
A Tabular Experiments

Garnet MDP. Our version of the Garnet MDP is implemented as follows. An unnormalised
transition matrix is sampled from U |S|×|A|×|S|(0, 1). For each state, we choose uniformly 1 to |S|
states to be used as successors, the rest have their corresponding entries in the transition matrix
set to zero. The matrix is then normalised. The deterministic reward function is sampled from
N |S|×|A|(0, 1).

Hyperparameters. The hyperparameters for our tabular experiments are given in Table 1. αTD
was chosen from {0.01, 0.03, 0.1, 0.3} for achieving the lowest final value error for the model-free
baseline. αMLE and αVE were chosen from {0.1, 0.3, 1.0, 3.0} for achieving the lowest final value
error for Dyna. αSC-VE and αSC-MLE were chosen from a multiplier {0.1, 0.3, 1.0, 3.0, 10.0} of the
base model learning rate, for achieving the lowest final value error over all SC variants.

Table 1: Tabular experiment parameters.

PARAMETER VALUE

|S| 20
|A| 4
Discount 0.99
ε (for control) 0.1
Batch size 8
p̂ initialisation logDirichlet(1)
r̂ initialisation N (0, 1)
v̂ initialisation N (0, 1)
K 2
αTD 0.03
αMLE 1.0
αVE 3.0
αSC-MLE 10.0
αSC-VE 0.3

B Deep RL Experiments.

B.1 Environments

Atari. The Atari suite consists of various discrete-action video games. The Atari configuration
used is described in Table 2, following the recommendations of Machado et al. [34].

Table 2: Atari parameters. In general, we follow the recommendations by Machado et al. [34].

PARAMETER VALUE

Random modes and difficulties No
Sticky action probability ς 0.25
Start no-ops 0
Life information Not allowed
Action set 18 actions
Max episode length 30 minutes (108,000 frames)
Observation size 96× 96
Action repetitions 4
Max-pool over last N action repeat frames 4
Total environment frames, including skipped frames 200M

Sokoban. Sokoban is a single player puzzle game where a player’s avatar can push N boxes (up
down left or right) around a procedurally generated warehouse, attempting to get to a state where
each box is situated on one of N target storage locations. Our Sokoban environment uses a 10x10
grid. Levels are generated using the procedure described by Racanière et al. [43].

16

Go. Go is a two player abstract-strategy board game where the goal is to surround more territory
on a NxN (in our case 9x9) board by placing black or white stones on the intersections of the board.
For our Go experiments we evaluated against Pachi [5] configured with 10,000 simulations.

B.2 Muesli.

Our deep RL experiments are based on the Muesli algorithm. For convenience, we provide some of
the algorithmic details here, but refer the reader to Hessel et al. [25] for a comprehensive description.

The reward, value, and policy losses from equation 2 use a cross-entropy loss. To do so, the reward
and value function are represented by a categorical distribution over 601 linearly spaced bins covering
the range -300 to 300. Scalar targets are transformed into a probability distribution by placing the
appropriate weight on the two nearest bins (e.g. 1.3 is represented with p(1) = 0.7, p(2) = 0.3).
Rewards and values also use the non-linear value transform introduced by Pohlen et al. [41]. The value
targets are computed by using the model to estimate Q-values with one-step lookahead and using
Retrace [37]. The policy targets are also computed with one-step Q-values. A state-value baseline
is subtracted to compute advantages, which are clipped in [-1, 1], exponentiated, and normalised to
produce a target πtarget = πCMPO given by

πCMPO(a|s) =
πprior(a|s) exp

(
clip(ˆadv(s, a),−c, c)

)
zCMPO(s)

, (8)

where zCMPO(s) is a normaliser such that πCMPO is a probability distribution.

Muesli also uses a policy gradient loss which does not update the model, using advantages estimated
from rollouts. When stated in the main text, we disable this part of the loss to highlight the effect of
self-consistency on the model.

B.3 Experimental details.

We use a Sebulba distributed architecture [26] to run the deep RL experiments. Our hyperparameters
are given in Table 2, following by default the choices of Muesli [25] except for the replay buffer
size and proportion of replay in a batch. We found our hyperparameters more stable in some early
investigations but did not comprehensively verify the impact of these changes. We use the smaller
“Impala” network architecture also given by Hessel et al. [25]. For self-consistency, we did not use
the moving-average target parameters (this was found to not have a large effect).

For Sokoban, we used a replay proportion of only 6/60 to accelerate the wall-clock time of experiments.
For Go, we used a discount of -1, and online data only, in order to perform symmetric self-play. The
additional changes to the hyperparameters for Go are shown in Table 4.

In our experiments on the representation learning effect of self-consistency (Section 5), we trained
an actor-critic agent as a baseline. To do so we set the weight on `π and `r in equation 2 to zero,
and computed `v only for k = 0, which does not use the model. For vtarget we bootstrap using
value estimates without the one-step model expansion. This baseline does not use a model in any
way. To use a VE model as an auxiliary task, we add back in `r and `v for k > 0. Note that Muesli
uses separate parameters for v at k = 0 and k > 0, so this value update does not directly affect the
model-free k = 0 value which is used for the policy gradient estimate. Consequently, this is purely
an auxiliary task. Similarly, the auxiliary self-consistency objective, when enabled, does not affect
policy updates except through the shared representation.

The experiments reported in this paper required approximately 50k TPU-v3 device-hours. A compa-
rable amount of computation was used for other preliminary investigations over the course of the
project.

B.4 Additional experimental data.

To compute a normalised AUC in the main text, we used the minimum episode return recorded for
each environment to compute a minimum AUC, and the maximum average AUC over all methods as a
maximum. In Figure 6, we include full learning curves for the experiments which were summarised by

17

Table 3: Default hyperparameters for deep RL experiments.

HYPERPARAMETER VALUE

Batch size 60 sequences
Sequence length 30 frames
Model unroll length 5
Replay proportion in a batch 52/60
Replay buffer capacity 9,000,000 frames
Optimiser Adam
Initial learning rate 3× 10−4

Final learning rate (linear decay) 0
Discount 0.995
Target network update rate αtarget 0.1
Value loss weight 0.25
Reward loss weight 1.0
Policy gradient loss weight (Atari only) 3.0
Retrace EA∼π[q̂π(s, a)] estimator 16 samples
KL(πCMPO, π) estimator 16 samples
Variance moving average decay βvar 0.99
Variance offset εvar 10−12

SC unroll length K 3
SC loss weight 0.25

Table 4: Modified hyperparameters for 9x9 Go self-play experiments.

HYPERPARAMETER VALUE

Network architecture MuZero net with 6 ResNet blocks
Batch size 192 sequences
Sequence length 49 frames
Replay proportion in a batch 0%
Initial learning rate 2× 10−4

Target network update rate αtarget 0.01
Discount -1 (self-play)
Multi-step return estimator V-trace
V-trace λ 0.99

AUC in the main text. Figure 6d also shows a “Model Only” SC update, to contrast with Dyna which
only updates the value parameters. We found this performed comparably to a joint update of model
and value, indicating the importance of updating model and representation with self-consistency in
this setting.

We also investigated the effect of the length of the model rollout used in calculating the self-
consistency loss. As in traditional model-based planning, we expect that if the model is rolled out
too far, updates using it will become worse as errors compound. The results are shown in Figure 7,
confirming that self-consistency degrades performance if applied over a longer unroll than used in
the grounded model-learning update (5 steps in our experiments).

18

Original actions = =0.5 Avoid a0 Latent noise, = Latent noise, =0.5

0 100M 200M

10

5

0

5

Av
g.

 e
pi

so
de

 r
et

ur
n

sokoban

0 100M 200M

8k

16k

24k

alien

0 100M 200M
0

10k

20k

30k

assault

0 100M 200M
0

10k

20k

30k

asteroids

0 100M 200M

15k

30k

45k wizard

0 100M 200M

15k

30k

45k

zaxxon

Number of frames

(a) Avg Episode Return vs number of frames for sokoban (leftmost) and a subset of atari games.
0.05 0.1 0.5 1.0 2.0

0 100M 200M

10

5

0

5

Av
g.

 e
pi

so
de

 r
et

ur
n

sokoban

0 100M 200M

8k

16k

24k alien

0 100M 200M
0

8k

16k

24k

assault

0 100M 200M

5k

10k

15k

asteroids

0 100M 200M

15k

30k

wizard

0 100M 200M

15k

30k

zaxxon

Number of frames

(b) Different rollout ratios of imagined vs. real trajectories.

PG + VE Aux + SC Aux

0 100 M 200 M
0

5 k

10 k

15 k

Av
g.

 e
pi

so
de

 r
et

ur
n

alien

0 100 M 200 M

2 k

4 k

6 k assault

0 100 M 200 M
0

15 k

30 k

asteroids

0 100 M 200 M
0

6 k

12 k

18 k
wizard

0 100 M 200 M
0

4 k

8 k

12 k

zaxxon

Number of frames

(c) SC as an auxiliary task.

Baseline Dyna SC-Direct (Model Only) SC-Direct SC +latent noise + =0.5

0 100 M 200 M

8 k

16 k

24 k

Av
g.

 e
pi

so
de

 r
et

ur
n alien

0 100 M 200 M
0

10 k

20 k

30 k
assault

0 100 M 200 M0

10 k

20 k

30 k
asteroids

0 100 M 200 M

15 k

30 k

wizard

0 100 M 200 M

15 k

30 k

zaxxon

0 100 M 200 M

10

5

0

5 sokoban

Number of frames

(d) Self-consistency results on Atari57 and Sokoban for different updates. Baseline does not impose SC, Dyna
learns a SC value only, SC-Model learns a SC model only and SC-Direct and SC-Direct (Tuned) update both
model and value.

Figure 6: Full learning curves for ablations summarised in the text.

Figure 7: Varying the length K of the rollout used to compute the self-consistency loss with SC-Direct.
Performance degrades after about 5 model unrolls (the grounded model-learning unrolls for 5 steps).

19

