
A Further Discussions519

We’d like to emphasize that our synthetic experiments are promising because we can systematically520

differentiate meta-learning algorithms from transfer learning algorithms – which supports our action-521

able suggestion to: 1. use the diversity coefficient to effectively study meta-learning and transfer522

learning algorithms, and 2. to use the diversity coefficient to design better benchmarks. In addition,523

this problematizes the observations that fo-proto-MAML in meta-data set [44] is better than transfer524

learning solutions – since our synthetic experiments show MAML is not better than USL in the high525

diversity regime. To further problematize, we want to point out that meta-learning methods are not526

better than transfer learning as observed by [20] – as observed in our synthetic experiments. We527

hypothesize however that the two scenarios in [44] are different [20]. The first one focuses on the528

same meta-training and meta-testing conditions, while the latter focuses on a cross-domain. We529

hypothesize that the cross-domain scenario might benefit from a meta-learning which lower variance530

(e.g., a fixed embedding [43]) – which might explain why sophisticated meta-learning solutions might531

perform worse on the cross-domain setting as observed in [20]. Further research is needed in both532

benchmarks – especially from a problem centric perspective with quantitative methods like the ones533

we suggest.534

In addition, we hypothesize that diversity might be a good proxy to predict the difference between535

meta-learning and transfer learning methods. More precisely, we conjecture that in a low diversity536

setting meta-learning methods are equivalent at meta-test time to transfer learning methods but their537

difference increases as the diversity of tasks in a benchmark increases. In the high diversity regime538

we conjecture that the difference between meta-learning and transfer learning methods increases as539

the diversity increases. We are optimistic that meta-learning algorithms might outperform transfer540

learning methods, once we start comparing them in more thoughtfully designed benchmarks. It541

is possible that despite our efforts, meta-learning algorithms – as currently designed – are too542

sophisticated and in fact lead to meta-overfitting, as shown in previous work [32].543

We’d like to emphasize, that up until now, the meta-learning community has evaluated meta-learning544

algorithms in benchmarks that might not be the most appropriate. We conjecture high diversity545

benchmarks are more appropriate, since they might capture the meta-learning inductive prior: high546

diversity means that adaptation is required by construction. Thus, we conjecture that previous547

conclusions should be taken with a grain of salt until a more in depth study can be made in the548

high diversity regime – especially with benchmarks with real world data that have been analyzed549

extensively with metrics like the diversity coefficient that we propose. We conjecture that we can550

finally do meta-learning research effectively – given that a regime where meta-learning and transfer551

learning methods can be differentiated has been discovered and previous low diversity benchmarks552

have been understood.553

We also conjecture that meta-learning research is different from classical machine learning research.554

Historically, a seminal paper is the one where AlexNet was proposed [25]. In that time we had low555

performance on a fixed task e.g., Imagenet and couldn’t even interpolate the data (i.e., reach zero556

train error). We conjecture that meta-learning is different because if we have a diversity so large557

where all possible tasks are incorporated, then we should reach the no-free lunch theorem regime558

[46] – where all algorithms should perform the same on average. Therefore, we hypothesize that a559

deliberate and quantitative efforts to design benchmarks is essential. A great example of such an560

attempt is the Abstraction and Reasoning Corpus (ARC) benchmark [11] – which was made very561

thoughtfully with Artificial General Intelligence (AGI) in mind. We conjecture meta-learning is the562

most promising path in that direction, and hope this work inspires the design of benchmarks that lead563

to actionable and deliberate attempts to make progress to build such AGI technologies.564

B Related Work (continued)565

The meta-learning literature is growing quickly and hope to provide a wider coverage here.566

In terms of benchmarks, we’d like to start with the ARC benchmark [11]. ARC was designed with567

AGI in mind – arguably the ultimate meta-learner. Its focus is primarily on visual reasoning using568

program synthesis techniques. We hypothesize it’s a very promising path but our work inspires569

extension that go beyond program synthesis approaches. The meta-data set benchmark is an attempt570

to make the data set for few-shot learning at a larger scale and more diverse [44]. The main difference571

15

of their work and ours is that we propose a quantitative metric to measure the intrinsic diversity in572

the data and go beyond data set size or number of classes. They also showed that a meta-learning573

algorithms – fo-Proto-MAML – is capable of beating transfer learning. However, they also showed574

transfer learning baselines are in fact quite difficult to beat. The IBM Cross-Domain few-shot575

learning benchmark [20] is a fascinating benchmark to evaluate meta-learning algorithms. Their576

central premise however is transfer from a source domain to a different target domain – instead of our577

setting where tasks are created from the same meta-distribution. This is why their paper is considered,578

in addition to few-shot learning, a cross-domain benchmark. We believe this is an essential scenario579

to think about, but consider it different from our setting or the setting of meta-data set. We’d also like580

to emphasize that they do not employ a metric like our diversity coefficient that quantitatively asses581

the diversity of their benchmarks. These two last benchmarks, although fascinating, are missing the582

essential quantitative analysis of the data itself we are trying to propose.583

The work by [8] give to the best of our knowledge – the first non-vacuous generalization bounds for584

the (supervised) meta-learning setting. Their statements apply to non-convex loss function and use585

stability theory at the task level. The bound depends on the mutual information on the input data vs586

the output data of the meta-learner. The results, although fascinating, are not built to separate classes587

of meta-learning – like our work attempts to do empirically.588

The work by [45] proposes the idea of global labels as a way to indirectly optimize for the589

met—learning objective for a fixed feature extractor. Global labels is equivalent to the concept590

we call USL in this paper. They show that pre-training (i.e. using USL/global labels) provides591

excellent meta-test results – including with their method (named MeLa) that can infer global labels592

given only local labels provided at in episodic meta-training. Their theoretical analysis depends593

on a fixed feature extractor, instead of considering the whole end-to-end meta-learner as a whole –594

meaning two different deep learning models cannot be used in their analysis. Therefore, their analysis595

fails to separate how different feature extractors might be trained, e.g. comparing USL vs MAML596

directly in an end-to-end fashion. In contrast, we instead tackle this question head on theoretically L597

(with limited results) but instead show that the feature extractors indeed are different empirically E.598

The work by [13] proposes a theoretical treatment of meta-learning using meta-learners with closed-599

form equations derived from ridged regularization using fixed features. They formulate the conditional600

and unconditional formulation using side information for the task (e.g. the support set) and show the601

conditional method is superior. In relation to our work, they do not provide characterizations of the602

role of a neural network doing end-to-end meta-learning (in their empirical or theoretical analysis).603

In contrast, our findings make an explicit effort in understanding the role of the neural network in604

meta-learning in an end-to-end fashion through emperical analysis. Another contrast is that their605

results are highly theoretical, while ours focus on empirical results. In addition, their results are on606

synthetic experiments and do not explore their findings in the context of modern few-shot learning607

benchmarks like MiniImagenet or Cifar-fs.608

The work by [19] provide strong evidence that adaptation at test time is best done when the meta-609

trained model matches the adaptation it was meta-trained with. This is shown because their classically610

pre-trained nets cannot perform better than the MetaOpt models with any fine-tuning method. How-611

ever, their results cannot beat [43] and thus does not help separate the role of meta-training and union612

supervised learning (USL). Their Resnet12 results do provide further support to our hypothesis that613

large enough neural networks all perform the same, since 78.63 (Goldblum) vs 79.74 (RFS) have614

very close errors, in line with our findings. However, we hypothesize it is not due to the model size in615

accordance with our experiments 3.616

The work by [18] provides theoretical bounds of when the expected risk of MAML and DRS (Domain617

Randomized Search) by bounding the gradient norm. DRS attempts to model USL but fails to do618

so completely, because USL is capable of modeling adaptation because the final layer is capable of619

adaption. Thus, it does not address the capabilities of the feature extractor being able to learn all the620

information needed to meta-learn. Concisely, their analysis is not capable of separating performance621

of MAML and USL. Even if it hypothetically could, their analysis remains an upper bounds (with622

assumptions). This raising the question if their method truly explain the observations that transfer623

learning methods – like USL – beat meta-learning methods. In addition, they do not provide in624

depth empirical analysis with respect to any real few-shot learning benchmarks like MiniImagent or625

Cirfar-fs.626

16

The work by [26] provides an exploration of the effects of diversity in meta-learning. The main627

difference with our work is that they focus mostly on sampling strategies, and it’s effect on diversity,628

while we focused on the intrinsic diversity in the benchmarks themselves.629

The work by [40] provides a theoretical analysis on the difference between interpolation and extrapo-630

lation in transfer learning (and domain generalization). We believe this type of theory may be helpful631

as an inspiration to explore why in the high diversity regime there seems to be a difference between632

the performance of meta-learning and transfer learning methods.633

C Convergence of Learning Curves for Fair Comparison634

C.1 Convergence of Learning Curves for MiniImagenet and Cifar-fs635

In this section, we have the plots showing the learning curves achieving convergence for the models636

used in figure 1 and 2. Note, the learning curves for the models trained with MAML look noisier637

because the distributed training reduces the size (meta) batch size for logging purposes. In addition,638

due to episodic meta-training, (meta) batch sizes have to be smaller compared to batch sizes used in639

USL.640

Figure 5: Plot showing convergence of 5CNN on MiniImagenet.

Figure 6: Plot showing convergence of 5CNN on Cifar-fs.

Figure 7: Plot showing convergence of Resnet12 on MiniImagenet.

Figure 8: Plot showing convergence of Resnet12 on Cifar-fs.

17

Figure 9: Plot showing convergence of a custom 3-layer fully connected network, for all synthetic
Gaussian benchmarks tested. Each curve represents a different synthetic Gaussian benchmark tested
on either MAML (left plot) or USL (right plot). The curves are then color-coded by the value of the
Task2Vec-based task diversity coefficient of the Gaussian benchmark tested in that particular run.

D Experimental Details641

D.1 Experimental Details on MiniImagenet and Cifar-fs642

We will explain the details for the four models we trained on figure 1 and 2.643

Summary: We trained a five layer CNN (5CNN) and Resnet12 on both MiniImagenet and Cifar-644

fs to convergence. We used the Adam optimizer with learning rate 1e-3. We used the standard645

MiniImagenet and Cifar-fs data augmentations as provided in [5] matching [43].646

Experimental Details for 5CNN on MiniImagent: We used the five layer CNN from [17, 39]. We647

used 32 filters as used in previous work. We used the Adam optimizer with learning rate 1e-3 for both648

MAML and USL. We used no scheduler. We trained the USL model for 1000 epochs. We trained the649

MAML model for 100,000 episodic iterations (outer loop iterations). We used a batch size of 128 for650

USL and a (meta) batch size of 8 for MAML. For MAML we used an inner learning rate of 1e-1 and651

5 inner learning steps. We did not use first order MAML. It took 3 hours 5 minutes 5 seconds to train652

USL to convergence with a single GPU. It took 1 day 6 hours 21 minutes 8 seconds to train MAML653

to convergence with 4 NVIDIA GeForce GTX TITAN X GPUs.654

Experimental Details for Resnet12 for MiniImagent: We used the Resnet12 provided by [43]. We655

used the Adam optimizer with learning rate 1e-3 for both MAML and USL. We used the same cosine656

scheduler as in [43] for USL and no cosine scheduler for MAML. We trained the USL model for 186657

epochs. We trained the MAML model for 37,800 episodic iterations (outer loop iterations). We used658

a batch size of 512 for USL and a (meta) batch size of 4 for MAML. For MAML we used an inner659

learning rate of 1e-1 and 4 inner learning steps. We did not use first order MAML. It took 1 day 17660

hours 2 minutes 41 seconds to train USL to convergence with a single dgx A100-SXM4-40GB GPU.661

The MAML model was trained with Torchmeta [12] which didn’t support multi gpu training when662

we ran this experiment, so we estimate it took 1-2 weeks to train on a single GPU. In addition, it663

was ran with an earlier version of our code, so we unfortunately did not record the type of GPU but664

suspect it was either an A100, A40 or Quadro RTX 6000.665

Experimental Details for 5CNN for Cifar-fs: We used the five layer CNN from [17, 39] provided by666

[5]. But we used 1024 filters instead of 32 (to speed up convergence). We used the Adam optimizer667

with learning rate 1e-3 for both MAML and USL. We used the same cosine scheduler as in [43] for668

MAML and no cosine scheduler for USL. We trained the USL model for 1000 epochs. We trained669

the MAML model for 100,000 episodic iterations (outer loop iterations). We used a batch size of 256670

for USL and a (meta) batch size of 8 for MAML. For MAML we used an inner learning rate of 1e-1671

and 5 inner learning steps. We did not use first order MAML. It took 10 hours 43 minutes 31 seconds672

to train USL to convergence with a single GPU dgx A100-SXM4-40GB. It took 2 days 9 hours 26673

minutes 27 seconds to train MAML to convergence with 4 Quadro RTX 6000 GPUs.674

Experimental Details for Resnet12 for Cifar-fs: We used the Resnet12 provided by [43]. We used675

the Adam optimizer with learning rate 1e-3 for both MAML and USL. We used the cosine scheduler676

used in [43] for both USL and MAML. We trained the USL model for 200 epochs. We trained the677

MAML model for 75,500 episodic iterations (outer loop iterations). We used a batch size of 1024 for678

USL and a (meta) batch size of 8 for MAML. For MAML we used an inner learning rate of 1e-1 and679

5 inner learning steps. We did not use first order MAML. It took 45 minutes 54 seconds to train USL680

18

to convergence with a single GPU. It took 1 day 19 hours 29 minutes 31 seconds to train MAML to681

convergence with 4 dgx A100-SXM4-40GB GPUs.682

Why the Adam optimizer? We hypothesize that the Adam optimizer is the most appropriate683

optimizer for a fair comparison for various reasons. First, the Adam optimizer is widely used –684

making our results most relevant and broadly applicable. Adam is generally a stable optimizer685

– especially for sophisticated meta-learning algorithms like MAML. It is not uncommon to have686

SGD result in exploding gradients or end up diverging – especially for MAML. Most importantly687

however, we hope to stay faithful whenever possible to how modern transformer models are trained688

– because they have been shown to be good meta-learners, e.g., gpt-3 is often cited as a zero-shot689

learner [7]. These type of models do use more complicated learning schemes besides only Adam690

(e.g., warm-ups, decay rates etc.) but we hypothesize using Adam is a good first step. We conjecture691

that the small benefits that SGD might provide are negligible compared to the stability that Adam692

provides, especially as the scale of the data sets starts to increase. Without Adam we conjecture693

it would be hard to even perfectly fit the data for large scale data sets as it’s usually done in Deep694

Learning. This was definitively true in our own experiments. Therefore, we decided to use Adam695

for our experiments, since it would be too hard to use SGD reliably at scale or with sophisticated696

meta-learning algorithms.697

D.2 Experimental Details on N-way Gaussian Tasks698

We used a custom 3-layer fully connected network derived from Learn2Learn’s OmniglotFC model699

[5], with parameters input_size = 1, output_size = 5, and hidden layer sizes sizes = [128, 128].700

We used the Adam optimizer with learning rate 1e-3 for both MAML and USL, but did not use a701

cosine scheduler for either USL or MAML. We trained the USL model for 100 epochs. We trained702

the MAML model for 14,000 episodic iterations (outer loop iterations). We used a batch size of 100703

for USL and a (meta) batch size of 100 for MAML. For MAML we used an inner learning rate of704

1e-1 and 5 inner learning steps. We did not use first order MAML. It took 19 minutes 24 seconds to705

train USL to convergence with a single Titan X. It took 2 days and 13 hours 6 minutes 27 seconds to706

train MAML to convergence with a single Titan X.707

E Feature Extractor Analysis of USL and MAML708

Figure 10 significant difference between the feature extractor layers of a MAML trained model vs. a709

union supervised learned model.710

F Background of Few-shot Learning Basics711

The goal of few-shot learning is to learn to classify from a limited set of training samples. A few-shot712

benchmark is utilized to evaluate few-shot learning algorithms and typically contains many classes713

and a smaller number of samples per class. Typically, few-shot learning algorithms learn in episodes,714

where in each episode, a task consisting of a train (or support) set and a held-out validation (or query)715

set is sampled. In particular, a task is a n-way k-shot classification problem, means that the support716

and query sets each consist of n classes sampled from the benchmark, and each of the n classes are717

represented by k shots or examples. The learner uses the support set to adapt to the task, and the718

query set to evaluate the performance on the given task.719

G Synthetic Gaussian Benchmark and N-way Gaussian Tasks720

We create a series of synthetic few-shot benchmarks, where each Gaussian benchmark B is defined by
four parameters B = (µm,�m, µs,�s). To form the dataset of our benchmark, we first sample 100
meta-train, 100 meta-test, and 100 meta-validation classes, where class 1  i  300 is a Gaussian
parameterized by (µclassi ,�classi) where

µclassi ⇠ N(µm,�m),�classi ⇠ |N(µs,�s)|

Then, for each class i, we sample 1000 data points (xi,1, i) . . . (xi,1000, i) where each datapoint (x, y)
is composed of a input value x 2 R and class label 1  y  300. The input values xi,1 . . . x1,1000

19

Figure 10: Shows the significant difference between the feature extractor layers of a MAML
trained model vs. a union supervised learned model – especially in contrast to the small change
in the adapted MAML model (green line). This figure suggests that although benchmark diversity
is small, a meta-learned representation still learns through a different mechanism than a supervised
learned representation. Note that the green line is our reproduction of previous work [37] that showed
that a MAML trained model does not change after using the MAML adaptation. They term this
observation as “feature re-use".

are each sampled from class i’s class distribution:

xi,1 . . . xi,1000 ⇠ N(µclassi ,�classi)

Having defined our dataset underlying our benchmark, we may now sample individual tasks from721

our benchmark. Each task in our benchmark is 5-way, 10-shot - that is, each task is formed by722

first sampling 5 ways from the benchmark dataset, then sampling 10 shots from each of the 5 ways.723

The goal of each task is to correctly predict which of the 5 ways an input value x 2 R falls into.724

We conducted experiments using 7 different benchmarks, with each benchmark defined by four725

parameters and its corresponding Hellinger distribution diversity coefficient and Task2Vec task726

diversity coefficient, as listed in Table 3:727

H Distribution-based Diversity Metrics728

In addition to the task diversity methods (such as Task2Vec) that we chose as a measure of diversity729

across our experiments in our main paper, we would like to introduce an additional class of diversity730

metrics that we call distribution diversity. Unlike task diversity, which quantifies diversity through731

the expected distance between any two distinct tasks sampled from the benchmark, distribution732

diversity quantifies diversity through the expected distance between any two distinct distributions that733

underlie the benchmark. In our synthetic Gaussian experiments, we define the distribution diversity734

of our Gaussian benchmark as the expected Hellinger distance between two distinct Gaussian class735

distributions sampled from the benchmark - we describe the calculation of the distribution diversity736

of our synthetic Gaussian benchmark in more detail in Section I.737

I Hellinger Diversity Coefficient and Hellinger Distance738

An alternative metric to the Task2Vec-based task diversity metric is the Hellinger-based distribution
diversity metric. The Hellinger-based distribution diversity of our Gaussian benchmark is obtained

20

Benchmark Parameters
(µm,�m, µs,�s) Hellinger-based Distribution Diversity Task2Vec-based Task Diversity

(0, 0.01, 1, 0.01) 7.475e-05 ± 4.891e-07 0.247 ± 1.04e-3
(0, 1, 1, 0.01) 0.183 ± 1.24e-3 0.271 ± 1.15e-3
(0, 3, 1, 0.01) 0.574 ± 2.28e-3 0.393 ± 1.79e-3
(0, 10, 1, 0.01) 0.860 ± 1.75e-3 0.470 ± 2.35e-3
(0, 20, 1, 0.01) 0.929 ± 1.31e-3 0.533 ± 2.47e-3
(0, 30, 1, 0.01) 0.952 ± 1.10e-3 0.537 ± 2.57e-3
(0, 1000, 1, 0.01) 0.998 ± 2.07e-4 0.546 ± 2.74e-3

Table 3: Benchmarks of increasing diversity are created by increasing �m, or the standard
deviation of the class mean A larger �m increases the variance of the class means, making their
respective class distributions farther apart on average and causing both the Hellinger-based distribution
diversity and Task2Vec-based task diversity coefficients to increase. We varied �m from 0.01 to
1000 and fixed all remaining benchmark parameters to obtain 7 different Gaussian benchmarks.
The corresponding Hellinger-based distribution diversity coefficients were obtained by numerically
approximating the expected Hellinger distance between two classes sampled from the benchmark and
computing the 95% confidence interval of the approximation. We also computed Task2Vec-based task
diversity coefficients as an alternative measure to diversity using a random 3-layer fully connected
probe network described in Section D. Figure 12 visualizes the Task2Vec task diversities among the
synthetic benchmarks via a heatmap showing the relative pairwise distance between sampled tasks.

Figure 11: Shows the strong relation between Hellinger distribution diversity and the Task2Vec
task diversity coefficients, as both coefficients may be used interchangeably as a measure for the
diversity of a given synthetic Gaussian benchmark The first two plots show the relation between
the Hellinger-based distribution diversity of a synthetic Gaussian benchmark and the benchmark’s
performance on the MAML5, MAML10, and USL methods. These first two plots are noticeably
similar to Figure 4 (where Task2Vec-based task diversity was used as a measure of diversity instead of
Hellinger-based distribution diversity), which indicates that our Hellinger-based distribution diversity
metric also serves as a good proxy for task diversity. The rightmost plot shows a strong positive
correlation between Hellinger-based distribution diversity and Task2Vec task diversity (Pearson
r = 0.990).

by computing the expected Hellinger distance between any two classes sampled from the benchmark.
That is, for some benchmark parameterized by B = (µm,�m, µs,�s), the diversity coefficient is
given by

div(B) = Eµ1,µ2⇠N(µm,�m)E�1,�2⇠|N(µs,�s)|[H
2(N(µ1,�1), N(µ2,�2))]

where H2 denotes the squared Hellinger distance metric and N(µ1,�1), N(µ2,�2) denote the739

distributions of the two classes sampled from the benchmark. The Hellinger-based distribution740

diversity metric provides an intuitive, model-agnostic characterization of the diversity of a benchmark741

- the larger the diversity, the less similar any two classes within the benchmark are, and the easier it is742

to distinguish between two classes. Conversely, the lower the diversity, the more similar any two743

classes within the benchmark are, and the harder it is to distinguish between two classes due to a744

larger overlap between the two classes’ distributions.745

746

21

Figure 12: Heatmaps show how benchmarks with larger Task2Vec-based task diversity
coefficient show more heterogeneity between sampled tasks Each heatmap below shows the
pairwise distance between fifteen 5-way, 10-shot few-shot learning tasks sampled from the various
synthetic Gaussian benchmarks described in Table 3. Note that as �m (the standard deviation of
the class mean) increases, the distance between two tasks becomes larger on average and more
varied, which can be seen as the heatmaps become more heterogeneous. This increase in expected
distance among different tasks in turn increases the Task2Vec-based task diversity coefficient, which
summarizes the average distance between any two tasks. From left to right, top to bottom, the
benchmarks tested have parameters �m = 0.01, 1, 3, 20, 30, 1000 and Task2Vec-based task diversity
coefficient parameters div = 0.247, 0.271, 0.393, 0.533, 0.537, 0.546.

Note that the closed-form equation for the Hellinger distance between the two class distributions
N(µ1,�1), N(µ2,�2) is given by

H2(N(µ1,�1), N(µ2,�2)) = 1�

s
2�1�2

�2
1 + �2

2

e
� 1

4
(µ1�µ2)2

�2
1+�2

2

However, there is no simple closed-form equation for computing the diversity div(B) itself. As a747

result, we computed the diversity coefficient as a numerical approximation by repeatedly sampling748

two classes from the benchmark distribution and calculating the Hellinger distance between the two749

classes. These samples ultimately provide a 95% confidence interval that represents the expected750

Hellinger distance between two classes sampled from the benchmark.751

752

We also compared our Hellinger-based distribution diversity coefficient with the Task2Vec-based task753

diversity coefficient for each of the synthetic Gaussian benchmarks tested in Table 3. We observe a754

strong positive correlation between the Hellinger-based distribution diversity and Task2Vec-based755

task diversity coefficients according to Figure 11, indicating that the Hellinger-based distribution756

diversity serves as a effective proxy for task diversity when the number of ways and shots of all tasks757

are fixed.758

22

J Analysis of distribution of task distances in few-shot learning benchmarks759

J.1 Heat Maps show Low Diversity and Homogeneity of tasks from MiniImagenet and760

Cifar-fs761

In this section, we show the heat maps showing the distances between 5-way, 20-shot few-shot762

learning tasks from MiniImagenet and Cifar-fs in figure 13 and 14. We used 20-shots because we do763

not need to separate the data into support and query set to compute the diversity coefficient. We show764

that tasks sampled from these benchmarks create not only a low diversity coefficient on average, but765

also at the level of individual distances between pairs of tasks. In addition, the heat map’s uniform766

coloring reveals that it is also justifiable to call the tasks from these benchmarks homogeneous. Low767

diversity is shown because the distances are between 0.07-0.12 given that max is 1.0 and minimum is768

0.0.769

Figure 13: Shows homogeneity and low diversity of 5-way, 20-shot tasks from MiniImagenet
using the Task2Vec distance [4]. The top left heat map uses a Resnet18 pre-trained on Imagenet to
compute the Task2Vec distance between tasks. The top right heat map uses a Resnet18 with random
weights to compute the Task2Vec distance between tasks. The bottom left heat map uses a Resnet34
pre-trained on Imagenet to compute the Task2Vec distance between tasks. The bottom right heat
map uses a Resnet34 with random weights on Imagenet to compute the Task2Vec distance between
tasks. Homogeneity is shown because of the uniform color shown in the heat map. Low diversity is
shown because the distance is between 0.07-0.12 given that max is 1.0 and minimum is 0.0. Note
the diagonal is exactly zero because it is comparing the same tasks. The axis indices indicate the
arbitrary name for the tasks. Indices between heat maps do not indicate the same task. We used the
cosine distance between task Task2Vec embeddings.

J.2 Histograms of distances of tasks in the synthetic Gaussian Benchmark, MiniImagenet and770

Cifar-fs771

In this section, we show the histograms of the cosine distances between pairs of tasks for the Gaussian772

Benchmark, MiniImagenet and Cifar-fs. The main purpose of this is to argue that a (relatively small)773

sample of the tasks is sufficient to estimate population statistics – like the expected distance between774

tasks i.e. diversity coefficient.775

For ease exposition of the argument, consider the case where we have 500 distance from a large776

population of size
�64
5

�
= 7, 624, 512. The goal is to argue that 500 samples are enough to make777

strong statistical inferences about the population – even if it’s as large as 7, 624, 512. If we assume778

the distribution of the data is Gaussian, then we expect to see a single mode with an approximate779

bell curve. Therefore, if we plot the histogram of task pair distances of the 500 tasks and see this780

23

Figure 14: Shows homogeneity and low diversity of 5-way, 20-shot tasks from Cifar-fs using the
Task2Vec distance. The top left heat map uses a Resnet18 pre-trained on Imagenet to compute the
Task2Vec distance between tasks. The top right heat map uses a Resnet18 with random weights to
compute the Task2Vec distance between tasks. The bottom left heat map uses a Resnet34 pre-trained
on Imagenet to compute the Task2Vec distance between tasks. The bottom right heat map uses
a Resnet34 with random weights on Imagenet to compute the Task2Vec distance between tasks.
Homogeneity is shown because of the uniform color shown in the heat map. Low diversity is shown
because the distance is between 0.07-0.12 given that max is 1.0 and minimum is 0.0. The axis indices
indicate the arbitrary name for the tasks. Indices between heat maps do not indicate the same task.
We used the cosine distance between task Task2Vec embeddings.

then we can infer our Gaussian assumption is approximately correct. Given that we do see that in781

figures 15, 16, 17 then we can infer our assumption is approximately correct. This implies we can782

make strong statistical assumptions about the population – in particular, that we have a good estimate783

of the diversity coefficient using 500 samples. Additionally, in histograms also discard the presence784

of outlier tasks.785

As a remark, we want to emphasize that if we use T tasks to estimate the diversity coefficient, we786

in fact will use T
2�T

2 = O(T 2) distances to compute the diversity coefficient. This increases the787

computation cost, but does make the number of sample to compute the mean larger. For a subsample788

size of, T = 500 we in fact use T
2�T

2 = 124, 750 distances to compute the diversity coefficient.789

K Background on distance metrics790

K.1 Neuron Vectors791

The representation of a neuron d in layer l is the vector z(l)
d
(X) 2 RN of activations for a set of N792

examples, where X 2 RN,D is the data matrix with N examples.793

K.2 Layer Matrix794

A layer matrix L for layer l is a matrix of neuron vectors z(l)
d
(X) 2 RN with shape, [N,Di] i.e.795

L 2 RN,Di . In other words, the layer matrix L is the subspace of RN spanned by its neuron vectors796

z(l)
d
(X). In short, L is the layer matrix [zl

d
; . . . ; zl

D1
] 2 RN,Di with neuron vector zl

d
.797

24

Figure 15: Histogram of distances of 5-way, 20-shot tasks from Cifar-fs using the Task2Vec
distance. This plot justifies the use of a subsample of the population to estimate the diversity
coefficient because of its approximate Gaussian distribution. For the full argument, see the main
text, section J.2. The top left histogram uses a Resnet18 pre-trained on Imagenet to compute the
Task2Vec distance between tasks. The top right histogram uses a Resnet18 with random weights to
compute the Task2Vec distance between tasks. The bottom left histogram uses a Resnet34 pre-trained
on Imagenet to compute the Task2Vec distance between tasks. The bottom right histogram uses a
Resnet34 with random weights on Imagenet to compute the Task2Vec distance between tasks.

Figure 16: Histogram of distances of 5-way, 20-shot tasks from MiniImagenet using the
Task2Vec distance. This plot justifies the use of a subsample of the population to estimate the
diversity coefficient because of its approximate Gaussian distribution. For the full argument,
see the main text, section J.2. The top left histogram uses a Resnet18 pre-trained on Imagenet to
compute the Task2Vec distance between tasks. The top right histogram uses a Resnet18 with random
weights to compute the Task2Vec distance between tasks. The bottom left histogram uses a Resnet34
pre-trained on Imagenet to compute the Task2Vec distance between tasks. The bottom right histogram
uses a Resnet34 with random weights on Imagenet to compute the Task2Vec distance between tasks.

K.3 CCA798

Canonical Correlation Analysis (CCA) is a well established statistical technique for comparing the799

(linear) correlation of two sets of random variables (or vectors of random variables). In the empirical800

case, however, one computes the correlations between two sets of data sets (e.g. two matrices801

X 2 RN,D1 and Y 2 RN,D2 with N examples and D1, D2 features or layer matrices).802

True distribution based Canonical Correlation Analysis (CCA): What we call true distribution
based CCA is the standard CCA measure using the true but known distribution of the data p⇤(x)
and p⇤(y). In this case, CCA searches for a pair of linear combinations a⇤, b⇤ of two set of random

25

Figure 17: Histogram of distances of 5-way, 20-shot tasks from the Synthetic Gaussian bench-
mark using the Task2Vec distance. This plot justifies the use of a subsample of the population to
estimate the diversity coefficient because of its approximate Gaussian distribution. For the full
argument, see the main text, section J.2. The meta parameters generating tasks for each benchmark
are denoted by B = (0, x, 1, 0.01) where x is in the list [0.01, 1, 3, 10, 20, 30, 1000] indicating the
mean to generate the mean of the Gaussian tasks. For full details of the synthetic Gaussian benchmark,
see section I.

variables (or vectors of random variables) x = [X1, . . . , XD1] and y = [Y1, . . . , YD2] that maximizes
the Pearson correlation coefficient:

a⇤, b⇤ = argmax
a,b

EX,Y [(a>x)((b>y))]p
EX [(a>x)2]

p
EY [(a>y)2]

= arg max
w1,w2

a>⌃X,Y bp
a>⌃X,Xa

p
b>⌃Y,Y b

where ⌃X,Y ,⌃X,X⌃Y,Y are the (true) covariance and variance matrices respectively (e.g.803

⌃X,Y [i, j] = Cov[Xi, Xj] = [XiYj] for centered random variables). All of these can be replaced by804

empirical data matrices in the obvious way.805

K.4 SVCCA806

At a high level, SVCCA is a similarity measure of two matrices that aims in removing redundant807

neurons (i.e. redundant features) with the truncated SVD by keeping 0.99 of the variance and then808

measure the overall similarity by averaging the top C CCA values.809

SV: Given two matrices L1 2 RN,D1 , L2 2 RN,D2 (e.g. layer matrices) first reduce the effective810

dimensionality of the matrix via a low rank approximation L0
1 2 RN,D

0
1 , L20 2 RN,D

0
2 by choosing811

26

the top k singular values that keeps 0.99 of the variance. In particular, for each layer matrix, Li keep812

the top D0
i

singular values (and vectors) such that
PD

0
i

j=1 |�j | � 0.99
P

rank(Li)
j=1 |�j |.813

SVCCA: SVCCA is a statistical technique for the measuring the (linear) similarity of two sets814

of data sets L1 2 RN,D1 , L2 2 RN,D2 (e.g. data matrices, layer matrices) by first reducing the815

effective dimensionality of the matrix via a low rank approximation L0
1 2 RN,D

0
1 , L0

2 2 RN,D
0
2 (e.g.816

by choosing the top k singular values that keeps 0.99 of the variance) and then applying the standard817

empirical CCA to the resulting matrices. This is repeated C = min(D0
1, D

0
2) times and the overall818

similarity of the two matrices is computed as the average CCA: svcca = sim(L0
1, L

0
2) =

1
C

P
C

c=1 ⇢c819

Concretely:820

1. Get the D0
i

components that keep 0.99 of the variance (i.e. D0
i

such that
PD

0
i

j=1 |�j | �821

0.99
P

rank(Li)
j=1 |�j |).822

2. Get the SVD: U1,⌃1, V >
1 = SV D(L1) and U2,⌃2, V >

2 = SV D(L2)823

3. Then produce the SVD dimensionality reduction by L0
1 = L1V1[1 : ki] 2 RN,D1 and824

L0
2 = L2V2[1 : k] 2 RN,D2 where Vi[1 : Di] gets the top Di columns of a layer matrix i.825

4. Get the CCA of the reduced layer matrix: [⇢c]Cc=1 = CCA(L0
1, L

0
2) where, C =826

min(D0
1, D

0
2)827

5. Finally return the mean CCA: svcca = 1
C

P
C

c=1 ⇢c, where is the k-th CCA value of the828

reduced layer matrix.829

K.5 PWCCA830

At a high level, PWCCA was developed to increase the robustness (to noise) of SVCCA in the context831

of deep neural networks. In particular, Maithra et al. [35] noticed that when the performance of the832

neural networks stabilized, so did the set of CCA vectors (or principle neuron vectors) related to the833

network stabilized on the data set in question. Thus, they suggest to give higher weighting to the834

canonical correlation ⇢c of these stable CCA vectors – in particular to the ones that are similar to the835

final output layer matrix, e.g. L1. Note this is simpler than trying to track the stability of these CCA836

vectors during training and then give those higher weighting.837

PWCCA: Formally let L1 be the layer matrix [zl
d
; . . . ; zl

D1
] 2 RN,Di with neuron vectors zl

d
838

for some layer l. Recall that the k-th left CCA vector for layer matrix L1 is defined as follows,839

x̃c = L1ac = L1(⌃� 1
2uc) where ac is the cth CCA direction and uc is the c-th left singular value840

from the matrix M = ⌃
� 1

2
L1

⌃L1,L2⌃
� 1

2
L2

= U⇤V >. Then, PWCCA can be computed as follows:841

1. Calculate the CCA vectors x̃c = L1ac = L1(⌃
� 1

2
L1

uc) and explicitly orthonormalize with842

Gram-Schmidt for numerical stability.843

2. Compute the weight ↵̃c of how much the layer matrix L1 is account for by each CCA vector844

x̃k with equation ↵̃c(hc, L1) =
P

C

c=1 |hx̃c, zlciRN | where zl
c

is the c-th column of the layer845

matrix L1846

3. Normalize the weight indicating how much each CCA vector hc accounts for L1 and denote847

it with, ↵c(x̃k, L1) =
↵̃c(x̃k,L1)PC

c=1 ↵c(x̃k,L1)
848

4. Finally return the mean CCA weighted by ↵c(x̃k, L1): pwcca =
P

C

c=1 ↵c(x̃k, L1)⇢c where849

C = min(D0
1, D

0
2).850

The original authors could have used the right CCA vectors, i.e. ỹc = L2bk = L2(⌃� 1
2 vk) and in851

fact the details of their code suggest they choose the one that would have lead to less values removed852

by SVD. This choice seems to already be robust to noise, as shown in [35]. Note that the CCA vectors853

x̃k, ỹk are of size RN and thus could be viewed as the principle neuron vectors that correlate two854

layers L1, L2. With this view, PWCCA computes the mean CCA normalized by of the c principle855

neuron vectors are account for the output layer matrix the most.856

27

K.6 CCA for CNNs857

The input to CCA are two data matrices, but CNNs have intermediate representations that are858

4D tensors. Therefore, some justification is needed in how to create the data matrices needed for859

computing CCA for CNNs. Note that it’s the same reasoning for both SVCCA and PWCCA.860

Each channel as the dimensionality of the data matrix: One option is to get the intermediate861

representation of size [M,C,H,W] and get a layer matrix of size [MHW,C]. Thus, MHW is the862

effective number of data points and the channels (or number of filters) is the effective dimensionality863

of the (layer) matrix. In this view, each patch of an image processed by the CNN is effectively864

considered a data point. This view is very natural because it also considers each filter as its own865

“neuron" – which seams reasonable considering that each filter uniquely responds to each stimulus866

(e.g., data patch). This view results in HW images for every sample in the data set (or batch) of size867

M and C effective neurons.868

Although the original authors suggest this metric as a good metric mainly for comparing two layers869

that are the same – we hypothesize it is also good for comparing different layers (as long as the870

effective number of data points match for the two layer matrices). The reason is that CCA tries to871

compute the maximum correlation of two data sets (or sets of random variables) and assumes no872

meaning in the ordering of the data points and assumes no process for generating each individual873

sample for the set of random variables, thus meaning that this metric (CCA) can be used for any two874

layers in a matrix. Overall, in this view, we are comparing the representation learned in each channel.875

Each activation as the dimensionality of the data matrix: One option is to get the intermediate876

representation of size [M,C,H,W] and get a layer matrix of size [M,CHW]. Thus, M is the877

effective number of data points (which matches the number of samples in the data set or batch) and878

therefore each activation value is the effective dimensionality of the (layer) matrix. In this view,879

each activation is viewed as a neuron of size M and we have CHW effective neurons for each880

activation. The authors suggest this metric for comparing different layers (potentially at different881

depths). However, because CCA assumes no correspondence between the data points nor the same882

dimensionality in the data matrix – we hypothesize this way to define the data matrix is as valid as883

the previous definition for comparisons between any models at any layer. One disadvantage however884

is that it will often result in data matrices that are very large due to CHW being very large – which885

results in artificially high CCA similarity values. Potential ways to deal with it are noticing that there886

is no correspondence between the data matrices, so a cross comparison of every data point with every887

other data point in CCA is possible (resulting is O(M2) comparisons for the empirical covariance888

matrix). Alternatively one can pool in the spatial dimensions [H,W] resulting in potential smaller889

layer matrices e.g. of shape [M,C] with a pool over the entire spatial dimension. For these reasons890

and the fact that we hypothesize an image patch being its own image – we prefer to interpret the891

number of channels as the natural way to compare CNNs so that the layer matrices results of size892

[MHW,C].893

Subsampling of representations for channels as dimensionality: In this section, we review the894

subsampling we did when comparing the representations learned in each channel, i.e. the layer895

matrix has size [MHW,C]. The effective number of data points MHW will often be much larger896

than needed (e.g. for 16 data samples M = 16 and H = W = 84 results in MHW = 112, 896),897

especially compared to the number of filters/channels (e.g. C = 64). Previous work [35, 38] suggest898

using the number of effective data points to be from 5-10 times the size of the dimensionality in a899

layer matrix of size [N 0, D0] that means N 0 = 10D0. Based on our reproductions of that number, we900

choose N 0 = 20D0 which results in NHW = 20C901

K.7 Centered Kernel Alignment (CKA)902

At a high level, CKA is based on the insight that one can first measure the similarity between every903

pair of examples in each representation separately and then use the similarity structure to compute an904

overall similarity metric. In our case, we can treat the examples as the neuron vectors and compare905

all neuron vectors using some kernel function. Usually this will end in a kernel matrix of size M,M 0906

where M and M 0 are the number of examples. In our case, they would be D,D0 for the number of907

neurons of each layer matrix. Note, the layers matrices can correspond to neurons of different layers908

in a neural network.909

28

Linear CKA: We use the linear kernel function as used in previous work [16, 24]. Given two layer910

matrices X1 2 RN,Dl and X2 2 RN,Dl0 for layers l, l0, we compute the linear kernel X>
1 X2 to get911

the Dl by Dl0 kernel matrix indicating the (linear) similarity per neuron vector for the two layers.912

Then to obtain a single distance value we compute the Frobenius norm of the kernel matrix and913

subtract by one after normalization:914

dlinearCKA(A,B) = 1� kA>BkF
kA>AkF kB>BkF

(3)

Note that depending on how the examples in matrices A,B are organized the cross-product could915

be computed with AB> instead. Other kernel functions have been tested (e.g., the RBF kernel) for916

CKA but similar results are obtained, resulting in linear CKA being the most popular CKA method917

[16, 24] to the best of our knowledge.918

K.8 Orthogonal Procrustes Distance (OPD)919

At a high level, the orthogonal Procrustes distance computes the distances between two matrices after920

using for the best orthogonal matrix that tries to match the two. Usually this is done after centering921

and dividing by the Frobenious the matrices, i.e. normalizing the matrices. In addition, previous work922

[16] finds that OPD is a better metric at detecting changes that matter functionally and robust against923

changes that do not matter.924

OPD: Formally, the Orthogonal Procrustes Distance is the smallest distance between two matrices X925

and Y (with columns as the vectors in question) found by finding the orthogonal matrix Q which most926

closely maps A to B. Therefore, the OPD distance is the distance value from solving the orthogonal927

Procrustes problem:928

dOPD(X,Y) = min
Q

kX � Y QkF (4)

where k · kF is the Frobenius norm. When matrices are normalized (centered and divided by their929

Frobenious norm) this is called the general Procrustes problem. However, the closed for equation we930

used is the following:931

d0
OPD

(X,Y) =
1

2

�
kXkF + kY kF � 2kX>Y k⇤

�
(5)

where k · k⇤ is the nuclear norm, i.e. the sum of singular values
P

i
�(A)i = kAk⇤ . The division932

by 2 is to guarantee that the OPD distance is between [0, 1] instead of [0, 2]. We do the standard933

normalization of the matrices before computing the OPD distance – by centering and dividing by934

the Frobenious norm of the matrix. This is done because the orthogonal matrix in the orthogonal935

Procrustes problem does not allow for translation or rescaling of the matrices. Therefore, this936

normalization enforces invariance to this type of transformations – i.e. we don’t want large OPD937

values due to rescaling or translation (and even if present, the orthogonal matrix wouldn’t be able to938

reflect it).939

Therefore, the final equation for OPD we use is:940

dOPD(X,Y) = 1� kX>Y k⇤ (6)

Why OPD? We use OPD due to the findings of [16]. They find that OPD is a more robust metric941

(compared to SVCCA, PWCCA, and CKA) because it is sensitive to changes that affect real functional942

behavior (so it detects changes to behavior that “matter") and it’s specific against changes that do943

not. As a summary, some of the evidence that they provide for this is that OPD is able to detect944

when 0.75 of the principal components are removed, while CKA cannot detect removal of principal945

components until 0.97 are removed. CCA like metrics on the other hand are not specific – even946

random initialization noise overwhelms the distances it reports, while OPD is more robust to this947

random noise. For the last point, this means that even if we compare two different layers with CCA,948

the noise will dominate the distance reported instead of the difference caused by comparing different949

layer.950

K.9 Correctly using Feature Based Distances951

When comparing two layers of a neural network using two layer matrices, one needs to be careful with952

the number of data points (or batch size) being used. This is because metrics like CCA intrinsically953

29

are formulated as an optimization and if the number of examples is not larger than the number954

of dimensionality of the examples – then the similarity can be pathologically be perfect (e.g., the955

distance is zero when it’s actually not zero). Therefore, we follow the suggestions by the original956

authors of SVCCA [38] and always use at least 10 times more examples than there are features for our957

feature based comparisons. We call this value the safety margin. To illustrate this idea, we produce958

two random matrices and compare how the similarity (SVCCA) values varies as a function of the959

dimensionality of the data and the number of points. Since the two matrices are completely random,960

we know they should not be very similar and thus SVCCA should report a high similarity value (or961

low distance value). Therefore, we can see in figure 18 how as the dimensionality increases, the962

similarity value approaches a perfect similarity of 1.0. In figure 19 we can see how as the number of963

points increases, we approach a smaller similarity – closer to the true similarity for random matrices.964

In general, given two matrices X,Y 2 RM
0
,D

0
with the number of (effective) data points M 0 and965

(effective) dimensionality (number of features) D0 – we want the number of points to be larger by966

a safety factor s. Formally, it must satisfy this inequality to avoid the pathological case for feature967

based distances:968

D0  sM 0 (7)
where we suggest to use s  10 (as used in previous work [38]). Note the effective number of data969

points used and dimensionality can be different depending on how one reshapes the CNN tensors970

to produce layer matrices as explained in section K.6. For example, if one uses the channel as971

the dimensionality (i.e., use the image patches as an effective data point) then one has to obey the972

following inequality:973

C  sMHW (8)
where M is the batch size, H,W is the height and width of the images, and C is the number of974

filters/channels for the current layer. This means that for a given architecture processing images of a975

given size that the only parameter we can change to make the above inequality true is the batch size976

M .977

Figure 18: Shows that as the dimensionality of a random data matrix increases – the SVCCA
similarity approaches the pathological case by falsely reports the similarity is perfect. The green
line indicates when the number of examples and dimensionality are equal (and equal to 300). D
denotes the dimensionality of the simulated data and B the size of the batch size/number of points.

L A Statistical Decision view of the differences between Supervised Learning978

and Meta-learning979

Recent work in meta-learning implies that feature-reuse might be all we need to solve modern980

few-shot learning benchmarks [43]. However, what it also reveals is our poor understanding of981

meta-learning algorithms. Therefore, in this section, we take the most foundational perspective982

to formulate and analyze meta-learning algorithms by analyzing them from an optimal statistical983

decision theory perspective?984

We hope that this can help clarify the results from [43] and therefore help meta-learning researchers985

design better meta-learning benchmarks and meta-learning algorithms.986

30

Figure 19: Show how to avoid the pathological case when using feature based similarities by
increasing the number of data points (or batch size). In particular, as the number of data points in
two random data matrix increases – the true similarity approaches the true low similarity value. The
green line indicates when the number of examples and dimensionality are equal (and equal to 300).
D denotes the dimensionality of the simulated data and B the size of the batch size/number of points.

L.1 Supervised Meta-Learning problem set-up987

In this section, we introduce the notation for supervised meta-learning. Intuitively, we seek to find a988

function that minimize the expected risk over tasks and the data in the tasks. To formalize it, we will989

use three formulations:990

Monolithic meta-learner: for a monolithic decision rule g (or meta-learner), we want to find the991

optimal g by minimizing the supervised meta-learning expected risk:992

RMono(g) = E⌧⇠p(⌧)Ex,y⇠p(x,y|⌧) [l(g(x, ⌧), y)] (9)
where g is a single monolithic function, p(⌧) is the true but unknown distribution of tasks, p(x, y | ⌧)993

is the true, but unknown distribution of data pair given a task ⌧ and (x, y) is the data pair of input and994

target value sampled from a task.995

Meta-learned meta-learner: for a meta-learned decision rule we usually have an adaptation rule A996

(e.g. SGD in MAML) and a function approximator h (e.g. a neural network) and minimize the follow997

over both:998

RML(A, h) = E⌧⇠p(⌧)Ex,y⇠p(x,y|⌧) [l(A(h, ⌧)(x), y)] (10)
p(⌧) is the true but unknown distribution of tasks, p(x, y | ⌧) is the true, but unknown distribution of999

data pair given a task ⌧ and (x, y) is the data pair of input and target value sampled from a task.1000

Fixed representation meta-learner without adaptation: one can also solve 9 using a single decision1001

rule f that does not take the task ⌧ as input as follows:1002

RSL(f) = E⌧⇠p(⌧)Ex,y⇠p(x,y|⌧) [l(f(x), y)] (11)
where f is a function to be adapted (e.g. a neural network), p(⌧) is the true but unknown distribution1003

of tasks, p(x, y | ⌧) is the true, but unknown distribution of data pair given a task ⌧ and (x, y) is the1004

data pair of input and target value sampled from a task.1005

Fixed representation meta-learner with a final adaptation layer: one can also solve 9 using a1006

single feature extractor g that does not take the task ⌧ as input with a feature extractor g:1007

RSLA(f, g) = E⌧⇠p(⌧)Ex,y⇠p(x,y|⌧) [l((f(⌧) � g)(x), y)] (12)
where g is the feature extractor from the raw inputs (e.g. a neural network), f the final layer adapted1008

(e.g. a linear layer), p(⌧) is the true but unknown distribution of tasks, p(x, y | ⌧) is the true, but1009

unknown distribution of data pair given a task ⌧ and (x, y) is the data pair of input and target value1010

sampled from a task.1011

Remark L.1. Note that in practice, the meta-learner does not usually take the full task ⌧ as input, but1012

instead a train and test set (often referred to as support set and query set) sampled from the task ⌧ .1013

The goal of this work is to clarify the difference between 11 and 10 under the framework of statistical1014

decision theory. Arguably the most important comparison between 10 and 12 is left for future work.1015

31

L.2 Main Result: Difference between the Supervised Learned and Meta-learned decision rule1016

The proof sketch is as follows: we first show the optimal decision rules for both supervised learning1017

and meta-learning when minimizing the expected meta-risk from equations 11 and 10 and then1018

highlight that the main difference between them is that the meta-learned solution can act optimally if1019

it identifies the task ⌧ while the supervised learned solution has no capabilities of this since it learns1020

an average based on tasks instead.1021

Theorem L.2. The minimizer to equation 10 is:1022

A(h, ⌧)(x) = ȳ⇤
y|x,⌧ = Ey⇠p(y|x,⌧) [y] (13)

where ȳ⇤
y|x,⌧ = Ey⇠p(y|x,⌧) [y] and l is the squared loss l(ŷ, y) = (ŷ � y)2.1023

Proof. The proof is the same as the standard decision rule textbook proof but instead of minimizing
it point-wise w.r.t. x we minimize it point-wise w.r.t. (x, ⌧). In particular, we have:

RML(A, h) = E⌧⇠p(⌧)Ex,y⇠p(x,y|⌧) [l(A(h, ⌧)(x), y)]

min
A,h

E⌧⇠p(⌧)Ex⇠p(x|⌧)Ey⇠p(y|x,⌧)
⇥
(A(h, ⌧)(x)� y)2

⇤

without loss of generality (WLOG) and for clarity of exposition consider the special case for discrete
variables:

min
A,h

X

⌧

p(⌧)
X

x

p(x | ⌧)Ey⇠p(y|x,⌧)
⇥
(A(h, ⌧)(x)� y)2

⇤

At this point we notice we can minimize the above point-wise w.r.t (x, ⌧) and ignore h. To do that,
take the derivative of R(A, h) with respect to A(h, ⌧)(x) because that A(h, ⌧)(x) 2 R and set it to
zero:

d

dA(h, ⌧)(x)
Ey⇠p(y|x,⌧)

⇥
(A(h, ⌧)(x)� y)2

⇤
= 0

Ey⇠p(y|x,⌧) [(A(h, ⌧)(x)� y)] = 0

Ey⇠p(y|x,⌧) [(A(h, ⌧)(x)] = Ey⇠p(y|x,⌧) [y]

A(h, ⌧)(x) = Ey⇠p(y|x,⌧) [y] = ȳ⇤
y|x,⌧

as desired.1024

Corollary L.3. For a monolithic meta-learner defined in section L.1 the solution to the meta1025

supervised learning problem is the same as in equation 13 for the squared loss l(ŷ, y) = (ŷ � y)2 i.e.1026

g(⌧, x) = ȳ⇤
y|x,⌧ = Ey⇠p(y|x,⌧) [y].1027

Proof. Proof is trivial, replace A(h, ⌧)(x) with g(⌧, x) since h is not used. In this case, there is1028

no difference with having an adaptation rule A equipped with another function h and a monolithic1029

meta-learner g.1030

Theorem L.4. The minimizer to equation 11:1031

f(x) = E⌧⇠p(⌧ |x)

h
ȳ⇤
y|x,⌧

i
(14)

where ȳ⇤
y|x,⌧ = Ey⇠p(y|x,⌧) [y] and l is the squared loss l(ŷ, y) = (ŷ � y)2.1032

Proof. WLOG, consider the minimizer of equation 11 in the discrete case. In particular, we have:

RSL(f) = E⌧⇠p(⌧)Ex,y⇠p(x,y|⌧) [l(f(x), y)]

min
f

E⌧⇠p(⌧)Ex⇠p(x|⌧)Ey⇠p(y|x,⌧)
⇥
(f(x)� y)2

⇤

min
f

X

x

E⌧⇠p(⌧)p(x | ⌧)Ey⇠p(y|x,⌧)
⇥
(f(x)� y)2

⇤

Note we can minimize the above point-wise w.r.t. x only (and not also w.r.t. ⌧ as we did in proof
L.2). Thus, we have want:

f(x) = min
f(x)2R

E⌧⇠p(⌧)p(x | ⌧)Ey⇠p(y|x,⌧)
⇥
(f(x)� y)2

⇤

32

at this point it is interesting to observe the disadvantage of supervised learning methods with fixed
functions without dependence on the task is that they are forced to consider all task ⌧ at once. We
proceed to take derivatives as in proof L.2 but with this objective:

E⌧⇠p(⌧)p(x | ⌧)Ey⇠p(y|x,⌧)
⇥
(f(x)� y)2

⇤

d

df(x)
E⌧⇠p(⌧)p(x | ⌧)Ey⇠p(y|x,⌧)

⇥
(f(x)� y)2

⇤
= 0

E⌧⇠p(⌧)p(x | ⌧)Ey⇠p(y|x,⌧) [f(x)] = E⌧⇠p(⌧)p(x | ⌧)Ey⇠p(y|x,⌧) [y]

f(x)E⌧⇠p(⌧) [p(x | ⌧)] = E⌧⇠p(⌧)p(x | ⌧)Ey⇠p(y|x,⌧) [y]

1033

f(x) = E⌧⇠p(⌧)


p(x | ⌧)

E⌧⇠p(⌧) [p(x | ⌧)]Ey⇠p(y|x,⌧) [y]

�
(15)

We proceed by noticing that E⌧⇠p(⌧) [p(x | ⌧)] = p(x), thus:

f(x) = E⌧⇠p(⌧)


p(x | ⌧)
p(x)

Ey⇠p(y|x,⌧) [y]

�

f(x) =
X

⌧

p(⌧)
p(x | ⌧)
p(x)

⇥
Ey⇠p(y|x,⌧) [y]

⇤

f(x) =
X

⌧

p(⌧)

p(x)

p(x, ⌧)

p(⌧)

⇥
Ey⇠p(y|x,⌧) [y]

⇤

f(x) =
X

⌧

p(x, ⌧)

p(x)

⇥
Ey⇠p(y|x,⌧) [y]

⇤

f(x) =
X

⌧

p(x | ⌧)
⇥
Ey⇠p(y|x,⌧) [y]

⇤

f(x) = E⌧⇠p(x|⌧)
⇥
Ey⇠p(y|x,⌧)y

⇤

f(x) = E⌧⇠p(x|⌧)

h
ȳ⇤
y|x,⌧

i

as required by the rightmost RHS of equation 14.1034

Theorem L.5. The minimizer in equation 14 reduces to an expectation only over w.r.t. p(⌧) of ȳ⇤
y|x,⌧1035

under benchmarks that are balanced. Formally1036

f(x) = E⌧⇠p(⌧)

h
ȳ⇤
y|x,⌧

i
= E⌧⇠p(⌧)

⇥
Ey⇠p(y|x,⌧) [y]

⇤
(16)

where ȳ⇤
y|x,⌧ = Ey⇠p(y|x,⌧) [y] and under assumption A1: p(x | ⌧) is a constant, i.e. p(x | ⌧) =1037

kXT 2 R, 8x 2 X, 8⌧ 2 T and l is the squared loss l(ŷ, y) = (ŷ � y)2.1038

Proof. Recall equation 14:
f(x) = E⌧⇠p(⌧ |x)

h
ȳ⇤
y|x,⌧

i

due to Bayes’s rule we have p(⌧ | x) = p(⌧)p(x|⌧)
p(x) and equation 14 can be re-written as follows:

f(x) = E⌧⇠p(⌧)


p(x | ⌧)
p(x)

ȳ⇤
y|x,⌧

�

under assumption A1 we have that p(x | ⌧) does not depend on as a function of x or ⌧ . Thus, we
have:

p(x) =
X

⌧

p(⌧)p(x | ⌧) = p(x | ⌧)
X

⌧

p(⌧) = p(x | ⌧)

Thus we have:
f(x) = E⌧⇠p(⌧)


p(x)

p(x)
ȳ⇤
y|x,⌧

�

f(x) = E⌧⇠p(⌧)

h
ȳ⇤
y|x,⌧

i

as required.1039

33

Remark L.6. Note that assumption A1 holds for the common MiniImagenet few-shot learning data1040

set, where p(x | ⌧) = 1
600 .1041

Remark L.7. In addition, because all classes are equally likely (e.g. p(class) = 1
64 for the meta-train1042

set) we have p(⌧) is the same constant independent of the task ⌧ . Proof in the appendix, lemma L.8.1043

Theorem L.8. If the tasks are equally likely, then equation 16 becomes an average over conditional1044

predictions over all tasks. Formally, if p(⌧) = 1
T

then equation 16 becomes:1045

f(x) =
1

T

X

⌧

ȳ⇤
y|x,⌧ (17)

under the squared loss l(ŷ, y) = (ŷ � y)2.1046

Proof. Since f(x) = E⌧⇠p(⌧)

h
ȳ⇤
y|x,⌧

i
then, plugging p(⌧) = 1

T
completes proof.1047

Remark L.9. It is interesting to note that without adaptation or dependence on the task ⌧ being1048

solved, the supervised learned meta-learner is suboptimal compared to the meta-learned solution.1049

The proof is simple, and it follows because the meta-learned decision rule was chosen to minimize1050

each term individually, but the supervised learned decision is not of that form. Proof in appendix1051

L.11. Unfortunately, note that this does not necessarily apply to previous work [43].1052

Remark L.10. Note that remark L.9 does not apply to work [43] because that work does depend on a1053

task ⌧ during meta-test time by adapting the final layer even if the representation is fixed.1054

Remark L.11. The supervised learning decision rule is suboptimal compared to the meta-learned1055

decision rule.1056

L.3 The supervised Learning Solution is equivalent to the Meta-Learning solution when there1057

is low task diversity1058

Sketch argument: The main idea is that because all tasks are very similar (task diversity is low)1059

– it essentially means that ⌧ is not truly an input to the adaptation rule or monolithic meta-learner).1060

Equivalently, the problem is essentially a single task problem, so the task is implicitly an input to any1061

method used. Therefore, since the task conditioning does not exist, then the optimization problem is1062

the same for the meta-learned solution and when there is a fixed supervised learning feature extractor.1063

Theorem L.12. Assume ⌧1 = ⌧2 for any tasks in T and the data sets are balanced (i.e. same number1064

of images x for each task). Then we have the meta-learned solution is the same as the supervised1065

learning solution with shared embeddings: fsl(x) = A(fml, ⌧)(x).1066

Proof. Consider the optimization problem, for supervised learning:

min
A,h

E⌧⇠p(⌧)Ex⇠p(x|⌧)Ey⇠p(y|x,⌧)
⇥
(A(h, ⌧)(x)� y)2

⇤

If every pair of tasks is equal, it means their distributions are equal p(x, y | ⌧) = p(x, y) (mean-1067

ing ⌧ can be ignored). Thus, the solution to the supervised learning problem is: fsl(x) =1068

E⌧Ep(x,y)[y] = Ep(x,y)[y] = y⇤|x. Now for the meta-learning problem we have: A(fml, ⌧)(x) =1069

y⇤|x,⌧ = Ey⇠p(y|x,⌧)[y] but due to every pair of tasks being equal means p(x, y | ⌧) = p(x, y) (i.e.1070

all task share the same distributions) we have: A(fml, ⌧)(x) = Ey⇠p(y|x,⌧)[y] = Ey⇠p(y|x[y] = y⇤|x1071

which is the same as the solution as in fsl. Thus fsl(x) = A(fml, ⌧)(x).1072

Remark L.13. Proofs were presented in the discrete case clarity, but it is trivial to expand them to the1073

continuous case – e.g., using integrals instead of summations.1074

M Summary of Compute Required1075

We used an internal compute cluster with wide varied of GPUs. We used Titan X GPUs for most1076

five layer CNN experiments. We used A40 and dgx-A100 GPUs for Resnet12 experiments, with 481077

GB and 40 GB GPU memory respectively. We did notice that the Resnet12 architecture we used1078

from previous work [43] required more memory than Resnet18 and Resnet34 used in Task2Vec1079

[4]. By requiring more memory, we mean we did not have many memory out of bound issues with1080

34

Resnet18/Resnet34 but did have memory issues with Resnet12. In addition, our episodic meta-1081

learning training for MAML used Learn2Learn’s [5] distributed training to speed up experiments.1082

Experiments took 1-2 weeks with MAML in a single GPU to potentially 2-3 days with multiple1083

GPUs (we used 2, 4 to 8 GPUs depending on availability). For synthetic experiments we used Titan1084

X GPUs with 16GB of GPU memory. Experiments took around 1-2 days on average with a single1085

GPU. For more precision check the experimental details section D.1086

35

	Introduction
	Background
	Definition of the Diversity Coefficient
	Experiments
	The Diversity Coefficient of MiniImagenet and Cifar-fs
	Low Diversity Correlates with Equivalence of MAML and Transfer Learning
	Is the Equivalence of MAML and Transfer Learning related to Model Size or Low Diversity?
	MAML learns a different base model compared to Union Supervised Learned models – even in the presence of low task diversity
	Synthetic Experiments showing closeness of MAML and Transfer Learning as Diversity Changes

	Related Work
	Discussion and Future Work
	Further Discussions
	Related Work (continued)
	Convergence of Learning Curves for Fair Comparison
	Convergence of Learning Curves for MiniImagenet and Cifar-fs

	Experimental Details
	Experimental Details on MiniImagenet and Cifar-fs
	Experimental Details on N-way Gaussian Tasks

	Feature Extractor Analysis of USL and MAML
	Background of Few-shot Learning Basics
	Synthetic Gaussian Benchmark and N-way Gaussian Tasks
	Distribution-based Diversity Metrics
	Hellinger Diversity Coefficient and Hellinger Distance
	Analysis of distribution of task distances in few-shot learning benchmarks
	Heat Maps show Low Diversity and Homogeneity of tasks from MiniImagenet and Cifar-fs
	Histograms of distances of tasks in the synthetic Gaussian Benchmark, MiniImagenet and Cifar-fs

	Background on distance metrics
	Neuron Vectors
	Layer Matrix
	CCA
	SVCCA
	PWCCA
	CCA for CNNs
	Centered Kernel Alignment (CKA)
	Orthogonal Procrustes Distance (OPD)
	Correctly using Feature Based Distances

	A Statistical Decision view of the differences between Supervised Learning and Meta-learning
	Supervised Meta-Learning problem set-up
	Main Result: Difference between the Supervised Learned and Meta-learned decision rule
	The supervised Learning Solution is equivalent to the Meta-Learning solution when there is low task diversity

	Summary of Compute Required

