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Supplementary Materials

A DETAILS OF ALGORITHM 1

Algorithm 3 Q-learning with min-gap based reference-advantage decomposition

1: Initialize: Set all accumulators to 0. For all (s, a, b, h) ∈ S×A×B× [H], set V h(s), Qh(s, a, b)

to H − h+ 1, set V
ref

h (s) to H , set V h(s), Qh
(s, a, b), V ref

h (s, a, b) to 0; and

2: let πh(s) ∼ Unif(A)×Unif(B), ∆(s, h) = H , Ṽ h(sh) = H , Ṽ h(sh) = 0.
3: for episodes k ← 1, 2, . . . ,K do
4: Observe s1.
5: for h← 1, 2, . . . ,H do
6: Take action (ah, bh)← πh(sh), receive rh(sh, ah, bh), and observe sh+1.
7: Update accumulators n := Nh(sh, ah, bh)

+← 1, ň := Ňh(sh, ah, bh)
+← 1 and (5)-(9).

8: if n ∈ L then
9: γ ← 2

√
H2

ň ι.

10: β ← c1

√
σref/n−(µref/n)2

n
ι+ c2

√
σ̌/ň−(µ̌/ň)2

ň
ι+ c3(

Hι
n

+ Hι
ň

+ Hι3/4

n3/4 + Hι3/4

ň3/4 ).

11: β ← c1

√
σref/n−(µref/n)2

n
ι+ c2

√
σ̌/ň−(µ̌/ň)2

ň
ι+ c3(

Hι
n

+ Hι
ň

+ Hι3/4

n3/4 + Hι3/4

ň3/4 ).

12: Qh(sh, ah, bh)← min{rh(sh, ah, bh)+
v̌
ň
+γ, rh(sh, ah, bh)+

µref

n
+ µ̌

ň
+β,Qh(sh, ah, bh)}.

13: Q
h
(sh, ah, bh)← max{rh(sh, ah, bh)+

v̌
ň
−γ, rh(sh, ah, bh))+

µref

n
+

µ̌

ň
−β,Q

h
(sh, ah, bh)}.

14: πh(sh)← CCE(Q(sh, ·, ·), Qh
(sh, ·, ·)).

15: V h(sh)← E(a,b)∼πh(sh)Qh(sh, a, b), and V h(sh)← E(a,b)∼πh(sh)Qh
(sh, a, b).

16: Reset all intra-stage accumulators to 0.
17: if V h(sh)− V h(sh) < ∆(s, h) then
18: ∆(s, h) = V h(sh)− V h(sh).

19: Ṽ h(sh) = V h(sh), Ṽ h(sh) = V h(sh).
20: if

∑
a,bNh(sh, a, b) = N0 then

21: V
ref

h (sh)← Ṽ h(sh), V ref
h (sh)← Ṽ h(sh).

Algorithm description. Let c1, c2, c3 be some sufficiently large universal constants so that the
concentration inequalities can be applied in the analysis. Besides the standard optimistic and
pessimistic value estimates Qh(s, a, b), V h(s), Qh

(s, a, b), V h(s), and the reference value functions

V
ref

h (s), V ref
h (s), the algorithm keeps multiple different accumulators to facilitate the update: 1)

Nh(s, a, b) and Ňh(s, a, b) are used to keep the total visit number and the visits counting for the
current stage with respect to (s, a, b, h), respectively. 2) Intra-stage accumulators are used in the latest
stage and are reset at the beginning of each stage. The update rule of the intra-stage accumulators are
as follows:

v̌h(sh, ah, bh)
+← V h+1(sh+1), v̌h(sh, ah, bh)

+← V h+1(sh+1), (5)

µ̌h(sh, ah, bh)
+← V h+1(sh+1)− V

ref
h+1(sh+1), µ̌

h
(sh, ah, bh)

+← V h+1(sh+1)− V ref
h+1(sh+1), (6)

σ̌h(sh, ah, bh)
+← (V h+1(sh+1)− V

ref
h+1(sh+1))

2, σ̌h(sh, ah, bh)
+← (V h+1(sh+1)− V ref

h+1(sh+1))
2. (7)

3) The following global accumulators are used for the samples in all stages:

µref
h (sh, ah, bh)

+← V
ref

h+1(sh+1), µref
h

(sh, ah, bh)
+← V ref

h+1(sh+1), (8)

σref
h (sh, ah, bh)

+← (V
ref

h+1(sh+1))
2, σref

h (sh, ah, bh)
+← (V ref

h+1(sh+1))
2. (9)

All accumulators are initialized to 0 at the beginning of the algorithm. The algorithm set ι = log(2/δ),
β = O(1/H) and N0 = c4SABH

5/β2 for some sufficiently large universal constant c4.
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B COMPARISON TO EXISTING ALGORITHMS

Compare to Optimistic Nash Q-learning [5]. The Optimistic Nash Q-learning is a model-free
Q-learning algorithm for two-player zero-sum Markov games. The algorithm design differences
between our algorithm and the optimistic Nash Q-learning is two-fold. First, we adopt the stage-based
design instead of traditional Q-learning updateQnew ← (1−α)Qold+α(r+V ). The optimistic Nash
Q-learning updates the value function with a learning rate, while our algorithm adopts greedy update.
We remark that both frameworks are viable, and in our opinion, the stage-based design is easier to
follow and analyse. Second, we propose a novel min-gap based reference-advantage decomposition, a
variance reduction technique, to further improve the sample complexity. Specifically, we use both the
standard update rule and the advantage-based update rule in our action-value function (Q function)
while the optimistic Nash Q-learning only uses the standard update rule.

Aside from the obvious distinction of the proofs caused by stage-based design, the main difference
is the analysis for the advantage-based update rule, which does not show up in the optimistic Nash
Q-learning. Due to the incorporation of the new min-gap based reference-advantage decomposition
technique, several new error terms arise in our analysis. Our main development lies in establishing
a few new properties on the cumulative occurrence of the large V-gap and the cumulative bonus
term, which enable the upper-bounding of those new error terms. More specifically, as we explain in
our proof outline in Section 4.2, our analysis include the following novel developments. (i) Step I
shows that the Nash equilibrium (action-)value functions are always bounded between the optimistic
and pessimistic (action-)value functions (see Lemma 4.3). Our new technical development here lies
in proving the inequality with respect to the action-value function, whose update rule features the
min-gap reference-advantage decomposition. (ii) Step II shows that the reference value can be learned
with bounded sample complexity (see Lemma 4.4). Our new development here lies in handling an
additional martingale difference arising due to the CCE oracle. (iii) In step IV, there are a few new
developments. First, we need to bound both the optimistic and pessimistic accumulative bonus terms,
and the analysis is more refined compared to that for single-agent RL. Second, the analysis of the
optimistic accumulative bonus term need to handle the CCE oracle together with the new min-gap
base reference-advantage decomposition for two-player zero-sum Markov game.

Compare to UCB-advantage [40]. The UCB-advantage is a model-free algorithm with reference-
advantage decomposition for single-agent RL. Our main novel design idea lies in the min-gap
based advantage reference value decomposition. Unlike the single-agent scenario, the optimistic (or
pessimistic) value function in Markov games does not necessarily preserve the monotone property
due to the nature of the CCE oracle. In order to obtain the “best" optimistic and pessimistic value
function pair, we propose the key min-gap design to update the reference value functions as the pair
of optimistic and pessimistic value functions whose value difference is the smallest (i.e., with the
minimal gap) in the history. It turns out that such a design is critical to guarantee the provable sample
efficiency.

For the proof techniques, there are the fundamental differences between single-agent RL and two-
player zero-sum games. Thanks to the key min-gap based reference-advantage decomposition, we
provide a new guarantee for the learned pair of reference value (Corollary 4.5) in the context of
two-player zero-sum Markov games, which is crucial in obtaining an optimal horizon dependence.

C NOTATIONS

For any function f : S 7→ R, we use Ps,a,bf and (Phf)(s, a, b) interchangeably. Define V(x, y) =
x⊤(y2) − (x⊤y)2 for two vectors of the same dimension, where y2 is obtained by squaring each
entry of y.

For ease of exposition, we define νref,kh =
σref,k
h

nk
h

− (
µref,k
h

nk
h

)2, νref,kh =
σref,k
h

nk
h

− (
µref,k

h

nk
h

)2 and

ν̌
k
h =

σ̌
k
h

ňk
h

− (
µ̌
k
h

ňk
h

)2, ν̌kh =
σ̌k
h

ňk
h

− (
µ̌k

h

ňk
h

)2. Moreover, we define ∆k
h = V

k

h(s
k
h) − V

k
h(s

k
h) and ζkh =

∆k
h − (Q

k

h −Q
k

h
)(skh, a

k
h, b

k
h). For convenience, we also define λkh(s) = 1

{
nkh(s) < N0

}
.

For certain functions, we use the superscript k to denote the value of the function at the beginning
of the k-th episode, and use the superscript K + 1 to denote the value of the function after all K
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episodes are played. For instance, we denote Nk
h (s, a, b) as the value of Nh(s, a, b) at the beginning

of the k-th episode, and NK+1
h (s, a, b) to denote the total number of visits of (s, a, b) at step h after

K episodes. When it is clear from the context, we omit the subscript h and the superscript k for
notational convenience. For example, we use ℓi and ℓ̌i to denote ℓkh,i and ℓ̌kh,i when it is obvious what
values that the indices h and k take.

D NOTATIONS

For any function f : S 7→ R, we use Ps,a,bf and (Phf)(s, a, b) interchangeably. Define V(x, y) =
x⊤(y2) − (x⊤y)2 for two vectors of the same dimension, where y2 is obtained by squaring each
entry of y.

For ease of exposition, we define νref,kh =
σref,k
h

nk
h

− (
µref,k
h

nk
h

)2, νref,kh =
σref,k
h

nk
h

− (
µref,k

h

nk
h

)2 and

ν̌
k
h =

σ̌
k
h

ňk
h

− (
µ̌
k
h

ňk
h

)2, ν̌kh =
σ̌k
h

ňk
h

− (
µ̌k

h

ňk
h

)2. Moreover, we define ∆k
h = V

k

h(s
k
h) − V

k
h(s

k
h) and ζkh =

∆k
h − (Q

k

h −Q
k

h
)(skh, a

k
h, b

k
h). For convenience, we also define λkh(s) = 1

{
nkh(s) < N0

}
.

For certain functions, we use the superscript k to denote the value of the function at the beginning
of the k-th episode, and use the superscript K + 1 to denote the value of the function after all K
episodes are played. For instance, we denote Nk

h (s, a, b) as the value of Nh(s, a, b) at the beginning
of the k-th episode, and NK+1

h (s, a, b) to denote the total number of visits of (s, a, b) at step h after
K episodes. When it is clear from the context, we omit the subscript h and the superscript k for
notational convenience. For example, we use ℓi and ℓ̌i to denote ℓkh,i and ℓ̌kh,i when it is obvious what
values that the indices h and k take.

E PROOF OF THEOREM 4.1

In this section, we provide the proof of Theorem 4.1, which consists of four main steps and one final
step. In order to provide a clear proof flow here, we defer the proofs of the main lemmas in these
steps to later sections (i.e., Appendix F-Appendix I).

We start by replacing δ by δ/poly(H,T ), and it suffices to show the desired bound for V †,νout

1 (s1)−
V µout,†
1 (s1) with probability 1− poly(H,T )δ.

Step I: We show that the Nash equilibrium (action-)value functions are always bounded between the
optimistic and pessimistic (action-)value functions.
Lemma E.1 (Restatement of Lemma 4.3). Let δ ∈ (0, 1). With probability at least 1− 2T (2H2T 3 +
7)δ, it holds that for any s, a, b, k, h,

Qk

h
(s, a, b) ≤ Q∗

h(s, a, b) ≤ Q
k

h(s, a, b),

V k
h(s) ≤ V ∗

h (s) ≤ V
k

h(s).

The proof of Lemma E.1 is provided in Appendix F. The new technical development lies in proving
the inequality with respect to the action-value function, whose update rule features the min-gap
reference-advantage decomposition.

Step II: We show that the occurrence of the large V-gap has bounded sample complexity independent
of the number of episodes K.
Lemma E.2 (Restatement of Lemma 4.4). With probability 1−O(Tδ), it holds that

K∑
k=1

1{V k

h(s
k
h)− V

k
h(s

k
h) ≥ ϵ} ≤ O(SABH5ι/ϵ2).

The proof is provided in Appendix G.

By the selection of the reference value functions, Lemma E.2 with ϵ setting to β, and the definition of
N0, we have the following corollary.
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Corollary E.3 (Restatement of Corollary 4.5). Conditioned on the successful events of Lemma E.1
and Lemma E.2, for every state s, we have

nkh(s) ≥ N0 =⇒ V
ref,k

h (s)− V ref,k
h (s) ≤ β.

Step III: We bound
∑K

k=1(V
k

1 − V
k
1)(s1). Compared to single-agent RL, the CCE oracle leads to a

possibly mixed policy and we need to bound the additional term due to the CCE oracle.

Recall the definition of ∆k
h = V

k

h(s
k
h)− V

k
h(s

k
h) and ζkh = ∆k

h − (Q
k

h −Q
k

h
)(skh, a

k
h, b

k
h). Following

the update rule, we have

∆k
h = ζkh + (Q

k

h −Q
k

h
)(skh, a

k
h, b

k
h)

≤ ζkh +H1{nkh = 0}+ 1

nkh

nk
h∑

i=1

V
ref,ℓi
h+1 (sℓih+1)−

1

nkh

nk
h∑

i=1

V ref,ℓi
h+1 (sℓih+1)

+
1

ňkh

ňk
h∑

i=1

(V
ℓ̌i
h+1 − V

ref,ℓ̌i
h+1 )(sℓ̌ih+1)−

1

ňkh

ňk
h∑

i=1

(V ℓ̌i
h+1 − V

ref,ℓ̌i
h+1 )(sℓ̌ih+1) + β

k

h + βk

h

≤ ζkh +H1{nkh = 0}+ 1

nkh

nk
h∑

i=1

Pskh,a
k
h,b

k
h,h
V

ref,ℓi
h+1 −

1

nkh

nk
h∑

i=1

Pskh,a
k
h,b

k
h,h
V ref,ℓi

h+1

+
1

ňkh

ňk
h∑

i=1

Pskh,a
k
h,b

k
h,h

(V
ℓ̌i
h+1 − V

ref,ℓ̌i
h+1 )− 1

ňkh

ňk
h∑

i=1

Pskh,a
k
h,b

k
h,h

(V ℓ̌i
h+1 − V

ref,ℓ̌i
h+1 ) + 2β

k

h + 2βk

h

(10)

= ζkh +H1{nkh = 0}+ Pskh,a
k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

V
ref,ℓi
h+1 −

1

ňkh

ňk
h∑

i=1

V
ref,ℓ̌i
h+1


− Pskh,a

k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

V ref,ℓi
h+1 −

1

ňkh

ňk
h∑

i=1

V ref,ℓ̌i
h+1

+ Pskh,a
k
h,b

k
h,h

1

ňkh

ňk
h∑

i=1

(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)
+ 2β

k

h + 2βk

h

≤ ζkh +H1{nkh = 0}+ Pskh,a
k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

V
ref,ℓi
h+1 − V

REF

h+1


− Pskh,a

k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

V ref,ℓi
h+1 − V

REF
h+1

+ Pskh,a
k
h,b

k
h,h

1

ňkh

ňk
h∑

i=1

(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)
+ 2β

k

h + 2βk

h

(11)

= ζkh +H1{nkh = 0}+ 1

ňkh

ňk
h∑

i=1

∆ℓ̌i
h+1 + Λk

h+1, (12)

where we define

Λk
h+1 = ψk

h+1 + ξkh+1 + 2β
k

h + 2βk

h
,

ψk
h+1 = Pskh,a

k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

(
V

ref,ℓi
h+1 − V

ref,ℓi
h+1

)
−
(
V

REF

h+1 − V
REF
h+1

) ,

ξkh+1 =
1

ňkh

ňk
h∑

i=1

(
Pskh,a

k
h,b

k
h,h
− 1

s
ℓ̌i
h+1

)(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)
.
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Here, (10) follows from the successful event of martingale concentration (29) and (43) in Lemma E.1,
(11) follows from the fact that V

ref,u

h+1 (s) (or V ref,u
h+1 (s)) is non-increasing (or non-decreasing) in u,

because V
ref

h (s) (or V ref
h (s)) for a pair (s, h) can only be updated once and the updated value is

obviously greater (or less) than the initial value, and (12) follows from the definition of Λk
h+1 defined

above.

Taking the summation over k ∈ [K] gives

K∑
k=1

∆k
h ≤

K∑
k=1

ζkh +

K∑
k=1

H1{nkh = 0}+
K∑

k=1

1

ňkh

ňk
h∑

i=1

∆
ℓ̌kh,i

h+1 +

K∑
k=1

Λk
h+1. (13)

Note that nkh ≥ H if Nk
h (s

k
h, a

k
h, b

k
h) ≥ H . Therefore

∑K
k=1 1{nkh = 0} ≤ SABH , and

K∑
k=1

H1{nkh = 0} ≤ SABH2. (14)

Now we focus on the term
∑K

k=1
1
ňk
h

∑ňk
h

i=1 ∆
ℓ̌kh,i

h+1. The following lemma is useful.

Lemma E.4. For any j ∈ [K], we have
∑K

k=1
1
ňk
h

∑ňk
h

i=1 1{j = ℓ̌kh,i} ≤ 1 + 1
H .

Proof. Fix an episode j. Note that
∑ňk

h
i=1 1{j = ℓ̌kh,i} = 1 if and only if (sjh, a

j
h, b

j
h) = (skh, a

k
h, b

k
h)

and (j, h) falls in the previous stage that (k, h) falls in with respect to (skh, a
k
h, b

k
h, h). Define

K = {k ∈ [K] :
∑ňk

h
i=1 1{j = ℓ̌kh,i} = 1}. Then every element k ∈ K has the same value of ňkh,

i.e., there exists an integer Nj > 0 such that ňkh = Nj for all k ∈ K. By the definition of stages,

|K| ≤ (1 + 1
H )Nj . Therefore, for any j, we have

∑K
k=1

1
ňk
h

∑ňk
h

i=1 1{j = ℓ̌kh,i} ≤ (1 + 1
H ).

By Lemma E.4, we have

K∑
k=1

1

ňkh

ňk
h∑

i=1

∆
ℓ̌kh,i

h+1 =

K∑
k=1

1

ňkh

K∑
j=1

∆j
h+1

ňk
h∑

i=1

1{j = ℓ̌kh,i}

=

K∑
j=1

∆j
h+1

K∑
k=1

1

ňkh

ňk
h∑

i=1

1{j = ℓ̌kh,i}

≤ (1 +
1

H
)

K∑
k=1

∆k
h+1. (15)

Combining (13), (14) and (15), we have
K∑

k=1

∆k
h ≤ SABH2 + (1 +

1

H
)

K∑
k=1

∆k
h+1 +

K∑
k=1

Λk
h+1.

Iterating over h = H,H − 1, . . . , 1 gives
K∑

k=1

∆k
1 ≤ O

(
SABH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ζkh +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1

)
.

By Azuma’s inequality, it holds that with probability at least 1− Tδ,
K∑

k=1

∆k
1 ≤ O

(
SABH3 +

√
H2Tι+

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1

)
. (16)

Step IV: We bound
∑H

h=1

∑K
k=1(1 +

1
H )h−1Λk

h+1 in the following lemma.

17



Under review as a conference paper at ICLR 2024

Lemma E.5 (Restatement of Lemma 4.6). With probability at least 1−O(H2T 4)δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1 = O
(√

SABH2Tι+H
√
Tι log T + S2(AB)

3
2H8ι

3
2T

1
4

)
.

The proof of Lemma E.5 is provided in Appendix H.

Final step: We show the value difference induced by the certified policies is bounded, as summarized
in the next lemma.
Lemma E.6 (Restatement of Lemma 4.2). Conditioned on the successful event of Lemma E.1, let
(µout, νout) be the output policy induced by the certified policy algorithm (Algorithm 2). Then we
have

V †,νout

1 (s1)− V µout,†
1 (s1) ≤

1

K

K∑
k=1

(V
k

1 − V
k
1)(s1).

The proof of Lemma E.6 is provided in Appendix I.

Combining (16), Lemma E.5 and Lemma E.6, and taking the union bound over all probability events,
we conclude that with probability at least 1−O(H2T 4)δ, it holds that

V †,νout

1 (s1)− V µout,†
1 (s1) ≤

1

K
O
(√

SABH2Tι+H
√
Tι log T + S2(AB)

3
2H8ι

3
2T

1
4

)
, (17)

which gives the desired result.

F PROOF OF LEMMA E.1 (STEP I)

The proof is by induction on k. We establish the inequalities for the optimistic action-value and value
functions in step i, and the inequalities for the pessimistic counterparts in step ii.

Step i: We establish the inequality for the optimistic action-value and value functions in the following.

It is clear that the conclusion holds for the based case with k = 1. For k ≥ 2, assume Q∗
h(s, a, b) ≤

Q
u

h(s, a, b) and V ∗
h (s) ≤ V

u

h(s) for any (s, a, h) ∈ S ×A× [H] and u ∈ [1, k]. Fix tuple (s, a, b, h).
We next show that the conclusion holds for k + 1.

First, we show the inequality with respect to the action-value function. If Qh(s, a, b), V h(s) are not
updated in the k-th episode, then

Q∗
h(s, a, b) ≤ Q

k

h(s, a, b) = Q
k+1

h (s, a, b),

V ∗
h (s) ≤ V

k

h(s) = V
k+1

h (s).

Otherwise, we have

Q
k+1

h (s, a, b)← min

{
rh(s, a, b) +

v̌

ň
+ γ, rh(s, a, b) +

µref

n
+
µ̌

ň
+ β,Q

k

h(s, a, b)

}
.

Besides the last term, there are two non-trivial cases.

For the first case, by Hoeffding’s inequality, with probability at least 1− δ it holds that

Q
k+1

h (s, a, b) = rh(s, a, b) +
v̌

ň
+ γ

= rh(s, a, b) +
1

ň

ň∑
i=1

V
ℓ̌i
h+1(s

ℓ̌i
h+1) + 2

√
H2

ň
ι

≥ rh(s, a, b) +
1

ň

ň∑
i=1

V ∗
h+1(s

ℓ̌i
h+1) + 2

√
H2

ň
ι (18)

≥ rh(s, a, b) + (PhV
∗
h+1)(s, a, b) (19)
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= Q∗
h(s, a, b),

where (18) follows from the induction hypothesis V
u

h+1(s) ≥ V ∗(s) for all u ∈ [k], and (19) follows
from Azuma-Hoeffding’s inequality.

For the second case, we have

Q
k+1

h (s, a, b) = rh(s, a, b) +
µref

n
+
µ̌

ň
+ β

= rh(s, a, b) +
1

n

n∑
i=1

V
ref,ℓi
h+1 (sℓih+1) +

1

ň

ň∑
i=1

(
V

ℓ̌i
h+1 − V

ref,ℓ̌i
h+1

)
(sℓ̌ih+1) + β

= rh(s, a, b) +

(
Ph

(
1

n

n∑
i=1

V
ref,ℓi
h+1

))
(s, a, b) +

(
Ph

(
1

ň

ň∑
i=1

(
V

ℓ̌i
h+1 − V

ref,ℓ̌i
h+1

)))
(s, a, b)

+ χ1 + χ2 + β

≥ rh(s, a, b) +

(
Ph

(
1

ň

ň∑
i=1

V
ℓ̌i
h+1

))
(s, a, b) + χ1 + χ2 + β (20)

≥ rh(s, a, b) +
(
PhV

∗
h+1

)
(s, a, b) + χ1 + χ2 + β (21)

= Q
∗
h(s, a, b) + χ1 + χ2 + β,

where

χ1(k, h) =
1

n

n∑
i=1

(
V

ref,ℓi
h (sℓih+1)−

(
PhV

ref,ℓi
h+1

)
(s, a, b)

)
,

W
ℓ

h+1 = V
ℓ

h+1 − V
ref,ℓ

h+1

χ2(k, h) =
1

ň

ň∑
i=1

(
W

ℓ̌i
h+1(s

ℓ̌i
h+1)−

(
PhW

ℓ̌i
h+1

)
(s, a, b)

)
.

Here, (20) follows from the fact that V
ref,u

h+1 (s) is non-increasing in u (since V
ref

h (s) for a pair (s, h)
can only be updated once and the updated value is obviously smaller than the initial value H), and
(21) follows from the the induction hypothesis V

k

h+1(s) ≥ V ∗
h+1(s).

By Lemma J.2 with ϵ = 1
T 2 , with probability at least 1− 2(H2T 3 + 1)δ it holds

|χ1(k, h)| ≤ 2

√∑n
i=1 V(Ps,a,b,h, V

ref,ℓi
h+1 )ι

n2
+

2
√
ι

Tn
+

2Hι

n
, (22)

|χ2(k, h)| ≤ 2

√∑ň
i=1 V(Ps,a,b,h, V

ref,ℓi
h+1 )ι

ň2
+

2
√
ι

T ň
+

2Hι

ň
. (23)

Lemma F.1. With probability at least 1− 2δ, it holds that
n∑

i=1

V(Ps,a,b,h, V
ref,ℓi
h+1 ) ≤ nνref + 3H2

√
nι. (24)

Proof: Note that
n∑

i=1

V(Ps,a,b,h, V
ref,ℓi
h+1 ) =

n∑
i=1

(
Ps,a,b,h(V

ref,ℓi
h+1 )2 − (Ps,a,b,hV

ref,ℓi
h+1 )2

)

=

n∑
i=1

(V
ref,ℓi
h+1 (sℓih+1))

2 − 1

n

(
n∑

i=1

V
ref,ℓi
h+1 (sℓih+1)

)2

+ χ3 + χ4 + χ5

= nνref + χ3 + χ4 + χ5, (25)
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where

χ3 =

n∑
i=1

(
(Ps,a,b,h(V

ref,ℓi
h+1 )2 − (V

ref,ℓi
h+1 (sℓih+1))

2
)
,

χ4 =
1

n

(
n∑

i=1

V
ref,ℓi
h+1 (sℓih+1)

)2

− 1

n

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2

,

χ5 =
1

n

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2

−
n∑

i=1

(Ps,a,b,hV
ref,ℓi
h+1 )2.

By Azuma’s inequality, with probability at least 1− δ it holds that |χ3| ≤ H2
√
2nι.

By Azuma’s inequality, with probability at least 1− δ, it holds that

|χ4| =
1

n

∣∣∣∣∣∣
(

n∑
i=1

V
ref,ℓi
h+1 (sℓih+1)

)2

−

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2
∣∣∣∣∣∣

≤ 2H

∣∣∣∣∣
n∑

i=1

V
ref,ℓi
h+1 (sℓih+1)−

n∑
i=1

Ps,a,b,hV
ref,ℓi
h+1

∣∣∣∣∣
≤ 2H2

√
2nι.

Moreover, χ5 ≤ 0 by Cauchy-Schwartz inequality. Plugging the above inequalities gives the desired
result. ■

Combining (22) with (24) gives

|χ1| ≤ 2

√
νrefι

n
+

5Hι
3
4

n
3
4

+
2
√
ι

Tn
+

2Hι

n
. (26)

Similar to Lemma F.1, we have the following lemma.
Lemma F.2. With probability at least 1− 2δ, it holds that

ň∑
i=1

V(Ps,a,b,h,W
ref,ℓi
h+1 ) ≤ ňν̌ + 3H2

√
ňι. (27)

Combining (23) with (27) gives

|χ2| ≤ 2

√
ν̌ι

ň
+

5Hι
3
4

ň
3
4

+
2
√
ι

T ň
+

2Hι

ň
. (28)

Finally, combining (26) and (28), noting the definition of β with (c1, c2, c3) = (2, 2, 5), and taking a
union bound over all probability events, we have that with probability at least 1− 2(H2T 3 + 3)δ, it
holds that

β ≥ |χ1|+ |χ2|. (29)

which means Q
k+1

h (s, a, b) ≥ Q∗
h(s, a, b).

Combining the two cases and taking the union bound over all steps, we have with probability at least
1− T (2H2T 3 + 7)δ, it holds that Q

k+1

h (s, a, b) ≥ Q∗
h(s, a, b).

Next, we show that V ∗
h (s) ≤ V

k+1

h (s). Note that

V
k+1

h (s) = (Dπk+1
h

Q
k+1

h )(s)

≥ sup
µ∈∆A

(Dµ×νk+1
h

Q
k+1

h )(s) (30)
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≥ sup
µ∈∆A

(Dµ×νk+1
h

Q∗
h)(s) (31)

≥ sup
µ∈∆A

inf
ν∈∆B

(Dµ×νQ
∗
h)(s)

= V ∗
h (s),

where (30) follows from the property of the CCE oracle, (31) follows because Q
k+1

h (s, a, b) ≥
Q

∗
h(s, a, b), which has just been proved.

Step ii: We show the inequalities for the pessimistic action-value function and value function below.

The two inequalities with respect to pessimistic (action-)value functions clearly hold for k = 1. For
k ≥ 2, suppose Q∗

h(s, a, b) ≥ Q
u

h
(s, a, b) and V ∗

h (s) ≥ V
u
h(s) for any (s, a, h) ∈ S ×A× [H] and

u ∈ [1, k]. Now we fix tuple (s, a, b, h) and we only need to consider the case when Q
h
(s, a, b) and

V h(s) are updated.

We show Q∗
h(s, a, b) ≥ Q

k+1

h
(s, a, b). Note that

Qk+1

h
(s, a, b)← min

{
rh(s, a, b) +

v̌

ň
+ γ, rh(s, a, b) +

µref

n
+
µ̌

ň
+ β,Qk

h
(s, a, b)

}
,

and we have two non-trivial cases.

For the first case, by Hoeffding’s inequality, with probability at least 1− δ, it holds that

Qk+1

h
(s, a, b) = rh(s, a, b) +

v̌

ň
− γ

= rh(s, a, b) +
1

ň

ň∑
i=1

V ℓ̌i
h+1(s

ℓ̌i
h+1)− 2

√
H2

ň
ι

≤ rh(s, a, b) +
1

ň

ň∑
i=1

V ∗
h+1(s

ℓ̌i
h+1)− 2

√
H2

ň
ι (32)

≤ rh(s, a, b) + (PhV
∗
h+1)(s, a, b) (33)

= Q∗
h(s, a, b),

where (32) follows from the induction hypothesis V u
h+1(s) ≥ V ∗(s) for all u ∈ [k], and (33) follows

from Azuma-Hoeffding’s inequality.

For the second case, we have

Qk+1

h
(s, a, b) = rh(s, a, b) +

µref

n
+
µ̌

ň
− β

= rh(s, a, b) +
1

n

n∑
i=1

V ref,ℓi
h+1 (sℓih+1) +

1

ň

ň∑
i=1

(
V ℓ̌i

h+1 − V
ref,ℓ̌i
h+1

)
(sℓ̌ih+1)− β

= rh(s, a, b) +

(
Ph

(
1

n

n∑
i=1

V ref,ℓi
h+1

))
(s, a, b) +

(
Ph

(
1

ň

ň∑
i=1

(
V ℓ̌i

h+1 − V
ref,ℓ̌i
h+1

)))
(s, a, b)

+ χ
1
+ χ

2
− β

≤ rh(s, a, b) +

(
Ph

(
1

ň

ň∑
i=1

V ℓ̌i
h+1

))
(s, a, b) + χ

1
+ χ

2
− β (34)

≤ rh(s, a, b) +
(
PhV

∗
h+1

)
(s, a, b) + χ

1
+ χ

2
− β (35)

= Q∗
h
(s, a, b) + χ

1
+ χ

2
− β,

where

χ
1
(k, h) =

1

n

n∑
i=1

(
V ref,ℓi

h (sℓih+1)−
(
PhV

ref,ℓi
h+1

)
(s, a, b)

)
,
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W ℓ
h+1 = V ℓ

h+1 − V
ref,ℓ
h+1

χ
2
(k, h) =

1

ň

ň∑
i=1

(
W ℓ̌i

h+1(s
ℓ̌i
h+1)−

(
PhW

ℓ̌i
h+1

)
(s, a, b)

)
.

Here, (34) follows from the fact that V ref,u
h+1 (s) is non-decreasing in u (since V ref

h (s) for a pair (s, h)
can only be updated once and the updated value is obviously greater than the initial value 0), and (35)
follows from the induction hypothesis V k

h+1(s) ≤ V ∗
h+1(s).

By Lemma J.2 with ϵ = 1
T 2 , with probability at least 1− 2(H2T 3 + 1)δ it holds

|χ
1
(k, h)| ≤ 2

√∑n
i=1 V(Ps,a,b,h, V

ref,ℓi
h+1 )ι

n2
+

2
√
ι

Tn
+

2Hι

n
, (36)

|χ
2
(k, h)| ≤ 2

√∑ň
i=1 V(Ps,a,b,h, V

ref,ℓi
h+1 )ι

ň2
+

2
√
ι

T ň
+

2Hι

ň
. (37)

Lemma F.3. With probability at least 1− 2δ, it holds that
n∑

i=1

V(Ps,a,b,h, V
ref,ℓi
h+1 ) ≤ nνref + 3H2

√
nι (38)

Proof: Note that
n∑

i=1

V(Ps,a,b,h, V
ref,ℓi
h+1 ) =

n∑
i=1

(
Ps,a,b,h(V

ref,ℓi
h+1 )2 − (Ps,a,b,hV

ref,ℓi
h+1 )2

)

=

n∑
i=1

(V ref,ℓi
h+1 (sℓih+1))

2 − 1

n

(
n∑

i=1

V ref,ℓi
h+1 (sℓih+1)

)2

+ χ
3
+ χ

4
+ χ

5

= nνref + χ
3
+ χ

4
+ χ

5
, (39)

where

χ
3
=

n∑
i=1

(
(Ps,a,b,h(V

ref,ℓi
h+1 )2 − (V ref,ℓi

h+1 (sℓih+1))
2
)
,

χ
4
=

1

n

(
n∑

i=1

V ref,ℓi
h+1 (sℓih+1)

)2

− 1

n

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2

,

χ
5
=

1

n

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2

−
n∑

i=1

(Ps,a,b,hV
ref,ℓi
h+1 )2.

By Azuma’s inequality, with probability at least 1− δ it holds that |χ
3
| ≤ H2

√
2nι.

By Azuma’s inequality, with probability at least 1− δ, it holds that

|χ
4
| = 1

n

∣∣∣∣∣∣
(

n∑
i=1

V ref,ℓi
h+1 (sℓih+1)

)2

−

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2
∣∣∣∣∣∣

≤ 2H

∣∣∣∣∣
n∑

i=1

V ref,ℓi
h+1 (sℓih+1)−

n∑
i=1

Ps,a,b,hV
ref,ℓi
h+1

∣∣∣∣∣
≤ 2H2

√
2nι.

Moreover, χ5 ≤ 0 by Cauchy-Schwartz inequality. Substituting the above inequalities gives the
desired result. ■
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Combining (36) with (38) gives

|χ
1
| ≤ 2

√
νrefι

n
+

5Hι
3
4

n
3
4

+
2
√
ι

Tn
+

2Hι

n
. (40)

Similar to Lemma F.3, we have the following lemma.
Lemma F.4. With probability at least 1− 2δ, it holds that

ň∑
i=1

V(Ps,a,b,h,W
ref,ℓi
h+1 ) ≤ ňν̌ + 3H2

√
ňι. (41)

Combining (37) with (41) gives

|χ
2
| ≤ 2

√
ν̌ι

ň
+

5Hι
3
4

ň
3
4

+
2
√
ι

T ň
+

2Hι

ň
. (42)

Finally, combining (40) and (42), noting the definition of β with (c1, c2, c3) = (2, 2, 5), and taking a
union bound over all probability events, we have that with probability at least 1− 2(H2T 3 + 3)δ, it
holds that

β ≥ |χ
1
|+ |χ

2
|. (43)

which gives Qk+1

h
(s, a, b) ≤ Q∗

h(s, a, b).

Combining the two cases and taking union bound over all steps, we have with probability at least
1− T (2H2T 3 + 7)δ, it holds that Qk+1

h
(s, a, b) ≤ Q∗

h(s, a, b).

We show that V ∗
h (s) ≤ V

k
h(s). Note that

V k+1
h (s) = (Dπk+1

h
Qk+1

h
)(s)

≤ inf
ν∈∆B

(Dµk+1
h ×νQ

k+1

h
)(s) (44)

≤ inf
ν∈∆B

(Dµk+1
h ×νQ

∗
h)(s) (45)

≤ inf
ν∈∆B

sup
µ∈∆A

(Dµ×νQ
∗
h)(s)

= V ∗
h (s),

where (44) follows from the property of the CCE oracle, (45) follows because Qk+1

h
(s, a, b) ≤

Q∗
h
(s, a, b), which has just been proved.

The entire proof is completed by combining step i and step ii, and taking a union bound over all
probability events.

G PROOF OF LEMMA E.2 (STEP II)

First, by Hoeffing’s inequality, for any (k, h) ∈ [K]× [H], with probability at least 1− 2Tδ it holds
that∣∣∣∣∣∣ 1ňkh

ňk
h∑

i=1

V
ℓ̌i
h+1(s

ℓ̌i
h+1)−Q

k

h(s
k
h, a

k
h, b

k
h)

∣∣∣∣∣∣ ≤ γkh,
∣∣∣∣∣∣ 1ňkh

ňk
h∑

i=1

V ℓ̌i
h+1(s

ℓ̌i
h+1)−Q

k

h
(skh, a

k
h, b

k
h)

∣∣∣∣∣∣ ≤ γkh.
The entire proof will be conditioned on the above event.

For any weight sequence {wk}Kk=1 where wk ≥ 0, let ∥w∥∞ = max1≤k≤K wk and ∥w∥1 =∑K
k=1 wk.

By the update rule of the action-value function, we have

∆k
h = (V

k

h − V
k
h)(s

k
h)
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= ζkh + (Q
k

h −Q
k

h
)(skh, a

k
h, b

k
h)

≤ ζkh + 2γkh +
1

ňkh

ňk
h∑

i=1

(V
ℓ̌i
h+1 − V

ℓ̌i
h+1)(s

ℓ̌i
h+1) +H1{nkh = 0}

= ζkh + 2γkh +
1

ňkh

ňk
h∑

i=1

∆ℓ̌i
h+1 +H1{nkh = 0}. (46)

Note that

K∑
k=1

wk

ňkh

ňk
h∑

i=1

∆ℓ̌i
h+1 =

K∑
j=1

wj

ňjh

ňj
h∑

i=1

∆
ℓ̌jh,i

h+1

=

K∑
j=1

wj

ňjh

K∑
k=1

∆k
h+1

ňj
h∑

i=1

1{k = ℓ̌jh,i}

=

K∑
k=1

∆k
h+1

K∑
j=1

wj

ňjh

ňj
h∑

i=1

1{k = ℓ̌jh,i}

=

K∑
k=1

w̃k∆
k
h+1, (47)

where we define w̃k =
∑K

j=1
wj

ňj
h

∑ňj
h

i=1 1{k = ℓ̌jh,i}. Similar to the proof of Lemma E.4, we have

∥w̃∥∞ = max
k

w̃k ≤ (1 +
1

H
) ∥w∥∞ . (48)

Moreover,

∥w̃∥1 =

K∑
k=1

K∑
j=1

wj

ňjh

ňj
h∑

i=1

1{k = ℓ̌jh,i} =
K∑
j=1

wj

ňjh

K∑
k=1

ňj
h∑

i=1

1{k = ℓ̌jh,i} =
K∑
j=1

wj = ∥w∥1 . (49)

Combining (46), (47), (48) and (49), we have

K∑
k=1

wk∆
k
h ≤

K∑
k=1

wkζ
k
h + 2

K∑
k=1

wkγ
k
h +

K∑
k=1

w̃k∆
k
h+1 +H

K∑
k=1

wk1{nkh = 0}

≤
K∑

k=1

wkζ
k
h + 2

K∑
k=1

wkγ
k
h +

K∑
k=1

w̃k∆
k
h+1 + SABH2 ∥w∥∞ . (50)

By Azuma-Hoeffding’s inequality, with probability at least 1−Hδ, it holds that for any h ∈ [H]

K∑
k=1

wkζ
k
h ≤
√
2Hι

√√√√ K∑
k=1

wk ≤
√
2Hι ∥w∥∞ . (51)

We now bound the second term of (50). Define Ξ(s, a, b, j) =
∑K

k=1 wk1{ňkh = ej , (s
k
h, a

k
h, b

k
h) =

(s, a, b)} and Ξ(s, a, b) =
∑

j≥1 Ξ(s, a, b, j). Similar to (48) and (49), we then have Ξ(s, a, b, j) ≤
∥w∥∞ (1 + 1

H )ej and
∑

s,a Ξ(s, a, b) =
∑

k wk. Then

∑
k

wkγ
k
h =

∑
k

2
√
H2ιwk

√
1

ňkh
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= 2
√
H2ι

∑
s,a,b,j

√
1

ej

K∑
j=1

wk1{ňkh = ej , (s
k
h, a

k
h, b

k
h) = (s, a, b)}

= 2
√
H2ι

∑
s,a,b

∑
j≥1

Ξ(s, a, b, j)

√
1

ej
.

Fix (s, a, b) and consider
∑

j≥1 Ξ(s, a, b, j)
√

1
ej

. Note that
√

1
ej

is decreasing in j. Given∑
j≥1 Ξ(s, a, b, j) = Ξ(s, a, b) is fixed, rearranging the inequality gives

∑
j≥1

Ξ(s, a, b, j)

√
1

ej
≤
∑
j≥1

√
1

ej
∥w∥∞ (1 +

1

H
)ej1

{
j−1∑
i=1

∥w∥∞ (1 +
1

H
)ei ≤ Ξ(s, a, b)

}

= ∥w∥∞ (1 +
1

H
)
∑
j

√
ej1

{
j−1∑
i=1

∥w∥∞ ei ≤ Ξ(s, a, b)

}

≤ 10(1 +
1

H
)
√
∥w∥∞HΞ(s, a, b).

Therefore, by Cauchy-Schwartz inequality, we have

K∑
k=1

wkγ
k
h ≤ 2

√
H2ι

∑
s,a,b

10(1 +
1

H
)
√
∥w∥∞H

√
Ξ(s, a, b)

≤ 20
√
H2ι(1 +

1

H
)
√
∥w∥∞ SABH ∥w∥1. (52)

Combining (50), (51) and (52), we have

K∑
k=1

wk∆
k
h ≤

K∑
k=1

w̃k∆
k
h+1 + (

√
2Hι+ SABH2) ∥w∥∞ + 80H

√
∥w∥∞ SABH ∥w∥1 ι. (53)

We expand the expression by iterating over step h+ 1, · · · , H ,

K∑
k=1

wk∆
k
h ≤ (1 +

1

H
)H ·H ·

(
(
√
2Hι+ SABH2) ∥w∥∞ + 80H

√
∥w∥∞ SABH ∥w∥1 ι

)
≤ 6(H2ι+ SABH3) ∥w∥∞ + 240H

5
2

√
∥w∥∞ SAB ∥w∥1 ι.

Now we set wk = 1{∆k
h ≥ ϵ}, and obtain

K∑
k=1

1{∆k
h ≥ ϵ}∆k

h ≤ 6(H2ι+ SABH3) ∥w∥∞ + 240H
5
2

√√√√∥w∥∞ SABι

K∑
k=1

1{∆k
h ≥ ϵ}.

Note that ∥w∥∞ is either 0 or 1. If ∥w∥∞ = 0, the claim obviously holds. In the case when
∥w∥∞ = 1, solving the following quadratic equation (ignoring coefficients) with respect to(∑K

k=1 1{∆k
h ≥ ϵ}

)1/2
gives the desired result

ϵ

(
K∑

k=1

1{∆k
h ≥ ϵ}

)
−H5/2(SABι)1/2

(
K∑

k=1

1{∆k
h ≥ ϵ}

)1/2

− (SABH3 +H2ι) ≤ 0.

H PROOF OF LEMMA E.5 (STEP IV)

The entire proof is conditioned on the successful events of Lemma E.1 and Lemma E.2, which occur
with probability at least 1−O(H2T 4)δ.
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By the definition of Λk
h+1, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1 =

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ψk

h+1︸ ︷︷ ︸
T1

+

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1︸ ︷︷ ︸

T2

+ 2

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1β

k

h︸ ︷︷ ︸
T3

+2

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1βk

h︸ ︷︷ ︸
T4

. (54)

We next bound each of the above four terms in one subsection, and summarize the final result in
Appendix H.5.

H.1 BOUND T1

Recall the definition λkh(s) = 1
{
nkh(s) < N0

}
. Since ψ is always non-negative, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ψk

h+1

≤ 3

H∑
h=1

K∑
k=1

ψk
h+1

= 3

H∑
h=1

K∑
k=1

Pskh,a
k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

(
V

ref,ℓi
h+1 − V

ref,ℓi
h+1

)
−
(
V

REF

h+1 − V
REF
h+1

)
≤ 3H

H∑
h=1

K∑
k=1

Pskh,a
k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

λℓih+1


≤ 3H

H∑
h=1

K∑
j=1

K∑
k=1

Pskh,a
k
h,b

k
h,h
λjh+1

1

nkh

nk
h∑

i=1

1{j = ℓkh,i}

≤ 3H

H∑
h=1

K∑
j=1

Psjh,a
j
h,b

j
h,h
λjh+1

K∑
k=1

1

nkh

nk
h∑

i=1

1{j = ℓkh,i} (55)

≤ 6(log T + 1)H

H∑
h=1

K∑
k=1

Pskh,a
k
h,b

k
h,h
λkh+1 (56)

≤ 6(log T + 1)H

(
H∑

h=1

K∑
k=1

λkh+1(s
k
h+1) +

H∑
h=1

K∑
k=1

(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)
λkh+1

)

≤ 6(log T + 1)H

(
HSN0 +

H∑
h=1

K∑
k=1

(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)
λkh+1

)
≤ 6(log T + 1)H

(
HSN0 + 2

√
Tι
)
, (57)

where (55) follows from the fact that 1
nk
h

∑nk
h

i=1 1{j = ℓkh,i} ≠ 0 only if (skh, a
k
h, b

k
h) = (sjh, a

j
h, b

j
h),

(56) follows because

K∑
k=1

1

nkh

nk
h∑

i=1

1{j = ℓkh,i} ≤
∑

z:j≤
∑z−1

i=1 ei≤T

ez∑z−1
i=1 ei

≤ 2(log T + 1),

and (57) holds with probability at least 1− δ by Azuma’s inequality.
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To conclude, with probability at least 1− δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ψk

h+1 ≤ O(log T ) · (H2SN0 +H
√
Tι). (58)

H.2 TERM T2

We first derive

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1

=

H∑
h=1

K∑
k=1

1

ňkh

ňk
h∑

i=1

(
Pskh,a

k
h,b

k
h,h
− 1

s
ℓ̌i
h+1

)(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)

=

H∑
h=1

K∑
k=1

K∑
j=1

(1 +
1

H
)h−1 1

ňkh

ňk
h∑

i=1

(
Pskh,a

k
h,b

k
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
1{ℓ̌kh,i = j}.

Note that ℓ̌kh,i = j if and only if (skh, a
k
h, b

k
h) = (sjh, a

j
h, b

j
h). Therefore,

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1

≤
H∑

h=1

K∑
j=1

(1 +
1

H
)h−1

(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

) K∑
k=1

1

ňkh

ňk
h∑

i=1

1{ℓ̌kh,i = j}

=

H∑
h=1

K∑
k=1

θjh+1

(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
,

where in the last equation we define θjh+1 = (1 + 1
H )h−1

∑K
k=1

1
ňk
h

∑ňk
h

i=1 1{ℓ̌kh,i = j}.

For (j, h) ∈ [K]×[H], let xjh be the number of elements in current state with respect to (sjh, a
j
h, b

j
h, h)

and θ̃jh+1 := (1 + 1
H )h−1 ⌊(1+ 1

H )xj
h⌋

xj
h

≤ 3. Define K = {(k, h) : θkh+1 = θ̃kh+1}. Note that if k

is before the second last stage of the tuple (skh, a
k
h, b

k
h, h), then we have that θkh+1 = θ̃kh+1 and

(k, h) ∈ K. Given (k, h) ∈ K, skh+1 follows the transition Pskh,a
k
h,b

k
h,h

.

Let K⊥
h (s, a, b) = {k : (skh, a

k
h, b

k
h) = (s, a, b),where k is in the second last stage of (s, a, b, h)}.

Note that for different j, k, if (skh, a
k
h, b

k
h) = (sjh, a

j
h, b

j
h) and j, k are in the same stage of

(skh, a
k
h, b

k
h, h), then θkh+1 = θjh+1 and θ̃kh+1 = θ̃jh+1. Denote θh+1 and θ̃h+1 as θh+1(s, a, b) and

θ̃h+1(s, a, b) respectively for some k ∈ K⊥
h (s, a, b).

We have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1

=
∑
(k,h)

θ̃kh+1

(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
+
∑
(k,h)

(θkh+1 − θ̃kh+1)
(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
=
∑
(k,h)

θ̃kh+1

(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
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+
∑

(k,h)∈K

(θkh+1 − θ̃kh+1)
(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
. (59)

Since θ̃kh+1 is independent of skh+1, by Azuma’s inequality, with probability at least 1− δ, it holds
that ∑

(k,h)

θ̃kh+1

(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)(
V

k

h+1 − V
k
h+1

)
≤ 6
√
TH2ι. (60)

Moreover, we have∑
(k,h)∈K

(θkh+1 − θ̃kh+1)
(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)(
V

k

h+1 − V
k
h+1

)
=
∑

s,a,b,h

∑
(k,h)∈K

1{(skh, akh, bkh) = (s, a, b)}(θkh+1 − θ̃kh+1)
(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)(
V

k

h+1 − V
k
h+1

)
=
∑

s,a,b,h

(θh+1(s, a, b)− θ̃h+1(s, a))
∑

(k,h)∈K⊥
h (s,a)

(θkh+1 − θ̃kh+1)
(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)(
V

k

h+1 − V
k
h+1

)
≤
∑

s,a,b,h

O(H)
√
|K⊥

h (s, a, b)|ι (61)

≤
∑

s,a,b,h

O(H)

√
ŇK+1

h (s, a, b)ι

≤ O(H)

√
SABHι

∑
s,a,b,h

ŇK+1
h (s, a, b) (62)

≤ O(H)
√
SABHι(T/H), (63)

where (61) holds with probability at least 1− Tδ by Azuma’s inequality and a union bound over all
steps in K, (62) follows from Cauchy-Schwartz inequality, and (63) follows from the fact that the
length of the last two stages for each (s, a, b, h) tuple is only O(1/H) fraction of the total number of
visits.

Combining (59), (60) and (63), we obtain that with probability at least 1− (T + 1)δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1 ≤ O(

√
H2SABTι). (64)

H.3 TERM T3

Note that
H∑

h=1

K∑
k=1

(1 +
1

H
)h−1β

k

h

≤ 3

H∑
h=1

K∑
k=1

c1
√
νref,kh

nkh
ι+ c2

√
ν̌
k
h

ňkh
ι+ c3

(
Hι

nkh
+
Hι

ňkh
+

Hι
3
4

(nkh)
3
4

+
Hι

3
4

(ňkh)
3
4

)
≤ O

 H∑
h=1

K∑
k=1

√νref,kh

nkh
ι+

√
ν̌
k
h

ňkh
ι

+O(SABH3ι log T + (SABι)
3
4H

5
2T

1
4 ), (65)

where (65) follows from Lemma J.3 with α = 3
4 and α = 1.

Step i: We bound
∑H

h=1

∑K
k=1

√
νref,k
h

nk
h

ι. We begin with the following technical lemmas.
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Lemma H.1. With probability at least 1− 2Tδ, it holds that for all s, a, b, h, k,

Q
k

h(s, a, b) ≤ Qπk

h (s, a, b) + (H − h)
(
β +

HSN0

ňkh

)
,

Qk

h
(s, a, b) ≥ Qπk

h (s, a, b)− (H − h)
(
β +

HSN0

ňkh

)
,

V
k

h(s) ≤ V πk

h (s) + (H − h)
(
β +

HSN0

ňkh

)
,

V k
h(s) ≥ V πk

h (s)− (H − h)
(
β +

HSN0

ňkh

)
.

The proof is provided in Appendix H.3.1.
Lemma H.2. Conditioned on the successful event of Lemma H.1, with probability at least 1− 4δ, it
holds that

νref,kh − V(Pskh,a
k
h,b

k
h,h
, V πk

h+1) ≤ 4Hβ +
12H2β + 18H3SN0

nkh
+ 20H2

√
ι

nkh
.

The proof is provided in Appendix H.3.2.
Lemma H.3 (Lemma C.5 in [17]). With probability at least 1− δ, it holds that

V(Pskh,a
k
h,b

k
h,h
, V πk

h+1) ≤ O(HT +H3ι).

Combining Lemma H.2, Lemma H.3 and Lemma J.3 (see Appendix J), we have

H∑
h=1

K∑
k=1

√
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ι

≤
H∑
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K∑
k=1

√
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k
h,h
, V πk
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ι

+

H∑
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K∑
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√√√√(4Hβ

nkh
+

12H2β + 18H3SN0
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2

+ 20H2
ι
1
2

(nkh)
3
2

)
ι

≤ O
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s,a,b,h

√
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h (s, a, b)V(Ps,a,b,h, V πk
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
+O
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√
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3
2ABH

5
2N

1
2
0 + SABH2β

1
2 )ι

1
2 log T + (SABι)

3
4H

7
4T

1
4


≤ O

(√
SABH2Tι+

√
SABH2βTι+ (S

3
2ABH

5
2N

1
2
0 + SABH2β

1
2 )ι

1
2 log T + (SABι)

3
4H

7
4T

1
4

)
.

(66)

Step ii: We bound
∑H

h=1

∑K
k=1

√
ν̌
k
h

ňk
h

ι.

By Lemma E.1, Lemma E.2 and Corollary E.3, we have

ν̌
k
h ≤

1

ňkh

ňk
h∑

i=1

(
V

ℓ̌i
h+1 − V

ref,ℓ̌i
h+1

)2

(sℓ̌ih+1)

≤ 1

ňkh

ňk
h∑

i=1

(
V

ℓ̌i
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ňkh
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V
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)2

(sℓ̌ih+1)
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≤ 2

ňkh
H2SN0 + 2β2.

Combining the above inequality with Lemma J.3, we obtain

H∑
h=1

K∑
k=1

√
ν̌
k
hι

ňkh
≤ O

(√
SABH3β2Tι+ SABH3

√
SN0ι log T

)
. (67)

Combining (65), (66) and (67), we obtain that with probability at least 1−O(T )δ, it holds that
H∑

h=1

K∑
k=1

(1 +
1

H
)h−1β

k

h ≤ O
(√
SABH2Tι+

√
SABH2βTι+

√
SABH3β2Tι

+ S
3
2ABH3N

1
2
0 ι log T + SABH2β

1
2 ι

1
2 log T + (SABι)

3
4H

5
2T

1
4

)
. (68)

H.3.1 PROOF OF LEMMA H.1

Fix an episode k. The proof is based on induction over h = H,H − 1, . . . , 1. Note first that the
claim clearly holds for h = H . Assume the inequalities hold at step h+ 1.

By the update rule of the action-value function, we have

Q
k

h(s, a, b) ≤ rh(s, a, b) +
1

ň

ň∑
i=1

V
ℓ̌i
h+1(s

ℓ̌i
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ň∑
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ℓ̌i
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k
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ℓ̌i
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)

≤ rh(s, a, b) + Ps,a,b,hV
k
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1

ň
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(
V

ℓ̌i
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k
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ℓ̌i
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(69)
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πk
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ň

)
+

1

ň
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(
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ℓ̌i
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k
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ℓ̌i
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)
(70)

≤ Qπk

h + (H − h+ 1)

(
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ℓ̌i
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ℓ̌i
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ℓ̌i
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(71)

≤ Qπk

h (s, a, b) + (H − h+ 1)

(
β +
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ň

)
+

1

ň

ň∑
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(Hλℓ̌ih+1 + β)

≤ Qπk
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(
β +

HSN0

ň

)
, (72)

where (69) holds with probability at least 1−δ by Azuma’s inequality, (70) follows from the induction
hypothesis, and (71) follows from Lemma E.1.

Moreover, by the update rule of the value function, we have

V
k

h(s) = E(a,b)∼πk
Q

k

h(s, a, b)

≤ E(a,b)∼πk
Qπk

h (s, a, b) + (H − h)
(
β +

HSN0

ň

)
≤ V πk

h (s) + (H − h)
(
β +

HSN0

ň

)
.

The other direction for the pessimistic (action-)value function can be proved similarly. Finally, taking
the union bound over all steps gives the desired result.
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H.3.2 PROOF OF LEMMA H.2

We first provide bound on νref,kh − V(Pskh,a
k
h,b

k
h,h
, V

ref,ℓi
h+1 ). Recall (25) that

νref − 1

nkh
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By Azuma’s inequality, with probability at least 1− 2δ, it holds that
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where (73) follows from the fact that V
ref,k

h+1 ≥ V
REF

h+1 for any k, h, and (74) holds with probability at
least 1− δ by Azuma’s inequality.

We have
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Therefore,

νref,kh − V(Pskh,a
k
h,b

k
h,h
, V πk

h+1)

=
1

nkh

nk
h∑

i=1

(
V(Pskh,a

k
h,b

k
h,h
, V

ref,ℓi
h+1 )− V(Pskh,a

k
h,b

k
h,h
, V πk

h+1)
)
+

νref,kh − 1

nkh

nk
h∑

i=1

V(Pskh,a
k
h,b

k
h,h
, V

ref,ℓi
h+1 )


31



Under review as a conference paper at ICLR 2024
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k
h

≤ 4Hβ +
12H2β + 18H3SN0

nkh
+ 20H2

√
ι

nkh
,

where (76) follows from (75), (77) follows from Lemma E.1 and Lemma H.1, (78) holds with
probability at least 1− 2δ by Azuma’s inequality, and (79) follows from Lemma E.1 and Lemma H.1.

H.4 TERM T4

The proof is similar to that for the term
∑H

h=1

∑K
k=1(1+

1
H )h−1β

k

h. In the following, we will present
the key steps, and provide the proof whenever necessary.

By Lemma J.3, we have
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ňkh
ι+ c3

(
Hι

nkh
+
Hι
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Step i: Bound term
∑H

h=1

∑K
k=1

√
νref,k
h

nk
h

ι.
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Lemma H.4. Conditioned on the successful event of Lemma H.1, with probability at least 1− 4δ, it
holds that

νref,kh − V(Pskh,a
k
h,b

k
h,h
, V πk
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The proof is provided in Appendix H.4.1.

Combining Lemma H.3, Lemma H.4 and Lemma J.3, we have

H∑
h=1

K∑
k=1

√
νref,kh

nkh
ι

≤ O
(√

SABH2Tι+
√
SABH2βTι+ (S

3
2ABH

5
2N

1
2
0 + SABH2β

1
2 )ι

1
2 log T + (SABι)

3
4H

7
4T

1
4

)
.

(81)

Step ii: Bound
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ι. By Lemma E.1, Lemma E.2 and Corollary E.3, we have
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ňk
h∑

i=1

(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)2

(sℓ̌ih+1) +
1
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Therefore, combining (80), (81) and (82) gives that with probability at least 1−O(T )δ, it holds that
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H.4.1 PROOF OF LEMMA H.4

Recall (39) that
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By Azuma’s inequality, with probability at least 1− 2δ, it holds that
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where (84) follows from the fact that V ref,k
h+1 ≤ V

REF
h+1 for any k, h, and (85) holds with probability at

least 1− δ due to Azuma’s inequality. Therefore,

νref,kh − 1

nkh

nk
h∑

i=1

V(Pskh,a
k
h,b

k
h,h
, V ref,ℓi

h+1 ) ≤ 2H2SN0

nkh
+ 8H2

√
ι

nkh
. (86)

By a similar argument as in Appendix H.3.2, we can obtain the desired result
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where (87) follows from (86), (88) follows from Lemma E.1 and Lemma H.1, (89) holds with
probability at least 1− 2δ by Azuma’s inequality, and (90) follows from Lemma E.1 and Lemma H.1.

H.5 SUMMARIZING TERMS T1-T4 TOGETHER

Recall that β = 1√
H

, and N0 = c4SABH5ι
β2 = O(SABH6ι). By combining (54), (58), (64), (68) and

(83), we conclude that with probability at least 1−O(H2T 4)δ, the following bound holds:
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I PROOF OF LEMMA E.6 (FINAL STEP)

Our construction of the correlated policy is inspired by the “certified policies” in [5].

Based on the trajectory of the distributions {πk
h}h∈[H],k∈[K] specified by Algorithm 3, we construct

a correlated policy π̂k
h = µ̂k

h × ν̂kh for each (h, k) ∈ [H] × [K]. The max-player’s policies µ̂k
h

and µ̂k
h+1[s, a, b] are defined in Algorithm 4, and the min-player’s policies can be defined similarly.

Further, we define the final output policy πout in Algorithm 2, which first uniformly samples an index
k from [K], and then proceeds with π̂k

1 . We remark that based on Algorithm 4 and Algorithm 5, the
policies µ̂k

h, ν̂
k
h , µ̂

k
h+1[s, a, b], ν̂

k
h+1[s, a, b] do not depend on the history before step h. Therefore, the

action-value functions are well-defined for the corresponding steps.

In order to show Lemma E.6, it suffices to show the following inequalities

Q
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Algorithm 4 Certified policy µ̂k
h (max-player version)

1: Initialize k′ ← k.
2: for step h′ ← h, h+ 1, . . . ,H do
3: Receive sh′ , and take action ah′ ∼ µk′

h (·|sh′).
4: Observe bh′ , and sample j ← Unif([Nk′

h′ (sh′ , ah′ , bh′)])

5: Set k′ ← ℓ̌k
′

h′,j .

Algorithm 5 Policy µ̂k
h+1[s, a, b] (max-player version)

1: Sample j ← Unif([Nk
h (s, a, b)])

2: k′ ← ℓ̌kh,j .
3: for step h′ ← h+ 1, . . . ,H do
4: Receive sh′ , and take action ah′ ∼ µk′

h (·|sh′).
5: Observe bh′ , and sample j ← Unif([Nk′

h′ (sh′ , ah′ , bh′)])

6: Set k′ ← ℓ̌k
′

h′,j .

due to the definition of output policy in Algorithm 2.

Consider a fixed tuple (s, a, b, h, k). Note that the result clearly holds for any s, a, b that is in its first
stage, due to our initialization of Q

k

h(s, a, b), Q
k

h
(s, a, b) and V

k

h(s), V
k
h(s). In the following, we

focus on the case where those values have been updated at least once before the k-th episode.

Our proof is based on induction on k. Note first that the claim clearly holds for k = 1. For k ≥ 2,
assume the claim holds for all u ∈ [1 : k − 1]. If those values are not updated in the k-th episode,
then the claim clearly holds.In the following, we consider the case where those values has just been
updated.

(I) We show Q
k

h(s, a, b) ≥ Q
†,ν̂k

h+1[s,a,b]

h (s, a, b).

Recall the update rule of the optimistic action-value function
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Besides the last term, there are two non-trivial cases and we will show both of the first two terms are

lower-bounded by Q
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h (s, a, b).

For the first case, we have
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where (92) follows from the induction hypothesis, (93) follows from the Azuma’s inequality, (94)
follows from the fact that taking the maximum out of the summation does not increase the sum, and
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(95) follows from the construction of policy ν̂kh+1[s, a, b] (obtained via the min-player’s counterpart
of Algorithm 5).

For the second case,

Q
k

h(s, a, b) = rh(s, a, b) +
1

nkh

nk
h∑

i=1

V
ref,ℓi
h+1 (sℓih+1) +

1

ňkh

ňk
h∑

i=1

(
V

ℓ̌i
h+1 − V

ref,ℓ̌i
h+1

)
(sℓ̌ih+1) + β

k

h

≥ rh(s, a, b) + Ph

 1

ňkh

ňk
h∑

i=1

V
ℓ̌i
h+1

 (s, a, b) + χ1 + χ2 + β
k

h

≥ rh(s, a, b) + Ph

 1

ňkh

ňk
h∑

i=1

V
†,ν̂ ℓ̌i

h+1

h+1

 (s, a, b) (96)

=
1

ňkh

ňk
h∑

i=1

Q
†,ν̂ ℓ̌i

h+1

h (s, a, b)

≥ sup
µ

1

ňkh

ňk
h∑

i=1

Q
µ,ν̂

ℓ̌i
h+1

h (s, a, b) (97)

≥ Q†,ν̂k
h+1[s,a,b]

h (s, a, b), (98)

where

χ1(k, h) =
1

n

n∑
i=1

(
V

ref,ℓi
h (sℓih+1)−

(
PhV

ref,ℓi
h+1

)
(s, a, b)

)
,

W
ℓ

h+1 = V
ℓ

h+1 − V
ref,ℓ

h+1

χ2(k, h) =
1

ň

ň∑
i=1

(
W

ℓ̌i
h+1(s

ℓ̌i
h+1)−

(
PhW

ℓ̌i
h+1

)
(s, a, b)

)
.

Here, (96) follows from the concentration result β ≥ χ1 + χ2 (see (29)), (97) follows from the fact
that taking the maximum out of summation does not increase the sum, and (98) follows from the
construction of policy ν̂kh+1[s, a, b] (obtained via the min-player’s counterpart of Algorithm 5).

(II) We show V
k+1

h (s) ≥ V †,ν̂k
h

h (s).

Note that

V
k

h(s) = (Dπk
h
Q

k

h)(s) ≥ sup
µ
(Dµ×νk

h
Q

k

h)(s)

≥ sup
µ

Ea∼µ,b∼νk
h
Q

†,ν̂k
h+1[s,a,b]

h (s, a, b) = V
†,ν̌k

h

h (s),

where the first inequality follows from the property of the CCE oracle and the second inequality
follows from the induction hypothesis.

The other side of bounds can be proved similarly for Qk

h
(s, a, b), Q

µ̌k
h+1[s,a,b],†

h (s, a, b), V k
h(s), and

Q
µ̌k
h+1,†

h (s).

J SUPPORTING LEMMAS

Lemma J.1 (Azuma-Hoefdding’s inequality). Suppose {Xk}k≥0 is a martingale and |Xk−Xk−1| ≤
ck almost surely. Then, for all positive integers N and all positive ϵ, it holds that

P[|XN −X0| ≥ ϵ] ≤ 2 exp

(
− ϵ2

2
∑N

k=1 c
2
k

)
.
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Lemma J.2 (Lemma 10 in [40]). Let {Mn}n≥0 be martingale such thatM0 = 0 and |Mn−Mn−1| ≤
c for some c > 0 and any n ≥ 1. Let Varn =

∑n
k=1 E[(Mk −Mk−1)

2|Fk−1] for n ≥ 0, where
Fk = σ(M1,M2, . . . ,Mk). Then for any positive integer n, and any ϵ, p > 0, we have

P
[
|Mn| ≥ 2

√
Varn log

1

p
+ 2

√
ϵ log

1

p
+ 2c log

1

p

]
≤
(
2nc2

ϵ
+ 2

)
p.

Lemma J.3 (Variant of Lemma 11 in [40]). For any α ∈ (0, 1) and non-negative weights
{wh(s, a)}s∈S,a∈A,b∈B,h∈[H], it holds that

K∑
k=1

H∑
h=1

wh(s
k
h, a

k
h, b

k
h)

(nkh)
α

≤ 2α

1− α
∑

s,a,b,h

wh(s, a, b)(N
K+1
h (s, a, b))1−α,

K∑
k=1

H∑
h=1

wh(s
k
h, a

k
h, b

k
h)

(ňkh)
α

≤ 22αHα

1− α
∑

s,a,b,h

wh(s, a, b)(N
K+1
h (s, a, b))1−α.

In the case α = 1, it holds that

K∑
k=1

H∑
h=1

wh(s
k
h, a

k
h, b

k
h)

nkh
≤ 2

∑
s,a,b,h

wh(s, a, b) log(N
K+1
h (s, a, b)),

K∑
k=1

H∑
h=1

wh(s
k
h, a

k
h, b

k
h)

ňkh
≤ 4H

∑
s,a,b,h

wh(s, a, b) log(N
K+1
h (s, a, b)).
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