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APPENDIX

A ASSUMPTIONS

In causal inference, there are several basic assumptions that underlie the methods and techniques
used to estimate causal effects. These assumptions provide a framework for reasoning about cause-
and-effect relationships. Here we briefly introduce the assumptions used in this work:
Assumption 1. Stable Unit Treatment Value Assumption. SUTVA states that the potential outcome
of a unit (e.g. a person or an object) is not affected by the treatment assignment of any other unit.
In other words, the assumption requires that the treatment assignment of one unit does not affect the
potential outcome of any other unit.
Assumption 2. Unconfoundedness Assumption. This assumption states that, conditional on ob-
served covariates, the treatment assignment is independent of the potential outcomes, i.e., Y (T =
1), Y (T = 0) ⊥ T ||X . This means that there are no unobserved confounders that affect both the
treatment assignment and the outcome.
Assumption 3. Positivity Assumption. This assumption states that there is a positive probability
of receiving each treatment level, given the observed covariates, i.e., 0 < P (T = 1|X) < 1. This
means that there are no sub-populations for whom the treatment is impossible or infeasible and that
the sample includes enough representation from each treatment level to estimate the treatment effect
accurately.
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Figure 5: The structural causal models for (a) Mediation post-treatment variables and (b) Collider
post-treatment variables.

B DERIVATION OF THE STRUCTURAL CAUSAL MODEL

In the preliminaries, we assume two types of the linear structural causal model (i.e., SCM) to il-
lustrate two types of different post-treatment biases, here we present the detailed derivation of the
average treatment effect estimation from the observational data for the two models:

(1) For the case of mediation post-treatment variables as presented in Figure 5. (a), the causal model
can be formulated as follows:

Y = τT + βC + ηZ = (τ + ηγ)T + βC, (8)

we can see that the true total treatment effect of T on Y is τ + ηγ. Then the estimated average
treatment effect from observational data can be derived as follows:
∆a = E(Y |T = 1)− E(Y |T = 0)

= E(τT + βC + ηZ|T = 1)− E(τT + βC + ηZ|T = 0)

= E(τT |T = 1)− E(τT |T = 0) + E(βC|T = 1)− E(βC|T = 0) + E(ηZ|T = 1)− E(ηZ|T = 0)

= τ(E(T |T = 1)− E(T |T = 0)) + β(E(C|T = 1)− E(C|T = 0)) + η(E(Z|T = 1)− E(Z|T = 0))

= τ + β(E(C|T = 1)− E(C|T = 0)) + η(E(Z|T = 1)− E(Z|T = 0)).
(9)

(2) For the case of collider post-treatment variables as presented in Figure 5. (b), the causal model
is formulated as follows:

Y = τT + βU, (10)
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the causal effect of T on Y is equal to τ . Then the estimation of the average treatment effect from
observational data for this model can be formulated as:

∆b = E(Y |T = 1)− E(Y |T = 0)

= E(τT + βU |T = 1)− E(τT + βU |T = 0)

= E(τT |T = 1)− E(τT |T = 0) + E(βU |T = 1)− E(βU |T = 0)

= τ(E(T |T = 1)− E(T |T = 0)) + β(E(U |T = 1)− E(U |T = 0))

= τ + β(E(U |T = 1)− E(U |T = 0)).

(11)
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Figure 6: The original causal graph G and the corresponding manipulated causal graph.

C PROOF OF THEOREM 1

C.1 RULES OF DO-CALCULUS

Here we adopt the causal graphical model to prove Theorem 1. Before we present the formal proof
of Theorem 1, we need to introduce some basic concepts about the three rules of the do-calculusPearl
(2012) in a causal graphical model.

Given a causal graphical model, denoted by G where P denotes the associated distribution, let
Z, T, Y,W denote the arbitrary disjoint sets of variables in the graph G. Let GT denote the graph
with all edges out of T removed, GT denote the graph with all edges into T removed, then the
following three rules hold:

• Rule 1: P (Y |do(T ), Z,W ) = P (Y |do(T ), Z) if Y ⊥ W |(Z, T ) in GT ;

• Rule 2: P (Y |do(T ), Z) = P (Y |T,Z) if Y ⊥ T |Z in GT ;

• Rule 3: P (Y |do(T ), Z) = P (Y |Z) if Y ⊥ T |Z in GT and Z is not a decedent of T .

C.2 DERIVATION OF THE PROOF OF THEOREM 1

As shown in Figure 6, we present the original causal graphical model G investigated in this work, GT
after removing all the edges into treatment T and GT after removing all the edges out of treatment
T . The detailed derivation of the proof is as follows:

Theorem 1: (Identifiability of Causal Effect under Post-treatment Variables and Confounders) If
we can recover p(Zc|T,X), p(zm|T,X) and p(C|X) from the observational data, then we can
recover the causal effect of T on Y under post-treatment variables and confounders.
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Proof.

P (Yu|do(T ), X) = P (Y |do(T ), X, U)

(i)
=

∫
Zm

P (Y |do(T ), X, U, Zm)P (Zm|do(T ), X, U)

(ii)
=

∫∫
Zm,C

P (Y |do(T ), X, U, Zm, C)P (C|do(T ), X, U, Zm)P (Zm|do(T ), X, U)

(iii)
=

∫∫∫
Zm,C,Zc

P (Y |do(T ), X, U, Zm, C, Zc)P (Zc|do(T ), X, U, Zm, C)P (C|do(T ), X, U, Zm)P (Zm|do(T ), X, U)

(iv)
=

∫∫∫
Zm,C,Zc

P (Y |do(T ), U, Zm, C)P (Zc|do(T ), X, U)P (C|do(T ), X)P (Zm|do(T ), X, U)

(v)
=

∫∫∫
Zm,C,Zc

P (Y |T,U, Zm, C)P (Zc|T,X,U)P (C|do(T ), X)P (Zm|T,X)

(vi)
=

∫∫∫
Zm,C,Zc

P (Y |T,U, Zm, C)P (Zc|T,X,U)P (C|X)P (Zm|T,X)

(vii)
=

∫∫
Zm,C

P (Y |T,U, Zm, C)P (C|X)P (Zm|T,X)

(vii)
=

∫∫
Zm,C

P (Yu|T,Zm, C)P (C|X)P (Zm|T,X)

(12)
where Yu is the observed outcome with U = u; the equation (i), (ii) and (iii) are the straight-
forward expectation over P (Zm|do(T ), X), P (C|do(T ), X, Zm) and P (Zc|do(T ), X, Zm, C), re-
spectively; equation (iv) is derived by the Rule 1 given the following independence conditions
{Y ⊥ X,Zc|(T,U, Zm, C)}, {Zc ⊥ Zm, C|(T,X,U)}, {C ⊥ U,Zm|(T,X)} and {Zm ⊥ U} in
the graph GT ; equation (v) is derived by the Rule 2 given the following independence conditions
{Y ⊥ T |U,Zm, C}, {Zc ⊥ T |X,U} and {Zm ⊥ T |X} in the graph GT ; equation (vi) is derived
by the Rule 3 given the independence condition {C ⊥ T |X} in the graph GT ; equation (vii) is
derived by the integration over Zc; Noting that the above independence condition can be obtained
from the d-separation criterion Geiger et al. (1990).

C.3 DERIVATION OF THE PROOF OF THEOREM 2

Theorem 2: The joint set of inferred factors for C, Zm is minimally sufficient for the optimal
parameters θ which estimation of unbiased treatment effects needs.

To simplify our proof, we collectively denote the underlying factors {C,Zm} as the statistic S =
S(X1, ..., Xd) where (x1, x2..., xd) is the original covariates of the observed sample. Let θ represent
the optimal parameter instantiation that the treatment effect can be estimated. To demonstrate that
S = (C,Zm) is the minimally sufficient statistic to infer the unbiased treatment effect, it must be
proven that the statistic S is minimally sufficient for θ. We first introduce two lemmas about the
minimally sufficient statistic Silvey (2017):

Lemma 1. (Sufficient statistic). A statistic S = S(X1, ..., Xd) is sufficient for θ if the distribution
of the sample given S, i.e., P(X1, ..., Xd|S), does not depend on θ.

Lemma 2. (Minimal sufficient statistic). A sufficient statistic S for θ is minimal sufficient if there
exist a measurable function ϕ such that S = ϕ(S̄) for any other sufficient statistic S̄

Lemma 3. (Independence equivalence). Given any two sample realizations (x1, ..., xd) and
(x′

1, ..., x
′
d), the following equivalence holds:

L(x1, ..., xd; θ)

L(x′
1, ..., x

′
d; θ)

isindependent of θ ⇔ S(x1, ..., xd) = S(x′
1, ..., x

′
d),
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Proof. First, we prove that the statistic S is sufficient. For any sample (x′
1, ..., x

′
d), we have:

P(X1 = x′
1, ..., Xd = x′

d) =

{
0, if S(x′

1, ..., x
′
d) ̸= s

P(X1=x′
1,...,Xd=x′

d;θ)
P(S=s;θ) , if S(x′

1, ..., x
′
d) = s,

For the samples such that S(x′
1, ..., x

′
d) ̸= s, the distribution P(X1, .., Xd|S) is clearly independent

of θ. Then for the samples such that S(x′
1, ..., x

′
d) = s, we have the following derivation:

P(X1 = x′
1, ..., Xd = x′

d|S = s) =
P(X1 = x′

1, ..., Xd = x′
d; θ)

P(S = s; θ)

=
P(X1 = x′

1, ..., Xd = x′
d; θ)∑

(x1,...,xd)∈As
P(X1 = x1, ..., Xd = xd; θ)

=
L(x′

1, ..., x
′
d; θ)∑

(x1,...,xd)∈As
L(x1, ..., xd; θ)

=
1∑

(x1,...,xd)∈As

L(x1,...,xd;θ)
L(x′

1,...,x
′
d;θ)

(13)

where As = {(x1, ..., xd) ∈ (R)d : S(x1, ..., xd) = s}. In this case, the samples (x1, ..., xd) and
(x′

1, ..., x
′
d) share the same value s of the statistic S, thus the ratio of likelihoods L(x1,...,xd;θ)

L(x′
1,...,x

′
d;θ)

in the
denominator does not depend on based on the Lemma 3, then the distribution P(X1 = x1, ..., Xd =
xd|S = s) is also independent of θ, thus the statistic S is sufficient for θ according to Lemma 1,
which means the inferred factors C,Zm is sufficient for the optimal treatment effect estimation.

Next, we prove the minimal sufficiency of the statistic S. Let S̄ be another sufficient statistic for θ,
based on Lemma 2, we have to prove that there exists a function ϕ that S = ϕ(S̄). Similarly, let
(x1, ..., xd) and (x′

1, ..., x
′
d) be two samples that share the same value for the sufficient statistic S̄,

i.e., S̄(x1, ..., xd) = S̄(x′
1, ..., x

′
d) = s̄, thus the following two probabilities of such samples given

S̄ = s̄ are both independent of θ:

P(X1 = x1, ..., Xd = xd|S̄ = s̄) =
P(X1 = x1, ..., Xd = xd; θ)

P(S̄ = s̄; θ)
,

P(X1 = x′
1, ..., Xd = x′

d|S̄ = s̄) =
P(X1 = x′

1, ..., Xd = x′
d; θ)

P(S̄ = s̄; θ)
,

(14)

thus the likelihood ratio

P(X1 = x1, ..., Xd = xd; θ)

P(X1 = x′
1, ..., Xd = x′

d; θ)
=

L(x1, ..., xd; θ)

L(x′
1, ..., x

′
d; θ)

is also independent of θ. According to Lemma 3, we have

S(x1, ..., xd) = S(x′
1, ..., x

′
d)

, then we can see that the two samples share the same value of both S and S̄, that is, for each value
s̄ of S̄, there is a unique value ϕ(s̄), and thus S = ϕ(S̄). Based on Lemma 2, the statistic S is
minimally sufficient for θ.

D DETAILED STRUCTURE OF PoNet

In this work, we propose a novel deep learning-based model PoNet, which aims to decompose the
confounders and two types of post-treatment variables from the observational data for eliminating
post-treatment bias and confounding bias for treatment effect estimation. The structure overview of
PoNet is shown in Figure 7.

Learning function for inferring the three underlying factors. Here details the formulation
for learning the representations of post-treatment variables, collider post-treatment variables, and
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Figure 7: The structure overview of the proposed model PoNet.

confounders. First, the function fme(x, t) for learning the representations of the mediation post-
treatment variables, which is parameterized by stacking L fully connected layers, can be formulated
as follows:

zm = fme(x, t) =

{
φ(W 0

L...φ(W
0
1 x+ c01) + c0L) if t = 0

φ(W 1
L...φ(W

1
1 x+ c11) + c1L) if t = 1,

(15)

where x is the observed covariates and t is the assigned treatment, φ(·) denotes the activation func-
tion, W t

K and ctK are the learning weight and bias term for the K-th hidden layer. Note that we
can formulate the function fco(x, t) for learning the representations zc of collider post-treatment
variable in the similar formulation.

Similarly, the function fc(x) for learning the representations of confounders, which is parameterized
by stacking L fully connected layers, can be formulated as follows:

c = φ(W c
L...φ(W

c
1x+ cc1) + ccL), (16)

where c denotes the representation of confounders.

Outcome prediction network. Incorporating the inferred representations of the mediation post-
treatment variables and confounders, the outcome prediction network can be parameterized by fully
connected layers, which can be formulated as follows:

fy(c
i, zi

m, ti) =

{
ŷti=0
i = f0(c

i, zi
m) if ti = 0

ŷti=1
i = f1(c

i, zi
m) if ti = 1,

(17)

where f0(·) and f1(·) are two output functions that are parameterized by MLPs for treatment ti = 0
and ti = 1, respectively.

Balancing Module. Here we present the details about the representation balancing module. Here
we utilize Wasserstein disance, which is a variant of the optimal transport distance, to measure the
minimum amount of work required to transform one distribution into another one. Let P (c) =
Pr(c|t = 1) and Q(c) = Pr(c|t = 0) denote the empirical distributions of representation of
confounders for treated and control units, respectively, SZ(P,Q) represent the Wasserstein distance
defined in the 1-Lipschitz functional space Z , the balancing term can be formulated as follows:

Lwass = SZ(P,Q) = inf
k∈K

∫
c∈{ci}i:ti=1

||k(c)− c||P (c)dc

s.t. Q(k(c)) = P (c),

(18)

where K = {k|k : Rm → Rm} denotes the set of push-forward functions that can transform the
distribution of the treated units’ representations to that of the control units’ representations. And we
use the approximation algorithm proposed by (Cuturi & Doucet, 2014) to compute the Wasserstein-1
distance SZ(P,Q).
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E EXPERIMENTS

E.1 EXPERIMENT SETTINGS

For each dataset, we run the experiments for 10 times and report the average performance in terms
of specified metrics. For each evaluation, we spilt the dataset into the training set (80%) and the test
set (20%). Regarding the hyperparameters of the proposed model, we adopt the grid search strategy
to find the optimal parameter combination. Specifically, we set the learning rate as 0.01, the weight
α of the MIMR regularizer for separating the underlying factors to range in 0.0001, 0.001, 0.01,
0.1, 1}, the weight β of the covariate reconstruction module to range in {0.0001, 0.001, 0.01, 0.1,
1}, the weight γ of balancing confounders by Wassertein distance to range in {0.0001, 0.001, 0.01,
0.1, 1}, the weight η for controlling the over-fitting as 0.0001, the number of hidden layers of each
representation network and prediction network to range in {1, 2, 3, 4}, the dimension m of each
hidden layer to range in {50, 100, 150, 200}.

We use the Stochastic Gradient Descent (SGD) or Adam as the optimizer to train the models. All
codes are implemented in Python, the deep learning framework we adopt in this work is Pytorch.
And we use Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz and 512G, NVIDIA TITAN RTX GPU
@24 GB. The anonymous link of the source code of the proposed model PoNet is: https://
anonymous.4open.science/r/Ponet-37F2/.

E.2 SYNTHETIC DATA

E.2.1 DATA GENERATION PROCESS

We generate the synthetic data according to the following process. The input of the data genera-
tion is the sample size N ; the dimension dC , dZm

, dZc
for each underlying factor {C,Zm, Zc},

respectively; then the generation can be formulated as the following steps:

• Step 1: Draw N samples with the size dC from the Gaussian distribution N (µC ,ΣC)
where µC and ΣC means and covariance matrix, to form the confounder factor xC ∈
RN×dC .

• Step 2: Draw N samples with the size dZm
from the Gaussian distribution N (µZm1

,ΣZm1
)

to form the factors xZm1
for treatment T = 1, and draw N samples with the size dZm

from
the Gaussian distribution N (µZm0

,ΣZm0
) to form the factors xZm0

for treatment T = 0;
• Step 3: Draw N samples with the size dZc from the Gaussian distribution N (µZc1 ,ΣZc1)

to form the factors xZc1 for treatment T = 1, and draw N samples with the size dZc from
the Gaussian distribution N (µZc0

,ΣZc0
) to form the factors xZc0

for treatment T = 0;
• Step 4: Sample the coefficients wt ∈ RdC from the distribution N (0, 1); then formulate

the treatment assignment policy as ∆(T = 1|xC) = 1
1+exp(−wtxC) , then we can obtain

the treatment assignments {t1, t2, ..., tN} for N samples based on the Bernoulli distribution
with parameter ∆(T = 1|xC).

• Step 5: According to the obtained treatment assignment, form the observed mediation
post-treatment variables xZm

from xZm1
or xZm0

, the observed collider post-treatment
variables xZc

from xZc1
or xZc0

for each sample.
• Step 6: Concatenate the confounders xC , meditation post-treatment variables xZm

and
collider post-treatment variables xZc

to be the observed covariates x = {xC ,xZm
,xZc

}
for each sample.

• Step 7: Sample the two coefficient tuples w0 ∈ RdC+dZm and w1 ∈ RdC+dZm from
the distribution N (0, 1), then formulate the control outcome as y0 = (xCZm0

◦xCZm0
)T ·

w0/(dC+dZm
) and treated outcome as y1 = (xCZm1

◦xCZm1
◦xCZm1

)T ·w1/(dC+dZm
),

where xCZmi
(i = 0, 1) is the concatenation of {xC ,xZmi

} and ◦ means the Hadamard
product.

E.2.2 ADDITIONAL EXPERIMENTS

Treatment effect and prediction performance on synthetic data in terms of √
ϵPEHE and

ϵMSE . Here we report the performance of the proposed model PoNet on treatment effect estimation
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Table 4: Performance of different models on treatment effect estimation and prediction with size
N = 8000 on synthetic data, lower is better.

d = 8 d = 16 d = 24
N = 8000 √

ϵPEHE ϵMSE
√
ϵPEHE ϵMSE

√
ϵPEHE ϵMSE

OLS1 0.9682 0.3097 0.5189 0.1107 0.4265 0.0695
OLS2 0.6796 0.2235 0.4202 0.0874 0.3390 0.0515
BART 0.5826 0.0940 0.4820 0.0777 0.4169 0.0666

Causal Forest 0.4687 0.1660 0.4058 0.0839 0.3819 0.0859
CEVAE 0.7934 0.3262 0.4666 0.0906 0.4212 0.0763
GANITE 0.7821 0.1855 0.476 0.0923 0.3714 0.0592
TEDVAE 0.5574 0.0123 0.3862 0.0297 0.4843 0.0427

Tarnet 0.3335 0.0124 0.3499 0.0350 0.4140 0.0532
CFR 0.3251 0.0143 0.3527 0.0384 0.4078 0.0540

PoNet 0.2572 0.0143 0.2760 0.0151 0.3130 0.0275

Table 5: Performance of different models on treatment effect estimation and prediction with size
N = 15000 on synthetic data, lower is better.

d = 8 d = 16 d = 24
N = 15000 √

ϵPEHE ϵMSE
√
ϵPEHE ϵMSE

√
ϵPEHE ϵMSE

OLS1 0.9684 0.3079 0.5100 0.1047 0.4354 0.0743
OLS2 0.6814 0.2262 0.4063 0.0803 0.3404 0.0538
BART 0.6466 0.1391 0.4773 0.0810 0.4144 0.0721

Causal Forest 0.4588 0.1492 0.3968 0.0750 0.3732 0.0785
CEVAE 0.6921 0.2688 0.4636 0.0957 0.4155 0.0746
GANITE 0.7587 0.1652 0.4733 0.0837 0.3953 0.0677
TEDVAE 0.6056 0.0158 0.3582 0.0260 0.4064 0.0286

Tarnet 0.2949 0.0077 0.2805 0.0119 0.3780 0.0379
CFR 0.2840 0.0096 0.2950 0.0167 0.3821 0.0387

PoNet 0.2262 0.0037 0.2386 0.0067 0.2533 0.0136

and prediction comparing to other baselines on the synthetic data. We set the dimension of each
underlying factors as d = {8, 16, 24} and generate N = 8000 and 15000 samples. The experimen-
tal results on synthetic data are shown in Table 4 and 5. One can see that the performance of the
proposed model PoNet is better than that of other models in general.

Treatment effect Performance in terms of ϵATE . Here we report the error on ATE ϵATE =

| 1N
∑N

i=1(y
ti=1
i − yti=0

i − 1
N

∑N
i=1(ŷ

ti=1
i − ŷti=0

i )|. The performance on metric ϵATE is shown
in Table 6. As we can see that the proposed model PoNet outperforms the other baselines in most
cases.

How important the Reconstruction Module is. Here we show that the proposed reconstruction
module plays an important role in identifying and recovering collider post-treatment variables. In
our hypothesized causal mechanism, the collider post-treatment variables have no effect on the out-
come, thus there is lack of supervised information to guide the learning of representations of this
factor. The experiment in the section 4.2 in main body for demonstrating the capability of identifying
each underlying factor shows that the proposed model PoNet can identify the collider post-treatment
variables well. But what if there is no reconstruction module? Here we remove the reconstruction
module from the model and see what the result looks like for identifying the collider post-treatment
variables. We adopt the similar experiment setting and design as in section 4.2, the radar plots before
and after removing the reconstruction module are show in Figure 8. As we can see that the result
shows that the reconstruction module is essential for identifying and recovering the underlying factor
which is not contributed to the outcome.
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Table 6: Performance comparison in terms of ϵATE on the synthetic dataset, lower is better.
N=8000 N=15000Synthetic

d=8 d=16 d=24 d=8 d=16 d=24
LR 0.100 0.055 0.088 0.102 0.058 0.093

OLS2 0.101 0.074 0.056 0.047 0.071 0.064
BART 0.102 0.0383 0.040 0.089 0.051 0.029

Causal Forest 0.077 0.069 0.050 0.043 0.049 0.048
CEVAE 0.088 0.178 0.229 0.103 0.168 0.221

GANITE 0.121 0.082 0.066 0.083 0.144 0.111
TEDVAE 0.102 0.040 0.062 0.053 0.073 0.047

Tarnet 0.072 0.056 0.043 0.076 0.039 0.073
CFR 0.067 0.042 0.037 0.061 0.055 0.063

PoNet 0.059 0.048 0.037 0.041 0.035 0.047
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Figure 8: The radar charts for identifying Zc before and after removing the reconstruction module.

E.3 SEMI-SYNTHETIC DATA

E.3.1 DATA GENERATION PROCESS

The semi-synthetic dataset PeerRead used in this work consists of 7601 instances, associated with
1080 covariates. Each instance represents an author, the covariates of each instance are bag-of-word
representations extracted from their papers’ titles and abstracts.

We follow the semi-synthetic simulation proposed in Johansson et al. (2016). We assume the dimen-
sion of mediation post-treatment variables and collider post-treatment variables are dZm

and dZc
,

and denote the associated features as x. First we train a Latent Dirichlet Allocation (LDA) topic
model with 50 topics to map the covariates of each instance to the topic space, the topic distribution
of each instance x is denoted by z(x). Then we define two centroids, one is formulated as the aver-
age topic representations denoted by z0, another one is the topic distribution of a randomly sampled
instance ,denoted by z1. The treatment assignment policy can be defined as follows:

∆(T |z(x)) = ekz
T
1 z(x)

ekz
T
1 z(x) + ekz

T
0 z(x)

, (19)

where k controls the magnitude of the confounding bias. The treatment assignment of each instance
is generated by the Bernoulli distribution with the above parameter. Then we generate the post-
treatment factors based on the treatment assignment policy:

(1) Draw N = 7601 with the size dZm from the Gaussian distribution N (µZm0 ,ΣZm0) to form the
mediation post-treatment factors xZm0 for treatment T = 0; draw N = 7601 with the size dZm

from the Gaussian distribution N (µZm1
,ΣZm1

) to form the mediation post-treatment factors xZm1

for treatment T = 1;

(2) Draw N = 7601 with the size dZc from the Gaussian distribution N (µZc0 ,ΣZc0) to form the
mediation post-treatment factors xZc0 for treatment T = 0; draw N = 7601 with the size dZc
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(a) analysis for α, d = 50
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(b) analysis for α, d = 100

0.0001 0.001 0.01 0.1 1 10
weight of MI

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

PE
H

E

PEHE

MSE

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

M
SE

(c) analysis for α, d = 200

0.0001 0.001 0.01 0.1 1 10
weight of Reconstruction

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

PE
H

E

PEHE

MSE

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

M
SE

(d) analysis for β, d = 50
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(e) analysis for β, d = 100
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(f) analysis for β, d = 200
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(g) analysis for γ, d = 50
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(h) analysis for γ, d = 100
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(i) analysis for γ, d = 200

Figure 9: Hyper-parameter analysis to explore the impacts of different weights of mutual informa-
tion regularizer, reconstruction module, and confounder balancing module.

from the Gaussian distribution N (µZc1 ,ΣZc1) to form the mediation post-treatment factors xZc1

for treatment T = 1;

(3) According to the generated treatment assignments, simulate the observed mediation and collider
post-treatment variables as xZm

and xZc
from the formed {xZm0

,xZm1
} and {xZc0

,xZc1
}. Then

combine the observed features x, generated mediation post-treatment variables xZm
and collider

post-treatment variables xZc
as the covariates.

(4) The simulation of the potential outcome can be formulated as follows:

y0 = C · (kzT
0 z(x)) +wT

0 · (xZm0
◦ xZm0

)/dZm
+ ϵ,

y1 = C · (kzT
1 z(x) + kzT

0 z(x)) +wT
1 · (xZm1

◦ xZm1
◦ xZm1

)/dZm
+ ϵ,

(20)

where C is the scaling factor, w0 and w1 are the coefficients draw from the distribution N (1, 1) and
ϵ is the white noise draw from the distribution N (0, 1).

E.3.2 ADDITIONAL EXPERIMENTS

Performance in terms of ϵATE . Here we report the error on ATE ϵATE . The performance on
metric ϵATE is shown in Table 7. As we can see that the proposed model PoNet outperforms the
other baselines.

Performance comparison when removing the post-treatment bias.

Hyper-parameter Study. In this section, we perform a comprehensive hyper-parameter study to ex-
plore the impact of different parameter settings on the performance of our model. Hyper-parameters
play a crucial role in machine learning algorithms as they control the behavior and flexibility of the
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Table 7: Performance comparison in terms of ϵATE on the semi-synthetic dataset, lower is better.
Semi-synthetic PeerRead d=50 d=100 d=200

LR 0.405 ± 0.164 0.317 ± 0.343 1.140 ± 0.785
OLS2 0.147 ± 0.067 0.363 ± 0.074 0.723 ± 0.108
BART 0.209 ± 0.089 0.445 ± 0.241 1.253 ± 0.613

Causal Forest 0.172 ± 0.066 0.386 ± 0.183 0.938 ± 0.390
CEVAE 0.415± 0.079 0.544± 0.125 0.761±0.357

GANITE 1.740 ± 0.390 1.748 ± 0.243 0.506 ± 0.396
TEDVAE 0.339 ± 0.169 0.399 ± 0.314 0.599 ± 0.639

Tarnet 1.018 ± 0.210 0.498 ± 0.198 0.757 ± 0.246
CFR 1.045 ± 0.181 0.544 ± 0.220 0.706 ± 0.233

PoNet 0.125 ± 0.058 0.131 ± 0.077 0.138 ± 0.137

Table 8: Estimation performance comparison when removing post-treatment bias on semi-synthetic
PeerRead. √

ϵPEHE ϵATE ϵMSE

LR 2.718 ± 1.076 0.206 ± 0.089 6.647 ± 4.495
OLS2 2.279 ± 0.852 0.102 ± 0.113 6.403 ± 4.352
BART 2.736 ± 1.095 0.492 ± 0.261 6.534 ± 5.020

Causal Forest 2.440 ± 1.011 0.264 ± 0.142 7.082 ± 5.772
GANITE 2.471 ± 1.057 0.821 ± 0.294 8.124 ± 5.663
CEVAE 2.677 ± 0.350 0.505 ± 0.118 2.344 ± 0.204

TEDVAE 1.943 ± 1.023 0.302 ± 0.370 5.318 ± 5.306
Tarnet 2.307 ± 0.586 0.145 ± 0.139 5.503 ± 2.432
CFR 2.117 ± 0.433 0.199 ± 0.115 5.269 ± 1.858

PoNet 1.516 ± 0.463 0.114 ± 0.045 2.750 ± 1.142

model. We consider a range of hyperparameters that are known to influence the model’s perfor-
mance, including the weight α of mutual information minimization regularizer (MIMR), weight β
of the reconstruction module and the weight γ of the confounder balancing module.

To systematically investigate their effects, we design a set of experiments where each hyper-
parameter is varied independently while keeping others fixed at their default values. We vary the
three hyper-parameters to range in {0.0001, 0.001, 0.01, 0.1, 1, 10}. We report the hyper-parameter
analysis in terms of

√
ϵPEHE and ϵMSE on different dimension settings of the post-treatment vari-

ables. The results are as shown in Figure 9. The experimental results indicate that the model ex-
hibits low sensitivity to the chosen hyperparameters. Specifically, varying the hyperparameter values
within the tested range did not have a significant impact on the model’s performance. These find-
ings suggest that the model’s robustness allows for a wide range of hyperparameter settings without
compromising its performance. Still, the performance of the model is relatively better when these
hyperparameters range in {0.0001, 0.001, 0.01}.

E.4 REAL-WORLD DATA

E.4.1 THE AVERAGE TREATMENT EFFECT UNDER DIFFERENT ESTIMATOR

In this section, we introduce several common estimators for estimating ATE from observed real-
world data, namely the Difference-in-Mean Estimator, IPW (inverse propensity weighting) estima-
tor, and Doubly-Robust (DR) estimator, to check how much the difference in terms of ATE and
CATE obtained by different estimators is.

The difference-in-Mean Estimator (Bon et al.) for ATE is defined as:

ˆATEDiff =
1

m

∑
i:Ti=1

Yi −
1

k

∑
i:Ti=0

Yi, (21)

where m and k are the number of treated and control group, respectively.
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Figure 10: The distribution KDE plot of the representations of three different real-world factors.

The IPW estimator (Bon et al.) for ATE is defined as:

ˆATEIPW =
1

N

N∑
i=1

Y ∗
i

with Yi = Yi(
Ti

wi
− 1− Ti

1− wi
),

(22)

where wi is the propensity score of sample i, which could be calculated by logistic regression, Yi∗
is an unbiased estimator of the CATE according to (Athey & Imbens, 2015).

The Doubly-Robust (DR) estimator (Bon et al.) is defined as:

ˆATEDR =
1

N

N∑
i=1

ϕ∗
i ,

with ϕ∗
i = µ̂1(xi)− µ̂0(xi) + T

Yi − µ̂1(xi)

w(xi)
− (1− T )

Yi − µ̂0(xi)

1− w(xi)
,

(23)

where µ̂1(xi) and µ̂0(xi) are the preliminary estimations of the response surfaces for the treated
and control groups, which can be calculated by any regression model (e.g., we can utilize linear
regression to get µ̂1(xi)) by training on the samples with T = 1), w(xi) is the propensity score for
xi. And the estimator ϕ∗

i = µ̂1(xi)− µ̂0(xi) + T Yi−µ̂1(xi)
w(xi)

− (1− T )Yi−µ̂0(xi)
1−w(xi)

is also proven to be
another unbiased estimator for CATE (Athey & Imbens, 2015).

First, we report the ATE estimation on real-world data in two different time steps of the data in Table
9 to check their difference: From the results in the table we can see that in fact the difference in the

Table 9: Estimated ATE under different Estimator on real-world dataset.
Estimator t1 t2

Difference-in-Mean -0.268 -0.448
IPW Estimator -0.183 -0.256

Double Robust Estimator -0.545 -0.538

estimated ATE between different estimators is still quite significant, even for the so-called unbiased
IPW estimator and Double Robust estimator.

Furthermore, regarding the IPW and Double Robust estimator, we know that their definitions allow
for the estimation of CATE for each sample. We are also interested in comparing the differences
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(b) CATE distribution on time step t = 2 data

Figure 11: CATE distribution on time step t = 1 and t = 2 on MIMIC III.

in CATE estimated by these two estimators. Therefore, we recorded the CATE for every sample
in real-world data estimated by these two estimators and used kernel density estimation to plot the
distribution of CATE estimated by them (fitting with Gaussian distribution). The results are shown
in Figure 11. It is evident that even for these two unbiased CATE estimators, there is a noticeable
difference in the distribution of estimated CATE for the same group of samples. This analysis
informs practitioners in the field of causal inference that when estimating causal effects on real-
world data, it is necessary to use different causal effect estimators to verify the effectiveness of the
methods from multiple perspectives.

E.4.2 CASE STUDY

In this study, we present a real-world case study to assess the effectiveness of our proposed model,
PoNet, in identifying and distinguishing different factors, including confounders, mediation post-
treatment variables, and collider post-treatment variables. To demonstrate this, we utilize a real-
world case extracted from the MIMIC III dataset. Through a thorough examination of the covariates
in the MIMIC III dataset, guided by domain knowledge, we successfully identified the correspond-
ing confounder, mediation, and collider post-treatment variables. Figure 12 illustrates the identified
variables in our case study. Specifically, we observed that the patient’s systemic vascular resis-
tance is influenced by the use of vasopressors (Treatment), which subsequently impacts the patient’s
blood pressure (outcome). Consequently, the systemic vascular resistance can be classified as a
mediation post-treatment variable. Similarly, we discovered that the patient’s heart rate is also af-
fected by the use of vasopressors, and affected by an unmeasured variable health status . However,
there is no evidence indicating a direct causal relationship between heart rate and the patient’s blood
pressure. Hence, heart rate is categorized as a collider post-treatment variable. Additionally, we
found that age plays a dual role as it not only influences the likelihood of a patient using vaso-
pressors but also affects blood pressure. Therefore, age is considered a confounder in this context.
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Figure 12: Real-world case causal relationship.

Once the PoNet model is trained using the train-
ing data, we proceed to the inference phase on
the test data. During this phase, we selectively
mask off the covariates other than age, vascu-
lar resistance, and heart rate. This involves
setting the values of the remaining covariates
to 0, resulting in three separate batches of test
data, each containing only one of the aforemen-
tioned non-zero covariates. These batches are
then fed into the trained PoNet model for infer-
ence. Then we can obtain the representations
of C (confounder), Zm (mediation post-treatment), and Zc (collider post-treatment) for the three
masked test data sets. Subsequently, we concatenate the representations of C, Zm, and Zc and em-
ploye t-SNE to reduce the dimensionality of these representations for each batch. By doing so, we
are able to generate a KDE (Kernel Density Estimation) plot that visually depict the relationships be-
tween the variables of interest. These plots as shown in Figure 10 provide valuable insights into the
distribution of the representations of the covariates under investigation. By the masking operation,
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we can see that the distributions of the three real-world covariates are different and separated from
each other, which means the three different fators (confounder, mediation post-treatment variable
and collider mediation post-treatment variable) can be identified and distinguished by the proposed
model PoNet.

By thoroughly examining and categorizing these factors, we demonstrate the capability of PoNet in
identifying and distinguishing different types of variables in causal analysis. This case study exem-
plifies the practical relevance of our model and highlights the importance of accurate identification
and understanding of confounders, mediation and collider post-treatment variables for successful
causal inference.

F LIMITATIONS

One of the limitations in this work, is that in some extreme scenarios, such as when there is only
a single covariate, PoNet might not perform optimally. This limitation arises from PoNet’s design,
which separates out three distinct types of factors from the covariates. In such extreme cases, our
model might not be as effective, but it is important to note that this limitation is not unique to PoNet
and applies to other popular causal estimation methods as well. Practitioners should carefully con-
sider the nature of their data and the specific requirements of their research context when choosing
a causal estimation method, potentially utilizing alternative approaches as necessary.

Another limitation of this study is our assumption that the mediation and collider post-treatment vari-
ables are entirely independent. Our theoretical analysis suggests that to mitigate post-treatment bias,
we should condition on mediation post-treatment variables while excluding collider post-treatment
variables in the inference policy. However, it is possible for certain post-treatment variables to act
as both mediators and colliders simultaneously. This duality introduces the risk of collider post-
treatment bias when they are included as conditioning factors in inference, and mediation post-
treatment bias when they are not. Consequently, further exploration is warranted in this area. It is
crucial to investigate whether there are more theoretically sound strategies to effectively eliminate
such biases or to determine the prevalence of dual-type post-treatment variables in real-world set-
tings and carefully select the scenarios for application, thereby offering more insightful guidance to
practitioners.
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