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Figure 1: Overview of the ADOPD dataset showcasing densely annotated images of various docu-
ment types and layouts. Each column presents the original image alongside visual entity masks and
annotations of text bounding boxes, organized from top to bottom.

ABSTRACT

Research in document image understanding is hindered by limited high-quality
document data. To address this, we introduce ADOPD, a comprehensive dataset
for document page decomposition. ADOPD stands out with its data-driven ap-
proach for document taxonomy discovery during data collection, complemented by
dense annotations. Our approach integrates large-scale pretrained models with a
human-in-the-loop process to guarantee diversity and balance in the resulting data
collection. Leveraging our data-driven document taxonomy, we collect and densely
annotate document images, addressing four document image understanding tasks:
Doc2Mask, Doc2Box, Doc2Tag, and Doc2Seq. Specifically, for each image, the
annotations include human-labeled entity masks, text bounding boxes, as well as
automatically generated tags and captions that have been manually cleaned. We
conduct comprehensive experimental analyses to validate our data and assess the
four tasks using various models. We envision ADOPD as a foundational dataset
with the potential to drive future research in document understanding1.

1 INTRODUCTION

Document understanding has been invigorated by the introduction of large-scale document datasets
(Zhong et al., 2019; Mondal et al., 2020; Cheng et al., 2023), supporting a variety of document-related
tasks (Mathew et al., 2021; Mathur et al., 2023). However, document datasets still fall short compared
to data resources in more established fields (Gu et al., 2018), in which advances have been so great
that models and solutions can be incorporated in real-world applications. A case in point is the field
of image decomposition, where progress was fueled by datasets like MSCOCO (Lin et al., 2014)
and Pascal VOC (Everingham et al., 2010). Building a document page decomposition dataset of
comparable quality is essential to advance document understanding research.

∗Correspondence to: jigu@adobe.com
1Project page: https://adopd2024.github.io
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We construct ADOPD by addressing two important questions: (1) How do we gather document data,
and what types of documents should be included in the dataset? Table 1 compares ADOPD with
earlier datasets for document layout analysis (Mondal et al., 2020; Smock et al., 2022; Landeghem
et al., 2023; Saad et al., 2016)2. Most datasets are sourced from PDFs, with limited document
types. Models trained on such homogeneous data are unlikely to perform well on different types of
documents, so a top prority when collecting ADOPD is to maximize the diversity of documents types
in it. (2) What elements should be annotated in document images for page decomposition? Documents,
with their varied forms, can be interpreted differently based on an individual’s background. Document
understanding encompasses intricacies such as visuals, text, and layout. For instance, a poster with a
form may visually seem like a form, yet its text could classify it as a science or education book. The
complex nature of document data poses challenges in hierarchically structuring it, a critical aspect
for successful vision datasets like ImageNet and MSCOCO. Meanwhile, accurately describing the
content of documents is highly valuable, but it is also more challenging than natural image captioning.

Caption: This is a book cover. The title "Teaching & Researching Big History: Exploring a New Scholarly Field" is in large 

white and orange text in the upper center. There's white subtext in the lower right that reads "Edited by Leonid Grinnin, 

David Baker, Esther Quaedackers, and Audrey Korotayev." The cover background is a blue swirling nebula Galaxy with stars 

and comets and has a timeline graphic running across the center of the cover with photographs of star clusters and galaxies.

Global-Tags: Scientific Publication, Presentation Cover, Book Cover, Teaching & Researching

Local-Tags: Blanket, Flyer, Poster, Science, Space, Universe
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Figure 2: ADOPD page decomposition illustration.

We explore the fundamental question: How
can we obtain a reasonable taxonomy of doc-
ument types? Pre-defining a fixed taxonomy
solely based on human knowledge is not prac-
tical. Instead we assume an open taxonomy
and make use of a data-driven taxonomy dis-
covery method, gradually assembling the tax-
onomy through large-scale data exploration.
Relying solely on manual annotation of doc-
ument types, which requires reading and un-
derstanding the document content, is also not
practical. Therefore, we leverage the powerful
zero-shot capabilities of large pretrained mod-
els such as CLIP (Radford et al., 2021) and
Large Language Models (LLMs) (Floridi & Chiriatti, 2020) to assist in data selection and analysis.
We couple the language model with methods for out-of-distribution (OOD) detection (Gu et al., 2023)
for outlier data selection, complemented by a human-in-the-loop (HITL) approach to achieve data
diversity. Each ingredient in our proposed approach—LLM, OOD and HITL—is imperfect, but
together they support the selection and annotation of diverse data at scale, within a reasonable budget.

Table 1: Comparison of document datasets.

Dataset Year Size Anno (Type) Category
PubLayNet 2019 360K Bbox (�) P (1)
DocBank 2020 500K Bbox (�) P (1)
IIIT-AR-13K 2020 13k Bbox (²) ì (1)
DocLayNet 2022 80.9k Bbox (²) P (6)
M6Doc 2023 9.1k Bbox (²) Pì (7)

ADOPD (Ours) 2024 120k

Polygon (²)
Text Bbox (²)
Caption (Æ+ ²)
Tag (Æ+ ²)

ì (>1000)

Fig. 1 illustrates the diverse document types
in ADOPD, comprising visually and textually
rich documents, posing an annotation challenge
despite its advantage. For visually rich docu-
ments like posters and diagrams, entity masks
capture relationships between visual elements
effectively. Conversely, for text-rich documents
such as letters and articles, text bounding boxes
are more suitable for marking key textual ele-
ments. To accomodate both types, we segment
each document into entity masks and text regions, and provide two types of descriptive labels for each
document image. Fig. 2 showcases the four document page tasks: entity segmentation (Doc2Mask),
text detection (Doc2Box), tagging (Doc2Tag), and captioning (Doc2Seq).

In sum, ADOPD is a large-scale diverse document page decomposition and understanding dataset,
designed to support future research in document domain. In this paper, we:

• present ADOPD, comprehensive dataset for document page decomposition, encompassing four
distinct tasks: Doc2Mask, Doc2Box, Doc2Seq, and Doc2Tag.

• propose a data-driven approach for constructing document taxonomies during data collection and
safeguard the ADOPD through outlier detection and human-in-the-loop.

• conduct extensive experiments and analysis on ADOPD, demonstrating its effectiveness and
generalization capabilities for document understanding research.

2The symbol � indicates automatic annotations, ² represents human annotations, and Æ signifies LLM
assistance. P indicates that the document source is a digital PDF, while ì indicates document images.
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2 RELATED WORK

Document Datasets. As shown in Table 1, several recent document image datasets have been
introduced. PubLayNet (Zhong et al., 2019) comprises images and annotations generated through
the automated alignment of PDFs with XML formats. DocBank (Li et al., 2020b) is created using
LaTeX-generated PDF files and employs an efficient weakly supervised approach for annotation.
DocLayNet (Pfitzmann et al., 2022) relies on human annotation rather than automated methods. This
dataset encompasses six distinct document types and encompasses a total of 11 annotation categories.
M6Doc (Cheng et al., 2023) is a recently introduced dataset featuring approximately 9k modern
document images, divided into seven subsets. It contains detailed annotations spanning multiple
distinct categories. IIIT-AR-13K (Mondal et al., 2020) is tailored for object detection in business
documents like annual reports, containing annotated pages with standard layout elements like text,
headings, lists, graphics, and tables. In summary, existing large-scale document image datasets
mainly focus on PDFs, unlike the varied scanned or photographed images encountered in real-world
scenarios. This limited distribution of data can bias trained models. Additionally, publicly available
datasets often cover only a narrow range of document layouts and categories.

Document Models. The document domain has witnessed the emergence of foundational models
(Li et al., 2020a; Prasad et al., 2020), driven by advancements in deep learning. Despite rapid
progress in document understanding models, the scarcity of powerful models trained on high-
quality, large-scale document data remains a significant challenge. Earlier document layout analysis
methods (Ouwayed & Belaïd, 2012; Lee et al., 2019) relied heavily on rule-based and heuristic
algorithms. However, their applicability was limited to simple document types, resulting in poor
generalization performance. In addition to task-driven models, researchers have proposed a range
of document pretraining models (Huang et al., 2022; Li et al., 2021; Gu et al., 2021; Tang et al.,
2023; Kim et al., 2022). These models are typically pretrained on the IIT-CDIP (Lewis et al., 2006)
dataset and evaluated on various document benchmarks. Despite the remarkable performance of these
models on benchmark datasets, it is critical to acknowledge that most current image-based document
datasets are predominantly composed of a narrow range of document types, failing to capture the
heterogeneity of real-world documents. Moreover, the restricted data diversity in these benchmark
datasets constrains the development and evaluation of document models.

3 ADOPD DATASET
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Figure 3: Model-assisted data collection and annotation pipeline for ADOPD.
ADOPD stands out among document datasets as it is constructed using diverse document images
found on the web. Sec. 3.1 introduces document page decomposition tasks. Sec. 3.2 presents a
data-driven approach to discovering document taxonomy for data collection and analysis. Sec. 3.3
employs models to assist with human annotation, addressing challenges posed by diverse data.

3.1 TASK DEFINITION

Fig. 2 illustrates the document page decomposition task defined in this paper, which encompasses
four subtasks: Doc2Mask, Doc2Box, Doc2Seq, and Doc2Tag.

• The Doc2Mask task entails segmenting visual entities in document images in a class-agnostic
manner. The “entity" in this context denotes a thing (instance) mask or a stuff mask. For example,
in Fig. 1, an entity represents a meaningful and coherent region (e.g., banner, figure, logo, etc).

• The Doc2Box task calls for identifying text region-of-Interest (RoI) within a document image,
regardless of their specific types. The term “box" refers to text RoI (e.g., paragraphs and titles, etc).
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• The Doc2Seq task involves generating captions for document images, requiring the model to
analyze visual elements and structured text. Given the complexity of document images, the model
must effectively comprehend visual, textual, and layout information to produce detailed captions.

• The Doc2Tag task is akin to image tagging, specifically multi-label image recognition, where the
objective is to assign multiple semantic labels to an image. In Doc2Tag, two levels of tagging are
utilized: one based on the overall image content and another on specific local regions.

3.2 DATA-DRIVEN DOCUMENT TAXONOMY DISCOVERY

In standard classification scenario, we deal with a given dataset denoted as Dfull, where X represents
the input space, and Y = {1, . . . ,K} is the label space. The classification model, denoted as
f := g ◦h, consists of a feature extractor h : X → Rd and a classifier g : Rd → RK , which maps the
input’s feature embedding to K real-valued numbers called logits. In practice, establishing a guiding
taxonomy associated with K is crucial for effective data collection, enabling us to manage and assess
the diversity of the collected data. However, determining an appropriate value for K in documents is
challenging due to the diversity of documents. We draw inspiration from pretrained models such as
CLIP, GPT-4, etc, which have been trained on large-scale datasets and can serve as knowledgeable
“experts" for data selection. Despite the benefits of pretrained models, the predictions from such
models are not always reliable. E.g., LLMs3 tend to suffer from hallucination problems (Bang et al.,
2023). Hence, incorporating safeguards into data collection is essential. Fig. 3 provides an overview
of our data collection process, which will be detailed in the subsequent sections.

Can Large-Scale pretrained Models Facilitate Data Collection? Given a document image x ∼
Dfull, we can extract document information using pre-existing models as follows:

{z, SOCR, SCaption, SAttribute, SLabel} = {h(x), fOCR(x), fI2T(x), fTag(x), fCLIP(x|Y)} (1)
{S∗Caption, S

∗
Tag} = LLM( SOCR, SCaption, SAttribute, SLabel|Prompt) (2)

where z ∈ RD is obtained through an image feature extractor h(·). The sequence SOCR consists of
words and their coordinates, extracted by OCR tool fOCR(·). The caption SCaption is generated by the
captioning model fI2T(·). Tags SAttribute are produced by the image tagging model fTag(·). Labels
SLabel are generated by the CLIP model fCLIP(·|Y), constrained by Y . Integrating multimodal infor-
mation, as expressed in Eq.1, for document reasoning poses a significant challenge. As demonstrated
in Eq.2, we harness the power of LLMs and formulate prompts to predict tags (S∗Tag) and captions
(S∗Caption) for document images. The ablation study of these prompts is explored in the Appendix.

How to Safeguard Data Collection? Despite the impressive zero-shot capabilities of LLMs for
sequence reasoning, prediction errors and uncertainties may still arise. Some failure cases can be
addressed with stricter prompts. Even so, fully relying on LLMs for data selection poses heavy risks.

1
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Figure 4: Data selection diagram for ADOPD.

Fig. 4 illustrates our data selection diagram,
strengthened by outlier detection. For each
batch of sampled web images (Dselected), we de-
fine it as a mix of in-distribution (ID) (Dpseudo-in)
and OOD (Dpseudo-out) data. In Dpseudo-in, all sam-
ples belong to taxonomy classes we have already
explored, while Dpseudo-out comprises samples
from document types we haven’t explored yet.
Alg. 1 outlines the process where we integrate
outlier detection for data collection and taxon-
omy discovery. Given the dataset pool denoted
as Dt

full and t indicates the time step, we initially
select a batch of data, denote as Dt

selected-in, from
Dfull. Based on the current taxonomy Yt, we first partition Yt into 100 clusters using the K-means
algorithm (Jiang et al., 2024). Afterwards, we sample Dt

pseudo-in from Dt
selected-in based on the K

clusters, corresponding to step 1⃝ in Fig. 4. Specifically, we randomly select a sub-category ytk from
cluster k as the representative category. We then use CLIP to sample nt documents classified under
ytk. The pseudo input ID data Dt

pseudo-in comprises a total of 100 · nt document images. This selection
process ensures a balanced sampling operation within the current taxonomy Yt.

3Without specific indication, LLM in this paper refers to GPT-4.
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Sampling from ID data can lead to biased distributions because models trained on such data may
silently fail when faced with OOD inputs. Therefore, enhancing the diversity of ADOPD by
incorporating hard negative examples may result in an overall improvement in diversity. Therefore,
we explicitly sample a OOD subset Dt

pseudo-out from the current candidate pool Dt
selected-in \ Dt

pseudo-in,
corresponding to step 3⃝ in Fig. 4. To obtain Dt

pseudo-out, we employ K-means to segregate outliers
from Dt

selected-in. Specifically, we extract image features Z̄t for D0:t−1
selected ∪ Dt

selectd-in, where D0:t−1
selected =

D0:t−1
pseudo-in ∪ D0:t−1

pseudo-out. In this context, Z̄t = z̄t
k, with k ∈ [0, 100) representing the set of K-means

centroids estimated from D0:t−1
selected ∪Dt

pseudo-in. The outlier score is estimated as the Euclidean distance
between it and the nearest centroid:

st(z) = min
k∈[0,100)

||z − z̄t
k||2, z ∈ (Dt

selected-in \ Dt
pesudo-in) (3)

where Dt
pseudo-out contains data points with outlier scores ranked in the top nt across K clusters.

Algorithm 1: Data-Driven Taxonomy Discovery
Input : Y0,Dfull, ϵ.
Output :Expanded Taxonomy Y
while True do

1⃝ CollectDt
select-in fromDt

full ;
2⃝ SelectDt

pseudo-in fromDt
selected-in based on Yt−1 ;

3⃝ Generate image embeddings Z forD0:t−1
selected ∪ D

t
pesudo-in;

3⃝ Calculate st(z), ∀z ∈ (Dt
selected-in \ D

t
pesudo-in) ;

3⃝ Select outlier dataDt
pesudo-out;

foreach x ∼ Dt
pesudo-in ∪ D

t
pesudo-out do

4⃝ Predict new labels using four prompters;
4⃝ Update Yt with the newly predicted labels;

4⃝ Refine Yt with human annotator;
if |Yt| > ϵ then

Stop;
else

t← t + 1 ;

Given the selected ID and OOD data, we have
Dt

selected = Dt
pseudo-in∪Dt

pseudo-out, which is ready
for annotation (step 4⃝ in Fig. 4). Before an-
notation, we update Yt−1 by using the newly
selected data Dt

selected. Here, we employ the ap-
proach outlined in Eq. 2, leveraging the LLM
to predict the presence of new labels and ob-
tain the updated taxonomy Yt. We use prompt-
based methods to predict document tags by
considering four aspects: visual (Pvisual), tex-
tual (Ptextual), layout (Playout), and multimodal
(Pmultimodal). Each aspect is addressed through
unique input combinations in the prompt. Ad-
ditional details about the prompts can be found
in the Appendix. After obtaining outputs, we
implement two safeguards to filter out failures.
Firstly, we design a prompt-based summarizer
(Psummary) using LLM to obtain 10 tags by summarizing the tags predicted through the four prompt
strategies. Secondly, after the label generation by LLM, human annotators review and eliminate
labels that are confusing or irrelevant to the document.

3.3 MODEL-ASSISTED DATA ANNOTATION

Data Collection. The images in ADOPD are sourced from the Laion-HR (Laion High Resolution),
which comprises high-resolution web images, including multilingual document images. Laion-HR
provides a foundation for our multi-lingual multi-modal ADOPD. We leverage pretrained models
with humans in the loop to collect and filter data. The process includes the following steps:

• Model-Assisted Data Selection: We first select images based on Laion-HR’s metadata by ap-
plying criteria such as pwatermark < 0.8 and punsafe < 0.5. Then, we construct a document
discovery dataset using natural image datasets (e.g., ImageNet, etc) and document datasets (e.g.,
DocLayNet, etc). We then finetune a DiT-based binary image classifier (Li et al., 2022a) to identify
potential documents (probability > 0.8). Subsequently, we apply an OCR tool (Du et al., 2021),
and retain those with a word count exceeding 10. Although metadata provides predictions for
watermarks, in order to improve accuracy, we additionally train a watermark detection model to
filter watermarked images. We compute MD5 hashes and Hamming distances between images
to exclude duplicates, even if document images in Laion-HR have different URLs. Fig. 10 in the
Appendix shows the percentage of data selection.

• Human Selection and Sensitive Verification: Based on our taxonomy4 obtained by Alg. 1, we adopt
pretrained CLIP model for zero-shot tagging. Human annotators then select safe and valid images
for all categories. We do not rigidly specify that images must be print-format documents, but
instead suggested the annotators to choose those that resemble documents. Annotators are tasked
with filtering the dataset for potentially sensitive information.

4Note that the taxonomy Y gradually change with the growth of data collection.
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Data Annotation. The annotation process of ADOPD prioritizes the core principle of understanding
the document’s structure and layout. We avoid imposing overly rigid constraints on annotation5.

• Model-Assisted Manual Annotation: In the early stage, we utilize a pretrained CropFormer (Qi
et al., 2023) to generate pseudo entity masks. Annotators follow guidelines to adjust the masks by
adding, modifying, or deleting as needed. After annotating a sufficient amount of data, CropFormer
is retrained with the new annotations and serves as the seed model for data preprocessing in the
subsequent stage. Through this iterative process, our model progressively reduces annotation costs
while simultaneously increasing annotation efficiency. Fig. 12 in the Appendix illustrates the
effectiveness of model-assisted annotation. During the annotation process, we provide document
captions (S∗Caption) and tags (S∗Tag) to aid annotators in understanding the document.

• Multi-Task and Multi-Lingual Annotation: ADOPD stands out from other document datasets for
its multi-task and multi-lingual characteristics. Our primary focus is on English and CJK (Chinese,
Japanese, Korean) documents, with 60k document images in English and the remaining in the other
languages. We reserve a private test set for the competition. Each dataset has four tasks introduced
in Sec. 3.1. Specifically, for Doc2Mask annotation, we refrain from imposing semantic constraints
on labeling entities, therefore encouraging annotators to come up with open-ended names or
descriptions that are accurate (e.g., “doc-in-doc”, “banner”, “infographic”, “natural image”, etc).
As our task focuses on document entity segmentation, we do not incorporate label information
in segmentation evaluations. For Doc2Box, we have stricter rules which require annotators to
comprehend words and group them according to their semantic meaning. The annotation files
follow the MSCOCO annotation format.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Baseline Models. We experiment on the subset of ADOPD, with training and validation sets
comprising 50k and 10k images, respectively. (1) Doc2Mask: we evaluate two frameworks:
Mask2Former (Cheng et al., 2021) and CropFormer (Qi et al., 2023), to identify which is best
stuited for the document page decomposition task. We perform ablation studies on these frame-
works using different backbones, such as Swin Transformer (Swin) (Liu et al., 2021), Hornet (Rao
et al., 2022), and ViT (Parmar et al., 2018). (2) Doc2Box: we similarly benchmark three models:
Faster R-CNN (Ren et al., 2015), Deformable-DETR (Zhu et al., 2021), and Cascade Mask-RCNN
(MR-CNN) (Cai & Vasconcelos, 2019). We also enhance Cascade Mask-RCNN by incorporating
pretrained ViT backbones, specifically DINOv1 (Caron et al., 2021) and Dinov2 (Oquab et al., 2023)
with ViT-Adapter (Chen et al., 2022). (3) Doc2Seq: we build an encoder-decoder model using
pretrained ViT and GPT-2 (Radford et al., 2019), fine-tuned on 80k image-caption pairs for training
and 20k for validation. The captions are generated using prompts specified in Eq. 2. Acknowledging
the gap between LLM-generated and human annotations, we collect an extra 5k human-annotated
validation set for further comparison. (4) Doc2Tag: we validate our taxonomy discovery using
the CLIP ViT-G/14 model and report the OOD performance on RVL-CDIP (Harley et al., 2015).

We build Doc2Mask using the Detectron2 (Wu et al., 2019) and Doc2Box with MMDetection (Chen
et al., 2019). All experiments are run on NVIDIA A100-80GB GPUs. Following standard prac-
tices(Ghiasi et al., 2021), we employ an input resolution of 1024×1024, achieved by re-scaling and
padding the shorter side of the image. Doc2Mask (CropFormer and Mask2Former) and Doc2Box
(Faster R-CNN, Cascade Mask-RCNN) are trained for 15 epochs with a batch size of 32 on 8 GPUs to
achieve full convergence. We train Deformable-DETR for 30 epochs due to slow convergence issues.
We build other models (Doc2Seq and Doc2Tag) with Huggingface Transformers framework (Wolf
et al., 2020). For Doc2Seq, we train it for 50 epochs on 8 GPUs with a total batch size of 800.
Finetuning CLIP ViT-G/14 on Doc2Seq data takes 100 epochs on 8x8 GPUs.

Evaluation Metrics. We evaluate Doc2Mask and Doc2Box with the mean average recall (mAR) and
mean average precision (mAP) metrics. This assessment considers ten overlap thresholds ranging
from 0.5 to 0.95 in increments of 0.05 (mAP@0.5-0.95). For OOD evaluation, we use metrics
including the Area Under the Receiver Operating Characteristic (AUROC), False Positive Rate at
95% Recall (FPR95), maximum concept matching (MCM) score (Ming et al., 2022), and accuracy

5This research’s data collection and annotation were completed in October 2023.
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(ACC). For Doc2Seq, we use the BLEU@n (B@n) (Papineni et al., 2002), CIDEr (C) (Vedantam
et al., 2015), METEOR (M) (Denkowski & Lavie, 2014) and ROUGE (R) (Lin, 2004) for evaluation.

4.2 DOCUMENT PAGE DECOMPOSITION TASKS ANALYSIS

Comparing the Model Architectures. Table 2 compares Mask2Former and CropFormer models on
Doc2Mask. CropFormer outperforms Mask2Former with similar backbones and pretrained datasets.
CropFormer’s superiority stems from its integration of image crops alongside full image input,
enhancing mask prediction with detailed information. This highlights the model’s ability to handle
multi-view and local image information, especially in the context of document images.

Table 2: Results on Doc2Mask with varied back-
bones (T, B, L) denoting tiny, base, and large types.

Backbone Pretrain Mask Quality
mAP AP50 AP75 mAR

M
as

k2
Fo

rm
er

SwinT
EntitySeg 31.80 37.16 32.33 34.0
ImageNet 28.95 34.36 29.51 31.0

SwinL
EntitySeg 32.81 38.14 33.17 35.3
ImageNet 30.21 36.30 31.18 32.5

HornetL
EntitySeg 34.39 40.09 34.95 36.9
ImageNet 32.96 38.22 33.30 35.2

ViTB SA-1B 35.59 41.05 36.35 37.6
ViTL 35.81 40.27 36.53 37.8

C
ro

pf
or

m
er

SwinT
EntitySeg 35.46 41.56 35.60 38.5
ImageNet 37.71 45.30 38.20 41.0

SwinL
EntitySeg 36.03 42.30 36.23 39.3
ImageNet 37.73 44.62 38.49 40.7

HornetL
EntitySeg 35.03 40.00 35.73 37.6
ImageNet 36.06 41.84 36.69 38.7

ViTB SA-1B 35.87 41.92 36.73 38.4
ViTL 39.56 45.72 40.33 42.4

We compare various object detection mod-
els in Table 3, including Faster R-CNN,
Deformable-DETR, and Cascade MR-CNN.
While Deformable-DETR improves, it doesn’t
outperform anchor-based detectors like Faster R-
CNN and Cascade MR-CNN significantly. De-
spite achieving a higher mAR, the limited mAP
improvement may be due to the distinct data dis-
tribution of text boxes, differing from general ob-
jects in natural images with clear classification
boundaries. Meanwhile, the Cascade MR-CNN,
combining Mask R-CNN and Cascade R-CNN,
achieves the highest mAP. It enhances instance
segmentation performance and aids text detec-
tion, especially for words requiring pixel-level
feature representation.

Comparing Backbones and Pretraining. Table 2 also investigates the impact of vision backbone
pretrained on various datasets. References to EntitySeg, ImageNet, and SA-1B indicate pretraining on
the respective datasets. SAM (Kirillov et al., 2023) pretrained on SA-1B outperforms the Swin/Hornet
models trained on ImageNet or EntitySeg. This can be attributed to two factors: firstly, SA-1B is
sufficiently large (around 1 Billion). Secondly, while Swin/Hornet architectures are well-suited for
segmentation, SAM is trained with pixel-level supervised learning, enabling it to acquire improved
pixel-level representations crucial for document image understanding.

Table 3: Performance comparisons on Doc2Box.

Method Backbone Box Quality
mAP AP50 AP75 mAR

Faster R-CNN ResNet50 61.1 78.9 67.0 74.9
ResNet101 61.4 78.6 67.3 74.3

Deformable-DETR ResNet50 65.0 82.2 72.1 81.6
ResNet101 65.5 82.8 72.7 81.6

Cascade MR-CNN

ResNet50 64.7 80.9 71.0 79.4
ResNet101 65.3 71.7 68.7 79.1
Dinov1P8+ VITAdapter 63.6 80.4 69.6 76.3
Dinov1P16+ VITAdapter 63.2 80.3 69.5 76.2
Dinov2P14+ VITAdapter 67.0 82.7 73.2 77.8

Table 3 compares different backbones on
Doc2Box. Dinov2P14 + VITAdapter excels with
higher mAP yet slightly lower mAR, demon-
strating the superiority of self-supervised back-
bones over pretrained alternatives. This is cru-
cial for document analysis, given the absence
of high-quality ImageNet-like pretraining data.
Comparing Dinov1P8 and Dinov1P16 suggests
that fine-grained patches enhance document im-
age features. Fig. 5b illustrates the results of
Doc2Box using Dinov2P14+VITAdapter.

Evaluating Generalization Ability. In Table 4 (a), we compare the model trained on ADOPD
with those fine-tuned on EntitySeg. Combined with Fig. 5a, it is evident that models fine-tuned on
ADOPD can better focus on fine-grained document elements and make more reasonable predictions
for document entity masks. Conversely, models pretrained on EntitySeg can predict some masks
but tend to excessively detect elements present in natural images (e.g., people, objects), while
neglecting the document’s inherent layout. Table 4 (b) validates the cross-dataset generalization
pretraining advantage of ADOPD, specifically focusing on the evaluation set of DocLayNet. For a
fair comparison, we consider only text detection without categorizing the boxes. Directly applying
the model fine-tuned on ADOPD to DocLayNet data yields zero-shot results with high recalls.
Furthermore, fine-tuning on DocLayNet with ADOPD pretrained backbones outperforms fine-tuning
with ImageNet backbones. Note that DocLayNet’s testing is limited to its limited document types
and cannot reveal anything about the generalization capability of ADOPD for other taxonomy types.
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Table 4: Ablation studies: (a) comparing the performance of models trained with ADOPD and
models fine-tuned only on EntitySeg. The results in “(·)” represent the zero-shot outcomes for
EntitySeg. (b) Cross-dataset evaluation to assess the generalizability of ADOPD on DocLayNet.

(a) Results for with and without ADOPD.

Backbone mAP AP50 AP75 mAR
Mask2Former

SwinL 32.81(16.27) 38.14(22.52) 33.17(15.88) 35.3(29.3)
HornetL 34.39(15.83) 40.09(21.74) 34.95(15.38) 36.9(29.0)

Cropformer
SwinL 36.03(13.46) 42.30(19.41) 36.23(13.12) 39.3(24.5)
HornetL 35.03(15.68) 40.00(21.39) 35.73(15.26) 37.6(26.9)

(b) Cross-dataset evaluation on DocLayNet.

Method Backbone
Zero-Shot Finetune
ADOPD ImageNet ADOPD

mAP mAR mAP mAR mAP mAR

Faster R-CNN ResNet50 0.9 58.5 43.0 55.8 44.5 60.4
ResNet101 1.0 56.6 46.0 58.5 47.0 60.7

Deformable-DETR ResNet50 2.2 80.4 74.7 87.2 75.4 88.9
ResNet101 2.6 79.0 75.4 85.9 77.2 88.1
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(a) Mask Prediction Comparison: From top to bottom, we showcase the original image and predictions from the
best models trained on ADOPD, EntityV2, and SAM (SA1B), respectively.

Caption: The September 2016 issue of 'Natural Selections' - the 
Rockefeller University community newsletter, discussing the 
intertwined relationship between politics and scientific research, 
featuring insights into the role of government's scientific initiatives 
and how future political leadership could influence the trajectory of 
scientific development in the United States.
Global Tags: political magazine, editorial, magazine article, 
science magazine, political news article, political topic, feature 
article, science and technology news article, opinion article, article, 
informative article, national news article.
Local Tags: article,  blanket, person,  man,  news,  paper,  
politician,  woman

Caption: Children's Golden Retriever Coloring Book with Bold 
Illustrations.
Global Tags: cover image, childrens book, children's picture book, 
vector illustration, children's book, picture book, book cover, front 
cover, children's book illustration.
Local Tags: book,  dog,  pencil.

Caption: Comprehensive Guide on the Integration of LookBookHQ 
with Eloqua for Omni-Channel Marketing in Oracle Cloud 
Environment.
Global Tags: marketing guide, content overview, marketing 
material, marketing operations, email optimization guide, 
promotional content, online publication, marketing.
Local Tags: website,  text.

Caption: Manuscript in Folder Format Featuring City Maps and 
Bird Illustrations on its Title Page.
Global Tags: informative, illustration, historical material, title page, 
medieval history, traditional illustration, archival material, 
manuscript.
Local Tags: folder ,  city,  manuscript ,  map,  text.

Caption: An informative article discussing the importance of 
proper land management techniques with particular reference to 
the Aceiro de divisa com area, demonstrating the effective 
measures used to prevent forest fires and maintaining agricultural 
spaces. The document includes relevant images for better 
understanding.
Global Tags: page layout design, magazine article, published 
work, feature article, informative article, environmental news 
article, document design, article display, 3-column layout.
Local Tags: area,  folder ,  bus stop,  car,  dirt field,  dirt track,  
image,  photo,  pole,  text.

Caption: Informative Infographic Poster on Nine Hidden Costs of Home Buying, 
Including Fees, Insurances, Utilities, and Maintenance.
Global Tags: home buying guide, infographic, infographic illustration, real estate 
trends analysis, property investment strategies, real estate transactions.
Local Tags: graph ,  flyer,  home,  house,  house exterior,  poster.

(b) Document text detection visualization results, each image paired with its caption and tags.

Figure 5: Visualization of ADOPD images and results for Doc2Mask and Doc2Box.

Prompt-Guided Context-Aware Captioning Benefits Vision-Language Modeling. Table 4.2
evaluates caption quality. We collect 5K test data to evaluate the effectiveness of Doc2Seq. The
Æ represents the GPT-4 model, and BLIPLarge (Li et al., 2022b) and BLIP2-OPT-2.7b (Li et al., 2023)
are obtained from Huggingface model hub. ViTBase-P32-384/ViTBase-P16-384+GPT2 are fine-tuned
on Doc2Seq. While GPT-4 captions achieve a commendable CIDEr score, indicating consensus, a
noticeable disparity persists between them and human annotations. Models fine-tuned on Doc2Seq
can attain similar performance to GPT-4 on B@n, but show significantly lower CIDEr scores. In
Fig. 6 (left), human-written captions are notably longer than machine-generated ones, impacting
reference-based evaluation. These findings highlight the challenge in document captioning due to
diverse interpretations and varying caption lengths, complicating evaluation.

To verify the benefits of prompt-guided captions, we fine-tune CLIP with Doc2Seq data and conduct
two experiments: zero-shot evaluation on RVL-CDIP test set and supervised training on RVL-CDIP
based on finetuned CLIP vision backbone. While finetuned CLIP improves zero-shot capability
for specific data (e.g., Budget and Presentation), the overall enhancement is comparable to raw
pretrained CLIP. We observe from Fig. 6 (right) and Table 6 that finetuning the CLIP ViT backbone,
initially trained on Doc2Seq, with a classifier layer for separate training on RVL-CDIP results in a
noticeable improvement. This underscores the importance of caption rewriting for handling noisy data.
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Figure 6: Ablation study on captions.

Method Test B@1 B@2 B@3 B@4 M R C
Æ ² 27.0 16.7 11.7 8.5 12.8 22.4 84.7

BLIPLarge
Æ 12.4 8.5 6.4 5.0 9.3 22.6 18.3
² 8.2 5.6 4.0 3.0 8.6 21.6 3.4

BLIP2-OPT-2.7b Æ 4.3 3.6 3.0 2.6 10.7 25.1 16.5
² 12.3 7.6 5.3 3.9 9.0 21.8 18.0

ViTBase-P32-384+GPT2 Æ 22.5 9.2 4.4 2.5 7.7 16.8 9.8
² 16.7 5.8 2.3 1.0 5.8 13.9 4.4

ViTBase-P16-384+GPT2 Æ 23.4 9.7 4.7 2.7 8.0 17.2 11.0
² 17.3 6.0 2.4 1.1 6.0 14.1 5.3

Table 5: Ablation experiments on Doc2Seq.
Table 6: Performance of Models for Per-Class Classification

Model Type Letter Form Email Hw Ad SR SP SP FF NA Bgt Inv Prsnt Qnr Rsm Memo Avg
Per-Class (Recall@5)

DiTbase Supervised 98.92 98.76 99.45 98.99 99.64 97.86 99.84 99.31 99.52 99.18 99.24 98.83 99.76 99.15 99.28 99.16 99.18
ViTG-14 Zero-Shot 98.52 98.76 79.78 91.89 53.46 76.51 87.64 84.82 32.81 99.49 33.07 99.35 54.81 93.75 90.46 98.23 79.58
ViTG-14+ADOPD Zero-Shot 94.32 87.55 75.33 85.79 27.46 80.33 96.21 63.46 38.72 98.79 65.81 93.93 72.26 84.25 84.41 95.02 77.73

Per-Class (Accuracy)
DiTbase Supervised 92.41 86.83 98.97 96.13 94.63 87.11 95.22 94.90 96.68 92.77 92.73 94.07 87.38 90.84 97.67 95.14 93.36
ViTG-14 Supervised 86.20 76.70 94.28 93.48 91.81 71.94 91.10 89.72 94.97 83.68 81.24 87.44 78.26 84.97 92.94 85.87 86.57
ViTG-14+ADOPD Supervised 90.87 84.48 96.98 95.34 93.76 82.39 93.51 93.00 95.61 89.81 89.62 92.85 84.29 90.23 96.45 92.62 91.38

1 The abbreviations are: Handwritten (Hw), Advertisement (Ad), Scientific Report (SR), Scientific Publication (SP), Specification (Spec), File
Folder (FF), News Article (NA), Budget (Bgt), Invoice (Inv), Presentation (Prsnt), Questionnaire (Qnr), and Resume (Rsm).

Data-Driven Document Taxonomy Analysis. To verify Alg. 1, we collect the ID dataset from
both RVL-CDIP and Laion-HR based on the 16 classes provided in RVL-CDIP. We sample OOD
categories such as “Magazine (M)”, “Comic (C)”, “Guidebook (G)”, “Yearbook (Y)”, “Worksheet
(W)”, and “Open Book (OB)”, etc, from Y and collect the OOD data from Laion-HR. In the Appendix,
Table 7 shows OOD detection results for two variants: predicting 16 and 50 centroids separately.
The K-means method with 50 centroids excels in detecting outliers across all categories. Fig. 7
(center) displays taxonomy expansion with HITL taxonomy cleaning. We start with an initial ID set
with 10 classes selected from RVL-CDIP. At every step, we sample 10 detected outlier data. As the
data increases, our outlier detection method successfully retrieves outliers for the majority of novel
categories. Fig. 7 (left, right) illustrates the distribution of “Comic” and ID data, where “Comic” is
detected as an outlier in the first step. Red color indicates the detected outlier samples.
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Figure 7: Visualization of outlier detection, taxonomy expansion, and OOD score distributions.

Figure 8: The evaluators’ geographic distribution.

Responsible AI Analysis. During data clean-
ing, we conduct a comprehensive Responsible
AI analysis, tackling biases in sensitive areas
such as nudity, sexuality, and violence, etc. We
meticulously filter sensitive data with input from
15 diverse evaluators. Fig. 8 displays their geo-
graphic distribution. If any evaluator deems an
image inappropriate, we label it as sensitive. After review, we remove 9.29% of potentially sensitive
images, ensuring the majority of the 120K images remain non-sensitive. This rigorous process
guarantees a safer and less biased dataset, promoting fairness and inclusivity in our models.

5 CONCLUSION

This paper introduces ADOPD, a large-scale dataset for document page decomposition, and outlines
a systematic process including data collection, taxonomy analysis, model-assisted data annotation,
and HITL processes. We conduct comprehensive analyses and detailed experimental comparisons
across four tasks, demonstrating the value of ADOPD. It opens up numerous opportunities for future
exploration and the development of foundational models for document understanding, aiming to
catalyze advancements in document analysis.
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A APPENDIX

A.1 ABLATION STUDY OF OUTLIER DETECTION

Table 7 presents OOD detection results obtained using our K-means-based method, with two variants:
predicting 16 and 50 centroids separately. The K-means method with 50 centroids excels in OOD
detection across all categories, showcasing its effectiveness in identifying outlier data.

Table 7: Performance of outlier detection methods in dataset exploration.

ID Outlier Score AUROC (%)↑ FPR95 (%)↓
M C G Y W OB M C G Y W OB

K-Means (16) 99.99 99.99 99.99 99.99 99.85 99.98 0.01 0.11 0.00 0.00 0.67 0.08

RVL-CDIP K-Means (50) 99.99 99.99 99.99 99.99 99.87 99.97 0.01 0.03 0.00 0.00 0.53 0.16
MCM 80.23 94.50 91.36 92.44 91.92 89.57 80.58 31.27 51.01 42.11 44.06 49.37

K-Means (16) 86.28 90.86 89.08 87.64 59.16 78.13 33.02 21.40 28.05 39.61 82.66 65.74

ADOPD K-Means (50) 86.89 92.86 89.41 87.46 59.90 78.71 32.35 27.69 29.53 39.85 80.46 65.70
MCM 71.42 91.13 86.69 87.58 87.58 84.16 89.89 45.18 68.23 54.39 56.66 60.76

A.1.1 ABLATION STUDY OF PROMPTS

Table 8: Human evaluation of prompt-guided context-aware captioning.
Prompt ² ² Prompt ² ²

1⃝Ô You are an expert in generating descriptive captions for documents. Provide
a concise reference description of the document: <image caption> and some
image attributes: <tags> . The document has words extracted from the image:
<ocr words> . G Create a comprehensive and precise caption to describe the

document content.

27 2⃝Ô You are an expert in generating descriptive captions for documents. Provide
a concise reference description of the document: <image caption> and some
image attributes: <tags> . The document has words extracted from the image:
<ocr words> . G Create a comprehensive and precise caption to describe the

document content.

38

3⃝ Ô You are an expert in generating caption for document image. The
document includes some visual attributes: <tags> , and contains text con-
tent: <ocr words> . There is a possible coarse caption for the document:
<image caption> . G Now, in your own words, please describe the docu-

ment’s content, referencing the provided information.

41 61 4⃝Ô You are an expert in generating descriptive captions for documents. Provide
a concise reference description of the document: <image caption> and some
attributes: <tags> . The document has some text content: <ocr words> .
Please describe the document’s content, referencing the provided information.
G Create a comprehensive and precise caption to describe the document content.

47 48

5⃝ Ô You are an expert in generating caption for document image. The
document includes some visual attributes: <tags> , and contains text con-
tent: <ocr-summary> . There is a possible coarse caption for the document:
<image caption> . G Now, in your own words, please describe the docu-

ment’s content, referencing the provided information.

44 6⃝Ô You are an expert in generating descriptive captions for documents. Provide
a concise reference description of the document: <image caption> and some
attributes: <tags> . The document has some text content: <ocr-summary> .
Please describe the document’s content, referencing the provided information.
G Create a comprehensive and precise caption to describe the document content.

49

Table 8 shows the results of human evaluation for various prompts. In each case, we randomly select
100 images for comparison and instruct human evaluators to exclude any incorrect samples.

As described in Sec. 3.2, we employ four prompts to generate annotated document labels, utilizing
textual, visual, spatial, and multimodal information. The detailed prompts are listed in Table 9. While
the format of prompts focused on different aspects remains consistent, each prompt includes different
input items, as indicated by check signals in Table 9. The bold text in the table represents inputs or
variables related to prompt selection, as shown in Table 10.

Considering the impact of input item order on taxonomy generation quality, we conduct experiments
on various prompts to explore optimal input sequencing. Our investigation focuses on prompt
sentences containing inputs (row 3-7 in Table 9). To simplify, we specifically examine rows 6
and 7, both representing high-level information for entire document images and intended to pair
together, while the order between them remains undecided. In this study, human annotators evaluate
prompt output labels and vote on them, assessing relevance between the document image and labels,
eliminating orders resulting in conflicting or ambiguous labels. Subsequently, we tally votes for each
order to determine the most favored arrangement.

1. Order of Visual and Textual Prompt Inputs: We shuffle the order of input items for the visual
prompt (3, 6, and 7) into four different arrangements while keeping 6 and 7 adjacent: 3-6-7, 3-7-6,
6-7-3, and 7-6-3. The investigation result is depicted in Fig. 9(a). Similar to the visual prompt, for
the textual prompt, we investigate four orders: 5-6-7, 5-7-6, 6-7-5, and 7-6-5. The investigation
result is shown in Fig. 9(b). Based on the results of the visual and textual Prompts, we select 3-6-7
and 5-6-7 as the input order for our prompt. Additionally, we observe that it’s preferable to input
the description (row 6) before the pre-labels (row 7) and place it at the end of the list. We will
maintain this order in the subsequent study.

2. Order of Layout Prompt Inputs: We investigate two different layout orders: 4-5-6-7 and 5-4-6-7.
Considering that text space may influence layout comprehension, we classify a document with
a text area larger than 0.2 of the size as text-rich document. In our study, we present the results
separately based on this criterion in Fig. 9(c). The figure illustrates that when the text is rich, the
order 5-4-6-7 receives more votes, while 4-5-6-7 is favored otherwise. Consequently, we choose
to use the order 5-4-6-7 when the document is rich and 4-5-6-7 when the document is not as
text-rich.
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(a) (b) (c) (d)

Figure 9: Human evaluation result for different order of Visual and Textual prompt inputs.

Table 9: Prompts across four aspects: textual, visual, layout, and multimodal.
Dataset Visual Textual Layout Multimodal

  1 You are an expert in seeing and understanding a given document image. ✓ ✓ ✓ ✓

  2 Here is the relevant information about the document: ✓ ✓ ✓ ✓

  3 Visual elements may appear in the document: visual [Tag0, Tag1, · · · ] . ✓ ✗ ✗ ✓

  4 OCR layout information: [[OCR0, Bbox0], [OCR1, Bbox1], · · · ] . In
each layout item, the first 4 numbers (x1, y1, x2, y2) are normalized coordinates, and
the last string is the detected OCR text

✗ ✗ ✓ ✓

  5 The textual content in the document are: [OCR0, OCR1,· · · ] . ✗ ✓ ✓ ✓

  6 A possible coarse description of this document: image caption . ✓ ✓ ✓ ✓

  7 Possible overall document categories: [Pre-label0, Pre-label1,· · · ]. ✓ ✓ ✓ ✓

  8 You will primarily focus on USED RESOURCE to provide 5 labels related to the
conception of “CONCEPT” of documents in your own word. The labels should be
significantly representative of this document within 5 words.

✓ ✓ ✓ ✓

  9 Here is an example for output: [Label0, Label1, · · · ] . The labels should
not contain any specific content shown in the document.

✓ ✓ ✓ ✓

3. Order of Mutimodal Prompt Inputs: Multimodal prompts predict labels using all provided
information. Building on previous findings, we standardize the order of rows 6 and 7, placing
them at the bottom of the inputs. For the remaining 3 inputs, we shuffle them to create a total
of 6 different orders: 3-4-5-6-7, 4-3-5-6-7, 4-5-3-6-7, 3-5-4-6-7, 5-3-4-6-7, and 5-4-3-6-7. As
shown in Fig. 9, the results suggest that the order 3-4-5-6-7 yields the best performance among all
orders. After obtaining labels with different information, we summarize them into 10 categories
to classify the document. The detailed prompt is shown in Table 11.

Table 10: Utilized information on various settings for prompts.
Modality Information
Visual The potential visual elements are considered alongside other mentioned details such as descriptions and possible categories.
Textual The textual content is summarized while taking into account other mentioned details such as descriptions and possible categories.
Layout The layout information and design of the document are considered alongside relevant details such as descriptions, visual elements,

textual content, and possible categories.
Multimodal All the aforementioned information, including descriptions, visual elements, textual content, possible categories, and layout

information, is taken into consideration.

Table 11: Prompts for summarizing document labels.
Prompt Sentence

  1 You are a languistic expert that can well understand the difference between phrases.
  2 You will receive 4 lists of labels of the same document image from 4 annotators. They focus on visual, textual, layout, and

multimodal aspects of the image.
  3 You should come out 10 most common conceptions from the list with in 4 words for each.
  4 The labels given by the visual-focused annotator are: [LabelVisual0 , LabelVisual1 , · · · ] .

  5 The labels given by the linguistic-focused annotator are: [LabelTextual0 , LabelTextual1 , · · · ] .

  6 The labels given by the layout-focused annotator are: [LabelSpatial0 , LabelSpatial1 , · · · ] .

  7 The labels given by the multimdal-focused annotator are: [LabelMultimdal0 , LabelMultimdal1 , · · · ] .
  8 Here is a example for output: [Label0, Label1, · · · ] .

A.2 DATA ANNOTATION PROCESS ANALYSIS

A.2.1 IMAGE ANALYSIS

Fig. 11 illustrates our analysis of the document image data, showcasing the high resolution of our
dataset. During the annotation process, we notice that despite having high resolution, some document
images’ text appears blurry. We require annotators to skip labeling such images to ensure clear
visibility of text in all document images.
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Figure 10: Diagram illustrating data selection proportions.
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Figure 11: Distribution of the document image sizes for ADOPD.
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Original Images Pre-Label  Masks Post-Label  Masks Or iginal Images Pre-Label  Masks Post-Label  Masks
ADoPD (En) ADoPD (En)

Figure 12: ADOPD (En) model-assisted annotation comparison. (Left) EntitySeg labels (prediction)
and human annotations. (right) Doc2Mask (finetune on ADOPD) labels (prediction) and human
annotations.
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Original Images Pre-Label  Masks Post-Label  Masks Or iginal Images Pre-Label  Masks Post-Label  Masks
ADoPD (Zh) ADoPD (Ja)

Figure 13: ADOPD (Non-En) model-assisted annotation comparison. (Left) Doc2Mask (finetune
on ADOPD-En) labels (prediction, Zh) and human annotations. (Right) Doc2Mask (finetune on
ADOPD-En) labels (prediction, Ja) and human annotations.
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A.2.2 MODEL-ASSISTED ANNOTATION DATA VISUALIZATION

A.3 MULTI-LINGUAL DOC2BOX SAMPLES

Figure 14: Doc2Box samples: English, Chinese, and Japanese document images, top to bottom.
Japanese’s unique style poses challenges for Doc2Box compared to English and Chinese.
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