
A Limitations

In Section 2 we make three main assumptions: Assumption 1 (smoothness), Assumption 2 (learning
rate separation), and Assumption 3 (KL).

Assumption 1 imposes the necessary smoothness conditions on f to enable second order Taylor
expansions of ∇L. These smoothness conditions may not hold, e.g. if ReLU activations are used.
This can be easily resolved by using a smooth activation like softplus or SiLU [13].

Assumption 2 is a very general assumption that lets η be arbitrarily close to the maximum cutoff for
gradient descent on a quadratic, 2/`. However, for simplicity we do not track the dependence on
ν. This work therefore does not explain the ability of gradient descent to optimize neural networks
at the "edge of stability" [4] when η > 2/`. Because we only assume Assumption 1 of the model,
our results must apply to quadratics as a special case where any η > 2/` leads to divergence so this
assumption is strictly necessary.

Although Assumption 3 is very general (see Lemma 17), the specific value of δ plays a large role in
our Theorem 1. In particular, if L satisfies Assumption 3 for any δ ≥ 1/2 then the convergence rate
in ε is ε−6. However, this convergence rate can become arbitrarily bad as δ → 0. This rate is driven
by the bound on E(θ∗) in Proposition 1, which does not contribute to implicit regularization and
cannot be easily controlled. The error introduced at every step from bounding E(θ) at a minimizer θ∗

is Õ(η
√
λL(θ∗)) and the size of each step in the regularized trajectory is ηλ‖∇R(θ∗)‖. Therefore if

L(θ∗) = Ω(λ), the error term is greater than the movement of the regularized trajectory. Section 5.2
repeats the argument in Section 3.1 without making Assumption 3. However, the cost is that you can
no longer couple to a fixed potential R and instead must couple to a changing potential RS .

One final limitation is our definition of stationarity (Definition 2). As we discuss in Section 2.3,
this limitation is fundamental as the more direct statement of converging to an ε-stationary point of
1
λ L̃ is not true. Although we do not do so in this paper, if θ remains in a neighborhood of a fixed
ε-stationary point θ∗ for a sufficiently long time, then it might be possible to remove this assumption
by tail-averaging the iterates. However, this requires a much stronger notion of stationarity than first
order stationarity which does not guarantee that θ remains in a neighborhood of θ∗ for a sufficiently
long time (e.g. it may converge to a saddle point which it then escapes).

B Missing Proofs

Proof of Proposition 1. We have

∇L(θ) =
1

n

n∑
i=1

(fi(θ)− yi)∇fi(θ) (10)

so

∇2L(θ) =
1

n

n∑
i=1

[
∇fi(θ)∇fi(θ)T + (fi(θ)− yi)∇2fi(θ)

]
(11)

= G(θ) + E(θ). (12)
In addition if we define ei(θ) = fi(θ)− yi,

‖E(θ)‖ =
1

n

∥∥∥∥∥
n∑
i=1

ei(θ)∇2fi(θ)

∥∥∥∥∥ (13)

≤ 1

n

[
n∑
i=1

ei(θ)
2

]1/2 [ n∑
i=1

‖∇2fi(θ)‖2
]1/2

(14)

=
1

n

√
2nL(θ) ·

√
nρ2f (15)

=
√

2ρfL(θ) (16)

= O(
√
L(θ)). (17)
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Definition 4. We define the quadratic variation [·] and quadratic covariation [·, ·] of a martingale X
to be

[X]k =
∑
j<k

‖ξj+1 − ξj‖2 and [X,X]k =
∑
j<k

(ξj+1 − ξj)(ξj+1 − ξj)T . (18)

Lemma 5 (Azuma-Hoeffding). Let X ∈ Rd be a mean zero martingale with [X]k ≤ σ2. Then with
probability at least 1− 2de−ι,

‖Xk‖ ≤ σ
√

2ι. (19)

Corollary 1. Let X ∈ Rd be a mean zero martingale with [X,X]k �M . Then with probability at
least 1− 2de−ι,

‖Xk‖ ≤
√

2 tr(M)ι. (20)

Proof of Proposition 2. A simple induction shows that

ξk =
∑
j<k

(I − ηG)jε∗k−j−1. (21)

Then

E[ξkξ
T
k ] =

∑
j<k

(I − ηG)jηλG(I − ηG)j (22)

= ηλG(2ηG− η2G2)†(I − (I − ηG)2k) (23)

= λΠG(2− ηG)−1(I − (I − ηG)2k). (24)

Therefore E[ξkξ
T
k ] � η

ν I and E[ξkξ
T
k ]→ λΠG(2− ηG)−1. The partial sums of Equation (21) form

a martingale with quadratic covariation bounded by∑
j<k

(I − ηG)jε∗k−j−1(ε∗k−j−1)T (I − ηG)j (25)

�
∑
j<k

(I − ηG)jnηλG(I − ηG)j (26)

= nλΠG(2− ηG)−1(I − (I − ηG)2k) (27)

� nλ

ν
I (28)

therefore by Corollary 1, with probability at least 1− 2de−ι, ‖ξk‖ ≤X .

We prove the following version of Proposition 2 for the setting of Lemma 2:
Proposition 6. Let ξk be defined as in Definition 3. Then for any t ≥ 0, with probability 1− 2de−ι,
‖ξt‖ ≤X .

Proof. For k ∈ (Tm, Tm+1] define Gk = G(θ∗m). Then we can write for any k ≥ 0,

ξk+1 = (I − ηGk)ξk + ε∗k. (29)

Let Ft = σ{B(k), ε(k) : k < t}. To each k we will associate a martingale {X(k)
j }j≤k adapted to F

as follows. First let X(k)
0 = 0. Then for all k ≥ 0 and all j ≥ 0,

X
(k)
j+1 =

{
(I − ηGk−1)X

(k−1)
j j < k − 1

X
(k)
j + ε∗k−1 j = k − 1.

First we need to show X(k) is in fact a martingale. We will show this by induction on k. The base
case of k = 0 is trivial. Next, it is easy to see that X(k)

j ∈ Fj . Therefore,

E[X
(k)
k |Fk−1] = E[X

(k)
k−1|Fk−1] = X

(k)
k−1 (30)
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and for j < k − 1:

E[X
(k)
j+1|Fj ] = (I − ηGk−1)E[X

(k−1)
j+1 |Fj ] (31)

= (I − ηGk−1)X
(k−1)
j (32)

= Xk
j (33)

where the second line followed from the induction hypothesis and the third line followed from the
definition of X(k)

j . Therefore X(k) is a martingale for all k.

Next, I claim that ξk = X
(k)
k . We can prove this by induction on k. The base case is trivial as

ξ0 = X
(0)
0 = 0. Then,

X
(k+1)
k+1 = X

(k+1)
k + ε∗k (34)

= (I − ηGk)X
(k)
k + ε∗k (35)

= ξk+1. (36)

Finally, I claim that [X(k), X(k)]k � nλ
ν I . We will prove this by induction on k. The base case is

trivial as X(0)
0 = 0. Then,

[X(k+1), X(k+1)]k+1 = [X(k+1), X(k+1)]k + ε∗k(ε∗k)T (37)

= (I − ηGk)[X(k), X(k)]k(I − ηGk) + ε∗k(ε∗k)T (38)

� nλ

ν

[
(I − ηGk)2 + ηνGk

]
(39)

� nλ

ν
[I −Gk(2− ηGk − νI)] (40)

� nλ

ν
I. (41)

Therefore by Corollary 1, ‖ξk‖ ≤X with probability at least 1− 2de−ι.

We will prove Proposition 3 and Proposition 4 in the more general setting of Lemma 2. For
notational simplicity we will apply the Markov property and assume that m = 0. We define
∆ = ∆0 and θ∗ = θ∗0 and note that due to this time change that ξ0 is not necessarily 0. We define
vk = θk − Φk(θ∗ + ∆) and rk = θk − ξk − Φk(θ∗ + ∆).

Proof of Proposition 3. First, by Proposition 6, ‖ξt‖ ≤X with probability at least 1− 2de−ι. Then
note that for k ≤ t,
‖θk − θ∗‖ ≤ ‖ξk‖+ ‖rk‖+ ‖Φk(θ∗ + ∆)− θ∗‖ = O(X ) and θk − θ∗ = ξk +O(M )

(42)
so Taylor expanding the update in Algorithm 1 and Equation (2) to second order around θ∗ and
subtracting gives
vk+1 = (I − ηG)vk + ε∗k +mk + zk (43)

− η
[

1

2
∇3L(θk − θ∗, θk − θ∗)−

1

2
∇3L(Φk(θ∗)− θ∗,Φk(θ∗)− θ∗)− λ∇R

]
+O(ηX (

√
L + X 2))

= (I − ηG)vk + ε∗k +mk + zk − η
[

1

2
∇3L(ξk, ξk)− λ∇R

]
+O(ηX (

√
L + M + X 2)).

Subtracting Equation (4), we have

rk+1 = (I − ηG)rk − η
[

1

2
∇3L(ξk, ξk)− λ∇R

]
+mk + zk +O(ηX (

√
L + M + X 2))

(44)

= (I − ηG)rk − η
[

1

2
∇3L(ξk, ξk)− λ∇R

]
+mk + zk + Õ(c5/2ηλ1+δ/2). (45)
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Proof of Proposition 4. Note that for each i ∈ B(k),

‖ε(k)i (∇fi(θ)−∇fi(θ∗))‖ ≤ σρf‖θ − θ∗‖. (46)

Therefore by Lemma 5, with probability 1− 2de−ι,∥∥∥∥∥∥
∑
j<k

(I − ηG)jzk−j

∥∥∥∥∥∥ = O(
√
ηλkιX ). (47)

Next, note that because ‖∇`i(θ)‖ = O(L(θ)), by Lemma 5, with probability at least 1− 2de−ι,∥∥∥∥∥∥
∑
j<k

(I − ηG)jmk−j

∥∥∥∥∥∥ = O(
√
ηλkι

√
L(θ)). (48)

Next, by a second order Taylor expansion around θ∗ we have√
L(θ) ≤ O(

√
L + X ) (49)

so

rt+1 = −η
∑
k≤t

(I − ηG)t−k
[

1

2
∇3L(ξk, ξk)− λ∇R

]
(50)

+O
(√

ηλt
(√

L + X
)

+ ηtX
(√

L + M + X 2
))

= −η
∑
k≤t

(I − ηG)t−k
[

1

2
∇3L(ξk, ξk)− λ∇R

]
+ Õ

(
λ1/2+δ/2√

c

)
. (51)

Now we will turn to concentrating ξkξTk . We will use the shorthand gi = ∇fi(θ∗). Let

S∗ = λ(2− η∇2L)−1, S̄ = λ(2− ηG)−1, and Sk = ξkξ
T
k . (52)

It suffices to bound

η
∑
k≤t

(I − ηG)t−k
1

2
∇3L(Sk − S∗).

We can expand out∇3L using the fact that L is square loss to get

1

2
∇3L(Sk − S∗) =

1

n

n∑
i=1

(
Hi(Sk − S∗)gi +

1

2
gi tr [(Sk − S∗)Hi]

)
+O(

√
L X 2), (53)

so it suffices to bound the contribution of the first two terms individually. Starting with the second
term, we have tr [(Sk − S∗)Hi] = O(X 2), so by Lemma 12,

η
1

n

n∑
i=1

∑
k≤t

(I − ηG)t−kgi tr [(Sk − S∗)Hi] = O
(√
ηtX 2

)
. (54)

For the first term, note that

S∗ − S̄ = λ
[
(2− η∇2L)−1

(
(2− ηG)− (2− η∇2L)

)
(2− ηG)−1

]
= O(ηλ

√
L ) (55)

so this difference contributes at most O(η2λt
√

L ) = O(ηtX
√

L ) so it suffices to bound

1

n

n∑
i=1

∑
k≤t

(I − ηG)t−kHi(Sk − S̄)gi. (56)

Now note that

Sk+1 = (I − ηG)Sk(I − ηG) + (I − ηG)ξk(ε∗k)T + ε∗kξk(I − ηG) + (ε∗k)(ε∗k)T (57)
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and that4

S̄ = (I − ηG)S̄(I − ηG) + ηλG. (58)

Let Dk = Sk − S̄. Then subtracting these two equations gives

Dk+1 = (I − ηG)Dk(I − ηG) + (I − ηG)ξk(ε∗k)T + ε∗kξk(I − ηG) + ((ε∗k)(ε∗k)T − ηλG).

Let Wk = (I − ηG)ξk(ε∗k)T + ε∗kξ
T
k (I − ηG) and let Zk = ((ε∗k)(ε∗k)T − ηλG) so that

Dk+1 = (I − ηG)Dk(I − ηG) +Wk + Zk.

Then,

Dk = (I − ηG)kD0(I − ηG)k +
∑
j<k

(I − ηG)k−j−1(Wj + Zj)(I − ηG)k−j−1.

Substituting the first term gives

η
1

n

n∑
i=1

∑
k≤t

(I − ηG)t−kHi(I − ηG)kD0(I − ηG)kgi = O(
√
ηtX 2) (59)

so we are left with the martingale part in the second term. The final term to bound is therefore

η
1

n

n∑
i=1

∑
k≤t

(I − ηG)t−kHi

∑
j<k

(I − ηG)k−j−1(Wj + Zj)(I − ηG)k−j−1

 gi. (60)

We can switch the order of summations to get

η
1

n

n∑
i=1

∑
j≤t

t∑
k=j+1

(I − ηG)t−kHi(I − ηG)k−j−1(Wj + Zj)(I − ηG)k−j−1gi. (61)

Now if we extract the inner sum, note that

t∑
k=j+1

(I − ηG)t−kHi(I − ηG)k−j−1(Wj + Zj)(I − ηG)k−j−1gi (62)

is a martingale difference sequence. Recall that

ε∗j =
η

B

∑
l∈B(j)

ε
(j)
l gl (63)

First, isolating the W term, we get

t∑
k=j+1

(I − ηG)t−kHi(I − ηG)k−jξj(ε
∗
j )
T (I − ηG)k−j−1gi (64)

+

t∑
k=j+1

(I − ηG)t−kHi(I − ηG)k−j−1ε∗jξ
T
j (I − ηG)k−jgi.

=
η

B

∑
l∈B(j)

ε
(j)
l

[ t∑
k=j+1

(I − ηG)t−kHi(I − ηG)k−jξjg
T
l (I − ηG)k−j−1gi (65)

+

t∑
k=j+1

(I − ηG)t−kHi(I − ηG)k−j−1glξ
T
j (I − ηG)k−jgi

]
.

4This identity directly follows from multiplying both sides by 2− ηG and the fact that all of these matrices
commute .
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The inner sums are bounded by O(X η−1) by Lemma 14. Therefore by Lemma 5, with probability
at least 1 − 2de−ι, the contribution of the W term in Equation (60) is at most O(

√
ηλkιX ) =

O(
√
ηkX 2). The final remaining term to bound is the Z term in (60). We can write the inner sum as

ηλ

B2

t∑
k=j+1

(I − ηG)t−kHi(I − ηG)k−j−1

 1

σ2

∑
l1,l2∈B(k)

ε
(j)
l1
ε
(j)
l2
gl1g

T
l2 −G

 (I − ηG)k−j−1gi

(66)

which by Lemma 14 is bounded by O(λ). Therefore by Lemma 5, with probability at least 1−2de−ι,
the full contribution of Z to Equation (60) is O(ηλ

√
tι) = O(

√
ηtX 2). Putting all of these bounds

together we get with probability at least 1− 10de−ι,

‖rt+1‖ = O
[√

ηT X (
√

L + X ) + ηT X (
√

L + M + X 2)
]

= Õ

(
λ1/2+δ/2√

c

)
.

The following lemma is necessary for some of the proofs below:

Lemma 6. Assume that L(θ) ≤ L . Then for any k ≥ 0, L(Φk(θ)) ≤ L .

Proof. By induction it suffices to prove this for k = 1. Let θ′ = Φ1(θ). First consider the case when

‖∇L(θ′)‖ ≤
(

L

µ

)1/(1+δ)

. (67)

Then by Assumption 3, L(θ′) ≤ L so we are done. Otherwise, note that

‖∇L(θ)‖ ≥ ‖∇L(θ′)‖ − `‖θ − θ′‖ (68)
≥ Ω(cλ)− η`‖∇L(θ)‖ (69)

so ‖∇L(θ)‖ ≥ Ω(cλ) and therefore ‖∇L̃(θ)‖ ≥ Ω(cλ) Then by the standard descent lemma,

L(θ′) ≤ L(θ)− η∇L̃(θ)T∇L(θ) +
η2`

2
‖∇L̃(θ)2‖

≤ L(θ)− η

2
(2− η`)‖∇L̃(θ)‖2 +O(ηλ‖∇L(θ)‖)

= L(θ)− ην

2
‖∇L̃(θ)‖2 +O(ηλ‖∇L(θ)‖)

and for c sufficiently large, the second term is larger than the third so L(θ′) ≤ L(θ) ≤ L .

We break the proof of Lemma 3 into a sequence of propositions. The idea behind Lemma 3
is to consider the trajectory Φk(θ∗m), for k ≤ T . First, we want to carefully pick τm so that
η
∑
k<τm

‖∇L̃(Φk(θ∗m))‖ is sufficiently large to decrease the regularized loss L̃ but sufficiently
small to be able to apply Lemma 2:

Proposition 7. In the context of Lemma 3, if θTm is not an (ε, γ)-stationary point, there exists
τm ≤ T such that:

5M ≥ η
∑
k<τn

‖∇L̃(Φk(θ∗n))‖ ≥ 4M . (70)

We can use this to lower bound the decrease in L̃ from θ∗m to Φτm(θ∗m):

Proposition 8. L̃(Φτm(θ∗m)) ≤ L̃(θ∗m)− 8 D2

ηντm
.
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We now bound the increase in L̃ from Φτm(θ∗m) to θ∗m+1. This requires relating the regularized
trajectories starting at θ∗m and θ∗m + ∆m. The following proposition shows that the two trajectories
converge in the directions where the eigenvalues of G(θ∗m) are large:
Proposition 9. LetG = G(θ∗m) and let τm be chosen as in Proposition 7. Then, θ∗m+1−Φτm(θ∗m) =
(I − ηG)τm∆m + r where ‖r‖ = O(ητmM 2) and ‖r‖2G = O(ητmM 4).

Substituting the result in Proposition 9 into the second order Taylor expansion of L̃ centered at
Φτm(θ∗m) gives:

Proposition 10. L̃(θ∗m+1) ≤ L̃(Φτm(θ∗m)) + 7 D2

ηντm

Combining Propositions 8 and 10, we have that

L̃(θ∗m+1)− L̃(θ∗m) ≤ − D2

ηντm
≤ −F . (71)

where the last line follows from τm ≤ T and the definition of F . Finally, the following proposition
uses this bound on L̃ and Assumption 3 to bound L(θ∗m+1):
Proposition 11. L(θ∗m+1) ≤ L .

The following corollary also follows from the choice of τm, Proposition 9, and Lemma 2:
Corollary 2. ‖Φτm(θ∗m+∆m)−θ∗m‖ ≤ 8M and with probability at least 1−8dτme

−ι, ‖∆m+1‖ ≤
D .

The proof of Lemma 3 follows directly from Equation (71), Proposition 11, and Corollary 2. The
proofs of the above propositions can be found below:

Proof of Proposition 7. First, assume that

η
∑
k<T

‖∇L̃(Φk(θ∗m))‖ ≥ 4M . (72)

Then we can upper bound each element in this sum by

η‖∇L̃(Φk(θ∗m))‖ ≤ η‖∇L(Φk(θ∗m))‖+ ηλ‖∇R(Φk(θ∗m))‖. (73)

Note that

‖∇L(θ)‖ =

∥∥∥∥∥ 1

n

n∑
i=1

(fi(θ)− yi)∇fi(θ)
∥∥∥∥∥ (74)

≤ 1

n

[
n∑
i=1

(fi(θ)− yi)2
]1/2 [ n∑

i=1

‖∇fi(θ)‖2
]1/2

(75)

≤
√

2`fL(θ) (76)

and because ∇R is bounded,

η‖∇L̃(Φk(θ∗m))‖ ≤ O(ηL(Φk(θ∗m)) + ηλ). (77)

Then by Lemma 6,

η‖∇L̃(Φk(θ∗m))‖ ≤ O(η
√

L + ηλ) ≤M (78)

for sufficiently large c. Therefore there must exist τm such that

5M ≥ η
∑
k<T

‖∇L̃(Φk(θ∗m))‖ ≥ 4M . (79)

Otherwise,

η
∑
k<T

‖∇L̃(Φk(θ∗m))‖ < 4M . (80)
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Therefore there must exist some k such that
1

λ
‖∇L̃(Φk(θ∗m))‖ < 4M

ηλT
= O(λδ/2ι3/2) ≤ ε (81)

by the choice of λ in Theorem 1. In addition,

‖θTm − Φk(θ∗m)‖ ≤ ‖θTm − θ∗m‖+ 4M ≤X + D + 4M ≤ γ (82)

again by the choice of λ. Therefore θTm is an (ε, γ)-stationary point.

Proof of Proposition 8. We have by the standard descent lemma

L̃(Φτm(θ∗m)) ≤ −ην
2

∑
k<τm

‖∇L̃(Φτk(θ∗m))‖2 (83)

≤ − ην

2τm

[ ∑
k<τm

‖∇L̃(Φτk(θ∗m))‖
]2

(84)

≤ −νM
2

2ητm
(85)

= −8
D2

ηντm
. (86)

Proof of Proposition 9. Let vk = Φk(θ∗m+∆m)−Φk(θ∗m), so that v0 = ∆m and let rk = vk−(I−
ηG)τm so that r0 = 0. Let C be a sufficiently large absolute constant. We will prove by induction
that rk ≤ CητmM 2. Note that

‖Φk(θ∗m + ∆m)− θ∗m‖ ≤ ‖∆m‖+ ‖Φk(θ∗m)− θ∗m‖+ ‖vk‖ (87)

≤ O(M + ηT M 2) (88)
= O(M ) (89)

because of the values chosen for M , T . Therefore Taylor expanding around θ∗m gives:

vk+1 = vk − η
[
∇L̃(Φk(θ∗m + ∆m))−∇L̃(Φk(θ∗m))

]
(90)

= vk − η∇2L̃vk +O(ηM 2) (91)

= (I − ηG)vk +O(ηM 2 + ηλM + η
√

L M ) (92)
= (I − ηG)vk + sk (93)

where ‖sk‖ = O(ηM 2) by the definition of M . Therefore

vk = (I − ηG)k∆m +O(ηkM 2). (94)

In addition,

rk =
∑
j<k

(I − ηG)jsk−j (95)

so if gi = ∇fi(θ∗m),

rTkGrk =
1

n

n∑
i=1

(sTk−j
∑
j<k

(I − ηG)jgi)
2 (96)

≤ O(η2M 4)
1

n

n∑
i=1

‖
∑
j<k

(I − ηG)jgi‖2 (97)

= O(ητmM 4) (98)

by Lemma 12, so we are done.
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We will need the following lemma before the next proof:
Lemma 7. For any k < τm,

‖∇L̃(Φk(θ∗m))‖ ≥ 11‖∇L̃(Φτm(θ∗m))‖/12. (99)

Proof.
∇L̃(Φk+1(θ)) = (I − η∇2L(Φk(θ)))∇L̃(Φk(θ)) +O(η2‖∇L̃(Φk(θ))‖2) (100)

By Lemma 6 and Proposition 1,

‖I − η∇2L(Φk(θ))‖ ≤ 1 + η
√

2ρfL .

In addition,

‖∇L̃(Φk(θ))‖ = O(λ+
√

L ) (101)

so

‖∇L̃(Φk+1(θ))‖ ≤ (1 +O(L ))‖∇L̃(Φk(θ))‖. (102)

Therefore,

‖∇L̃(Φτm(θ))‖ ≤ (1 +O(L ))τm−k‖∇L̃(Φk(θ))‖ (103)

≤ exp(O(T L ))‖∇L̃(Φk(θ))‖ (104)

≤ 12‖∇L̃(Φk(θ))‖/11 (105)

for sufficiently large c.

Proof of Proposition 10. Let v = θm+1 −Φτm(θ∗m) = (I − ηG)τm∆m + r where by Proposition 9,
‖r‖ = O(ητmM 2), G = G(θ∗m), and rTGr = O(ητmM 4). Then,

L̃(θ∗m+1)− L̃(Φτm(θ∗m)) (106)

≤ ‖v‖‖‖L̃(Φτm(θ∗m)‖+
1

2
vT∇2L̃(Φτm(θ∗m))v +O(‖v‖3) (107)

≤ ‖v‖‖L̃(Φτm(θ∗m)‖+
1

2
vTGv +O(D2(D +

√
L + λ)) (108)

≤ ‖v‖‖L̃(Φτm(θ∗m)‖+ ∆T
m(I − ηG)τmG(I − ηG)τm∆m + rTGr (109)

+O(D2(D +
√

L + λ)). (110)

By Proposition 9,

‖v‖ ≤ D +O(ητmM 2) = D + D ·O
(
λδ/2√
c

)
≤ 11D/10

for sufficiently large c. Therefore by Lemma 7 and Proposition 7,

‖v‖‖L̃(Φτm(θ∗m)‖ ≤ D
6

5τm

∑
k<τm

‖L̃(Φk(θ∗m)‖ ≤ 6D2

ηντm
. (111)

By Lemma 10,

∆T
m(I − ηG)τmG(I − ηG)τm∆m ≤

D2

2ηντm
. (112)

By Proposition 9,

rTGr = O(ητmM 4) =
D2

ηντm
O(η2τ2mD2) (113)

=
D2

ηντm
O

(
λδ

c

)
(114)

≤ D2

4ηντm
(115)
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for sufficiently large c. Finally, the remainder term is bounded by

D2

ηντm
·O(ητmD) ≤ D2

4ηντm
(116)

for sufficiently large c for the same reason as above. Putting it all together,

L̃(θ∗m+1)− L̃(Φτm(θ∗m)) ≤ 6D2

ηντm
+

D2

2ηντm
+

D2

4ηντm
+

D2

4ηντm
=

7D2

ηντm
. (117)

Proof of Proposition 11. Assume otherwise for the sake of contradiction. Because ∇R is Lipschitz,
R(θ∗m+1)−R(θ∗m) = O(M ). Therefore by Equation (71),

L(θ∗m+1) ≤ L(θ∗m)− D2

ηντm
+O(λM ).

Therefore we must have D = O(ηλτm) so by Proposition 7 and Lemma 7 we have that
‖∇L̃(Φτm(θ∗m))‖ = O(λ) and because λ∇R = O(λ) we must have ‖∇L(Φτm(θ∗m))‖ = O(λ).
Therefore by Assumption 3,

L(Φτm(θ∗m)) = O(λ1+δ). (118)

Then by the same arguments as in Proposition 10, we can Taylor expand around Φτm(θ∗m) to get

L(θ∗m+1)− L(Φτm(θ∗m)) (119)

≤ ‖∇L(Φτm(θ∗m))‖v +
1

2
vT∇2L(Φτm(θ∗m))v +O(D3) (120)

≤ O
(
λD +

D2

ητ
+ D3

)
(121)

≤ O(λ1+δ) (122)

because δ ≤ 1/2. Therefore L(θ∗m+1) = O(λ1+δ) ≤ L for sufficiently large c.

C Reaching a global minimizer with NTK

It is well known that overparameterized neural networks in the kernel regime trained by gradient
descent reach global minimizers of the training loss [14, 5]. In this section we describe how to extend
the proof in [5] to show that SGD with label noise (Algorithm 1) converges to a neighborhood of a
global minimizer θ∗ as required by Theorem 1. We will use the following lemma from [5]:

Lemma 8 ([5], Lemma B.4). There exists R = Õ(
√
mλ0) such that every θ ∈ BR(θ0) satisfies

λmin(G(θ)) ≥ λ0/2 where Gij(θ) = 〈∇fi(θ),∇fj(θ)〉 and λ0 is the minimum eigenvalue of the
infinite width NTK matrix.

Let ξ0 = 0 and θ∗0 = θ0. We will define ξk, θ∗k iteratively as follows:

ξk+1 = (I − ηG(θ∗k))ξk + εk and θ∗k+1 = θ∗k − η∇L(θ∗k)− ηE(θ∗k)(θk − θ∗k)− zk.
(123)

Let vk = θk − θ∗k and let rk = vk − ξk. We will prove by induction that for all t ≤ T =
4 log[L(θ0)λ0/λ

2]
ηλ0

we have ‖rk‖ ≤ D . The base case follows from r0 = 0. For k ≥ 0 we have

vk+1 = vk − η[∇L(θk)−∇L(θ∗k)− E(θ∗k)vk] + ε∗k

= (I − ηG)vk + ε∗k +O(ηX 2)

so

rk+1 = (I − ηG)rk +O(ηX 2)

= O(ηTX 2)

= O(D)
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which completes the induction. Therefore it suffices to show that the loss of θ∗T is small. We have

E[L(θ∗k+1)|θ∗k] ≤ L(θ∗k)−∇L(θ∗k)T [η∇L+ ηE(θ∗k)vk]

+O[η2‖∇L‖2 + η2‖E(θ∗k)‖2‖vk‖2 + ‖εk − ε∗k‖2]

≤ L(θ∗k)− η

4
‖∇L(θ∗k)‖2 +O

(
η‖E(θ∗k)‖2‖vk‖2 + ‖εk − ε∗k‖2

)
where the last line follows from Young’s inequality. Therefore,

L(θ∗k+1) ≤ L(θ∗k)− η

4
‖∇L(θ∗k)‖2 +O

(
ηL(θ∗k)X 2 + ηλX 2

)
= L(θ∗k)− η

4
‖∇L(θ∗k)‖2 + Õ

(
ηλL(θ∗k) + ηλ2

)
= (1 + Õ(ηλ))L(θ∗k)− η

4
‖∇L(θ∗k)‖2 + Õ

(
ηλ2
)
.

Let J be the Jacobian of f and e be the vector of residuals. Then ∇L = Je. Now so long as
‖θ∗k − θ0‖ ≤ R,

‖∇L(θ∗k)‖2 = e(θ∗k)TJ(θ∗k)TJ(θ∗k)e(θ∗k) ≥ λ0‖e(θ∗k)‖2 = 2λ0L(θ∗k). (124)

Therefore,

L(θ∗k+1) ≤
(

1− ηλ0
2

+ Õ(ηλ)

)
L(θ∗k) + Õ

(
ηλ2
)
.

Now for λ = Õ(λ0),

L(θ∗k+1) ≤
(

1− ηλ0
4

)
L(θ∗k) + Õ

(
ηλ2
)

so

L(θ∗T ) ≤
(

1− ηλ0
4

)T
L(θ0) + Õ

(
λ2

λ0

)
≤ Õ

(
λ2

λ0

)
= O(λ1+δ)

for small λ by the choice of T . It only remains to check that ‖θ∗k − θ0‖ ≤ R. Note that

‖θ∗k − θ0‖ ≤ η
∑
j<k

‖∇L(θ∗j )‖+ Õ(ηT
√
λ+

√
ηTλ2) (125)

≤ Õ

η∑
j≤k

√
L(θ∗j ) +

√
λ

 (126)

≤ Õ
(
L(θ0)

λ0

)
(127)

so for m ≥ Ω̃(1/λ40) we are done.

Note that a direct application of Theorem 1 requires starting ξ at 0. However, this does not affect the
proof in any way and the ξ from this proof can simply be continued.

Finally, note that although ‖ 1λ∇L̃(θ)‖ = O(1/
√
m) at any global minimizer, Theorem 1 guarantees

that for any λ > 0 we can find a point θ where ‖ 1λ∇L̃(θ)‖ . λδ/2 � 1/
√
m, as m only needs to be

larger than a fixed constant depending on the condition number of the infinite width NTK kernel.

D Additional Experimental Details

The model used in our experiments is ResNet18 with GroupNorm instead of BatchNorm to maintain
independence of sample gradients when computed in a batch. We used a fixed group size of 32.
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Figure 4: Label Noise SGD with Momentum (β = 0.9) The left column displays the training
accuracy over time, the middle column displays the value of tr∇2L(θ) over time which we use
to approximate the implicit regularizer R(θ), and the right column displays their correlation. The
horizontal dashed line represents the minibatch SGD baseline with random initialization. We report
the median results over 3 random seeds and shaded error bars denote the min/max over the three runs.
The correlation plot uses a running average of 100 epochs for visual clarity.

For the full batch initialization, we trained ResNet18 on the CIFAR10 training set (50k images, 5k
per class) [17], with cross entropy loss. CIFAR10 images are provided under an MIT license. We
trained using SGD with momentum with η = 1 and β = 0.9 for 2000 epochs. We used learning rate
warmup starting at 0 which linearly increased until η = 1 at epoch 600 and then it decayed using a
cosine learning rate schedule to 0 between epochs 600 and 2000. We also used a label smoothing
value of 0.2 (non-randomized) so that the expected objective function is the same for when we switch
to SGD with label flipping (see Appendix E). The final test accuracy was 76%.

For the adversarial initialization, we first created an augmented adversarial dataset as follows. We
duplicate every image in CIFAR10 10×, for a total of 500k images. In each image, we randomly zero
out 10% of the pixels in the image and we assign each of the 500k images a random label. We trained
ResNet18 to interpolate this dataset without label smoothing with the following hyperparameters:
η = 0.01, 300 epochs, batch size 256. Starting from this initialization we ran SGD on the true dataset
with η = 0.01 and a label smoothing value of 0.2 with batch size 256 for 1000 epochs. The final test
accuracy was 48%.

For the remaining experiments starting at these two initializations we ran both with and without
momentum (see Figure 4 for the results with momentum) for 1000 epochs per run. We used a fixed
batch size of 256 and varied the maximum learning rate η. We used learning rate warmup by linearly
increasing the learning rate from 0 to the max learning rate over 300 epochs, and we kept the learning
rate constant from epochs 300 to 1000. The regularizer was estimated by computing the strength of
the noise in each step and then averaging over an epoch. More specifically, we compute the average
of ‖∇L̂(k)(θk)−∇L(k)(θk)‖2 over an epoch and then renormalize by the batch size.

The experiments were run on a university cluster using NVIDIA P100 GPUs. Code was written in
Python using PyTorch [24] and PyTorch Lightning [6], and experiments were logged using Wandb
[2]. Code can be found at https://github.com/adamian98/LabelNoiseFlatMinimizers.

E Extension to Classification

We restrict yi ∈ {−1, 1}, let l : R→ R+ be an arbitrary loss function, and p ∈ (0, 1) be a smoothing
factor. Examples of l include logistic loss, exponential loss, and square loss (see Table 1). We define
l̄ to be the expected smoothed loss where we flip each label with probability p:

l̄(x) = pl(−x) + (1− p)l(x). (128)
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l(x) c = arg minx l̄(x) σ2 = E[ε2] α = l̄′′(c)

Logistic Loss log [1 + e−x] log 1−p
p p(1− p) p(1− p)

Exponential Loss e−x 1
2 log 1−p

p 1 2
√
p(1− p)

Square Loss 1
2 (x− 1)2 1− 2p 4p(1− p) 1

Table 1: Values of l(x), c, σ2, α for different binary classification loss functions

We make the following mild assumption on the smoothed loss l̄ which is explicitly verified for the
logistic loss, exponential loss, and square loss in Appendix E.2:
Assumption 4 (Quadratic Approximation). If c ∈ R is the unique global minimizer of l̄, there exist
constants εQ > 0, ν > 0 such that if l̄(x) ≤ εQ then,

(x− c)2 ≤ ν(l̄(x)− l̄(c)). (129)

In addition, we assume that l̄′, l̄′′ are ρl, κl Lipschitz respectively restricted to the set {x : l̄(x) ≤ εQ}.

We verify Assumption 4 in Appendix E.2 for logistic loss, exponential loss, and square loss. Then we
define the per-sample loss and the sample loss as:

`i(θ) = l̄(yifi(θ))− l̄(c) and L(θ) =
1

n

n∑
i=1

`i(θ). (130)

We will follow Algorithm 2:

Algorithm 2: SGD with Label Smoothing
Input: θ0, step size η, smoothing constant p, batch size B, steps T , loss function l
for k = 0 to T − 1 do

Sample batch B(k) ∼ [n]B uniformly and sample σ(k)
i = 1,−1 with probability 1− p, p

respectively for i ∈ B(k).
Let ˆ̀(k)

i (θ) = l[σ
(k)
i yifi(θ)] and L̂(k) = 1

B

∑
i∈B(k)

ˆ̀(k)
i .

θk+1 ← θk − η∇L̂(k)(θk)
end

Now note that the noise per sample from label smoothing at a zero loss global minimizer θ∗ can be
written as

∇ˆ̀(k)
i (θ∗)−∇`i(θ∗) = ε∇fi(θ∗) (131)

where

ε =

{
p(l′(c) + l′(−c))with probability 1− p
−(1− p)(l′(c) + l′(−c))with probability p

(132)

so E[ε] = 0 and

σ2 = E[ε2] = p(1− p)(l′(c) + l′(−c))2, (133)

which will determine the strength of the regularization in Theorem 2. Finally, in order to study the
local behavior around c we define α = l̄′′(c) > 0 by Assumption 4. Corresponding values for c, σ2, α
for logistic loss, exponential loss, and square loss are given in Table 1.

As before we define:

R(θ) = − 1

2ηα
tr log

(
1− η

2
∇2L(θ)

)
, λ =

ησ2

B
, L̃(θ) = L(θ) + λR(θ). (134)

Our main result is a version of Theorem 1:
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Theorem 2. Assume that f satisfies Assumption 1, η satisfies Assumption 2, L satisfies Assumption 3
and l satisfies Assumption 4. Let η,B be chosen such that λ := ησ2

B = Θ̃(min(ε2/δ, γ2)), and let
T = Θ̃(η−1λ−1−δ) = poly(η−1, γ−1). Assume that θ is initialized within O(

√
λ1+δ) of some θ∗

satisfying L(θ∗) = O(λ1+δ). Then for any ζ ∈ (0, 1), with probability at least 1− ζ , if {θk} follows
Algorithm 2 with parameters η, σ, T , there exists k < T such that θk is an (ε, γ)-stationary point of
1
λ L̃.

E.1 Proof of Theorem 2

The proof of Theorem 2 is virtually identical to that of Theorem 1. First we make a few simplifications
without loss of generality:

First note that if we scale l by 1
α and η by α then the update in Algorithm 2 i remain constant. In

addition, 1
λ L̃ = 1

λL+R remains constant. Therefore it suffices to prove Theorem 2 in the special
case when α = 1.

Next note that without loss of generality we can replace each fi with yifi and set all of the true labels
yi to 1. Therefore from now on we will simply speak of fi.

Let {τm} be a sequence of coupling times and {θ∗m} a sequence of reference points. Let Tm =∑
j<m τm. Then for k ∈ [Tm, Tm+1), if L(k) denotes true value of the loss on batch B(k), we can

decompose the loss as

θk+1 = θk − η∇L(θk)︸ ︷︷ ︸
gradient descent

− η[∇L(k)(θk)−∇L(θk)]︸ ︷︷ ︸
minibatch noise

+
η

B

∑
i∈B(k)

ε
(k)
i ∇fi(θk)︸ ︷︷ ︸

label noise

(135)

where

ε
(k)
i =

{
−p[l′(fi(θk)) + l′(−fi(θk))] σ

(k)
i = 1

(1− p)[l′(fi(θk)) + l′(−fi(θk))] σ
(k)
i = −1.

(136)

We define

εk =
η

B

∑
i∈B(k)

ε
(k)
i ∇fi(θk) and mk = ∇L(k)(θk)−∇L(θk).

We decompose εk = ε∗k + zk where

ε∗k =
η

B

∑
i∈B(k)

ε
(k)∗
i ∇fi(θ∗m) where ε

(k)∗
i =

{
−p[l′(fi(c)) + l′(−fi(c))] σ

(k)
i = 1

(1− p)[l′(fi(c)) + l′(−fi(c))] σ
(k)
i = −1

(137)

and zk = εk − ε∗k. Note that ε∗k has covariance ηλG(θ∗m). We define ξ0 = 0 and for k ∈ [Tm, Tm+1),

ξk+1 = (I − ηG(θ∗m))ξk + ε∗k. (138)

Then we have the following version of Proposition 6:

Proposition 12. Let X =

√
max

(
p

1−p ,
1−p
p

)
· 2λdιν . Then for any t ≥ 0, with probability 1−2de−ι,

‖ξt‖ ≤X .

Proof. Let P = max
(

p
1−p ,

1−p
p

)
. Define the martingale sequence X(k)

j as in Proposition 6. I

claim that [X(k), X(k)]k � nλP
ν I . We will prove this by induction on k. The base case is trivial as
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X
(0)
0 = 0. Then,

[X(k+1), X(k+1)]k+1 = [X(k+1), X(k+1)]k + ε∗k(ε∗k)T (139)

= (I − ηGk)[X(k), X(k)]k(I − ηGk) + ε∗k(ε∗k)T (140)

� nλP

ν

[
(I − ηGk)2 + ηνGk

]
(141)

� nλP

ν
[I −Gk(2− ηGk − νI)] (142)

� nλP

ν
I. (143)

Therefore by Corollary 1 we are done.

Define ι,D ,M ,T ,L as in Lemma 1. Then we have the following local coupling lemma:

Lemma 9. Assume f satisfies Assumption 1, η satisfies Assumption 2, and l satisfies Assumption 4. Let
∆m = θTm − ξTm − θ∗m and assume that ‖∆m‖ ≤ D and L(θ∗m) ≤ L for some 0 < δ ≤ 1/2. Then
for any τm ≤ T satisfying maxk∈[Tm,Tm+1) ‖Φk−Tm(θ∗m + ∆m)− θ∗m‖ ≤ 8M , with probability at
least 1− 10dτme

−ι we have simultaneously for all k ∈ (Tm, Tm+1],

‖θk − ξk − Φk−Tm(θ∗m + ∆m)‖ ≤ D , E[ξk] = 0, and ‖ξk‖ ≤X .

The proof of Lemma 9 follows directly from the following decompositions:

Proposition 13. Let ∇2L = ∇2L(θ∗m), ∇3L = ∇3L(θ∗m), G = G(θ∗m), fi = fi(θ
∗
m), gi =

∇fi(θ∗m), Hi = ∇2fi(θ
∗
m). Then,

∇2L = G+O(
√

L ) and
1

2
∇3L(S) =

1

n

∑
i

Hivv
T gi + giO(‖v‖2) +O(‖v‖2

√
L ).

(144)

Proof. First, note that

∇2L =
1

n

∑
i

l′′(fi)gig
T
i + l′(fi)Hi (145)

= G+ `

√
1

n

∑
i

[l′′(fi)− l′′(c)]2 + ρf

√
1

n

∑
i

[l′(fi)]2 (146)

= G+O(
√

L ) (147)

by Assumption 4. Next,

1

2
∇3L(v, v) =

1

2n

∑
i

2l′′(fi)Hivv
T gi + gi[l

′′′(fi)(g
T
i v)2 + l′′(fi)v

THiv] +O(l′(fi)) (148)

=
1

n

∑
i

Hivv
T gi + giO(‖v‖2) +O(‖v‖2

√
L ). (149)

These are the exact same decompositions used Proposition 3 and Proposition 4, so Lemma 9 imme-
diately follows. In addition, as we never used the exact value of the constant in X in the proof of
Theorem 1, the analysis there applies directly as well showing that we converge to an (ε, γ)-stationary
point and proving Theorem 2.

E.2 Verifying Assumption 4

We verify Assumption 4 for the logistic loss, the exponential loss, and the square loss and derive the
corresponding values of c, σ2 found in Table 1.

28



E.2.1 Logistic Loss

For logistic loss, we let l(x) = log(1 + e−x), and l̄(x) = pl(−x) + (1− p)l(x). Then

l̄′(x) =
pex − (1− p)

1 + ex
(150)

which is negative when x < log 1−p
p and positive when x > log 1−p

p so it is minimized at c = log 1−p
p .

To show the quadratic approximation holds at c, it suffices to show that l̄′′′(x) is bounded. We have
l̄′′(x) = ex

(1+ex)2 and

l̄′′′(x) =
ex(1− ex)

(1 + ex)3
<

1

4
(151)

so we are done. Finally, to calculate the strength of the noise at c we have

σ2 = p(1− p)(l′(c) + l′(−c))2 = p(1− p)(−p+ p− 1)2 = p(1− p). (152)

E.2.2 Exponential Loss

We have l(x) = e−x and l̄(x) = pl(−x) + (1− p)l(x). Then,

l̄′(x) = pex − (1− p)e−x (153)

which is negative when x < 1
2 log 1−p

p and positive when x > 1
2 log 1−p

p so it is minimized at
c = 1

2 log 1−p
p . Then we can compute

l̄(c+ x) = 2
√
p(1− p) cosh(x) ≥ 2

√
p(1− p) +

√
p(1− p)x2 = L∗ +

√
p(1− p)x2 (154)

because coshx ≥ 1 + x2

2 . Finally to compute the strength of the noise we have

σ2 = p(1− p)(l′(c) + l′(−c))2 = p(1− p)
(
−
√

p

1− p −
√

1− p
p

)2

= 1. (155)

E.2.3 Square Loss

We have l(x) = 1
2 (1− x)2 and l̄(x) = pl(−x) + (1− p)l(x). Then,

l̄(x) =
1

2
[p(1 + x)2 + (1− p)(1− x)2] =

1

2
[x2 + x(4p− 2) + 1] (156)

which is a quadratic minimized at c = 1− 2p. The quadratic approximation trivially holds and the
strength of the noise is:

σ2 = p(1− p)(l′(c) + l′(−c))2 = p(1− p)(−2p− 2(1− p))2 = 4p(1− p) (157)

F Arbitrary Noise

F.1 Proof of Proposition 5

We follow the proof of Lemma 2. First, let εk =
√
ηλΣ1/2(θk)xk with xk ∼ N(0, I) and define

ε∗k =
√
ηλΣ1/2(θ∗)xk and zk = εk − ε∗k. Let H = ∇2L(θ∗), Σ = Σ(θ∗), and ∇RS = ∇RS(θ∗).

Let α be the smallest nonzero eigenvalue of H . Unlike in Lemma 1, we will omit the dependence on
α.

First we need to show S exists. Consider the update

S ← (I − ηH)S(I − ηH) + ηλΣ(θ∗)

Restricted to the span of H , this is a contraction so it must converge to a fixed point. In fact, we can
write this fixed point in a basis of H explicitly. Let {λi} be the eigenvalues of H . The following
computation will be performed in an eigenbasis of H . Then the above update is equivalent to:

Sij = (1− ηλi)(1− ηλj)Sij + ηλΣij(θ
∗).
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Therefore if λi, λj 6= 0 we can set

Sij =
λΣij(θ

∗)

λi + λj − ηλiλj
. (158)

Otherwise we set Sij = 0. Note that this is the unique solution restricted to span(H). Next, define
the Ornstein-Uhlenbeck process ξ as follows:

ξk+1 = (I − ηH)ξk + ε∗k.

Then note that

ξk =
∑
j<k

(I − ηH)jεk−j

so ξ is Gaussian with covariance

ηλ
∑
j<k

(I − ηH)jΣ(I − ηH)j .

This is bounded by

Cηλ
∑
j<k

(I − ηH)jH(I − ηH)j � Cλ(2− ηH)−1 � Cλ

ν
I

so by Corollary 1, ‖ξk‖ ≤ X with probability 1 − 2de−ι. Define vk = θk − Φk(θ0) and rk =
θk − ξk − Φk(θ0). We will prove by induction that ‖rt‖ ≤ D with probability at least 1− 8dte−ι.
First, with probability 1− 2de−ι, ‖ξt‖ ≤X . In addition, for k ≤ t,

‖θk − θ∗‖ ≤ 9D + X = O(X ). (159)

Therefore from the second order Taylor expansion:

rk+1 = (I − ηH)rk − η
[

1

2
∇3L(ξk, ξk)− λ∇RS

]
+ zk +O(ηX (D + X 2)).

Because zk is Gaussian with covariance bounded by O(ηλX 2) by the assumption that Σ1/2 is
Lipschitz, we have by the standard Gaussian tail bound that its contribution after summing is bounded
by
√
ηλX kι with probability at least 1− 2de−ι so summing over k gives

rt+1 = −η
∑
k≤t

(I − ηH)t−k
[

1

2
∇3L(ξk, ξk)− λ∇RS

]
+O(

√
ηλtX + ηtX (D + X 2)).

Now denote Sk = ξkξ
T
k . Then we need to bound

η
∑
k≤t

(I − ηH)t−k∇3L(Sk − S).

Let Dk = Sk − S. Then plugging this into the recurrence for Sk gives

Dk+1 = (I − ηH)Dk(I − ηH) +Wk + Zk

where

Wk = (I − ηH)ξk(ε∗k)T + ε∗k(ξk)T (I − ηH) and Zk = ε∗k(ε∗k)T − ηλΣ.

Then,

Dk = (I − ηH)kS(I − ηH)k +
∑
j<k

(I − ηH)k−j−1(Wj + Zj)(I − ηH)k−j−1

so we need to bound

η
∑
k≤t

(I − ηH)t−k∇3L

(I − ηH)kS(I − ηH)k +
∑
j<k

(I − ηH)k−j−1(Wj + Zj)(I − ηH)k−j−1

 .
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Because S is in the span of H ,∥∥∥∥∥η∑
k<t

(I − ηH)t−k∇3L
[
(I − ηH)kS(I − ηH)k

]∥∥∥∥∥ = O(ηλ)

∥∥∥∥∥∥
∑
k≤t

(I − ηH)kΠH

∥∥∥∥∥∥ = O(λ/α) = O(λ).

where ΠH is the projection onto H . We switch the order of summation for the next two terms to get

η
∑
j≤t

t∑
k=j+1

(I − ηH)t−k∇3L
[
(I − ηH)k−j−1(Wj + Zj)(I − ηH)k−j−1

]
.

Note that conditioned on ε∗l , l < j, the Wj part of the inner sum is Gaussian with variance bounded
by O(ηλX 2) so by Lemma 16, with probability at least 1−2de−ι, the contribution of W is bounded
by O(

√
ηλtιX ).

For the Z term, we will define a truncation parameter r to be chosen later. Then define x̄j =
xj [‖xj‖ ≤ r] where xj ∼ N(0, I) is defined above. Define X̄ = E[x̄j x̄

T
j ]. Then we can decompose

the Z term into:

η2λ
∑
j≤t

t∑
k=j+1

(I − ηH)t−k∇3L
[
(I − ηH)k−j−1Σ1/2

(
xjx

T
j − x̄j x̄Tj

)
(Σ1/2)T (I − ηH)k−j−1

]

+ η2λ
∑
j≤t

t∑
k=j+1

(I − ηH)t−k∇3L
[
(I − ηH)k−j−1Σ1/2

(
x̄j x̄

T
j − X̄j

)
(Σ1/2)T (I − ηH)k−j−1

]

+ η2λ
∑
j≤t

t∑
k=j+1

(I − ηH)t−k∇3L
[
(I − ηH)k−j−1Σ1/2

(
X̄ − I

)
(Σ1/2)T (I − ηH)k−j−1

]
.

With probability 1 − 2dte−r
2/2 we can assume that xjxTj = x̄j x̄

T
j for all j ≤ t so the first term

is zero. For the second term the inner sum is bounded by O(r2η−1) and has variance bounded by
O(η−2) by the same arguments as above. Therefore by Bernstein’s inequality, the whole term is
bounded by O(ηλ

√
tι+ r2ηλι) with probability 1− 2de−ι. Finally, to bound the third term note that∥∥X̄ − I∥∥

F
= E[‖xj‖2[‖xj‖ > r]] ≤

√
E[‖xj‖4] Pr[‖xj‖ > r] ≤ (d+ 1)

√
2de−r

2/4.

Therefore the whole term is bounded by O(ηλte−r
2/4). Finally, pick r =

√
4ι log T . Then the final

bound is

rt+1 ≤ O
(√

ηT X 2 + ηT X (D + X 2)
)

= O

(
λ3/4ι1/4

c

)
≤ D

for sufficiently large c. This completes the induction.

F.2 SGD Cycling

Let θ = (x, y, z1, z2, z3, z4). We will define a set of functions fi as follows:

f1(θ) = (1− y)z1 − 1, f2(θ) = (1− y)z1 + 1, f3(θ) = (1 + y)z2 − 1, f4(θ) = (1 + y)z2 + 1,

f5(θ) = (1− x)z3 − 1, f6(θ) = (1− x)z4 + 1, f7(θ) = (1 + x)z4 − 1, f8(θ) = (1 + x)z4 + 1,

f9(θ) = (1− x)z1, f10(θ) = (1 + x)z2, f11(θ) = (1 + y)z3, f12(θ) = (1− y)z4,

f13(θ) = x2 + y2 − 1

and we set all labels yi = 0. Then we verify empirically that if we run minibatch SGD with the loss
function `i(θ) = 1

2 (fi(θ)− yi)2 then (x, y) cycles counter clockwise over the set x2 + y2 = 1:

31



0 100000 200000 300000

step

−1.0

−0.5

0.0

0.5

1.0

x

0 100000 200000 300000

step

−1.0

−0.5

0.0

0.5

1.0

y

0 100000 200000 300000

step

0.0000

0.0005

0.0010

0.0015 z2
1

z2
2

z2
3

z2
4

Figure 5: Minibatch SGD can cycle. We initialize at the point θ = (1, 0, 0, 0, 0, 0). The left column
shows x over time which follows a cosine curve. The middle column shows y over time which
follows a sine curve. Finally, the right column shows moving averages of z2i for i = 1, 2, 3, 4, which
periodically grow and shrink depending on the current values of x, y.

The intuition for the definition of f above is as follows. When x = 1 and y = 0, due to the constraints
from f9 to f12, only z1 can grow to become nonzero. Then locally, f1 = z1 − 1 and f2 = z1 + 1 so
this will cause oscillations in the z1 direction, so S will concentrate in the z1 direction which will
bias minibatch SGD towards decreasing the corresponding entry in ∇2L(θ) which is proportional
to (1 − x)2 + 2(1 − y)2, which means it will increase y. Similarly when x = 0, y = 1 there is a
bias towards decreasing x, when x = −1, y = 0 there is a bias towards decreasing y, and when
x = 0, y = −1 there is a bias towards increasing x. Each of these is handled by a different Ornstein
Uhlenbeck process zi. f13 ensures that θ remains on x2 + y2 = 1 throughout this process. This
cycling is a result of minimizing a rapidly changing potential and shows that the implicit bias of
minibatch SGD cannot be recovered by coupling to a fixed potential.

G Weak Contraction Bounds and Additional Lemmas

Let {gi}i∈[n] be a collection of n vectors such that ‖gi‖2 ≤ `f for all i and let G = 1
n

∑
i gig

T
i . Let

the eigenvalues of G be λ1, . . . , λn, and assume that η satisfies Assumption 2. Then we have the
following contraction bounds:

Lemma 10.
‖(I − ηG)τG‖ ≤ 1

ηντ
= O

(
1

ητ

)
(160)

Lemma 11.

‖(I − ηG)τgi‖ = O

(√
1

ητ

)
(161)

Lemma 12. ∑
k<τ

∥∥(I − ηG)kgik
∥∥ = O

(√
τ

η

)
(162)

Lemma 13. ∑
k<τ

‖(I − ηG)kgik‖2 = O

(
1

η

)
(163)

Lemma 14. ∑
k<τ

‖(I − ηG)kgik‖‖(I − ηG)kgjk‖ = O

(
1

η

)
(164)

Lemma 15. ∑
k<τ

‖(I − ηG)kG‖2 = O

(
1

η

)
(165)
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Proof of Lemma 10.

‖(I − ηG)τG‖ = max
i
|1− ηλi|τ λi ≤ max

(
ηλiτ

ητ
exp(−ηλiτ), `(1− ν)τ

)
(166)

≤ max

(
1

eητ
,

1

ηντ
(η`)[ντ ]e−ντ

)
(167)

≤ 1

ηντ
(168)

= O

(
1

ητ

)
(169)

where we used that the function xe−x < 1
e is bounded.

Proof of Lemma 11. Note that

‖(I − ηG)τgi‖2 = tr
[
(I − ηG)τgig

T
i (I − ηG)τ

]
(170)

≤ n tr((I − ηG)2τG) (171)

= n
∑
i

λi(1− ηλi)2τ (172)

≤ n
∑
i

max (λi exp(−2ηλiτ), `(1− ν)τ ) (173)

= O

(
1

ητ

)
, (174)

where we used the fact that the function xe−x ≤ 1
e is bounded.

Proof of Lemma 12. Following the proof of Lemma 11,(∑
k<τ

∥∥(I − ηG)kgik
∥∥)2

≤ τ
∑
k<τ

∥∥(I − ηG)kgik
∥∥2 (175)

≤ nτ
∑
k<τ

∑
i

λi(1− ηλi)2k (176)

= O

(
τ

η

)
(177)

Proof of Lemma 13.∑
k<τ

‖(I − ηG)kgik‖2 ≤
∑
k<τ

tr
[
(I − ηG)kgikg

T
ik

(I − ηG)k
]

(178)

≤ n
∑
k<τ

tr
[
(I − ηG)2kG

]
(179)

≤ n
∑
k<τ

∑
i

λi(1− ηλi)2k (180)

= O

(
1

η

)
(181)
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Proof of Lemma 14.∑
k<τ

‖(I − ηG)kgik‖‖(I − ηG)kgjk‖ (182)

≤
[∑
k<τ

‖(I − ηG)kgik‖2
]1/2 [∑

k<τ

‖(I − ηG)kgjk‖2
]1/2

(183)

= O(1/η) (184)

by Lemma 13.

Proof of Lemma 15. ∑
k<τ

‖(I − ηG)kG‖ ≤
∑
k≤τ

∑
i

(I − ηλi)kλi (185)

= O

(
1

η

)
. (186)

The following concentration inequality is from Jin et al. [15]:
Lemma 16 (Hoeffding-type inequality for norm-subGaussian vectors). Given X1, . . . , Xn ∈ Rd
and corresponding filtrations Fi = σ(X1, . . . , Xn) for i ∈ [n] such that for some fixed σ1, . . . , σn:

E[Xi|Fi−1] = 0,P[‖Xi‖ ≥ t|Fi−1] ≤ 2e
− t2

2σ2
i ,

we have that for any ι > 0 there exists an absolute constant c such that with probability at least
1− 2de−ι, ∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥ ≤ c ·
√√√√ n∑

i=1

σ2
i · ι.

Lemma 17. Assume that L is analytic and θ is restricted to some compact set D. Then there exist
δ > 0, µ > 0, εKL > 0 such that Assumption 3 is satisfied.

Proof. It is known that there exist µθ, δθ satisfying the KL-inequality in the neighborhood of any
critical point θ of L, i.e. for every critical point θ, there exists a neighborhood Uθ of θ such that for
any θ′ ∈ Uθ,

L(θ′)− L(θ) ≤ µθ‖∇L(θ′)‖1+δθ .
Let S = {θ ∈ D : L(θ) = L(θ∗)} for any global minimizer θ∗. For every global min θ ∈ S, let Uθ
be a neighborhood of θ such that the KL inequality holds with constants µθ, δθ. BecauseD is compact
and S is closed, S is compact and there must exist some θ1, . . . , θn such that S ⊂ ⋃i∈[k] Uθi . Let
δ = mini δθi . Then for all i, there must exist some µi such that µi, δ satisfies the KL inequality
and let µ = maxi µi. Finally, let U =

⋃
i Uθi which is an open set containing S. Then D \ U is a

compact set and therefore L must achieve a minimum εKL on this set. Note that εKL > 0 as S ⊂ U .
Then if L(θ) ≤ εKL, θ ∈ U so µ, δ satisfy the KL inequality at θ.

H Extension to SGD with Momentum

We now prove Lemma 4. We will copy all of the notation from Section 3.1. As before we define
vk = θk − Φk(θ∗). Define ξ by ξ0 = 0 and

ξk+1 = (I − ηG)ξk + ε∗k + β(ξk − ξk−1).

We now define the following block matrices that will be crucial in our analysis:

A =

[
I − ηG+ βI −βI

1 0

]
and J =

[
I
0

]
and Bj = JTAjJ.

Then we are ready to prove the following proposition:
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Proposition 14. With probability 1− 2de−ι, ‖ξk‖ ≤X .

Proof. Define ξ̄k =

(
ξk
ξk−1

)
. Then the above can be written as:

ξ̄k+1 = Aξ̄k + Jε∗k

Therefore by induction,

ξ̄k =
∑
j<k

Ak−j−1Jε∗j =⇒ ξk =
∑
j<k

Bk−j−1ε
∗
j .

The partial sums form a martingale and by Proposition 21, the quadratic covariation is bounded by

(1− β)nηλ

∞∑
j=0

BjGB
T
j �

nλ

ν
ΠG

so by Corollary 1 we are done.

We will prove Lemma 4 by induction on t. Assume that ‖rk‖ ≤ D for k ≤ t. First, we have the
following version of Proposition 3:

Proposition 15. Let r̄k =

(
rk
rk−1

)
. Then,

r̄k+1 = Ar̄k + J

(
−η
[

1

2
∇3L(ξk, ξk)− λ∇R

]
+mk + zk +O(ηX (

√
L + M + X 2))

)
Proof. As before we have that

vk+1 = (I − ηG)vk − η
[

1

2
∇3L(ξk, ξk)− λ∇R

]
+ ε∗k +mk + zk

+O(ηX (
√

L + M + X 2)) + β(vk − vk−1)

and subtracting the definition of ξk proves the top block of the proposition. The bottom block is
equivalent to the identity rk = rk.

Proposition 16.

rt+1 = −η
∑
k≤t

Bt−k

[
1

2
∇3L(ξk, ξk)− λ∇R

]
+O

(√
ηλt

(√
L + X

)
+ ηtX

(√
L + M + X 2

))
.

Proof. We have from the previous proposition that

r̄t+1 =
∑
k≤t

At−kJ

(
−η
[

1

2
∇3L(ξk, ξk)− λ∇R

]
+mk + zk +O(ηX (

√
L + M + X 2))

)
so

rt+1 =
∑
k≤t

Bt−k

(
−η
[

1

2
∇3L(ξk, ξk)− λ∇R

]
+mk + zk +O(ηX (

√
L + M + X 2))

)
.

By Corollary 3, we know that Bk is bounded by 1
1−β so the remainder term is bounded by

O(ηtX (
√

L +M +X 2)). Similarly, by the exact same concentration inequalities used in the proof
of Proposition 4, we have that the contribution of themk, zk terms is at mostO

(√
ηλt

(√
L + X

))
which completes the proof.

Proposition 17.

η
∑
k≤t

Bt−k

[
1

2
∇3L(ξk, ξk)− λ∇R

]
= O

(√
ηtX 2 + ηtX

√
L
)
.
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Proof. As in the proof of Proposition 4, we define

S∗ = λ

(
2− η

1 + β
∇2L

)−1
, S̄ = λ

(
2− η

1 + β
G

)−1
, and Sk = ξkξ

T
k . (187)

Then note that∇R = 1
2∇3L(S∗) so it suffices to bound

η
∑
k≤t

Bt−k∇3L(Sk − S∗).

As before we can decompose this as

η
∑
k≤t

Bt−k∇3L(Sk − S̄) + η
∑
k≤t

Bt−k∇3L(S̄ − S∗).

We will begin by bounding the second term. Note that

η
∑
k≤t

Bt−k∇3L(S̄ − S∗) = O(η‖S̄ − S∗‖).

We can rewrite this as

S∗ − S̄ = λ
[
(2− η∇2L)−1

(
(2− ηG)− (2− η∇2L)

)
(2− ηG)−1

]
= O(ηλ

√
L ) (188)

so this difference contributes at most O(η2λt
√

L ) = O(ηtX
√

L ). For the first term, let Dk =
Sk − S̄. We will decompose∇3L as before to get

1

n

n∑
i=1

η
∑
k≤t

Bt−k

[
HiDkgi +

1

2
gi tr(DkHi) +O(

√
L X 2)

]
. (189)

The third term can be bound by the triangle inequality by Corollary 3 to get O(ηt
√

L X 2). The
second term can be bound by Proposition 22 to get O(

√
ηtX 2).

The final remaining term is the first term. Define

S̄′ = λ

[
S̄ (I − η

1+βG)S̄

(I − η
1+βG)S̄ S̄

]
.

From the proof of Proposition 21, we can see that S̄′ satisfies

S̄′ = AS̄′AT + (1− β)ηλJGJT .

We also have:

ξ̄k+1 = Aξ̄k + Jε∗k

so

ξ̄k+1ξ̄
T
k+1 = Aξ̄k ξ̄

T
k A

T + Jε∗k ξ̄
T
k A

T +Aξ̄k(ε∗k)TJT + Jε∗kε
∗
kJ

T .

Let D′k = ξ̄k ξ̄
T
k − S̄′. Then,

D′k+1 = AD′kA
T +Wk + Zk

where Wk = Jε∗k ξ̄
T
k A

T +Aξ̄k(ε∗k)TJT and Zk = J [ε∗kε
∗
k − (1− β)ηλG]JT . Then,

D′k = AkS̄′Ak +
∑
j<k

Ak−j−1[Wj + Zj ](A
T )k−j−1

so

Dk = JTAkS̄′AkJ +
∑
j<k

JTAk−j−1[Wj + Zj ](A
T )k−j−1J.

Plugging this into the first term, which we have not yet bounded, we get

1

n

n∑
i=1

η
∑
k≤t

Bt−kHi

JTAkS̄′AkJ +
∑
j<k

JTAk−j−1[Wj + Zj ](A
T )k−j−1J

 gi.
36



For the first term in this expression we can use Proposition 22 to bound it byO(
√
ηtλ) ≤ O(

√
ηtX 2).

Therefore we are just left with the second term. Changing the order of summation gives

η
1

n

n∑
i=1

∑
j≤t

t∑
k=j+1

Bt−kHiJ
TAk−j−1(Wj + Zj)(A

T )k−j−1Jgi. (190)

Recall that ε∗j = η
B

∑
l∈B(j) ε

(j)
l gl. First, isolating the inner sum for the W term, we get

t∑
k=j+1

Bt−kHiJ
TAk−j ξ̄j(ε

∗
j )
TJTAk−j−1Jgi (191)

+

t∑
k=j+1

Bt−kHiJ
TAk−j−1Jε∗j ξ̄

T
j A

k−jJgi.

=
η

B

∑
l∈B(j)

ε
(j)
l

[ t∑
k=j+1

Bt−kHiJ
TAk−j ξ̄jg

T
l Bk−j−1gi (192)

+

t∑
k=j+1

Bt−kHiBk−j−1glξ̄
T
j A

k−jJgi

]
.

The inner sums are bounded byO(X η−1) by Proposition 24. Therefore by Lemma 5, with probability
at least 1 − 2de−ι, the contribution of the W term in Equation (60) is at most O(

√
ηλkιX ) =

O(
√
ηkX 2). The final remaining term to bound is the Z term in (60). We can write the inner sum as

ηλ(1− β)

B2

t∑
k=j+1

Bt−kHiJ
TAk−j−1J

 1

σ2

∑
l1,l2∈B(k)

ε
(j)
l1
ε
(j)
l2
gl1g

T
l2 −G

Bk−j−1gi (193)

which by Proposition 24 is bounded by O(λ). Therefore by Lemma 5, with probability at least
1− 2de−ι, the full contribution of Z is O(ηλ

√
tι) = O(

√
ηtX 2).

Putting all of these bounds together we get with probability at least 1− 10de−ι,

‖rt+1‖ = O
[√

ηT X (
√

L + X ) + ηT X (
√

L + M + X 2)
]

= O

(
λ1/2+δ/2ι√

c

)
≤ D

for sufficiently large c which completes the induction.

H.1 Momentum Contraction Bounds

Let ui, λi be the eigenvectors and eigenvalues of G. Consider the basis Ū of R2d:
[u1, 0], [0, u1], . . . , [ud, 0], [0, ud]. Then in this basis, A, J are block diagonal matrix with 2 × 2
and 2× 1 diagonal blocks:

Ai =

[
1− ηλi + β −β

1 0

]
and Ji =

[
1
0

]
.

Let the eigenvalues of Ai be ai, bi so

ai =
1

2

(
1− ηλi + β +

√
(1− ηλi + β)2 − 4β

)
bi =

1

2

(
1− ηλi + β −

√
(1− ηλi + β)2 − 4β

)
.

Note that these satisfy ai + bi = 1− ηλi + β and aibi = β.

Proposition 18. If η ∈ (0, 2(1+β)` ), then ρ(Ai) ≤ 1. If λi 6= 0 then ρ(Ai) < 1.
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Proof. First, if (1 − ηλi + β)2 − 4B ≤ 0 then |ai| = |bi| =
√
β < 1 so we are done. Otherwise,

we can assume WLOG that ηλi < 1 + β because ρ(Ai) remains fixed by the transformation
ηλi → 2(1 + β)− ηλi. Then ai > bi > 0 so it suffices to show ai < 1. Let x = 1− ηλi + β. Then,

x+
√
x2 − 4β

2
< 1 ⇐⇒

√
x2 − 4β < 2− x ⇐⇒ x < 1 + β.

and similarly for ≤ in place of < so we are done.

Proposition 19. Let sk =
∑
j<k a

k−j−1
i bji . Then,

Aki =

[
sk+1 −βsk
sk −βsk−1

]
.

Proof. We proceed by induction on k. The base case is clear as s2 = ai + bi = 1− ηλi + β, s1 = 1,
and s0 = 0. Now assume the result for some k ≥ 0. Then,

Ak+1
i =

[
sk+1 −βsk
sk −βsk−1

] [
ai + bi −β

1 0

]
=

[
sk+1 −βsk
sk −βsk−1

]
because (ai + bi)sk − βsk−1 = (ai + bi)sk − aibisk−1 = sk+1.

Proposition 20. ∣∣JTi Aki Ji∣∣ ≤ 1

1− β .

Proof. From the above proposition, ∣∣JTi Aki Ji∣∣ ≤ sup
k
|sk+1| .

Then for any k,

|sk+1| =

∣∣∣∣∣∣
∑
j≤k

ak−ji bji

∣∣∣∣∣∣ ≤
∑
j≤k

|ai|k−j |bi|j ≤
∑
j≤k

|ai|j |bi|j =
∑
j≤k

βj ≤ 1

1− β .

where the second inequality follows from the rearrangement inequality as {|ai|k−j}j is an increasing
sequence and {|bi|j}j is a decreasing sequence.

Corollary 3.
‖Bk‖2 ≤

1

1− β .

Proposition 21.
∞∑
j=0

BjGB
T
j =

1

η(1− β)
ΠG

(
2− η

(1 + β)
G

)−1
.

Proof. Consider
∑∞
j=0A

jJGJT (AT )j . We will rewrite this expression in the basis Ū . Then the ith
diagonal block will be equal to

λi

∞∑
j=0

AjiJiλiJ
T
i (ATi )j = λi

∞∑
j=0

[
s2j+1 sjsj+1

sjsj+1 s2j

]
.

If λi = 0 then this term is 0. Otherwise, we know that |ai| , |bi| < 1 so this infinite sum converges to

some matrix S =

[
s11 s12
s21 s22

]
. Then plugging this into the fixed point equation gives

Si = AiSiA
T
i + JiλiJ

T
i

and solving this system entry wise for s11, s12, s21, s22 gives

Si =
1

η(1− β)

[
1

2− η
1+β λi

1+β−ηλi
2(1+β)−ηλi

1+β−ηλi
2(1+β)−ηλi

1
2− η

1+β λi
.

]
Converting back to the original basis gives the desired result.
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Proposition 22. ∑
k<τ

‖AkJgi‖ = O

(√
τ

η

)
(194)

Proof. By Cauchy we have that(∑
k<τ

‖AkJgi‖
)2

≤ τ
∑
k<τ

‖AkJgi‖2 (195)

≤ τ
∑
k<τ

tr[AkJGJT (Ak)T ] (196)

≤ O
(
τ

η

)
(197)

by Proposition 21.

Proposition 23. ∑
k<τ

‖AkJgik‖2 = O

(
1

η

)
.

Proof. ∑
k<τ

‖AkJgi‖2 ≤ τ
∑
k<τ

tr[AkJGJT (Ak)T ] ≤ O
(√

1

η

)
.

Proposition 24. ∑
k<τ

‖AkJgik‖‖AkJgjk‖ = O

(
1

η

)
.

Proof.(∑
k<τ

‖AkJgik‖‖AkJgjk‖
)2

≤

∑
k≤τ

‖AkJgik‖2
∑

k≤τ

‖AkJgjk‖2
 = O(1/η2)

by Proposition 23.
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