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Abstract

In this paper, we propose Describe-and-Dissect (DnD), a novel method to describe the roles
of hidden neurons in vision networks. DnD utilizes recent advancements in multimodal
deep learning to produce complex natural language descriptions, without the need for
labeled training data or a predefined set of concepts to choose from. Additionally, DnD
is training-free, meaning we don’t train any new models and can easily leverage more
capable general purpose models in the future. We have conducted extensive qualitative
and quantitative analysis to show that DnD outperforms prior work by providing higher
quality neuron descriptions. Specifically, our method on average provides the highest quality
labels and is more than 2× as likely to be selected as the best explanation for a neuron
than the best baseline. Finally, we present a use case providing critical insights into land
cover prediction models for sustainability applications. Our code and data are available at
https://github.com/Trustworthy-ML-Lab/Describe-and-Dissect.

1 Introduction

Recent advancements in Deep Neural Networks (DNNs) within machine learning have enabled unparalleled
development in multimodal artificial intelligence. While these models have revolutionized domains across
image recognition and natural language processing, they haven’t seen much use in various safety-critical
applications, such as healthcare or ethical decision-making. This is in part due to their cryptic “black box”
nature, where the internal workings of complex neural networks have remained beyond human comprehension.
This makes it hard to place appropriate trust in the models and additional insight in their workings is needed
to reach wider adoption.

Previous methods have gained a deeper understanding of DNNs by examining the functionality (also known
as concepts) of individual neurons1. This includes works based on manual inspection (Erhan et al., 2009;
Zhou et al., 2015; Olah et al., 2020; Goh et al., 2021), which can provide high quality description at the cost

*N. Bai and R. Iyer contributed equally to this work. Major work done in Summer outreach program at UC San Diego.
1We conform to prior works’ notation and use "neuron" to describe a channel in CNNs.
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Figure 1: Neuron descriptions provided by our method (DnD) and baselines CLIP-Dissect (Oikarinen & Weng,
2023), MILAN (Hernandez et al., 2022)), and Network Dissection (Bau et al., 2017) for random neurons from
ResNet-50 trained on ImageNet. We have added the average quality rating from our Amazon Mechanical
Turk experiment described in Section 4.3 next to each label and color-coded the neuron descriptions by
whether we believed they were accurate, somewhat correct or vague/imprecise.

of being very labor intensive. Alternatively, Network Dissection (Bau et al., 2017) automated this labeling
process by creating the pixelwise labeled dataset, Broden, where fixed concept set labels serve as ground
truth binary masks for corresponding image pixels. The dataset was then used to match neurons to a label
from the concept set based on how similar their activation patterns and the concept maps were. While earlier
works, such as Network Dissection, were restricted to an annotated dataset and a predetermined concept
set, CLIP-Dissect (Oikarinen & Weng, 2023) offered a solution by no longer requiring labeled concept data,
but still requires a predetermined concept set as input. By utilizing OpenAI’s CLIP model, CLIP-Dissect
matches neurons to concepts based on their activations in response to images, allowing for a more flexible
probing dataset and concept set compared to previous works.

However, these methods still share a major limitation: Concepts detected by certain neurons, especially
in intermediate layers, prove to be difficult to encapsulate using the simple, often single-word descriptions
provided in a fixed concept set. MILAN (Hernandez et al., 2022) sought to enhance the quality of these
neuron labels by providing generative descriptions, but their method requires training a new description
model from scratch to match human explanations on a dataset of neurons. This leads to their proposed
method being more brittle and often performs poorly outside its training data.

To overcome these limitations, we propose Describe-and-Dissect (abbreviated as DnD) in Section 3, a pipeline
to dissect DNNs by utilizing an image-to-text model to describe highly activating images for corresponding
neurons. The descriptions are then semantically combined by a large language model, and finally refined with
synthetic images to generate the final concept of a neuron. We conduct extensive qualitative and quantitative
analysis in Section 4 and show that Describe-and-Dissect outperforms prior work by providing high quality
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Table 1: Comparison of existing automated neuron labeling methods and our method Describe-and-Dissect
(DnD). Green and boldfaced Yes or No indicates the desired property for a column. DnD has all the
desired properties while existing work has some limitations.

Method \ property
Requires
Concept
Annotations

Training
Free

Generative
Natural Language
Descriptions

Uses Spatial
Activation
Information

Can easily
leverage better
future models

Network Dissection (Bau et al., 2017) Yes Yes No Yes No
MILAN (Hernandez et al., 2022) Training only No Yes Yes No
CLIP-Dissect (Oikarinen & Weng, 2023) No Yes No No Yes
FALCON (Kalibhat et al., 2023) No Yes No Yes Yes
DnD (This work) No Yes Yes Yes Yes

neuron descriptions. Specifically, we show that Describe-and-Dissect provides more complex and higher-quality
descriptions (up to 2-4× better) on intermediate layer neurons than other contemporary methods in a large
scale user study. Example descriptions from our method are displayed in Figure 1. Additionally, we present a
use-case study demonstrating DnD’s ability to interpret and improve upon current sustainability models in
Section 5.

2 Background and related work

2.1 Neuron Interpretability Methods

Network Dissection (Bau et al., 2017) is the first method developed to automatically describe individual
neurons’ functionalities. The authors first defined the densely-annotated dataset Broden, denoted as DBroden,
as a ground-truth concept mask. The dataset is composed of various images xi, each labeled with concepts c
at the pixel-level. This forms a ground truth binary mask Lc(xi) which is used to calculate the intersection
over union (IoU) score between Lc(xi) and the binary mask from the activations of the neuron k over all

images xi ∈ DBroden, denoted Mk(xi): IoUk,c =
∑

xi∈DBroden
Mk(xi)∩Lc(xi)∑

xi∈DBroden
Mk(xi)∪Lc(xi)

. The concept c is assigned to a

neuron k if IoUk,c > η, where the threshold η was set to 0.04. Intuitively, this method finds the labeled
concept whose presence in the image is most closely correlated with the neuron having high activation.
Extensions of Network Dissection were proposed by Bau et al. (2020) and Mu & Andreas (2020).

However, Network Dissection is limited by the need of concept annotation and the concept set is a closed set
that may be hard to expand. To address these limitations, a recent work CLIP-Dissect (Oikarinen & Weng,
2023) utilizes OpenAI’s multimodal CLIP (Radford et al., 2021) model to describe neurons automatically
without requiring annotated concept data. They leverage CLIP to score how similar each image in the probing
dataset Dprobe is to the concepts in a user-specified concept set to generate a concept activation matrix. To
describe a neuron, they compare the activation pattern of said neuron to activations of different concepts
on the probing data, and find the concept that is the closest match using a similarity function, such as
softWPMI. Another very recent work FALCON (Kalibhat et al., 2023) uses a method similar to CLIP-Dissect
but augments it via counterfactual images by finding inputs similar to highly activating images with low
activation for the target neuron, and utilizing spatial information of activations via cropping. However, they
solely rely on cropping the most salient regions within a probing image to filter spurious concepts that are
loosely related to the ground truth functionality labels of neurons. This approach largely restrict their method
to local concepts while overlooking holistic concepts within images, as noted by Kalibhat et al. (2023). Their
approach is also limited to single word/set of words descriptions that are unable to reach the complexity of
natural language.

On the other hand, MILAN (Hernandez et al., 2022) is a different approach to describe neurons using
natural language descriptions in a generative fashion. Note that despite the concept sets in CLIP-Dissect and
FALCON being flexible and open, they cannot provide generative natural language descriptions like MILAN.
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The central idea of MILAN is to train an image-to-text model from scratch to describe the neuron’s role based
on 15 most highly activating images. Specifically, it was trained on crowdsourced descriptions for 20,000
neurons from selected networks. MILAN can then generate natural language descriptions to new neurons
by outputting descriptions that maximize the weighted pointwise mutual information (WPMI) between the
description and the active image regions. One major limitation of MILAN is that the method require training
a model to imitate human descriptions of image regions on relatively small training dataset, which may
cause inconsistency and poor explanations further from training data. In contrast, our DnD is training-free,
generative, and produces a higher quality of neuron descriptions as supported by our extensive experiments
in Figure 1 and Table 3. A detailed comparison between our method and the baseline methods is shown in
Table 1.

2.2 Leveraging Large Pretrained models

In our DnD pipeline, we are able to leverage recent advances in the large pre-trained models to provide
high quality and generative neuron descriptions for DNNs in a training-free manner. Below we briefly
introduce the Image-to-Text Model, Large Language Models and Text-to-Image Model used in our pipeline
implementation. The first model is Bootstrapping Language-Image Pretraining (BLIP) (Li et al., 2022),
which is an image-to-text model for vision-language tasks that generates synthetic captions and filters noisy
ones, employing bootstrapping for the captions to utilize noisy web data. While our method can use any
image-to-text model, we use BLIP in this paper for our Step 2 in the pipeline due to BLIP’s high performance,
speed, and relatively low computational cost. However, we note that our method can be easily adapted to
leverage more advanced models in the future.

The second model is GPT-3.5 Turbo, which is a transformer model developed by OpenAI for understanding
and generating natural language. It provides increased performance from other contemporary models due to
its vast training dataset and immense network size. We utilize GPT-3.5 Turbo for natural language processing
and semantic summarization in the Step 2 of our DnD. We use GPT-3.5 Turbo in this work as it’s one of
the SOTAs in LLMs and cheap to use, but our method is compatible with other future and more advanced
LLMs. We provide a quantitative comparison analyzing the effect of GPT-3.5 Turbo, GPT-4.0, and LLaMA2
on DnD’s label quality in Appendix A.4.5 as well as evaluation on cost and usage limitations for each model.

The third model is Stable Diffusion (Rombach et al., 2022), which is a text-to-image latent diffusion model
(LDM) trained on a subset from the LAION-5B database (Schuhmann et al., 2022). By performing the
diffusion process over the low dimensional latent space, Stable Diffusion is significantly more computationally
efficient than other diffusion models, such as DALLE (Ramesh et al., 2021). Due to its open availability,
lower computational cost, and high performance, we employ Stable Diffusion for our image generation needs
in the Step 3 of DnD.

3 Describe-and-Dissect: Methods

Overview. In this section, we present Describe-and-Dissect (DnD), a comprehensive method to produce
generative neuron descriptions in deep vision networks. Our method is training-free, model-agnostic, and can
be easily adapted to utilize advancements in multimodal deep learning. DnD consists of three steps:

• Step 1. Probing Set Augmentation: Augment the probing dataset with attention cropping to
include both global and local concepts. This helps better describe localized neuron activations.

• Step 2. Candidate Concept Generation: Generate initial concepts by describing highly activating
images and subsequently summarize them into candidate concepts using GPT. This is the main step
that generates a set of possible explanations.

• Step 3. Best Concept Selection: Generate new images based on candidate concepts and select
the best concept based on neuron activations on these synthetic images with a scoring function. This
refines the description by selecting the most accurate neuron description from descriptions produced
in Step 2.

4



Published in Transactions on Machine Learning Research (01/2025)

Figure 2: Overview of Describe-and-Dissect (DnD) algorithm. For a given target model, DnD consists of three
important steps to identify neuron concepts (e.g. ‘Swimming Shark‘ for neuron n).

An overview of Describe-and-Dissect (DnD) and these 3 steps are illustrated in Figure 2.

3.1 Step 1: Probing Set Augmentations

Probing dataset Dprobe is the set of images we record neuron activations on before generating a description.
As described in Section 2.1, one major limitation of Kalibhat et al. (2023) is the restriction to local concepts
while overlooking holistic concepts within images, while one limitation of Oikarinen & Weng (2023) is not
incorporating the spatial activation information. Motivated by these limitations, DnD resolves these problems
by augmenting the original probing dataset with a set of attention crops of the highest activating images
from the original probing dataset. The attention crops can capture the spatial information of the activations
and we name this set as Dcropped, shown in Figure 2. We discuss the implementation details of our attention
cropping procedure in Appendix A.1.1 and perform an ablation study on its effects in Appendix A.4.1.

3.2 Step 2: Candidate Concept Generation

The top K most highly activating images for a neuron n are collected in set I, |I| = K, by selecting K images
xi ∈ Dprobe ∪ Dcropped with the largest g(Ak(xi)). Here g is a summary function (for the purposes of our
experiments we define g as the spatial mean) and Ak(xi) is the activation map of neuron k on input xi. We
then generate a set of candidate concepts for the neuron with the following two part process:

• Step 2A - Generate descriptions for highly activating images: We utilize BLIP image-to-text
model to generatively produce an image caption for each image in I. For an image Ij∈[K], we feed Ij

into the base BLIP model to obtain an image caption.

• Step 2B - Summarize similarities between image descriptions: Next we utilize OpenAI’s
GPT-3.5 Turbo model to summarize similarities between the K image captions for each neuron being
checked. GPT is prompted to generate N descriptions which identify and summarize the conceptual
similarities between most of the BLIP-generated captions.
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The output of Step 2B is a set of N descriptions which we call "candidate concepts". We denote this set
as T = {T1, ..., TN }. For the purposes of our experiments, we generate N = 5 candidate concepts unless
otherwise mentioned. The exact prompt used for GPT summarization is shown in Appendix A.1.3.

3.3 Step 3: Best Concept Selection

The last crucial component of DnD is concept selection, which selects the concept from the set of candidate
concepts T that is most correlated to the activating images of a neuron. We first use the Stable Diffusion
model (Rombach et al., 2022) from Hugging Face to generate images for each concept Tj∈[N ]. Generating
new images is important as it allows us to differentiate between neurons truly detecting a concept or just
spurious correlations in the probing data. The resulting set of images is then fed through the target model
again to record the activations of a target neuron on the new images. Finally, the candidate concepts are
ranked using a concept scoring function, as discussed in Section 3.4.

Concept Selection Algorithm The algorithm consists of 4 substeps. For each neuron n, we start by:

1. Generate supplementary images. Generate Q synthetic images using a text-to-image model for each
label Tj∈[N ]. The set of images from each concept is denoted as Dj , |Dj | = Q. The total new dataset
is then Dnew =

⋃N
j=1 Dj = {xnew

1 , ..., xnew
N ·Q}, which represents the full set of generated images. For

the purposes of the experiments in this paper, we set Q = 10.

2. Feed new dataset Dnew, back into the target model and rank the images based on activation. We
then evaluate the activations of target neuron n on images in Dnew and compute the rank of
each image in terms of target neuron activation. Given neuron activations An(xnew

i ), we define
Gn = {g(An(xnew

1 )), ..., g(An(xnew
N ·Q))} as the set of scalar neuron activations.

3. Gather the ranks of images corresponding to concept Tj. Let Rank(x; G) be a function that returns
the rank of an element x in set G, such that Rank(x′; G) = 1 if x′ is the largest element in G.
For every concept Tj , we record the ranks of images generated from the concept in Hj , where
Hj = {Rank(g(An(x)); Gn) ∀ x ∈ Dj}, and Hj is sorted in increasing order, so Hj1 is the rank of the
lowest ranking element.

4. Assign scores to each concept. The scoring function score(Hj) assigns a score to a concept using
the rankings of the concept’s generated images, and potential additional information. The concept
with the best (highest) score in T is selected as the concept label for the neuron. Concept scoring
functions are discussed below in Section 3.4.

In simpler terms, the intuition behind this algorithm is that if a neuron n encodes for a concept c, then the
images generated to encapsulate that concept c should cause the neuron n to activate highly. While we only
experiment with Best Concept selection within the DnD framework, it can be independently applied with
other methods like Bau et al. (2017); Hernandez et al. (2022); Oikarinen & Weng (2023) to select the best
concept out of their top-k best descriptions, which is another benefit of our proposed method. DnD can also
be used without Best Concept Selection (Step 3) to reduce computational costs.

3.4 Scoring Function

For a given neuron, we use a scoring function to rate candidate concept accuracy during Best Concept
Selection (Step 3). Simple metrics such as mean are heavily prone to outliers that result in skewed predictions
so we propose a scoring function that weights the average rank of top activating images mapping to a
candidate concept.

score(Rj , I, Dt
j) = (N − Rank(Rj)) · E(I, Dt

j)

Here, the average rank of images for candidate concept j, ∀j ∈ {1, ..., N}, is denoted Rj and Rank(Rj) sorts
the average rank Rj of each candidate concept in increasing order. E(I, Dt

j) computes the average cosine
similarity between image embeddings of Dt

j and I using CLIP-ViT-B/16 (Radford et al., 2021), with Dt
j ⊂ Dj
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for t highest activating images (for our experiments, we use t = 10). In practice, Rj is computed as the
square of the ranks in top β = 5 ranking images for better differentiation between scores, Rj = {(Ri

j)2; i ≤ β}.
Sections A.1.4 the details specifics behind the function. In Section A.1.5, we compare between various
functions and show our algorithm works robustly with different options.

4 Experiments

In this section, we present extensive qualitative and quantitative analysis to show that DnD outperforms
prior works by providing higher quality neuron descriptions. For fair comparison, we follow the setup in
prior works to run our algorithm on the following two networks: ResNet-50 and ResNet-18 (He et al., 2016)
trained on ImageNet (Russakovsky et al., 2015) and Place365 (Zhou et al., 2016) respectively. In Section
4.1, we qualitatively analyze DnD along with other methods on random neurons and show that our method
provides good descriptions on these examples. Next in Section 4.2 we quantitatively show that DnD yields
superior results to comparable methods. In Section 4.3, we show that our method outperforms existing neuron
description methods in large scale crowdsourced studies. Finally in Section 4.4 we study the importance of
critical steps in our pipeline by ablating away Generative Image Captioning (Step 2A) and Concept Selection
(Step 3). Supplementary results are presented in the appendix, including method details in Section A.1,
additional qualitative examples in Section A.2, comparison to MILANNOTATIONS in Section A.3, extensive
ablation studies on each step of the DnD framework in Section A.4, an additional use case of DnD as an OOD
classifier in Section A.6, and the capability to describe polysemantic neurons by producing multiple labels in
Section A.7.

4.1 Qualitative evaluation

We qualitatively analyze results of randomly selected neurons from various layers of ResNet-50, ResNet-18,
and ViT-B-16. Sample results are displayed in Figure 1 and Figures 9, 10, 11, 12, 13, 15, and 16 in the
Appendix. We use the union of the ImageNet validation dataset and Broden as Dprobe and compare to
Network Dissection (Bau et al., 2017), MILAN (Hernandez et al., 2022), and CLIP-dissect (Oikarinen &
Weng, 2023) as baselines. Labels for each method are color coded by whether we believe they are accurate,
somewhat correct, or vague/imprecise. Compared to baseline models, we observe that DnD captures higher
level concepts in a more semantically coherent manner. Specifically, methods such as CLIP-dissect and
Network Dissection have limited expressability due to the use of restricted concept sets while MILAN produces
labels confined to lower level concepts. Additionally, we find that DnD can express multiple concepts within a
single label owing to its generative nature.

4.2 Quantitative Evaluation

Final layer evaluation. Here we follow Oikarinen & Weng (2023) to quantitatively analyze description
quality on the last layer neurons, which have known ground truth labels (i.e. class name) to allow us to
evaluate the quality of neuron descriptions automatically. To evaluate on accuracy, we measure the average
CLIP and mpnet cosine similarity between ground-truth labels and generated descriptions on all output
neurons of ResNet-50’s final fully-connected layer. BERTScore metric measures the semantic interpretability
of DnD descriptions. We focus this study on comparison with MILAN (Hernandez et al., 2022) as it is
the other generative contemporary work in the baselines. Network Dissection (Bau et al., 2017) and CLIP-
Dissect (Oikarinen & Weng, 2023) are not included in this comparison because these methods have concept
sets where the "ground truth" class or other similar concepts can be included, giving them an unfair advantage
to the methods without concept sets like MILAN and DnD. We reported the results for all of the neurons of
ResNet-50’s final fully-connected layer in Table 2. Our results show that DnD outperforms MILAN, producing
labels that are significantly closer to the ground truths than MILAN’s.

4.3 Crowdsourced experiment

Setup. Our experiment compares the quality of labels produced by DnD against 3 baselines: CLIP-Dissect,
MILAN, and Network Dissection. For MILAN we used their most powerful base model in our experiments.
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Table 2: Textual similarity between predicted labels and ground truths on the fully-connected
layer of ResNet-50 trained on ImageNet. We can see DnD outperforms MILAN.

Metric / Methods MILAN DnD (Ours)

CLIP cos 0.7080 0.7598
mpnet cos 0.2788 0.4588

BERTScore 0.8206 0.8286

Table 3: Averaged AMT results across four layers in ResNet-50 and ResNet-18. We can see DnD
outperforms existing methods on both ResNet-50 (ImageNet) and ResNet-18 (Places365). Our descriptions
are consistently rated the highest and selected as the best more than twice as often as the best baseline.

Metric / Method
ResNet-50 ResNet-18

NetDissect MILAN CLIP-Dissect DnD (Ours) NetDissect MILAN CLIP-Dissect DnD (Ours)

Mean Rating 3.14±0.032 3.21±0.032 3.67±0.028 4.15±0.022 3.33±0.056 3.14±0.059 3.52±0.055 4.14±0.041
Selected as Best 12.71% 13.29% 23.11% 50.89% 12.62 13.32% 19.39% 54.67%

We dissected both a ResNet-50 network pretrained on Imagenet-1K and ResNet-18 trained on Places365,
using the union of ImageNet validation dataset and Broden (Bau et al., 2017) as our probing dataset. For
both models we evaluated 4 of the intermediate layers (end of each residual block), with 200 randomly chosen
neurons per layer for ResNet50 and 50 per layer for ResNet-18. Each neurons description was evaluated by
3 different workers. In total, 3000 human ratings were conducted, 2400 evaluations on ResNet-50 and 600
evaluations on ResNet-18.

The full task interface and additional experiment details are available in Appendix A.1.6. Workers were
presented with the top 10 highest activating images of a neuron followed by four separate descriptions; each
description corresponds to a label produced by one of the four methods compared. The descriptions are rated
on a 1-5 scale, where a rating of 1 represents that the user "strongly disagrees" with the given description,
and a rating of 5 represents that the user "strongly agrees" with the given description. Additionally, we ask
workers to select the description that best represents the 10 highly activating images presented. For these
highly activating images, we used the images calculated by our method. As our probing dataset is a superset
of the image sets used by prior methods, we believe our model is the most accurate for determining images to
visualize since the probing dataset encapsulates the most concepts.

Results. Table 3 shows the results of a large scale human evaluation study conducted on Amazon Mechanical
Turk (AMT). Looking at "% time selected as best" as the comparison metric, our results show that DnD
performs over 2× better than all baseline methods when dissecting ResNet-50 or ResNet-18, being selected
the best of the four up to 54.67% of the time. In terms of mean rating, our method achieves an average
label rating over 4.1 for both dissected models, whereas the average rating for the second best method,
CLIP-Dissect, is only 3.67 on ResNet-50 and 3.52 on ResNet-18. Our method also significantly outperforms
MILAN’s generative labels, which averaged below 3.3 for both target models. Our method significantly
outperforms existing methods in crowdsourced evaluation, and does this consistently across different models
and layers.

4.3.1 MILANNOTATIONS evaluation

Though evaluation on hidden layers of deep vision networks can prove quite challenging as they lack
"ground truth" labels, one resource to perform such task is the MILANNOTATIONS dataset (Hernandez
et al., 2022), which collects annotated labels to serve as ground truth neuron explanations. We perform
quantitative evaluation by calculating the textual similarity between a method’s label and the corresponding
MILANNOTATIONS. Our analysis in Section A.3 found that if every neuron is described with the same
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constant concept "depictions", it will achieve better results than any explanation on the dataset, but this is
not a useful nor meaningful description. We hypothesize this is due to high levels of noise and interannotator
disagreement, leading to low textual similarity between descriptions and generic descriptions scoring highly.
We conclude that this dataset is unreliable to serve as ground truths for comparing different methods.

4.4 Ablation Studies

4.4.1 DnD with fixed concept set

To analyze the importance of using a generative image-to-text model, we explore instead utilizing fixed
concept sets with CLIP (Radford et al., 2021) to generate descriptions for each image instead of BLIP, while
the rest of the pipeline remains unchanged (i.e. using GPT to summarize etc). For the experiment, we use
CLIP-ViT-B/16, where we define L(·) and E(·) as text and image encoders respectively. From the initial
concept set S = {t1, t2, ...}, the best concept for image Im is defined as tl, where l = argmaxi(L(ti) · E(Im)⊤).
Following CLIP-dissect (Oikarinen & Weng, 2023), we use S = 20k (20, 000 most common English words)2

and Dprobe = ImageNet ∪ Broden.

To compare the performance, following Oikarinen & Weng (2023), we use our model to describe the final layer
neurons of ResNet-50 (where we know their ground truth role) and compare description similarity to the
class name that neuron is detecting, as discussed in Section 4.2. Results in Table 4 show that both methods
perform similarly on the FC layer. In intermediate layers, we notice that single word concept captions from
20k significantly limit the expressiveness of DnD, suggesting generative image descriptions is important for
our overall performance. Qualitative examples and notable failure cases of CLIP descriptions can be found
under Appendix A.4.2.

Table 4: Mean FC Layer Similarity of CLIP Captioning. Utilizing a fixed concept set to caption
activating images via CLIP (Radford et al., 2021), we compute the mean cosine similarity across fully
connected layers of RN50. We find the performance of DnD w/ CLIP Captioning is slightly worse than BLIP
generative caption.

Metric / Methods DnD (Ours) DnD w/ CLIP Captioning % Decline

CLIP cos 0.7598 0.7583 0.197%
mpnet cos 0.4588 0.4465 2.681%

BERTScore 0.8286 0.8262 0.290%

4.4.2 Effects of Concept Selection

We use 50 randomly chosen neurons from each of the 4 layers of ResNet-50 to conducted an ablation study
on the impact of Best Concept Selection (Step 3) on the pipeline. Evaluations are conducted on the first
candidate concept. Each neuron was evaluated twice yielding a total of 400 human ratings. Table 5 shows
the effect of Best Concept Selection on the overall accuracy of DnD. We can see DnD performance is already
high without Best Concept Selection, but Concept Selection further improves the quality of selected labels in
Layer 2 through Layer 4, while having the same performance on Layer 1. One potential explanation is due to
Layer 1 detecting more limited low level concepts–there is less variance in candidate descriptions identified in
Concept Generation (Step 2), resulting in similar ratings across the set of candidate concepts T . We can see
some individual examples of the improvement Concept Selection provides in Figure 3, with the new labels
yielding more specific and accurate descriptions of the neuron. For example Layer 2 Neuron 312 becomes
more specific colorful festive settings instead of generic Visual Elements.

2Source: https://github.com/first20hours/google-10000-english/blob/master/20k.txt
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(a) Layer 2 Neuron 312 (b) Layer 3 Neuron 927

Figure 3: Concept Selection (Step 3) supplements Concept Generation (Step 2) accuracy. We
show that concept selection improves Concept Generation by validating candidate concepts.

Table 5: Human evaluation results for DnD (w/o Best Concept Selection) versus full Describe-and-
Dissect. Full pipeline improves or maintains performance on every layer in ResNet-50.

Method / Layer Layer 1 Layer 2 Layer 3 Layer 4 All Layers
DnD (w/o Best Concept Selection) 3.54 3.77 4.00 4.02 3.84
DnD (full pipeline) 3.54 4.00 4.24 4.13 3.97

5 Use Case: Land-Cover Prediction

One important role of interpretability tools is the ability to create real-world impact. In this section, we study
applications in sustainability and climate change by applying DnD to the task of land cover prediction–a
critical factor for managing water resources, conserving biodiversity, planning sustainable urban development,
and mitigating climate change effects. DnD’s concept descriptions for neurons not only improve the model
performance, but also identify spurious correlations, suggesting a critical role of interpretability techniques in
ensuring reliability and building trust in AI systems.

Setup. We evaluate our framework on two classification models. Tile2Vec (Jean et al., 2019) utilizes a
modified ResNet-18 backbone trained to minimize triplet loss between anchor, neighbor, and distant land
tiles from the NAIP dataset (Claire Boryan & Craig, 2011). Following Jean et al. (2019), we train a random
forest classifier on ResNet-18 embeddings to evaluate accuracy on 27 subclasses of Cropland Data Layer
(CDL) labels. We also evaluate a ResNet-50 model trained on labeled EuroSAT images (Helber et al., 2019)
with 10 land cover classes. We experiment on two probing datasets. NAIP is an aerial imagery dataset
updated annually by the USDA. The dataset is composed of crop cover data with annotated ground truth
masks from CDL labels. However, due to the fine-grained nature of the 27 subclasses, we also categorize each
subclass into six broad superclasses to improve our understanding of the results: 1. Planted/Cultivated, 2.
Herbaceous/Shrubland, 3. Urban/Suburban, 4. Barren, 5. Forest, 6. Water/wetlands. We use NAIP for all
experiments on the Tile2Vec ResNet-18 model. On EuroSAT ResNet-50, we use the union of EuroSAT ∪
ImageNet ∪ Broden datasets as the probing dataset.

5.1 Locating Conceptual Groupings

We identify neuron clusters detecting similar concepts across Layer 2 of Tile2Vec ResNet-18. For a pair of
candidate concepts sets for neurons n and m, we define their textual similarity Sn,m as the spatial mean
of L(Tn) · L(Tm)⊤ where L(·) is the CLIP-ViT-B/16 text encoder. A set of neurons is considered similar if
Sn,m ≥ ϕ = 0.8, where ϕ controls the minimum similarity threshold between concepts. For practicality, we
confine each neuron to exactly one group of highly similar neurons. Low-level concepts are then classified by
GPT one-shot classification into the 6 NAIP superclasses.
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Figure 4: Layer 2 Concept Profile. We cluster neurons with similar concepts and categorize them into 6
NAIP superclasses. Interpretable concepts have more neurons associated with them. Some superclasses do
not appear due to dataset bias or intrinsic similarities between classes.

Figure 4 presents concepts from Layer 2, color-coded by superclass. We find that clusters (each bar in Figure
4) containing more neurons are frequently associated with more interpretable features, while clusters with
relatively less neurons are related to vague or irrelevant concepts. Based on these insights, we prune neurons
with uninterpretable concepts in Section 5.2. We also note that "Herbaceous/Shrubland" and "Water/wetlands"
are not associated with concepts in Layer 2. We hypothesize that this is likely due to the intrinsic similarity
between the classes and bias in the NAIP dataset. Concepts related to "Herbaceous/Shrubland" are closely
related to the "Planted/Cultivated" superclass while "Water/wetlands" images only comprises of ∼0.275% of
the dataset.

5.2 Pruning Uninterpretable Neurons

Table 6: Pruning uninterpretable neurons in Tile2Vec
ResNet18.

Layer % Neurons Pruned Rand. Acc.(%) Avg. Acc. (%)
No pruning 0.00 — 71.63
All pruned 100.00 — 35.96
Layer 1 23.44 69.3 71.07
Layer 2 50.00 68.96 71.54
Layer 3 26.95 70.13 71.75
Layer 4 58.98 69.95 72.04
Layer 5 56.45 70.99 71.76

We conduct a study to identify neurons within
Tile2Vec ResNet-18 model that contribute minimally
to model accuracy.

Based on Section 5.1, we locate a subset of ungrouped
neurons which correlate poorly to other neurons in
the network. For our experiment, we define poorly
correlating subsets as concepts that activate on only a
single neuron. Following the original implementation,
we train a classifier on embeddings from a pruned
Tile2Vec ResNet-18 model.

Table 6 shows model accuracy after identifying and pruning poorly correlating neuron subsets across each
layer of the model. Due to high variance in the NAIP dataset, we evaluate the baseline accuracy for a fully
pruned network. In this case, we find the prediction is always the "tomatoes" subclass which achieves an
accuracy of 35.96% since this subclass comprises of ∼35.2% of the data. Our results show that a significant
proportion of neurons in the model do not contribute to the overall classification. Particularly in Layers 4
and 5, we are able to prune over 50% of neurons in each layer while achieving a result better than or equal to
the baseline performance (no neurons pruned). Across the entire network, the relative small difference in
accuracy after pruning suggests human interpretable neurons account for more critical roles within image
classification networks compared to uninterpretable neurons. Because we retrain the classifier on the pruned
pipeline, the difference in accuracy using DnD pruning and that of random pruning is fairly minor, but we
can see random pruning consistently suffers an accuracy drop while DnD pruning does not. In Appendix A.5,
we conduct a similar experiment with a fixed classifier.
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5.3 Characterizing Spurious Correlations

We characterize spurious correlations in the intermediate layers of EuroSAT-trained ResNet-50 by determining
common neuron labels through Term Frequency Analysis and studying their relationship to the task. We
prune these neurons to further understand the class-wise correlation of spurious concepts, shown in Table
7. Though "fishing" is the most prevalent concept in Layer 4 (41.65% of all neurons), pruning them has no
impact on model accuracy. In other words, these fishing neurons are irrelevant to the classification task.
"Pink" and "purple" account for 29.74% of Layer 4 neurons and have a much greater impact. These concepts,
which are seemingly unrelated to the task, are spuriously correlated to the Forest, Herbaceous Vegetation,
Industrial, Pasture, Residential, and Sea-Lake classes. However, the Annual Crop, Highway, and River classes
have weaker correlations with these concepts.

Table 7: Pruning concepts from Layer 4 of EuroSAT-trained ResNet-50.

Concepts
pruned

% of neurons
pruned

Class-wise Accuracy (%) Avg. Acc. (%)
Ann.-Crop Forest Herb-Veget. Highway Industrial Pasture Perm.-Crop Residential River Sea-Lake

No pruning 0 95.00 98.00 93.67 96.00 96.80 91.50 90.80 98.67 92.80 97.33 95.26
Fishing 41.65 95.00 98.00 93.67 96.00 96.80 91.50 90.80 98.67 92.80 97.33 95.26
Pink/purple 29.74 88.33 0.00 0.00 62.00 0.00 0.00 18.80 0.00 76.00 0.00 24.33

6 Conclusions

In this paper, we presented Describe-and-Dissect (DnD), a novel method for automatically labeling the
functionality of deep vision neurons without the need for labeled training data or a provided concept set.
We accomplish this through three important steps including probing set augmentation, candidate concept
generation through off-the-shelf general purpose models, and best concept selection with carefully designed
scoring functions. Through extensive qualitative, quantitative, and use-case analysis, we show that DnD
outperforms prior work by providing higher-quality neuron descriptions, greater generality and flexibility, and
significant potential for social impact.
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A Appendix

In the appendix, we discuss specifics of the methods and experiments presented in the paper and provide
additional results. Appendix Section A.1 provides further details on the method pipeline, Section A.2 presents
additional qualitative evaluations, Section A.3 shows results for quantitative comparison to MILANNOTA-
TIONS, Section A.4 provides detailed ablation studies on each step of the DnD pipeline, Section A.5 extends
our land coverage use case experiment, Section A.6 presents an additional use for DnD as an OOD classifier,
Section A.7 shows an extension of DnD to return multiple concept labels, Section A.8 provides an analysis of
the diversity of our method’s labels, Section A.9 showcases failure cases of DnD, Section A.10 discusses the
limitations and directions for future work, and Section A.11 outlines the broader impact of our work.

Appendix Outline

1. A.1 Method Details

(a) A.1.1 Detailed Description of Attention Cropping
(b) A.1.2 Holistic vs. Local Concepts
(c) A.1.3 GPT Prompt
(d) A.1.4 Scoring Function Details
(e) A.1.5 Selecting a Scoring Function
(f) A.1.6 Amazon Mechanical Turk Setup

2. A.2 Qualitative Evaluation

3. A.3 Quantitative Results: MILANNOTATIONS

4. A.4 Ablation Studies

(a) A.4.1 Attention Cropping
(b) A.4.2 Image Captioning with Fixed Concept Set
(c) A.4.3 Image-to-Text Model
(d) A.4.4 Multimodal GPT
(e) A.4.5 Effects of Large-Language-Model Choice
(f) A.4.6 Effects of GPT Concept Summarization

5. A.5 Use Case: Fixed Classifier

6. A.6 Additional Use Case

7. A.7 Multiple Labels

8. A.8 Diversity Analysis

9. A.9 Failure Cases

10. A.10 Limitations

11. A.11 Broader Impact
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A.1 Method Details

A.1.1 Detailed Description of Attention Cropping

The attention cropping algorithm described in Section 3.1 is composed of three primary procedures:

• Step 1. Compute the optimal global threshold λ for the activation map of a given neuron n using
Otsu’s Method (Otsu, 1979).

• Step 2. Highlight contours of salient regions on the activation map that activate higher than λ.

• Step 3. Crop α largest salient regions from the original activating image that have an IoU score less
than η with all prior cropped regions.

Here, we provide more implementation details for each step:

• Step 1. Global Thresholding using Otsu’s Method. For an activation map of neuron n, we
define regions with high activations as the "foreground" and regions with low activations as the
"background". Otsu’s Method (Otsu, 1979) automatically calculates threshold values which maximizes
interclass variance between foreground and background pixels. Interclass variance σ2

B is defined by
σ2

B = WbWf (µb − µf )2, where Wb,f denotes weights of background and foreground pixels and µb,f

denotes the mean intensity of background and foreground pixels respectively. For global thresholding
used in DnD, Wf is the fraction of pixels in activation map Mn(xi) above potential threshold λ while
Wb is the fraction of pixels below λ. A value of λ that maximizes σ2

B is used as the global threshold.

• Step 2. Highlight Contours of Salient Regions. DnD utilizes OpenCV’s contour detection
algorithm to identify changes within image color in the binary masked activation map. Traced
contours segments are compressed into four end points, where each end point represents a vertex of
the bounding box for the salient region.

• Step 3. Crop Activating Images. Bounding boxes recorded from Step 2 are overlaid on
corresponding activating images from Dprobe, which are cropped to form Dcropped. To prevent
overlapping attention crops, the IoU score between every crop in Dcropped is less than an empirically
set parameter η, where high η values yield attention crops with greater similarities. We use η = 4
across all experiments.

We also visualize these steps in the below Figure 5 for better understanding.
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Figure 5: Detailed Visualization of Attention Cropping Pipeline. All three steps of attention cropping
are shown for Layer 2 Neuron 165. Steps 1 and 2 illustrate the derivation of bounding boxes from salient
regions in the original activation map and are overlaid on original activating images from Dprobe in Step 3.
Cropped images are added back to Dprobe to form Dprobe ∪ Dcropped.
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A.1.2 Holistic vs. Local Concepts

To improve the accuracy of DnD, we form the probing dataset with cropped images representing local concepts
and uncropped images representing holistic concepts. We define local concepts as concepts contained to a
portion of the image and holistic concepts as emergent concepts represented by the whole image. This is
necessary as solely using image crops can results in vague or spuriously correlated descriptions. We show two
examples in Figure 6. In Layer 1 Neuron 64, uncropped images help produce nuanced concepts: cropped
images only represent “blue” while uncropped images reflect the “aquatic” concept. Layer 3 Neuron 120
presents an example where cropped images activate on highly localized regions, making the image-to-text
model prone to produce spurious captions. Uncropped images (last two images) make the “canine” concept
more evident.

(a) Layer 1 Neuron 64 (b) Layer 3 Neuron 120

Figure 6: Holistic vs Local Concepts. We show two cases where a union of local and holistic concepts
helps improve model accuracy. Augmenting the dataset reduces vague and spurious captioning.
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A.1.3 GPT Prompt

The Concept Selection process utilizes GPT to identify and coherently summarize similarities between image
captions of every image in I. Due to the generative nature of DnD, engineering a precise prompt is crucial to
the method’s overall performance. The use of GPT in DnD can be split into two primary cases, each with
an individual prompt: 1) Summarizing image captions to better bring out the underlying concepts, and 2)
Detecting similarities between the image captions. We explain each part separately.

1. Summarizing Image Captions. BLIP’s image captions frequently contain extraneous details that
detract from the ideas represented. To resolve this problem, captions are fed through GPT and summarized
into simpler descriptions to represent the concept. We use the following prompt:

"Only state your answer without a period and quotation marks. Do not number
your answer. State one coherent and concise concept label that simplifies the
following description and deletes any unnecessary details:"

2. Detecting Similarities Between Image Captions. To describe the similarity between image captions,
we design the following prompt:

"Only state your answer without a period and quotation marks and do not
simply repeat the descriptions. State one coherent and concise concept label
that is 1-5 words long and can semantically summarize and represent most, not
necessarily all, of the conceptual similarities in the following descriptions:"

In addition to the prompt, we use few shot-prompting to feed GPT two sets of example descriptions along
with the respective human-identified similarities:

Example 1:

Human-Identified Similarity: "multicolored textiles"
Image Captions:

• "a purple background with a very soft texture"

• "a brown background with a diagonal pattern of lines and lines"

• "a white windmill with a red door and a red door in the middle of the
picture"

• "a beige background with a rough texture of linen"

• "a beige background with a rough texture and a very soft texture"

Example 2:

Human-Identified Similarity: "red-themed scenes"
Image Captions:

• "a little girl is sitting in a red tractor with the word sofy on the front"

• "a toy car sits on a red ottoman in a play room"

• "a red dress with silver studs and a silver belt"

• "a red chevrolet camaro is on display at a car show"

• "a red spool of a cable with the word red on it"

We also include the prompt used for our Use Case one-shot-classification.
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3. Use Case Superclass Classification. To classify neurons into broader NAIP superclasses
we use the following prompt:

"State one coherent and concise concept label 1-5 words long related to land-
scapes/satellite imagery that semantically summarizes and represents most, not
necessarily all, of the conceptual similarities in the following descriptions. Focus
on colors, textures, and patterns. After, print one most likely natural landscape
described by the satellite imagery captions, in parenthesis, on the same line. Be
confident and do not be vague: "
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A.1.4 Scoring Function Details

Though scoring functions all seek to accomplish the same purpose, the logic behind them can vary greatly
and have different characteristics. Simplest scoring functions, such as mean, can be easily skewed by outliers
in Hj , resulting in final concepts that are loosely related to the features detected by neurons. In this section,
we discuss three different scoring functions and a combination of them which we experimented with in Section
A.1.5. The concept with highest score is chosen as the final description for neuron n.

• Mean. Simply score concept j as the negative mean of its image activation rankings Hj . Concepts
where each image activates the neuron highly will receive low ranks and therefore high score. We use
the subscript M to denote it’s the score using Mean.

scoreM (Hj) = − 1
Q

Q∑
i=1

Hji

• TopK Squared. Given Hj , the score is computed as the mean of the squares of β lowest ranking
images for the concept. For our experiments, we use β = 5. This reduces reliance on few poor images.
We use the subscript TK to denote the score using TopK Squared:

scoreT K(Hj , β) = − 1
β

β∑
i=1

H2
ji

• Image Products. Let set Dt
j ⊂ Dj , such that it keeps the t highest activating images from Dj . From

the original set of activating images I and Dt
j , the Image Product score is defined as the average

cosine similarity between original highly activating images and the generated images for the concept
j. We measure this similarity using CLIP-ViT-B/16 Radford et al. (2021) as our image encoder E(·):

scoreIP (I, Dt
j) =

1
|I| · |Dt

j |

∑
x∈I

∑
xnew∈Dt

j

(E(x) · E(xnew))

See Figure 7 for an illustration of Image Product. Intuitively, Image Products selects the candidate
concept whose generated images are most similar to the original highly activating images. However,
Image Product doesn’t actually account for how highly the new images activate the target neuron,
which is why we chose to use this method to supplement other scoring functions. The enhanced
scoring method, TopK Squared + Image Products, is described below.

• TopK Squared + Image Products. This scoring function uses both image similarity and neuron
activations to select the best concept. The method combines Image Products and TopK Squared by
multiplying the Image Product score with the relative rankings of each concept’s TopK Squared score.
We define RT K = { scoreT K(Hj , β), ∀ j ∈ {1, ..., N}} as the set of TopK Squared scores for different
descriptions. The final score is then:

scoreT K−IP (Hj , β, I, Dt
j) = (N − Rank(scoreT K(Hj , β); RT K)) · scoreIP (I, Dt

j),

where we use N − Rank(·) to invert the ranks of TopK Squared so low ranks result in a high score.

In Section A.1.5, we compare the different functions and note that our model is largely robust to the choice
of scoring function with all performing similarly well. We use the TopK Squared + Image Products scoring
function for all experiments unless otherwise specified.
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Figure 7: Image Product Scoring Function. In the diagram, we let Wi = E(Di
j) and Pi = E(Ii). Image

Products computes the mean of Wi · Pi.
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A.1.5 Selecting a Scoring Function

We again use ResNet-50 with Imagenet ∪ Broden as the probing dataset. 50 neurons were randomly chosen
from each of the 4 hidden layers, with each neuron evaluated twice, again rating the quality of descriptions
on a scale 1-5. The participants in this experiment were volunteers with no knowledge of which descriptions
were provided by which methods. Table 8 shows the performance of different scoring functions described in
Section A.1.4. We observe that all three scoring functions presented perform similarly well, and shows our
algorithm is robust and not dependent on the choice of scoring function.

Table 8: Comparison of scoring functions. Total of 276 evaluations were performed on interpretable
neurons (neurons deemed uninterpretable by raters were excluded) from the first 4 layers of ResNet-50 on
a scale from 1 to 5. We observe a small margin of difference between the total averages of each scoring
function’s ratings. Across all 4 layers, the worst and best performing scoring functions differ in average rating
by only 0.04 so our algorithm is not dependent on the choice of scoring function.

Scoring Function / Layer Layer 1 Layer 2 Layer 3 Layer 4 All Layers

Mean 3.95 3.92 4.14 3.82 3.95
TopK Squared 3.73 3.91 4.23 3.80 3.91
TopK Squared + Image Products 3.77 3.94 4.28 3.78 3.93
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A.1.6 Amazon Mechanical Turk Setup

In this section we explain the specifics of our Amazon Mechanical Turk experiment setup in Section 4.3. In
the interface shown in Figure 8, we display the top 10 highly activating images for a neuron of interest and
prompt workers to answer the question: "Does description accurately describe most of the above 10 images?"
Each given description is rated on a 1-5 scale with 1 representing "Strongly Disagree", 3 representing "Neither
Agree nor Disagree", and 5 representing "Strongly Agree". Evaluators are finally asked to select the label that
best describes the set of 10 images.

We used the final question to ensure the validity of participants’ assessments by ensuring their choice for best
description is consistent with description ratings. If the label selected as best description in the final question
was not (one of) the highest rated descriptions by the user, we deem the response invalid. In our analysis we
only kept valid responses, which amounted to 1744/2400 total responses for Resnet-50 and 443/600 responses
for ResNet-18 (around 75% of the responses were valid).

We collected responses from workers over 18 years old, based in the United States who had > 98% approval
rating and more than 10,000 approved HITs to maximize the quality of the responses. We paid workers $0.08
per response, and our experiment was deemed exempt by the relevant IRB board.

One downside of our experimental setup is that it is not clear which highly activating images we should
display to the users and how to display them, although these choices may be important to the final results. In
our experiments, we displayed the images in Dprobe with the highest mean activation as done by CLIP-Dissect
(Oikarinen & Weng, 2023), but displaying images with highest max activation would likely be better for
MILAN (Hernandez et al., 2022). Unfortunately there is no simple answer to which images we should display
that would be good for all methods. See Limitations A.10 for more discussion.
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Figure 8: Amazon Mechanical Turk experiment user interface. For each neuron, we present participants
with the top 10 highly activating images and prompt them to rate each method’s label based by how accurately
the description represents the set of images. We also ask participants to select the best label from the four
descriptions presented.
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A.2 Qualitative Evaluation

Figures 9, 10, 11, and 12 provide supplementary qualitative results for DnD along with results produced by
baseline methods for ResNet-50 and ResNet-18. Figure 13 showcases our descriptions on random neurons of
the ViT-B/16 Vision Transformer trained on ImageNet, showing good descriptions overall and higher quality
than those of CLIP-Dissect. Figure 14 extends DnD to ResNet-152, demonstrating the ability to scale to
larger vision networks. In Figures 15 and 16 we dissect ResNet-50 using the CIFAR-100 training image set
as Dprobe, showcasing our method still perfoms well with a different probing dataset. Finally, we present a
qualitative comparison with FALCON (Kalibhat et al., 2023) in Figure 17.

Figure 9: Additional examples of DnD results from Layer 1 and 2 of ResNet-50. We showcase a set
of randomly selected neurons and their descriptions from Layer 1 and 2 of ResNet-50 trained on ImageNet-1K.
Labels are color-coded by whether we believed they were accurate, somewhat correct/vague or imprecise.
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Figure 10: Additional examples of DnD results from Layer 3 and 4 of ResNet-50. We showcase a set
of randomly selected neurons and their descriptions from Layer 3 and 4 of ResNet-50 trained on ImageNet-1K.
Labels are color-coded by whether we believed they were accurate, somewhat correct/vague or imprecise.
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Figure 11: Additional examples of DnD results from Layer 1 and 2 of ResNet-18. We showcase a set
of randomly selected neurons and their descriptions from Layer 1 and 2 of ResNet-18 trained on Places365.
Labels are color-coded by whether we believed they were accurate, somewhat correct/vague or imprecise.
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Figure 12: Additional examples of DnD results from Layer 3 and 4 of ResNet-18. We showcase a set
of randomly selected neurons and their descriptions from Layer 3 and 4 of ResNet-18 trained on Places365.
Labels are color-coded by whether we believed they were accurate, somewhat correct/vague or imprecise.
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Figure 13: Examples of DnD results from the encoder layer of ViT-B/16 (ImageNet). We showcase
a set of randomly selected neurons and their descriptions from the encoder layer of ViT-B/16 trained on
ImageNet. DnD is model agnostic and can be generalized to any convolutional network. Labels are color-coded
by whether we believed they were accurate, somewhat correct/vague or imprecise.
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Figure 14: Examples of DnD results from ResNet-152 (ImageNet). We showcase a set of randomly
selected neurons and their descriptions across all 4 layers of ResNet-152 trained on ImageNet. DnD is scalable
to larger vision networks.
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Figure 15: Examples of DnD results from Layer 1 and 2 of ResNet-50 using the training dataset
of CIFAR100 as the probing image set. We showcase a set of randomly selected neurons and their
descriptions from Layer 1 and 2 of ResNet-50 trained on ImageNet-1K. DnD is probing dataset agnostic and
can maintain its high performance on other image sets. Labels are color-coded by whether we believed they
were accurate, somewhat correct/vague or imprecise.
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Figure 16: Examples of DnD results from Layer 3 and 4 of ResNet-50 using the training dataset
of CIFAR100 as the probing image set. We showcase a set of randomly selected neurons and their
descriptions from Layer 3 and 4 of ResNet-50 trained on ImageNet-1K. DnD is probing dataset agnostic and
can maintain its high performance on other image sets. Labels are color-coded by whether we believed they
were accurate, somewhat correct/vague or imprecise.
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Figure 17: Examples of DnD results compared with FALCON results from layers across ResNet-50
(ImageNet). We showcase a set of randomly selected neurons provided in the appendix of Kalibhat et al.
(2023) and their descriptions from layers across ResNet-50 trained on ImageNet-1K. DnD performs well
compared to FALCON and other contemporary methods.

34



Published in Transactions on Machine Learning Research (01/2025)

A.3 Quantitative Results: MILANNOTATIONS

In this section we discuss using the MILANNOTATIONS dataset (Hernandez et al., 2022) as a set of
ground truths to calculate quantitative results on the intermediate layers of ResNet-152. Table 9 displays an
experiment done on 103 randomly chosen "reliable" neurons across the 4 intermediate layers of ResNet-152.
A neuron was deemed "reliable" if, out of its three corresponding MILANNOTATIONS, two had a CLIP
cosine similarity exceeding a certain threshold (for the purposes of this experiment we set that threshold
to 0.81). Additionally, we define our summary function g to be spatial max, as this is what was used to
calculate the highest activating images for the MILANNOTATIONS. We compare against MILAN trained
on Places365 and CLIP-Dissect, using the spatial max summary function for CLIP-Dissect as well. Our
results are generally mixed, with DnD performing the best (average of 0.7766), then MILAN (average of
0.7698), and finally CLIP-Dissect (average of 0.7390) using CLIP cosine similarity. These results match
with BERTScore, as using that metric DnD performs the best (average of 0.8489), then MILAN (average
of 0.8472), and finally CLIP-Dissect (average of 0.8368). With mpnet cosine similarity, CLIP-Dissect is
calculated as the best (average of 0.1970) followed by MILAN (average of 0.1391) and then DnD (average of
0.1089). However, the MILANNOTATIONS dataset is very noisy as seen in Figure 18 and thus is largely
unreliable for evaluation. The dataset provides three annotations per neuron, each made by a different person.
This causes them to often be very different from one another, not representing the correct concept of the
neuron. We can see in the table that the average CLIP cosine similarity between the annotations for each of
these reliable neurons is 0.7884, the average mpnet cosine similarity is 0.1215, and the average BERTScore is
0.8482. Due to this noisiness, we found that the best performing description is as generic as possible as it will
be closest to all descriptions. In fact, we found that a trivial baseline describing each neuron as "depictions"
irrespective of the neuron’s function outperforms all description methods, including MILAN. This leads us to
believe MILANNOTATIONS should not be relied upon to evaluate description quality. Figure 18 showcases
descriptions and MILANNOTATIONS for some neurons.

Table 9: Similarity between predicted labels and "ground truth" MILANNOTATIONS on the 4
intermediate layers of ResNet-152 trained on ImageNet. We observe that when using CLIP cosine
similarity and BERTScore, DnD performs the best followed by MILAN and then CLIP-Dissect, but when
using MPNet cosine similarity, CLIP-Dissect performs the best followed by MILAN and then DnD. Simply
labeling every neuron as "depictions" outperforms all other methods, demonstrating the unreliability of
MILANNOTATIONS as an evaluation method. The set’s noisiness is also shown by the average similarities
between the different annotations for each neuron, demonstrating that the annotations are not consistent.
We round results to the nearest 4 decimal places, but in instances of ties within a row, we observe further
digits and bold accordingly.

Method

Metric Layer MILAN CLIP-Dissect Describe-and-Dissect (Ours) "depiction" Avg Cos Sim
Between Annotations

CLIP cos Layer 1 0.7441 0.7398 0.7454 0.7746 0.7643
Layer 2 0.7627 0.7472 0.7872 0.7988 0.7976
Layer 3 0.7893 0.7414 0.7858 0.7900 0.8026
Layer 4 0.7739 0.7291 0.7825 0.7820 0.7845

All Layers 0.7698 0.7390 0.7766 0.7864 0.7884
mpnet cos Layer 1 0.0801 0.1962 0.0950 0.2491 0.1124

Layer 2 0.1143 0.1850 0.1075 0.2513 0.1167
Layer 3 0.1462 0.2039 0.1160 0.2483 0.1279
Layer 4 0.1973 0.1995 0.1132 0.2501 0.1252

All Layers 0.1391 0.1970 0.1089 0.2496 0.1215
BERTScore Layer 1 0.8426 0.8282 0.8395 0.8513 0.8392

Layer 2 0.8472 0.8348 0.8475 0.8597 0.8467
Layer 3 0.8519 0.8438 0.8519 0.8580 0.8490
Layer 4 0.8456 0.8374 0.8539 0.8475 0.8501

All Layers 0.8472 0.8368 0.8489 0.8541 0.8482
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Figure 18: MILANNOTATIONS from random neurons in ResNet-152 (ImageNet). We showcase
a set of randomly selected neurons alongside their corresponding DnD label, MILAN label, and three
MILANNOTATIONS labels (MA). We can see that the three MILANNOTATIONS for each neuron often
don’t match up well and don’t accurately describe the neuron.
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A.4 Ablation Studies

A.4.1 Ablation: Attention Cropping

Attention cropping is a critical component of DnD due to generative image-to-text captioning. Unlike models
that utilize fixed concept sets such as CLIP-dissect (Oikarinen & Weng, 2023), image captioning models are
prone to spuriously correlated concepts which are largely irrelevant to a neuron’s activation. To determine
the effects of attention cropping on subsequent processes in the DnD pipeline, we evaluate DnD on Dprobe

without augmented image crops from Dcropped. We show qualitative examples of this effect in Figure 19.

Figure 19: Examples where Attention Cropping Improves DnD. The left panel shows the result without
attention cropping (Uncropped) while the right panel show the result with attention cropping (Cropped).
It can be seen that Attention cropping eliminates spurious features in highly activating images and improves
accuracy of potential candidate concepts.
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A.4.2 Ablation: Image Captioning with Fixed Concept Set

In Section 4.4.1, we explored using fixed concept sets with CLIP (Radford et al., 2021) to generate descriptions
for highly activating images rather than BLIP. We present qualitative examples of fixed concept captioning
below in Figure 20. Additionally, we also note particular failure cases caused by a lack of expressiveness
encapsulated in static concepts, as demonstrated in Figure 21.

Figure 20: Examples of DnD with CLIP Image Captioning Compared to DnD (with BLIP). Despite
producing similar results on the FC layer, we see that DnD (with BLIP) outperforms DnD with CLIP image
captioning, especially on intermediate layer neurons. Single word captions fail to fully encapsulate concepts
expressed in these layers, resulting in poor DnD performance.

(a) CLIP Image Captioning Failure Case 1 (b) CLIP Image Captioning Failure Case 2

Figure 21: Failure Cases of CLIP Image Captioning. Due to the lack of expressiveness of static concept
sets, GPT summarization fails to identify conceptual similarities within CLIP image captions. With dynamic
concept sets generated by BLIP, the issue is largely avoided.
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A.4.3 Ablation: Image-to-Text Model

In light of advancements in image-to-text models, we compare BLIP (Li et al., 2022) to a more recently
released model, BLIP-2 (Li et al., 2023). Unlike BLIP, BLIP-2 leverages frozen image encoders and LLMs
while introducing Querying Transformer to bridge the modality gap between two models. We experiment
with using BLIP-2 as the image-to-text model and quantitatively compare with BLIP by computing the mean
cosine similarity between the best concept chosen from Concept Selection. As discussed in the Appendix A.3,
CLIP-ViT-B/16 cosine similarity is a stronger indicator of conceptual connections than all-mpnet-base-v2
similarity for generative labels. Accordingly, CLIP-ViT-B/16 cosine similarity is used as the comparison
metric. We evaluate on 50 randomly chosen neurons from each intermediate layer of ResNet-50 and results of
the experiment are detailed in Table 10. From Table 10, BLIP and BLIP-2 produce highly related concepts
across all four layers of ResNet-50 and a 87.0% similarity across the entire network.

Table 10: Mean Cosine Similarity Between BLIP and BLIP-2 Labels. For each layer in RN50, we
compute the mean CLIP cosine similarity and BERTScore between BLIP and BLIP-2 labels for 50 randomly
chosen neurons. Similar conceptual ideas between both models are reflected in the high similarity scores.

Metric Layer 1 Layer 2 Layer 3 Layer 4 All Layers
CLIP cos 0.864 0.848 0.875 0.891 0.870
BERTScore 0.883 0.880 0.894 0.891 0.887

We also show examples of similar description produced in Figure 22. Somewhat counter-intuitively, our
qualitative analysis of neurons in preliminary layers of ResNet-50 reveals examples where BLIP-2 fails to
detect low level concepts that BLIP is able to capture. Such failure cases limit DnD accuracy by generating
inaccurate image captions and adversely affecting the ability of GPT summarization to identify conceptual
similarities between captions. We show two such examples in below Figure 23. In general this experiment
shows that our pipeline is not very sensitive to the choice of image-captioning model.

(a) BLIP-2 Similar Example 1 (b) BLIP-2 Similar Example 2

Figure 22: Examples of Similar BLIP and BLIP-2 Labels. BLIP and BLIP-2 detect similar concepts
across all layers of ResNet-50. Two such examples are detailed above.
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(a) BLIP-2 Failure Case Example 1 (b) BLIP-2 Failure Case Example 2

Figure 23: Examples of BLIP-2 failure cases. BLIP-2 overlooks crucial low level concepts in early layers
of ResNet-50. Potential Candidate Concepts generated are vague and spuriously correlated, yielding poor
results in the final DnD label.
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A.4.4 Ablation: Multimodal GPT

To justify using two large models instead of one during Step 2 in our pipeline, we conduct an additional
experiment by exchanging BLIP + GPT in Step 2 of DnD with the image caption capabilities of GPT-4o.
Results in Figure 24 show that due to the large overlap of the GPT models, performance is similar in many
examples. However, the original DnD pipeline seems to be better than DnD w/ GPT-4o when BLIP’s image
captioning capabilities outperform that of GPT-4o. Though including two foundation models in Step 2 may
reduce the flexibility of our pipeline, it can increase performance by specifying fine-tuned models for each
designated task.

Figure 24: Neuron examples of GPT-4o replacing BLIP and GPT-3.5-Turbo in the DnD pipeline.
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A.4.5 Ablation: Effects of Large-Language-Model Choice

To test the robustness of our pipeline at the concept summarization stage, we swap out GPT-3.5 Turbo for
GPT-4 Turbo and LLaMA2 (Touvron et al., 2023). For reference, our paper utilizes GPT-3.5 Turbo for all
of its primary experiments rather than GPT-4 Turbo because GPT-4 Turbo has 20x the cost of GPT-3.5
Turbo. At the time of developing our pipeline, GPT-3.5 Turbo was the most advanced GPT model provided
by OpenAI. LLaMA2, although cost free, is restricted to the public and requires specialized access for use in
research.

Our experiment follows the precedence of the setups of our previous experiments in our paper and of the
setups utilized in prior works. We evaluate 26 neurons on the FC Layer of ResNet-50 and compare to the
ground truth labels provided by the classes. In this experiment, we can see that utilizing other models
actually significantly increases DnD’s performance in all metrics. As shown in Table 11, not only is DnD able
to keep up its performance with other models but also improve with new and more advanced ones.

Table 11: Comparison of LLMs on label quality. Our experiment shows that GPT-4 Turbo and LLaMA2
significantly increase the cosine similarity score between DnD labels and ground truth classes on FC layer
neurons, suggesting the ability for our framework to incorporate new advancements in LLMs.

Metric DnD DnD w/ GPT-4 Turbo DnD w/ LLaMA2

CLIP cos 0.6377 0.7607 0.7407
mpnet cos 0.1403 0.4506 0.4726
BERT Score 0.8172 0.8340 0.8105

42



Published in Transactions on Machine Learning Research (01/2025)

A.4.6 Ablation: Effects of GPT Concept Summarization

DnD utilizes OpenAI’s GPT-3.5 Turbo to summarize similarities between the image caption generated for
each K highly activating images of neuron n. This process is a crucial component to improve accuracy and
understandability of our explanations, as shown in the ablation studies below.

As mentioned in Appendix A.1.3, GPT summarization is composed of two functionalities: 1. simplifying
image captions and 2. detecting similarities between captions. Ablating away GPT, we substitute the
summarized candidate concept set T with the image captions directly generated by BLIP for the K activating
images of neuron n. We note two primary drawbacks:

• Poor Concept Quality. An important aspect of GPT summarization is the ability to abbreviate
nuanced captions into semantically coherent concepts (function 1.). In particular, a failure case for
both BLIP and BLIP-2, shown in Figure 25a, is the repetition of nonsensical elements within image
captions. Processing these captions are computationally inefficient and can substantially extend
runtime. DnD resolves this problem by preprocessing image captions prior to similarity detection.

• Concept specific to a single image. Without the summarization step, concepts only describe a
single image and fail to capture the shared concept across images. We can see for example that the
neuron in Figure 25b is described as a "pile of oranges", which only applies to the fourth image and
misses the overall theme of orange color.

(a) GPT Ablation: Poor Quality Concept (b) GPT Ablation: Concept Specific to Single Image

Figure 25: Failure Cases in GPT-Ablation Study. Figure (a) illustrates potential failure cases of DnD
without GPT summarization. BLIP produces illogical image captions that hinder overall interpretability.
Figure (b) shows an additional failure case where the omission of concept summarization causes individual
image captions to generalize to the entire neuron.
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A.5 Use Case: Fixed Classifier

The Tile2Vec model evaluated contains two parts: 1. A ResNet model to compute embeddings of land tiles,
2. A random forest classifier to predict the land coverage of the output embedding. We use the originally
proposed Tile2Vec pipeline by first pruning neurons in the ResNet model and then training the classifier on
embeddings of the pruned model. Because we retrain the classifier on the pruned pipeline, the difference in
accuracy using DnD pruning and that of random pruning is fairly minor. In this section, we instead evaluate
the Tile2Vec model using a fixed classifier. We train the classifier using embeddings from the full unpruned
pipeline and evaluate by fixing the classifier while pruning the ResNet model only. We observed a moderate
(13.63%) increase in speed after performing pruning on the first layer of Tile2Vec ResNet-18 and further gains
are possible if running inference more optimized for sparse models. Table 12 shows results using a similar
percentage of pruned neurons as Table 6.

Table 12: Pruning uninterpretable neurons in Tile2Vec ResNet18. Due to GPT’s generative
captioning, the similarity between neuron labels can vary slightly between runs, causing slightly different
number of neurons pruned.

Layer % of Neurons Pruned Random Pruning Acc. (%) Avg. Acc. (%)
No pruning 0.00 — 71.63
All pruned 100.00 — 35.96
Layer 1 23.44 45.0 51.0
Layer 2 50.0 47.0 49.5
Layer 3 26.95 66.6 70.5
Layer 4 50.78 49.5 56.0
Layer 5 56.64 56.0 60.5
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A.6 Additional Use Case

To showcase a potential use case for neuron descriptions (and provide another way to quantitatively compare
explanation methods), we experimented with using neuron descriptions to find a good classifier for a class
missing from the training set. Our setup was as follows: we explained all neurons in Layer 4 of ResNet-50
(ImageNet) using different methods. We then wanted to find neurons in this layer that could serve as the
best classifiers for an unseen class, specifically the classes in CIFAR-10, CIFAR-100, and Places365 datasets.
Although there is some overlap, these classes are typically much more broad than ImageNet classes. To find a
neuron to serve as a classifier, we locate the neuron whose description is closest to the CIFAR/Places365 class
name in a text embedding space. We then measure how well that neuron (its average activation) performs as
a single class classifier on the respective validation dataset, measured by area under ROC curve. For cases
where multiple neurons share the closest description, we average the performance of all neurons with that
description.

Results are shown in Table 13. We can see DnD performs quite well, reaching AUROC values around 0.74,
while MILAN performs much worse. We believe this may be because MILAN descriptions are very generic
(likely caused by noisy dataset as discussed in Section 4.3.1), making it hard to find a classifier for a specific
class. We believe this is a good measure of explanation quality, as different methods are dissecting the same
network, and even if no neurons exist that can directly detect a class, a better method should find a closer
approximation.

MILAN DnD (Ours)
CIFAR10 0.5906 0.7036
CIFAR100 0.6514 0.7396
Places365 0.650 0.709

Table 13: The average classification AUC on out of distribution dataset when using neurons with similar
description as a classifier. We can see that our DnD clearly outperforms MILAN, the only other generative
description method.
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A.7 Multiple Labels

As discussed in the Appendix A.10, many neurons in intermediate layers can be considered "polysemantic",
meaning that they encode multiple unrelated concepts. Our primary pipeline only produces one label, and
though this label can encapsulate more than one concept, providing multiple labels can better account for
issues of polysemanticity. We accomplish this by taking the top candidate concepts selected by Concept
Selection as our final labels. If the final labels have a CLIP cosine similarity exceeding 0.81, we only take the
top labels and eliminate the others from the set of final labels. This allows use to bring out accurate labels
that account for distinct concepts prevalent in the neuron. We can see this in Figure 26. For Neuron 508
from Layer 2, DnD captures not only the polka dot and metal texture concepts of the neuron, but adds that
the textures are primarily black and white. For Neuron 511 from Layer 3, DnD labels the neuron as detecting
not only interior elements, but also specifying that these elements are mostly black and white.

Figure 26: Example results on ResNet-50 (ImageNet) from the DnD pipeline being modified to
produce multiple labels. We showcase a set of randomly selected neurons to exemplify DnD’s capability
to provide multiple descriptions. We can see that though some of these neurons can’t be described by just a
singular label, DnD’s multiple labels can describe their various aspects.

46



Published in Transactions on Machine Learning Research (01/2025)

A.8 Diversity Analysis

To more deeply understand the effectiveness and outcomes of our method, we perform an experiment analyzing
the relationship between similar highly activating images and similar labels. We follow the setup in Section
4.2. Over the entirety of the FC Layer of ResNet-50 (1000 neurons), we took random pairs of neurons from
those 1000, making 500 pairs in total. We then calculated the similarity between each pair’s top 10 activating
images and calculated the CLIP cosine similarity between each pair’s labels outputted by DnD. Finally, we
calculated the correlation coefficient between image similarity and label similarity with each pair being a
datapoint and found that value to be 0.4406. We can see there is a positive correlation between similar highly
activating images and similar DnD labels. In general, DnD provides similar labels for neurons with similar
highly activating images while more varying labels for neurons with differing highly activating images.
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A.9 Failure Cases

In this section we analyze a few examples in Figure 27 that can cause DnD to produce suboptimal neuron
labels. Neuron 106 from Layer 3 exemplifies how DnD can occasionally focus on one specific element from
the highly activating image set when the true concept is less obvious. Neuron 193 from Layer 3 shows how
when given an uninterpretable or polysemantic neuron, DnD defaults to a generic label like "patterned items."
These neurons are further discussed in sections A.7 and A.10. Neuron 515 from Layer 3 demonstrates how
DnD may produce a more generic and altered version of the true concept when the true concept is more
specific. We can see that the true concept represented by the neuron is likely something along the lines of
"animal ears," but DnD is not able to identify the ears and adds in an incorrect portion of "resting" to the
label. Finally, neuron 1880 from Layer 4 showcases how it’s hard for DnD to detect more spacial and abstract
representations of the concept. We can see that the true concept should be likely along the lines of "line
patterns" but since the lines are embedded into other concepts like nature elements, DnD isn’t able to detect
it.

Figure 27: Failure cases of DnD. We showcase specific neuron examples from dissecting ResNet-50 that
exemplify instances where DnD can produce ambiguous or inaccurate labels.
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A.10 Limitations

One limitation of Describe-and-Dissect is the relatively high computational cost, taking on average about 38.8
seconds per neuron with a Tesla V100 GPU. However, this problem can be likely well-addressed as the current
pipeline has not been optimized for speed-purposes yet (e.g. leveraging multiple GPU etc). Another potential
limitation of our method is that since it first converts the images into text and then generates its labels based
on the text, DnD likely cannot detect purely visual elements occasionally found in lower layers of networks,
such as contrast or spatial elements. Additionally, our method only takes into account the top k most highly
activating images when generating labels. Excluding the information found in lower activating images may
not allow our method to gain a full picture of a neuron. However, this problem of only focusing on top
activations is shared by all existing methods and we are not aware of good solutions to it. Finally, DnD is
limited by how well the image-to-text, natural language processing, and text-to-image models are able to
perform. On the other hand, this also means that future innovations in these types of Machine Learning
models can increase the performance of our method.

Polysemantic neurons: Existing works Olah et al. (2020); Mu & Andreas (2020); Scherlis et al. (2023)
have shown that many neurons in common neural networks are polysemantic, i.e. represent several unrelated
concepts or no clear concept at all. This is a challenge when attempting to provide simple text descriptions
to individual neurons, and is a limitation of our approach, but can be somewhat addressed via methods such
as adjusting DnD to provide multiple descriptions per neuron as we have done in the Appendix A.7. We also
note that due to the generative nature of DnD, even its single labels can often encapsulate multiple concepts
by using coordinating conjunctions and lengthier descriptions. However, polysemantic neurons still remain a
problem to us and other existing methods such as Bau et al. (2017), Hernandez et al. (2022), and Oikarinen
& Weng (2023). One promising recent direction to alleviate polysemanticity is via sparse autoencoders as
explored by Bricken et al. (2023).

Out-of-Distribution Synthetic Images: While generated synthetic images in Step 3 (Best Concept
Selection) may be out of distribution, we note that an explanation should explain the behavior of the model
on all inputs, not just in-distribution examples. A neuron explained by “car” should activate on all kinds of
cars, not just in-distribution ones, otherwise, a better explanation would be more specific.

Challenges in comparing different methods: Providing a fair comparison between descriptions generated
by different methods is a very challenging task. The main method we (and previous work) utilized was
displaying highly activating images and asking humans whether the description matches these images. This
evaluation itself has some flaws, such as only focusing on the top-k activations and ignoring other neuron
behavior. In addition, the question of what are the highly activating images and how to display them is a
surprisingly complex one and requires multiple judgment calls, with different papers using different methods
with little to no justification for their choices. First, which images are most highly activating. When our
neuron is a CNN channel, its activation is 2D – sorting requires summarizing to a scalar, typically using either
max or average pooling. In our experiments we used average, but max gives different sets of results. Second,
the choice of probing dataset is important, as it will affect which images are displayed. Finally choosing
if/how to highlight the highly activating region to raters will have an effect. We chose not to highlight as
we crop the highly activating regions which can provide similar information. If highlighting is used, choices
like what activation threshold to use for highlights and how to display non-activating regions will also affect
results. Different choices for all these parameters will generate varying results. Consequently, it is hard to
provide fully fair comparisons, so results such as Section 4.3 should be taken with a grain of salt.

A.11 Broader Impact

Our work aims to improve our understanding of machine learning models, which we expect to have positive
societal impact as more understanding will decrease the chance of harm from deploying unsafe or unreliable
models. However, one potential downside may be that if explanations look convincing but are not reliable
enough, they may cause a user to place unwarranted trust on an unreliable model. Our methods can be used
to help reveal and mitigate biases in existing vision models by, for example, identifying neurons detecting
sensitive attributes such as skin-color.
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