk+1 − xk

yk+1 − yk
;
xk − x∗

yk − y∗

〉
P

+

∥∥∥∥xk+1 − xk

yk+1 − yk

∥∥∥∥2
P

=

∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

− 2

〈
∇p(xk

g) +∇xR(x̂k+1, ŷk+1)
∇q(ykg)−∇yR(x̂k+1, ŷk+1)

;
xk − x∗

yk − y∗

〉
+

∥∥∥∥xk+1 − xk

yk+1 − yk

∥∥∥∥2
P

=

∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

+ 2

〈
∇p(xk

g) +∇xR(x̂k+1, ŷk+1)
∇q(ykg)−∇yR(x̂k+1, ŷk+1)

;
x̂k+1−xk

ηx

ŷk+1−yk

ηy

〉
P−1

− 2

〈
∇p(xk

g) +∇xR(x̂k+1, ŷk+1)
∇q(ykg)−∇yR(x̂k+1, ŷk+1)

;
x̂k+1 − x∗

ŷk+1 − y∗

〉
+

∥∥∥∥xk+1 − xk

yk+1 − yk

∥∥∥∥2
P

.

Since 2⟨a, b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2, we get∥∥∥∥xk+1 − x∗

yk+1 − y∗

∥∥∥∥2
P

=

∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

+

∥∥∥∥∥∇p(xk
g) +∇xR(x̂k+1, ŷk+1) + x̂k+1−xk

ηx

∇q(ykg)−∇yR(x̂k+1, ŷk+1) + ŷk+1−yk

ηy

∥∥∥∥∥
2

P−1

−
∥∥∥∥∇p(xk

g) +∇xR(x̂k+1, ŷk+1)
∇q(ykg)−∇yR(x̂k+1, ŷk+1)

∥∥∥∥2
P−1

−
∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

− 2

〈
∇p(xk

g) +∇xR(x̂k+1, ŷk+1)
∇q(ykg)−∇yR(x̂k+1, ŷk+1)

;
x̂k+1 − x∗

ŷk+1 − y∗

〉
+

∥∥∥∥xk+1 − xk

yk+1 − yk

∥∥∥∥2
P

.

Using line 6 of Algorithm 1 and (19), we get∥∥∥∥xk+1 − x∗

yk+1 − y∗

∥∥∥∥2
P

=

∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

+ 2

∥∥∥∥ ∇xA
k
η(x̂

k+1, ŷk+1)
−∇yA

k
η(x̂

k+1, ŷk+1)

∥∥∥∥2
P−1

−
∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

− 2

〈
∇p(xk

g) +∇xR(x̂k+1, ŷk+1)
∇q(ykg)−∇yR(x̂k+1, ŷk+1)

;
x̂k+1 − x∗

ŷk+1 − y∗

〉
.

Since (28), the following inequality holds∥∥∥∥xk+1 − x∗

yk+1 − y∗

∥∥∥∥2
P

≤
∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

− 2

3

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

− 2

〈
∇p(xk

g) +∇xR(x̂k+1, ŷk+1)
∇q(ykg)−∇yR(x̂k+1, ŷk+1)

;
x̂k+1 − x∗

ŷk+1 − y∗

〉
.

14

Under review as a conference paper at ICOMP 2024

Using the first-order necessary condition
(
∇p(x∗)
∇q(y∗)

)
+

(
∇xR(x∗, y∗)
−∇yR(x∗, y∗)

)
= 0 and Assumption 3,

we get∥∥∥∥xk+1 − x∗

yk+1 − y∗

∥∥∥∥2
P

=

∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

− 1

3

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

− 2

〈
∇p(xk

g)−∇p(x∗)
∇q(ykg)−∇q(y∗)

;
x̂k+1 − xk

ŷk+1 − yk

〉
− 2

〈
∇p(xk

g)−∇p(x∗)
∇q(ykg)−∇q(y∗)

;
xk − xk

g

yk − ykg

〉
− 2

〈
∇p(xk

g)−∇p(x∗)
∇q(ykg)−∇q(y∗)

;
xk
g − x∗

ykg − y∗

〉
− 2

〈
∇xR(x̂k+1, ŷk+1)−∇xR(x∗, y∗)
−∇yR(x̂k+1, ŷk+1) +∇yR(x∗, y∗)

;
x̂k+1 − x∗

ŷk+1 − y∗

〉
≤
∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

− 2

3

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

− 2

〈
∇p(xk

g)−∇p(x∗)
∇q(ykg)−∇q(y∗)

;
x̂k+1 − xk

ŷk+1 − yk

〉
− 2

〈
∇p(xk

g)−∇p(x∗)
∇q(ykg)−∇q(y∗)

;
xk − xk

g

yk − ykg

〉
− 2

〈
∇p(xk

g)−∇p(x∗)
∇q(ykg)−∇q(y∗)

;
xk
g − x∗

ykg − y∗

〉
−
∥∥∥∥x̂k+1 − x∗

ŷk+1 − y∗

∥∥∥∥2
M

,

where M =

(
µxIdx

0
0 µyIdy

)
. Now, we use line 4 and line 7 of Algorithm 1, and get∥∥∥∥xk+1 − x∗

yk+1 − y∗

∥∥∥∥2
P

≤
∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

− 2

3

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

− 2

α

〈
∇p(xk

g)
∇q(ykg)

;
xk+1
f − xk

g

yk+1
f − ykg

〉

+
2

α

〈
∇p(x∗)
∇q(y∗)

;
xk+1
f − x∗

yk+1
f − y∗

〉
+

2(1− α)

α

〈
∇p(xk

g)
∇q(ykg)

;
xk
f − xk

g

ykf − ykg

〉

− 2(1− α)

α

〈
∇p(x∗)
∇q(y∗)

;
xk
f − x∗

ykf − y∗

〉
− 2

〈
∇p(xk

g)
∇q(ykg)

;
xk
g − x∗

ykg − y∗

〉
−
∥∥∥∥x̂k+1 − x∗

ŷk+1 − y∗

∥∥∥∥2
M

.

Using Assumptions 1 and 2, we get∥∥∥∥xk+1 − x∗

yk+1 − y∗

∥∥∥∥2
P

≤
∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

− 2

3

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

+
2

α

(
p(xk

g)− p(xk+1
f) +

Lp

2
∥xk+1

f − xk
g∥2

+ q(ykg)− q(yk+1
f) +

Lq

2
∥yk+1

f − ykg∥2 +

〈
∇p(x∗)
∇q(y∗)

;
xk+1
f − x∗

yk+1
f − y∗

〉)

+
2(1− α)

α

(
p(xk

f)− p(xk
g) + q(ykf)− q(ykg)−

〈
∇p(x∗)
∇q(y∗)

;
xk
f − x∗

ykf − y∗

〉)
+ 2

(
p(x∗)− p(xk

g) + q(y∗)− q(ykg)
)
−
∥∥∥∥x̂k+1 − x∗

ŷk+1 − y∗

∥∥∥∥2
M

=

∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

− 2

3

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

− 2

α

(
Dp(x

k+1
f , x∗) + Dq(y

k+1
f , y∗)

)
+

∥∥∥∥∥xk+1
f − xk

g

yk+1
f − ykg

∥∥∥∥∥
2

1
αL

+
2(1− α)

α

(
Dp(x

k
f , x

∗) + Dq(y
k
f , y

∗)
)
−
∥∥∥∥x̂k+1 − x∗

ŷk+1 − y∗

∥∥∥∥2
M

,

where L =

(
LpIdx

0
0 LqIdy

)
. By (27) and condition Lp

µx
≥ Lq

µy
the following inequalities hold

ηx ≤ 1

3Lpα
, ηy =

µx

µy
ηx ≤ µx

µy
· 1

3Lpα
≤ 1

3Lqα
.

Using these inequalities and line 7 of Algorithm 1, we get∥∥∥∥∥xk+1
f − xk

g

yk+1
f − ykg

∥∥∥∥∥
2

1
αL

=
1

α

∥∥∥∥∥xk+1
f − xk

g

yk+1
f − ykg

∥∥∥∥∥
2

L

= α

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
L

≤ 1

3

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

.

15

Under review as a conference paper at ICOMP 2024

Apply this inequality to estimate
∥∥∥∥xk+1 − x∗

yk+1 − y∗

∥∥∥∥2
P

, we get

∥∥∥∥xk+1 − x∗

yk+1 − y∗

∥∥∥∥2
P

≤
∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

− 1

3

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

− 2

α

(
Dp(x

k+1
f , x∗) + Dq(y

k+1
f , y∗)

)
+

2(1− α)

α

(
Dp(x

k
f , x

∗) + Dq(y
k
f , y

∗)
)
−
∥∥∥∥x̂k+1 − x∗

ŷk+1 − y∗

∥∥∥∥2
M

.

Since (27), the following inequalities hold ηx ≤ 1
3µx

, ηy = µx

µy
ηx ≤ 1

3µy
. Using these inequalities

and ∥a− b∥2 ≤ 2∥a∥2 + 2∥b∥2, we get

1

3

∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
P

+

∥∥∥∥x̂k+1 − x∗

ŷk+1 − y∗

∥∥∥∥2
M

≥
∥∥∥∥x̂k+1 − xk

ŷk+1 − yk

∥∥∥∥2
M

+

∥∥∥∥x̂k+1 − x∗

ŷk+1 − y∗

∥∥∥∥2
M

≥1

2

∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
M

≥ α

6

∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥2
P

.

In the last inequality we use the following inequality ηyµy = ηxµx ≥ α
3 , that follows by (27):

1. If Lp ≤ µx, then α = 1, ηxµx =
1

3
=

α

3
, ηyµy =

1

3
=

α

3
.

2. If Lp > µx, then α =

√
µx

Lp
, ηxµx =

√
µx

3Lp
≥ α

3
, ηyµy =

√
µx

3Lp
≥ α

3
.

By definition of Ψk (30), we get

Ψk+1 ≤
(
1− α

6

)
Ψk.

Proof of Theorem 1 Using the property of the Bregman divergence for a differentiable convex
function Df (x, y) ≥ 0 and running the recursion (29) we get

1

ηx
∥xK − x∗∥2 + 1

ηy
∥yK − y∗∥2 ≤ ΨK ≤ C

(
1− α

6

)K
,

where C is defined as

C =
1

ηx
∥x0 − x∗∥2 + 1

ηy
∥y0 − y∗∥2 + 2

α
Dp(x

0
f , x

∗) +
2

α
Dq(y

0
f , y

∗).

After K = 6
α log 1

ε iterations of Algorithm 1 we get a pair (xK , yK) satisfies the following inequality

1

ηx
∥xK − x∗∥2 + 1

ηy
∥yK − y∗∥2 ≤ ε.

A.2 PROOF OF THEOREM 2

Lemma 3. Consider problem (19) under Assumption 3 and a point
(
x̂k+1, ŷk+1

)
, that is a γ-solution

to this problem with γ defined as follows

γ = C

∥∥∥∥xk − x̂k+1
∗

yk − ŷk+1
∗

∥∥∥∥2
P

, (31)

where

C =

(
12max

{(
LR +

1

ηx

)2

ηx,

(
LR +

1

ηy

)2

ηy

}
+ 2max

{
1

ηx
,
1

ηy

})−1

. (32)

Then, point
(
x̂k+1, ŷk+1

)
satisfies condition (22).

16

Under review as a conference paper at ICOMP 2024

Proof. Let
(
x̂k+1, ŷk+1

)
is γ-solution to problem (19). Then, using this fact and inequality ∥a +

b∥2 ≤ 2∥a∥2 + 2∥b∥2, we get∥∥∥∥x̂k+1 − x̂k+1
∗

ŷk+1 − ŷk+1
∗

∥∥∥∥2 ≤ C

∥∥∥∥xk − x̂k+1
∗

yk − ŷk+1
∗

∥∥∥∥2
P

≤ 2C

∥∥∥∥xk − x̂k+1

yk − ŷk+1

∥∥∥∥2
P

+ 2C

∥∥∥∥x̂k+1 − x̂k+1
∗

ŷk+1 − ŷk+1
∗

∥∥∥∥2
P

≤ 2C

∥∥∥∥xk − x̂k+1

yk − ŷk+1

∥∥∥∥2
P

+ 2Cλmax(P)

∥∥∥∥x̂k+1 − x̂k+1
∗

ŷk+1 − ŷk+1
∗

∥∥∥∥2 ,
where the point

(
x̂k+1
∗ , ŷk+1

∗
)

is solution to problem (19) and λmax(A) is the maximum eigenvalue
of matrix A. After rearranging, we get∥∥∥∥x̂k+1 − x̂k+1

∗
ŷk+1 − ŷk+1

∗

∥∥∥∥2 ≤ 2C

1− 2Cλmax(P)

∥∥∥∥xk − x̂k+1

yk − ŷk+1

∥∥∥∥2
P

.

Using this fact,
(
LR + 1

ηx

)
smoothness of Ak

η(·, y) and
(
LR + 1

ηy

)
smoothness of Ak

η(x, ·), and
the first optimal condition for problem (19), and (32), we obtain the following inequality∥∥∥∥ ∇xA

k
η(x̂

k+1, ŷk+1)
−∇yA

k
η(x̂

k+1, ŷk+1)

∥∥∥∥2
P−1

≤
∥∥∥∥x̂k+1 − x̂k+1

∗
ŷk+1 − ŷk+1

∗

∥∥∥∥2
L2

ηP
−1

≤ λmax(L
2
ηP

−1)

∥∥∥∥x̂k+1 − x̂k+1
∗

ŷk+1 − ŷk+1
∗

∥∥∥∥2
≤

2Cλmax(L
2
ηP

−1)

1− 2Cλmax(P)

∥∥∥∥xk − x̂k+1

yk − ŷk+1

∥∥∥∥2
P

=
1

6

∥∥∥∥xk − x̂k+1

yk − ŷk+1

∥∥∥∥2
P

,

where Lη = LRIdx+dy +P.

Lemma 4. Consider the function R(x, y) under Assumption 3 and replace variables as x = αu,
y = βv. Then function R̃(u, v) := R(x, y) is L̃-smooth, function R̃(·, v) is µu-strongly convex and
function R̃(u, ·) is µv-strongly concave, with L̃ = max{α2, β2}L, µu = α2µx, µv = β2µy .

Proof. Firstly, let us consider that

∇xR(x, y) =

∂R(x,y)

∂x1

. . .
∂R(x,y)
∂xdx

 =

∂R(αu,y)

∂u1
· ∂u1

∂x1

. . .
∂R(αu,y)

∂udx
· ∂udx

∂xdx

 =

∂R(αu,y)

∂u1
· 1
α

. . .
∂R(αu,y)

∂udx
· 1
α

 =
1

α
∇uR̃(u, v).

Using the similarly calculations we get ∇yR(x, y) = 1
β∇vR̃(u, v). Now we are ready to define the

smoothness constant of function R̃(u, v), using L-smoothness of function R(x, y).

∥∇R̃(u1, v1)−∇R̃(u2, v2)∥2 =∥∇uR̃(u1, v1)−∇uR̃(u2, v2)∥2

+ ∥∇vR̃(u1, v1)−∇vR̃(u2, v2)∥2

=α2∥∇xR(x1, y1)−∇xR(x2, y2)∥2

+ β2∥∇yR(x1, y1)−∇yR(x2, y2)∥2

≤max{α2, β2}∥∇R(x1, y1)−∇R(x2, y2)∥2

≤max{α2, β2}L2
(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
=max{α2, β2}L2

(
α2∥u1 − u2∥2 + β2∥v1 − v2∥2

)
≤L̃2

(
∥u1 − u2∥2 + ∥v1 − v2∥2

)
,

with L̃ = max{α2, β2}L. Now we define µu-strong convexity of function R̃(·, v).

R̃(u2, v) = R(x2, y) ≥ R(x1, y) + ⟨∇xR(x1, y), x2 − x1⟩+
µx

2
∥x2 − x1∥2

= R̃(u1, v) +

〈
1

α
∇uR̃(u1, v), α(u2 − u1)

〉
+

µxα
2

2
∥u2 − u1∥2

= R̃(u1, v) +
〈
∇uR̃(u1, v), u2 − u1

〉
+

µu

2
∥u2 − u1∥2,

with µu = α2µx. In this equation we use µx-strong convexity of R(·, y) and differentiation rule of
complex function. Similarly, we get µv-strong concavity of R̃(u, ·), with µv = β2µy .

17

Under review as a conference paper at ICOMP 2024

Proof of Theorem 2. By Lemma 3, to find a point
(
x̂k+1, ŷk+1]

)
, that satisfies condition (22), we

need to find a γ-solution to problem (19), where γ defined in (31). Firstly, we make the following
replacing variables x = αu, y = βv in the problem (19). After that we get the following problem in
new variables:

min
u

max
v

α⟨∇p(xk
g), u⟩+

α2

2ηx

∥∥∥∥u− xk

α

∥∥∥∥2 + R̃(u, v)− β⟨∇q(ykg), v⟩ −
β2

2ηy

∥∥∥∥v − yk

β

∥∥∥∥2 . (33)

By Corollary 1 from Kovalev & Gasnikov (2022) the FOAM algorithm requires the following number
of gradient evaluations:

T = O

 L̃R + α2

ηx
+ β2

ηy√
(µu + α2

ηx
)(µv +

β2

ηy
)
log

1

γ

 (34)

to find a γ-solution to problem (33). By Lemma 4 we get L̃R = max{α2, β2}LR, µu = α2µx and
µv = β2µy . Using these values we get the following number of gradient evaluations:

T = O

 max{α2, β2}LR + α2

ηx
+ β2

ηy√(
α2µx + α2

ηx

)(
β2µy +

β2

ηy

) log
1

γ

 = O

 max{α,β}
min{α,β}LR + α

βηx
+ β

αηy√(
µx + 1

ηx

)(
µy +

1
ηy

) log
1

γ

≤ O

 α
β

(
LR + 1

ηx

)
+ β

α

(
LR + 1

ηy

)
√(

µx + 1
ηx

)(
µy +

1
ηy

) log
1

γ

 .

Now we are ready to define constants α, β: α =
√

LR + 1
ηy

, β =
√

LR + 1
ηx

and get

T = O

√√√√√
(
LR + 1

ηx

)(
LR + 1

ηy

)
(
µx + 1

ηx

)(
µy +

1
ηy

) log
1

γ

 = O
(√

(LRηx + 1) (LRηy + 1) log
1

γ

)
.

The choice of γ in (31) completes the proof.

A.3 PROOF OF THEOREM 3

It should be noted that finding the solution to the auxiliary subproblem (19) does not require the
gradient calls of ∇p(x),∇q(y). These gradients are only called in line 6 of Algorithm 1. This implies
that the number of gradient calls for ∇p(x),∇q(y) is equivalent to K, as defined in Theorem 1.
However, the gradient calls of ∇R(x, y) are essential for finding the solution to problem (19). This
implies that the total number of gradient calls for ∇R(x, y) is K × T , with T defined in Theorem 3.
To estimate this, we perform some mathematical calculations for the case where Lp

µx
≥ Lq

µy
.

K × T = O

((
1 +

√
Lp

µx

)
log

1

ε

)
×O

(√
(LRηx + 1) (LRηy + 1) log

1

γ

)

≤ O

((
1 +

√
Lp

µx
+ LR

√
Lp

µy
ηx

)
log

LR

min{µx, µy}
log

1

ε

)

= O

((
1 +

√
Lp

µx
+

LR√
µxµy

)
log

LR

min{µx, µy}
log

1

ε

)

The case Lq

µy
>

Lp

µx
is symmetric.

18

Under review as a conference paper at ICOMP 2024

B BILINEAR SADDLE POINT PROBLEMS

In the special case, when R(x, y) = xTBy, (1) has been also widely studied, dating at least to the
classic work of Chambolle & Pock (2011) (imaging inverse problems). Modern applications can
be found in decentralized optimization Rogozin et al. (2023); Chezhegov et al. (2023). Quadratic
variant of the problem (1) also appeared in reinforcement learning Du et al. (2017). In this section we
present our results for bilinear saddle point problems.

B.1 STRONGLY CONVEX-STRONGLY CONCAVE BILINEAR SPP

The bilinear strongly convex-strongly concave problem has the following form

min
x∈Rdx

max
y∈Rdy

p(x) + xTBy − q(y). (35)

To this problem we assume that the following assumptions hold
Assumption 5. p(x) : Rdx → R is Lp-smooth and µp-strongly convex function

Assumption 6. q(y) : Rdy → R is Lq-smooth and µq-strongly convex function

Assumption 7. Matrix B ∈ Rdx×dy is positive semi-definite.

To apply Algorithm 1 to the problem (35) we reformulate it as a problem

min
x

max
y

p̃(x) +
µp

2
∥x∥2 + xTBy − µq

2
∥y∥2 − q̃(y)

with composites p̃(x) = p(x)− µp

2 ∥x∥2, q̃(y) = q(y)− µy

2 ∥y∥2.

Auxiliary subproblem complexity. At each iteration of Algorithm 1 we need to find a γ-solution to
the problem

min
x

max
y

⟨∇p̃(xk
g), x⟩+

1

2ηx
∥x−xk∥2+ µp

2
∥x∥2+xTBy− µq

2
∥y∥2− 1

2ηy
∥y−yk∥2−⟨∇q̃(ykg), y⟩

(36)
with γ defined in (31). The simplest way to solve this problem is to reformulate it as a minimization
problem in x using the first order optimal condition in y:

BTx− µqy −
1

ηy
(y − yk)−∇q̃(ykg) = 0

y(x) =
1

1
ηy

+ µq

(
BTx−∇q̃(ykg) +

1

ηy
yk
)
.

After reformulation, we get the quadratic problem
min
x

⟨x,Ax⟩+ ⟨b, x⟩+ c

with

A =
1

2

((
1

ηx
+ µp

)(
1

ηy
+ µq

)
I +BBT

)
,

b = ∇p̃(xk
g)−

1

ηy
xk +

(
1− 2ηy

1 + ηyµq

)
B

(
∇q̃(ykg)−

1

ηy
yk
)
,

c =
ηy

2(1 + ηyµq)
∥∇q̃(ykg)∥2 −

1

1 + µqηy
⟨∇q̃(ykg), y

k⟩+ µq(1− ηyµq)

2(1 + ηyµq)2
∥yk∥2.

This problem can be solved by Nesterov’s Accelerated Gradient Descent that requires

T = O

(√
λmax (A)

λmin (A)
log

1

γ

)
= O

√√√√√
(

1
ηx

+ µp

)(
1
ηy

+ µq

)
+ λmax (BBT)(

1
ηx

+ µp

)(
1
ηy

+ µq

)
+ λmin (BBT)

log
1

γ

= O

min

√

λmax (BBT)

λmin (BBT)
,

√√√√1 +
λmax (BBT)(

1
ηx

+ µp

)(
1
ηy

+ µq

)
 log

√
λmax(BBT)

min{µp, µq}

19

Under review as a conference paper at ICOMP 2024

iterations or calls of oracles B/BT to find an ε-solution to (36).

Overall complexity. Next, we make some computations to get the overall complexity of Algorithm 1
for bilinear case

K × T = O

((
1 +

√
Lp

µx
+

√
Lq

µy

)
log

1

ε

)
×O

(
min {T1, T2} log

√
λmax(BBT)

min{µp, µq}

)

where T1 =
√

λmax(BBT)
λmin(BBT)

and T2 =
√
1 + λmax(BBT)

(1
ηx

+µp)
(

1
ηy

+µq

) . Next we compute K×T1 and K×T2

for case Lp

µp
≥ Lq

µq
.

K × T1 = O

(√
Lp

µp
log

1

ε
×

√
λmax(BBT)

λmin(BBT)

)
= O

(√
Lp

µp

√
λmax(BBT)

λmin(BBT)
log

1

ε

)
,

K × T2 = O

√Lp

µp
log

1

ε
×

√√√√1 +
λmax (BBT)(

1
ηx

+ µp

)(
1
ηy

+ µq

)

= O

(√
Lp

µp
log

1

ε
×
(
1 +

√
λmax(BBT)ηxηy

))

= O

((√
Lp

µp
+

√
Lpλmax(BBT)

µq
ηx

)
log

1

ε

)

= O

((√
Lp

µp
+

√
λmax(BBT)

µpµq

)
log

1

ε

)
.

The case Lq

µq
≥ Lp

µp
is done similarly. These calculations allow us to formulate the following theorem

about oracle complexities of Algorithm 1 applied to the problem (35).
Theorem 4. Consider Problem (35) under Assumptions 5 to 7. Then, to find an ε-solution, Algorithm 1
requires

O

(
max

{
1,

√
Lp

µp
,

√
Lq

µq

}
log

1

ε

)
calls of ∇p(x),∇q(y)

and

O

(
min {K1,K2} log

√
λmax(BBT)

min{µp, µq}
log

1

ε

)
calls of B or BT ,

where

K1 = max

{√
Lpλmax(BBT)

µpλmin(BBT)
,

√
Lqλmax(BBT)

µqλmin(BBT)

}
and

K2 = max

{√
Lp

µp
,

√
Lq

µq
,

√
λmax(BBT)

µpµq

}
.

B.2 AFFINELY CONSTRAINED MINIMIZATION

This problem has the following form:
min
Bx=c

p(x), (37)

where c ∈ rangeB. Also, p(x) is µp-strongly convex function and B is positive definite
(i. e. λmin(BBT) > 0). This problem is equivalent to saddle point problem:

min
x

max
y

p(x) + xTBy − yT c. (38)

20

Under review as a conference paper at ICOMP 2024

To apply Algorithm 1 to this problem we make regularization and get the following problem

min
x

max
y

p(x) + xTBy − yT c− ε

16D2
y

∥y∥2.

By Lemma 1, if we find 2ε
3 -solution to this problem, then we find an ε-solution to (38). To find this

solution we apply Algorithm 1 and get the following complexity.
Corollary 1. Consider Problem (38). Then, to find an ε-solution, Algorithm 1 requires

O

(
max

{
1,

√
Lp

µp

}
log

1

ε

)
calls of ∇p(x)

and

O

(√
Lpλmax(BBT)

µpλmin(BBT)
log2

1

ε

)
calls of B or BT .

This corollary is derived from Theorem 4 and the fact that min{a, b} ≤ a.

B.3 BILINEAR PROBLEM WITH LINEAR COMPOSITES

In this subsection we consider bilinear problem with linear composites:

min
x

max
y

xT d+ xTBy − yT c, (39)

where matrix B is positive definite (λmin(BBT) = λ+
min(BBT)). As in the previous subsection, we

make the regularization to apply Algorithm 1. The problem (39) with regularization has the following
form:

min
x

max
y

ε

16D2
x

∥x∥2 + xT d+ xTBy − yT c− ε

16D2
y

∥y∥2. (40)

We need to find a ε
2 -solution to find an ε-solution to (39) by Lemma 1. To find it we apply Algorithm 1

with the following complexity.
Corollary 2. Consider Problem (39). Then, to find an ε-solution, Algorithm 1 requires

O

(√
λmax(BBT)

λmin(BBT)
log2

1

ε

)
calls of B or BT .

C DISCUSSION OUR RESULTS FOR BILINEAR PROBLEM AND RELATED
WORKS

C.1 BILINEAR STRONGLY CONVEX-STRONGLY CONCAVE CASE

For the bilinear strongly convex-strongly concave case (35) Algorithm 1 requires

O

(
max

{√
Lp

µp
,

√
Lq

µq

}
log

1

ε

)
oracle calls of ∇p(x),∇q(y)

and

O

(
max

{√
Lp

µp
,

√
Lq

µq
,

LB√
µpµq

}
log

LB

min{µp, µq}
log

1

ε

)
oracle calls of ∇R(x, y)

to find an ε-solution to (35). Also, the iteration complexity of Algo-

rithm 1 is O
(
max

{√
Lp

µp
,
√

Lq

µq
, LB√

µpµq

}
log LB

min{µp,µq} log
1
ε

)
. The same results

O
(
max

{√
Lp

µp
,
√

Lq

µq
, LB√

µpµq

}
log 1

ε

)
on iteration complexity were proposed in works Ko-

valev et al. (2022), Thekumparampil et al. (2022), Du et al. (2022) but the main benefit of our
approach is complexity separation.

21

Under review as a conference paper at ICOMP 2024

C.2 AFFINELY CONSTRAINED MINIMIZATION CASE

For the affinely constrained minimization case (38) Algorithm 1 requires

O

(√
Lp

µp
log

1

ε

)
oracle calls of ∇p(x)

and

O

(√
Lpλmax(BBT)

µpλmin(BBT)
log2

1

ε

)
calls of B or BT .

This matches the iteration complexity of algorithms from the works Kovalev et al. (2020), Kovalev
et al. (2022) up to logarithmic factor. Note, in these works, the authors achieve the lower bounds
Salim et al. (2022) exactly. But the key idea of Algorithm 1 in separating oracle complexities.

Meanwhile, we can apply this results to distributed optimization problem (7). For this
problem Algorithm 1 requires O

(√
LF

µF
log 1

ε

)
calls of ∇F (x), i.e. local oracle calls and

O
(√

LFλmax(W)

µFλ+
min(W)

log2 1
ε

)
calls of W , i.e. communication rounds. Algorithm 1 achieves the lower

bounds for distributed optimization Scaman et al. (2017) up to logarithmic factor. The optimal method
for this problem was proposed in Beznosikov et al. (2020).

C.3 BILINEAR CASE WITH LINEAR COMPOSITES

For the bilinear case with linear composites (39) Algorithm 1 requires

O
(
log

1

ε

)
oracle calls of ∇p(x),∇q(y)

and

O

(√
λmax(BBT)

λmin(BBT)
log2

1

ε

)
oracle calls of B,BT .

These results match the iteration complexity from the work Azizian et al. (2020) up to logarithmic
factor. In contrast to our results, in work Azizian et al. (2020) the lower bounds Ibrahim et al. (2020)
are achieved.

22

	Introduction
	Convex-Concave Setting and Separation of Complexities
	On the Importance of Complexity Separation
	Main Contributions

	Notation and Assumptions
	Optimal Algorithm
	Idea
	Convergence of Algorithm 1
	Convex-concave and strongly convex-concave composite SPP

	Discussion Our Results and Related Works
	Strongly convex-strongly concave and strongly convex-concave case
	Convex-concave case

	Missing proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Bilinear Saddle Point Problems
	Strongly convex-strongly concave bilinear SPP
	Affinely constrained minimization
	Bilinear problem with linear composites

	Discussion Our Results for Bilinear Problem and Related Works
	Bilinear strongly convex-strongly concave case
	Affinely constrained minimization case
	Bilinear case with linear composites

