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Abstract

Modern ML applications increasingly rely on complex deep learning models and1

large datasets. There has been an exponential growth in the amount of computa-2

tion needed to train the largest models. Therefore, to scale computation and data,3

these models are inevitably trained in a distributed manner in clusters of nodes,4

and their updates are aggregated before being applied to the model. However, a5

distributed setup is prone to Byzantine failures of individual nodes, components,6

and software. With data augmentation added to these settings, there is a critical7

need for robust and efficient aggregation systems. We define the quality of workers8

as reconstruction ratios ∈ (0, 1], and formulate aggregation as a Maximum Like-9

lihood Estimation procedure using Beta densities. We show that the Regularized10

form of log-likelihood wrt subspace can be approximately solved using iterative11

least squares solver, and provide convergence guarantees using recent Convex12

Optimization landscape results. Our empirical findings demonstrate that our ap-13

proach significantly enhances the robustness of state-of-the-art Byzantine resilient14

aggregators. We evaluate our method in a distributed setup with a parameter server,15

and show simultaneous improvements in communication efficiency and accuracy16

across various tasks.17

A Background and Related Work18

Researchers have approached the Byzantine resilience problem from two main directions. In the19

first class of works, techniques such as geometric median and majority voting try to perform robust20

aggregation [1], [2], [3]. The other class of works uses redundancy and assigns each worker redundant21

gradient computation tasks [4], [5].22

From another aspect, robustness can be provided on two levels. In weak Byzantine resilience methods23

such as Coordinate-wise median [6] and Krum [3], the learning is guaranteed to converge. In strong24

Byzantine resilience, the learning converges to a state as the system would converge in case no25

Byzantine worker existed. Draco [5] and Bulyan [7] are examples of this class. Convergence analysis26

of iterated reweighing type algorithms has been done for specific problem classes. For example,27

[8, 9] show that when IRLS is applied for sparse regression tasks, the iterates can converge linearly.28

Convergence analysis of matrix factorization problems using IRLS-type schemes has been proposed29

before, see [10, 11].30

It is well known that data augmentation techniques help in improving the generalization capabilities of31

models by adding more identically distributed samples to the data pool. [12, 13, 14]. The techniques32
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have evolved along with the development of the models, progressing from the basic ones like rotation,33

translation, cropping, flipping, injecting Gaussian noise [15] etc., to now the sophisticated ones34

(random erasing/masking [16], cutout [17] etc.). Multi-modal learning setups [18, 19, 20], use35

different ways to combine data of different modalities (text, images, audio etc.) to train deep learning36

networks.37

B Tractability of Computing Flag Aggregators38

In this section, we characterize the computational complexity of solving the Flag Aggregation problem39

via IRLS type schemes using results from convex optimization. First, we present a tight convex40

relaxation of the Flag Median problem by considering it as an instantiation of rank constrained41

optimization problem. We then show that we can represent our convex relaxation as a Second42

Order Cone Program which can be solved using off-the-shelf solvers [21]. Second, we argue that43

approximately solving such rank constrained problems in the factored space is an effective strategy44

using new results from [22] which builds on asymptotic convergence in [10]. Our results highlight45

that the Flag Median problem can be approximately solved using smooth optimization techniques,46

thus explaining the practical success of an IRLS type iterative solver.47

Interpreting Flag Aggregator (equation 5 in the main paper) in the Case m = 1. We first present48

a convex reformulation of the Flag Aggregator problem (5) in the case when the number of subspaces49

(or columns) is equal to 1. To make the exposition easier, we will also assume that λ = 0. With50

these assumptions, and using the fact that ∥y∥2 = 1, each term in the objective function of our FA51

aggregator in (5) can be rewritten as,52 √
(1− (yT g̃i))2) =

√
yT
(
I − g̃ig̃i

T
)
y = ∥B̃iy∥2, (1)

where we use the notation g̃i = gi/∥gi∥ to denote the normalized worker gradients, I ∈ Rn×n is53

the n × n identity matrix, and B̃i is the square root of the matrix I − g̃ig̃i
T . Observe that we can54

rewrite all the terms in equation (5) in the main paper in a similar fashion as in (1). Furthermore, by55

relaxing the feasible set to the n−Ball given by {y ∈ Rn : ∥y∥2 ≤ 1}, we obtain a Second Order56

Cone Programming (SOCP) relaxation of our FA problem in (5). SOCP problems can be solved57

using off-the-shelf packages with open source optimization solvers for gradient aggregation purposes58

in small scale settings, that is, when the number of parameters n ≈ 104 [23, 24, 25]. Our convex59

reformulation immediately yields insights on why reweighing type algorithm that was proposed in60

[26] works well in practice – for example see Section 3 in [27] in which various smoothing functions61

similar to the Flag Median (square) based smoothing are listed as options. More generally, our SOCP62

relaxation shows that if the smoothed version can be solved in closed form (or efficiently), then a63

reweighing based algorithm can be safely considered a viable candidate for aggregation purposes.64

Tractable Reformulations when m > 1 for Aggregation Purposes. Note that for any feasible Y65

such that Y TY = I , we have that the tr(Y ) = m.66

Remark B.1 (Parametrizing Subspaces using Y .). This assumption is without loss of generality. To67

see this, first note that in general, a (nondegenerate) subspace S of a vector space V is defined as68

a subset of V that is closed under linear combinations. Fortunately, in finite dimensions, we can69

represent S as a rectangular matrix M by Fundamental theorem of linear algebra. So, we simply use70

Y to represent the basis of this matrix M that represents the subspace S in our FA formulation.71

Using this, we can rewrite each term in the objective function of our FA aggregator in equation (5) in72

the main paper as,73 √
tr
(
Y T

(
I

m
− gigTi

∥gi∥22

)
Y

)
=
√

tr (Y TMiY ), (2)

where Mi = MT
i , i = 1, ..., p is symmetric matrix with at most one negative eigenvalue. Opti-74

mization problems involving quadratic functions with negative eigenvalues can be solved globally,75

in some cases [28, 29]. We consider methods that can efficiently (say in polynomial running time76

in n) provide solutions that are locally optimal. In order to do so, we consider the Semi Definite77

programming relaxation obtained by introducing matrix Z ⪰ 0 ∈ Rnm×nm to represent the term78

Y Y T , constrained to be rank one, and such that tr(Z) = m.79
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By using vec(Y ) ∈ Rnm to denote the vector obtained by stacking columns of Z, when m > 1, we80

obtain a trace norm constrained SOCP. Importantly, objective function can be written as a sum of81

terms of the form,82 √
vec(Y )T (I ⊗Mi) vec(Y ) =

√
tr (ZT (I ⊗Mi)), (3)

where ⊗ denotes the usual tensor (or Kronecker) product between matrices.83

Properties of lifted formulation in (3). There are some advantages to the loss function as specified84

in our reformulation (3). First, note that then our relaxation coincides with the usual trace norm based85

Goemans-Williamson relaxation used for solving Max-Cut problem with approximation guarantees86

[30]. Albeit, our objective function is not linear, and to our knowledge, it is not trivial to extend87

the results to nonlinear cases such as ours in (3). Moreover, even when Mi ⪰ 0, the
√
· makes88

the relaxation nonconvex, so it is not possible to use off-the-shelf disciplined convex programming89

software packages such as CVXPy [31, 32]. Our key observation is that away from 0,
√
· is a90

differentiable function. Hence, the objective function in (3) is differentiable with respect to Z.91

Remark B.2 (Using SDP relaxation for Aggregation.). In essence, if the optimal solution Z∗ to92

the SDP relaxation is a rank one matrix, then by rank factorization theorem, Z∗ can be written as93

Z∗ = vec(Y ∗)vec(Y ∗)T where vec(Y ∗) ∈ Rmn×1. So, after reshaping, we can obtain our optimal94

subspace estimate Y ∗ ∈ Rm×n for aggregation purposes. In the case the optimal Z∗ is not low rank,95

we simply use the largest rank one component of Z∗, and reshape it to get Y ∗.96

C Solving Flag Aggregation Efficiently97

Convergence Analysis when m = 1. Note that for the case m = 1, that is, FA provides unit vector98

y ∈ Rn to get aggregated gradient as yyTG, we can use smoothness based convergence results in99

nonconvex optimization, for example, please see [33]. We believe this addresses most of the standard100

training pipelines used in practice. Now, we focus on the case with m > 1.101

Now that we have a smooth reformulation of the aggregation problem that we would like to solve,102

it is tempting to solve it using first order methods. However, naively applying first order methods103

can lead to slow convergence, especially since the number of decision variables is now increased104

to m2n2. Standard projection oracles for trace norm require us to compute the full Singular Value105

Decomposition (SVD) of Z which becomes computationally expensive even for small values of106

m,n ≈ 10.107

Fortunately, recent results show that the factored form smooth SDPs can be solved in polynomial108

time using gradient based methods. That is, by setting Z = vec(Y )vec(Y )T , and minimizing the loss109

functions Li(Y ) =
√

vec(Y )T (I ⊗Mi) vec(Y ) with respect to Y , we have that the set of locally110

optimal points coincide, see [22]. Moreover, we have the following convergence result for first order111

methods like Gradient Descent that require SVD of n× p matrices:112

Lemma C.1. If Li are κi−smooth, with a ηi−lipschitz Hessian, then projected gradient descent113

with constant step size converges to a locally optimal solution to (3) in Õ(κ/ϵ2) iterations where114

0 ≤ ϵ ≤ κ2/η is a error tolerance parameter, κ = maxi κi, and η = maxi ηi.115

Above lemma C.1 says that gradient descent will output an aggregation Y that satisfies second order116

sufficiency conditions with respect to smooth reformulated loss function in (3). All the terms inside117

Õ in lemma C.1 are logarithmic in dimensions m,n, lipschitz constant L, and accuracy parameter ϵ.118

Remark C.2 (Numerical Considerations.). Note that the lipschitz constant κ of the overall objective119

function depends on Mi. That is, when Mi has negative eigenvalues, then κ can be high due to the120

square root function. We can consider three related ways to avoid this issue. First, we can choose a121

value m′ > m in our trace constraint such that Mi ⪰ 0. Similarly, we can expand (3) (in
√
·) as outer122

product of columns of Y suggesting that g̃g̃T term need to be normalized by m, thus making Mi ⪰ 0.123

Secondly, we can consider adding a quadratic term such as ∥Y ∥2Fro to make the function quadratic.124

This has the effect of decreasing κ and η of the objective function for optimization. Finally, we can125

use mi = max(ki,m) instead of min in defining the loss function as in [26] which would also make126

Mi ⪰ 0.127
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D Proof of Lemma C.1 when m > 1.128

We provide the missing details in Section C when m > 1. To that end, we will assume that each129

worker i provides the server with a list of ki gradients, that is, gi ∈ Rn×k – a strict generalization130

of the case considered in the main paper (with k = 1), that may be useful independently. Note that131

in [26], these gi’s are assumed to be subspaces whereas we do not make that assumption in our FA132

algorithm.133

Now, we will show that the RHS in equation (2) and LHS in equation (3) are equivalent. For that, we134

need to recall an elementary linear algebra fact relating tensor/Kronecker product, and tr operator.135

Recall the definition of Kronecker product:136

Definition D.1. Let A ∈ Rd1×d2 , B ∈ Re1×e2 , then A⊗B ∈ Rd1e1×d2e2 is given by,137

A⊗B :=

 a1,1B . . . a1,d2
B

...
. . .

...
ad1,1B . . . ad1,d2B

 , (4)

where ai,j denotes the entry at the i−th row, j−th column of A.138

Lemma D.2 (Equivalence of Objective Functions.). Let Y ∈ Rn×m, g ∈ Rn×k (so, M ∈ Rn×n).139

Then, we have that,140

tr
(
Y T ggTY

)
:= tr

(
Y TMY

)
= vec(Y )T (I ⊗M) vec(Y ), (5)

where I ∈ Rm×m is the identity matrix.141

Proof. Using the definition of tensor product in equation (4), we can simplify the right hand side of142

equation (5) as,143

vec(Y )T (I ⊗M) vec(Y ) = [y11, · · · yn1, · · · , y1m, · · · , ynm]


M 0 . . . 0
... M . . .

...
...

...
. . .

...
0 · · · · · · M





y11
...

yn1
...

y1m
...

ymn


=

m∑
j=1

yTj Myj

=

m∑
j=1

tr
(
yjy

T
j M

)
= tr

 m∑
j=1

yjy
T
j M

 = tr

 m∑
j=1

yjy
T
j

M

 (6)

= tr
(
Y Y TM

)
= tr

(
Y TMY

)
, (7)

where we used the cyclic property of trace operator tr(·) in equations (6), and (7) that is, tr(ABC) =144

tr(CAB) = tr(BCA) for any dimension compatible matrices A,B,C.145

D.1 Proof of Lemma C.1146

Recall that, given M̃i = I ⊗Mi, the lifted cone programming relaxation of FA can be written as,147

min
Z

∑
i

√
tr(ZT M̃i) s.t. Z ⪰ 0, tr(Z) = m,Z = ZT , (8)

where m is the rank of Z or number of columns of Y . We now use the above Lemma D.2 to show148

that the objective function with respect to Z in the lifted formulation is smooth which gives us the149

desired convergence result in Lemma C.1.150
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Proof. let κ̃i > 0,151

∂
√

tr(ZT M̃i) + κ̃i

∂Z
=

1

2
√

κ̃i + tr(ZT M̃i)
M̃i, (9)

where M̃i = I⊗Mi as in equation (3). Now, since M̃i is constant with respect to Z, the gradient term152

is affected only through a scalar
√

tr(ZT M̃i) + κ̃i. So the largest magnitude or entrywise ℓ∞-norm153

of the Hessian is given by,154 ∣∣∣∣∣∣
∂ 1√

tr(ZT M̃i)+κ̃i

∥M̃i∥∞

∂Z

∣∣∣∣∣∣ = ∥M̃i∥∞

2

√(
tr(ZT M̃i) + κ̃i

)3 . (10)

Now, we will argue that the gradient and hessian are lipschitz continuous in the lifted space. Since155

any feasible Z ⪰ 0 is positive semidefinite, if M̃i ⪰ 0, then the scalar tr(ZT M̃i) is at least m · λM̃i
mn156

where λM̃i
mn is the smallest (or mn−th) eigenvalue of M̃i. So, we can choose κ̃i = 0∀i. If not, then157

there is a negative eigenvalue, possibly repeated. So, the gradient might not exist. In cases where M̃i158

has negative eigenvalues, we can choose κ̃i = κ̃ =
∣∣∣mini min

(
λM̃i
mn, 0

)∣∣∣. With these choices, we159

have that the gradient of the objective function in (3) is lipschitz continuous. By a similar analysis160

using the third derivative, we can show that Hessian is also lipschitz continuous with respect to Z.161

In other words, all the lipschitz constant of both the gradient and hessian of our overall objective162

function is controlled by κ̃ > 0. Hence, we have all conditions satisfied required for Lemma 1 in163

[22], and we have our convergence result for FA in the factored space of vec(Y ).164

Few remarks are in order with respect to our convergence result. First, is the choice κ̃ important165

for convergence? Our convergence result shows that a perturbed objective function tr(ZT M̃i) + κ̃166

has the same second order stationary points as that of the objective function in the factored form167

formulated using Y (or vec(Y )). We can avoid this perturbation argument if we explicitly add168

constraints tr(ZT M̃i) ≥ 0, since projections on linear constraints can be performed efficiently169

exactly (sometimes) or approximately. Note that these constraints are natural since it is not possible170

to evaluate the square root of a negative number. Alternatively, we can use a smooth approximate171

approximation of the absolute values
√∣∣∣tr(ZT M̃i)

∣∣∣. In this case, it is easy to see from (9), and172

(10) that the constants governing the lipschitz continuity as dependent on the absolute values of the173

minimum eigenvalues, as expected. In essence, no, the choice of κ̃ does not affect the nature of174

landscape – approximate locally optimal points remain approximately locally optimal. In practice,175

we expect the choice of κ̃ to affect the performance of first order methods.176

Second, can we assume M̃i ≻ 0 for gradient aggregation purposes? Yes, this is because, when177

using first order methods to obtain locally optimal solution, the scale or norm of the gradient becomes178

a secondary factor in terms of convergence. So, we can safely normalize each Mi by the nuclear179

norm ∥Mi∥∗ :=
∑ki

j=1 σj where σj is the j−th singular value of Mi. This ensures that I −Mi ⪰ 0,180

assistant convergence. While ∥Mi∥∗ itself might be computationally expensive to compute, we may181

be able to use estimates of ∥Mi∥∗ via simple procedures as in [34]. In most practical implementations182

including ours, we simply compute the average of the gradients computed by each worker before183

sending it to the parameter server, that is, ki ≡ k = 1 in which case simply normalizing by the184

euclidean norm is sufficient for our convergence result to hold. Our FA based distributed training185

Algorithm 1 solves the factored form for gradient aggregation purposes (in Step 6) at the parameter186

server.187

Finally, please note that our technical assumptions are standard in optimization literature, that exploits188

smoothness of the objective function – since the feasible set of Y in (1) is bounded, assumptions189

are satisfied. Our proof techniques are standard, and we simply use them on our reformulation to190

obtain convergence guarantee second order stationary points for IRLS iterations since there exists a191

tractable SDP relaxation.192
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D.2 FA Optimality Conditions and Similarities with Bulyan [7] Baseline.193

We first restate our Flag Aggregator with gi ∈ Rn×k in optimization terms as follows,194

min
Y :Y TY=I

A(Y ) :=

p∑
i=1

√√√√(1− tr
(
Y T gigTi Y

)
tr
(
gTi gi

) )
+ λR(Y ), (11)

and write its associated Lagrangian L defined by,195

L(Y,Γ) :=
p∑

i=1

√√√√(1− tr
(
Y T gigTi Y

)
tr
(
gTi gi

) )
+ λR(Y ) + tr

(
ΓT
(
Y TY − I

))
, (12)

where Γ ∈ Rm×m denotes the Lagrange multipliers associated with the orthogonality constraints in196

equation (11). In particular, since the constraints we have are equality, there are no sign restrictions197

on Γ, so they are often referred to as “free”. Moreover, since Y is a real matrix, the constraints are198

symmetric (i.e., yTi yj = yTj yi), we may assume that Γ = ΓT , without loss of generality.199

We will introduce some notations to make calculations easier. We will use g̃i ∈ Rn×k to denote the200

normalized gradients matrix of the data terms in equation (11). That is, we define201

g̃i := − 1

tr
(
gTi gi

)
·

√(
1− tr(Y T gigT

i Y )
tr(gT

i gi)

)gig
T
i =: digig

T
i . (13)

With this notation, we are ready to use the first optimality conditions associated with the constrained202

optimization problem in (11) with its Lagrangian in (12) By first order optimality or KKT conditions,203

we have that,204

0 = ∇Y L(Y∗,Γ∗) =

(
p∑

i=1

g̃ig̃
T
i

)
Y∗ + λ∇R(Y∗) + 2Y∗Γ∗

= GD∗G
TY∗ + λ∇R(Y∗) + 2Y∗Γ∗, (Objective) (14)

0 = ∇ΓL(Y∗,Γ∗) = Y T
∗ Y∗ − I, (Feasibility)

where Y∗ ∈ Rn×m,Γ∗ ∈ Rm×m are the optimal primal parameters, lagrangian multipliers, and205

D∗ ∈ Rp×p
<0 is the diagonal matrix with entries equal to −di < 0 as in equation (13). We may ignore206

the Feasibility conditions since our algorithm returns an orthogonal matrix by design, and focus on207

the Objective conditions. Now, by bringing the term associated with Lagrangian to the other side,208

and then right multiplying by Γ−1
∗ inverse of Γ∗, we have that Y∗ satisfies the following identity,209

Y∗ = −1

2

(
GD∗G

TY∗ + λ∇R(Y∗)
)
Γ−1
∗ . (15)

By using the identity (15), we can write an equivalent representation of our aggregation rule Y∗Y
T
∗ G210

given by,211

Y∗Y
T
∗ G =

1

4

(
GD∗G

TY∗ + λ∇R(Y∗)
)
Γ−1
∗ Γ−1

∗
(
Y T
∗ GD∗G

T + λ∇R(Y∗)
T
)
G︸ ︷︷ ︸

:=M∗∈Rm×p

∝
(
GD∗G

TY∗ + λ∇R(Y∗)
)
M∗

= G D∗G
TY∗︸ ︷︷ ︸

:=S′
∗∈Rp×m

M∗ + λ∇R(Y∗)M∗

= GS′
∗M∗ + λ∇R(Y∗)M∗

: = GSFA + λ∇R(Y∗)M∗, (16)

that is, the update rule of FA can be seen as a left multiplication with the square “flag selection”212

matrix SSA = S′
∗M∗ ∈ Rp×p, and then perturbing with the gradient ∇R(Y∗) of the regularization213

function R with a different matrix M∗ as in equation (16). Importantly, we can see in equation214
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(16) that the (reduced) selection matrix S ∈ Rp×m
≥0 in Bulyan [7] is equivalent to the total selection215

matrix SSA ∈ Rp×p in our FA setup. Moreover, we can also see that domain knowledge in terms of216

regularization function may also determine the optimal subspace, albeit additively only. We leave the217

algorithmic implications of our result as future work.218

Remark D.3 (Invertibility of Γ∗ in Equation (15).). Theoretically, note that Γ is symmetric, so by219

Spectral Theorem, we know that its eigen decomposition exists. So, we may use pseudo-inverse220

instead of its inverse. Computationally, given any primal solution Y∗ we can obtain Γ∗ by left221

multiplying equation (14) by Y∗ and use feasibility i.e., Y T
∗ Y∗ = I . Now, we obtain Γ−1

∗ columnwise222

by using some numerical solver such as conjugate gradient (with fixed iterations) on Γ with standard223

basis vectors. In either case, our proof can be used with the preferred approximation choice of Γ−1
∗ to224

get the equivalence as in equation (16).225

Remark D.4 (Provable Robustness Guarantees for FA.). Since our FA scheme is based on convexity, it226

is possible to show worst-case robustness guarantees for FA iterations under mild technical conditions227

on Y ∗ – even under correlated noise, see for e.g. Assumption 1 in [35]). In fact, by using the selection228

matrix SFA in equation (16) in Lemma 1 in [1] and following the proof, we can get similar provable229

robustness guarantees for FA. We leave the theoretical analysis as future work.230

E ADDITIONAL EXPERIMENTS231

E.1 The Effect of Regularization Parameter232

Our algorithm depends on the regularization parameter λ. Figure 1 below illustrates the effect of this233

parameter on similarity of aggregated gradient vectors for FA and Multi-Krum. For this experiment,234

we sample the gradients output by the parameter server across multiple epochs for both FA and235

Multi-Krum and compute the cosine similarity of corresponding vectors. We repeat the experiment236

with different λ values. As we can see, for smaller iterations there is some similarity between the237

gradients computed by FA and Multi-Krum. This similarity is more visible for smaller λ values.238

Figure 1: The effect of the regularization parameter λ on similarity of FA performance to Multi-Krum

E.2 Experiments with the Tiny ImageNet dataset239

We repeated our experiments with Tiny ImageNet [36] which contains 100000 images of 200 classes240

(500 for each class) downsized to 64×64 colored images. We fix our batch size to 192 and use241

ResNet-50 [37] throughout the experiments242

Tolerance to the number of Byzantine workers: In this experiment, we have p = 15 workers of243

which f = 1, .., 3 are Byzantine and send random gradients. The accuracy of test data for FA in244

comparison to other aggregators is shown in Figure 2. As we can see, for f = 1 and f = 2, FA245

converges at a higher accuracy than all other schemes. For all cases, FA also converges in ∼2x less246

number of iterations.247

Tolerance to communication loss:248

We set a 10% loss rate for the links connecting f = 1, .., 3 of the workers to the parameter server.249

Figure 3 shows that our takeaways in the main paper are also confirmed in this setting with the new250

dataset.251

The effect of having augmented data during training in Byzantine workers: We choose two non252

linear augmentation schemes, Lotka Volterra (shown in rows 1 and 3 of Figure 4) and Arnold’s Cat253

Map (shown in rows 2 and 4 of Figure 4).254

As seen from the figure, Arnold’s Cat Map augmentations stretch the images and rearrange them255

within a unit square, thus resulting in streaky patterns. Whereas the Lotka Volterra augmentations256
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Figure 2: Tolerance to the number of Byzantine workers for robust aggregators.
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Figure 3: Tolerance to communication loss

distort the images while keeping the images similar to the original ones. We perform experiments257

with data augmented with varying shares using the two methods and show the results in Figure 5.258

For CIFAR-10, we showed the results when all of the samples in Byzantine workers are augmented259

in Figure 7 in the main paper. For Tiny ImageNet, this case is shown Figure 5a. Figures 5b and 5c260

show the results under different ratios on CIFAR-10. By changing the ratios we were interested to261

see if streaky patterns augmented by Arnold’s Cat Map would introduce a more adverse effect from262

Byzantine workers compared to Lotka Volterra. Although the results do not show a significant signal,263

we can see that the augmentations did impact the overall gradients, and that FA performs significantly264

better.265

Figure 4: TinyImagenet data with Augmentation: Row 1: Lotka Volterra augmentation on Class
Horse. Row 2: Arnold’s Cat Map augmentation on Class Horse. Row 3:Lotka Volterra augmentation
on Class Ship. Row 4: Arnold’s Cat Map augmentation on Class Ship.

We have attached our code for running the experiments and reproducing the results in the zip266

file.267
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(a) 100% Lotka-Volterra on Tiny
ImageNet
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(b) 50% Lotka-Volterra, 50%
Arnold’s Cat Map on CIFAR-10
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Figure 5: Accuracy of using augmented data in f = 3 workers
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