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Supplementary Materials

A DETAILS OF ALGORITHM 1]

Algorithm 3 Q-learning with min-gap based reference-advantage decomposition
1: Initialize: Set all accumulators to 0. For all (s, a,b,h) € Sx AxBx [H], set V}1,(s), Qy (s, a,b)
to H—h+1,set V;Lef(s) to H, set V,,(s), @, (s, a, b), Vi (s, a,b) to 0; and
2: let my (s) ~ Unif(A) x Unif(B), A(s,h) = H, Viy(sn) = H, V,,(s) = 0.

3: for episodes k < 1,2,..., K do
4:  Observe s;.

5 forh+ 1,2,...,Hdo
6: Take action (ap, b,) < mr(sp), receive rp,(sp, an, by,), and observe sp1.
7: Update accumulators n := Np,(Sp, ap, by) &= N (sh, an, bn) & 1and -@.
8: if n € £ then
9: v 2 b: L.
R e e R R )
11: B \/gmi/"_,(lﬁref/n)2 v+ 02\/i/ﬁ_g/m2 L4 ca(Be 4 g 7123/24 + 7}7{133/24 )-
12: @,L(Sh,ah,bh) — min{rh(sh,ah,bh)—&-%—&-% rh(sh,ah,bh)+%ef+%+ﬁ,@h(sh,ah,bh)}.
~ ref ~
13: Q, (sh,an,br) < maX{"'h(Sh7ah7bh)‘f’%_’%Th(3h7ah7bh))+ﬁ7+%_ﬁ7gh(3h7ah7bh)}-
14: 7Th(8h) — CCE(@(S}“~7~),Qh(8h7~7~)).
15: Vi(sn) < Ea,bymmn(sn)@n(Sh,a,b), and Vi, (sp) < E(a p)mm, (s1) @), (S, a5 D).
16: Reset all intra-stage accumulators to 0.
17: if Vi(sn) =V (sn) < A(s, h) then
18: é(s, h) = Vh(sh) - Zh(sh).
19: Vi(sn) = Vi(sn), Vi, (sn) = Vi (sn).
20: if Za,b Nh(sh7a,b) = NO then
—ref ~ ~
21: Vi (1) < Vi(sn), Vit (sn) < V. (sn).

Algorithm description. Let c1, co, c3 be some sufficiently large universal constants so that the
concentration inequalities can be applied in the analysis. Besides the standard optimistic and
pessimistic value estimates @}, (s, a,b), V(s), Q, (s,a,b), V;(s), and the reference value functions
Vzef(s), VI (s), the algorithm keeps multiple different accumulators to facilitate the update: 1)
Ny (s, a,b) and Ny, (s, a,b) are used to keep the total visit number and the visits counting for the
current stage with respect to (s, a, b, h), respectively. 2) Intra-stage accumulators are used in the latest
stage and are reset at the beginning of each stage. The update rule of the intra-stage accumulators are
as follows:

Tn(shy an,bn) & Vig1(sni1), 0y (Shyansbn) < Vi (sn41), 6))
~ = —ref - re
T, (81, any o) & Vi1 (sn41) = Vipa (sn41), i, (sh,an,br) & Vi1 (snt1) — K;Lil(shﬂ), (6)

é}L(S}uambh) i (Vh+1(8h+1) *viil(sh-kl))zaéh(smahabh) é (Kh+1(5h+l) 71;:«1;1(8}1"!'1))2' 7

3) The following global accumulators are used for the samples in all stages:

—T wref T T

5 (8, an, by) & Vie1(8he1), ghef(sh, an,bn) & Khei1(8h+1)7 (®)
—ref w7ref re re:

7 (sn ans bn) & (Viya (snan))? @ (sn an, bn) & (Vichy (sne1))2. ©)

All accumulators are initialized to 0 at the beginning of the algorithm. The algorithm set ¢ = log(2/4),
B =O0(1/H) and Ng = c4,SABH?/3? for some sufficiently large universal constant c,.
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B COMPARISON TO EXISTING ALGORITHMS

Compare to Optimistic Nash Q-learning [5]. The Optimistic Nash Q-learning is a model-free
Q-learning algorithm for two-player zero-sum Markov games. The algorithm design differences
between our algorithm and the optimistic Nash Q-learning is two-fold. First, we adopt the stage-based
design instead of traditional Q-learning update Qe < (1 —)Qora+(r+V'). The optimistic Nash
Q-learning updates the value function with a learning rate, while our algorithm adopts greedy update.
We remark that both frameworks are viable, and in our opinion, the stage-based design is easier to
follow and analyse. Second, we propose a novel min-gap based reference-advantage decomposition, a
variance reduction technique, to further improve the sample complexity. Specifically, we use both the
standard update rule and the advantage-based update rule in our action-value function (Q function)
while the optimistic Nash Q-learning only uses the standard update rule.

Aside from the obvious distinction of the proofs caused by stage-based design, the main difference
is the analysis for the advantage-based update rule, which does not show up in the optimistic Nash
Q-learning. Due to the incorporation of the new min-gap based reference-advantage decomposition
technique, several new error terms arise in our analysis. Our main development lies in establishing
a few new properties on the cumulative occurrence of the large V-gap and the cumulative bonus
term, which enable the upper-bounding of those new error terms. More specifically, as we explain in
our proof outline in Section 4.2, our analysis include the following novel developments. (i) Step I
shows that the Nash equilibrium (action-)value functions are always bounded between the optimistic
and pessimistic (action-)value functions (see Lemma 4.3). Our new technical development here lies
in proving the inequality with respect to the action-value function, whose update rule features the
min-gap reference-advantage decomposition. (ii) Step II shows that the reference value can be learned
with bounded sample complexity (see Lemma 4.4). Our new development here lies in handling an
additional martingale difference arising due to the CCE oracle. (iii) In step IV, there are a few new
developments. First, we need to bound both the optimistic and pessimistic accumulative bonus terms,
and the analysis is more refined compared to that for single-agent RL. Second, the analysis of the
optimistic accumulative bonus term need to handle the CCE oracle together with the new min-gap
base reference-advantage decomposition for two-player zero-sum Markov game.

Compare to UCB-advantage [40]. The UCB-advantage is a model-free algorithm with reference-
advantage decomposition for single-agent RL. Our main novel design idea lies in the min-gap
based advantage reference value decomposition. Unlike the single-agent scenario, the optimistic (or
pessimistic) value function in Markov games does not necessarily preserve the monotone property
due to the nature of the CCE oracle. In order to obtain the “best" optimistic and pessimistic value
function pair, we propose the key min-gap design to update the reference value functions as the pair
of optimistic and pessimistic value functions whose value difference is the smallest (i.e., with the
minimal gap) in the history. It turns out that such a design is critical to guarantee the provable sample
efficiency.

For the proof techniques, there are the fundamental differences between single-agent RL and two-
player zero-sum games. Thanks to the key min-gap based reference-advantage decomposition, we
provide a new guarantee for the learned pair of reference value (Corollary 4.5) in the context of
two-player zero-sum Markov games, which is crucial in obtaining an optimal horizon dependence.

C NOTATIONS

For any function f : S — R, we use Ps 4 f and (P, f)(s, a, b) interchangeably. Define V(z,y) =
x " (y?) — (xTy)? for two vectors of the same dimension, where y? is obtained by squaring each
entry of y.

it _refk ok Ry etk b ﬁ;ef,k )
For ease of exposition, we define v = Zo — (B )2, = T (B2 and
h ny nk h nk nE

o =k =k k -k .

Py o= n (B2 v = i—g - (%)2 Moreover, we define A¥ = V:(sZ) — VE(sk) and ¢f =
—k ' .

Ak —(Q, — Q:)(sﬁ, ay,by). For convenience, we also define A} (s) = 1 {n}(s) < No}.

For certain functions, we use the superscript k£ to denote the value of the function at the beginning
of the k-th episode, and use the superscript K + 1 to denote the value of the function after all K
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episodes are played. For instance, we denote N (s, a, b) as the value of Ny, (s, a, b) at the beginning
of the k-th episode, and N} (s, a, b) to denote the total number of visits of (s, a, b) at step h after
K episodes. When it is clear from the context, we omit the subscript h and the superscript k for
notational convenience. For example, we use ¢; and lZv to denote éﬁ’ ; and fﬁ} , When it is obvious what
values that the indices h and k take.

D NOTATIONS

For any function f : S — R, we use P, 1, f and (P f)(s, a, b) interchangeably. Define V(z,y) =

x T (y?) — (xTy)? for two vectors of the same dimension, where %2 is obtained by squaring each
entry of y.

ref,k gref.k il rof et k etk
For ease of exposition, we define 7, = T — — (Eo, )2 % — o (=2 and
h nk h K nk

T,

v, = Z—g — (Z—’é)z, vk = %E — (;—g)Q Moreover, we define AF =V, (sF) — Vi (sF) and ¢ =

Ak — @) — QF)(sF, af,bf). For convenience, we also define Af (s) = 1 {nf(s) < No}.

For certain functions, we use the superscript k to denote the value of the function at the beginning
of the k-th episode, and use the superscript K + 1 to denote the value of the function after all K
episodes are played. For instance, we denote N/ (s, a, b) as the value of Ny, (s, a, b) at the beginning
of the k-th episode, and N} (s, a, ) to denote the total number of visits of (s, a, b) at step h after
K episodes. When it is clear from the context, we omit the subscript & and the superscript k for
notational convenience. For example, we use ¢; and Zi to denote é’fm and ffl ;, When it is obvious what
values that the indices / and k take.

E PROOF OF THEOREM [4.1]

In this section, we provide the proof of Theorem 4.1} which consists of four main steps and one final
step. In order to provide a clear proof flow here, we defer the proofs of the main lemmas in these
steps to later sections (i.e., Appendix [F- Appendix [I).

out

We start by replacing by 0 /poly (H,T'), and it suffices to show the desired bound for VJ’” (s1) —
V"1 (s1) with probability 1 — poly(H, T)6.
Step I: We show that the Nash equilibrium (action-)value functions are always bounded between the
optimistic and pessimistic (action-)value functions.
Lemma E.1 (Restatement of Lemmafd.3). Let & € (0,1). With probability at least 1 — 2T (2H?T3 +
7)0, it holds that for any s, a, b, k, h,
. —k
Q4 (s,a.b) < Qj(s,a.b) < Qu(s,a.b),
N —k
Vi(s) < Vii(s) < Vi(s).

The proof of Lemma|[E.T]is provided in Appendix [F} The new technical development lies in proving
the inequality with respect to the action-value function, whose update rule features the min-gap
reference-advantage decomposition.

Step II: We show that the occurrence of the large V-gap has bounded sample complexity independent
of the number of episodes K.
Lemma E.2 (Restatement of Lemma.4). With probability 1 — O(T'6), it holds that
K
> UVi(sh) = Vi(sh) = €} < O(SABH/¢?).
k=1

The proof is provided in Appendix [G]

By the selection of the reference value functions, Lemma with € setting to 3, and the definition of
Ny, we have the following corollary.
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Corollary E.3 (Restatement of Corollary[d.5).. Conditioned on the successful events of Lemma
and Lemmal|E2] for every state s, we have

—ref,k

nf(s) > No =V, "(s) = Vi (s) < B.

Step III: We bound Zszl (V’f — V*)(s1). Compared to single-agent RL, the CCE oracle leads to a
possibly mixed policy and we need to bound the additional term due to the CCE oracle.

Recall the definition of Af = V: (sF) = V5(sF)and ¢f = Ak — (@: - QZ)(SQ, af,by). Following
the update rule, we have

Al =k + (@), - @’;xsﬁ,aﬁ,bk)

ref,l; | g, (gl
< G+ H1{nj = 0} + ok thﬂ Siy1) = 3 ZVZGH Syt
h =1

Z; ref,l;\ ¢ el k
(Vh+1 =V ) (sis) + B+ By,

¢
i MM

n
1 u —7; —ref l; 7.
+ = Z(Vh-i-l Vi1 )(sy41) —
h =1

—ref,l; ref,l;
<G+ Hi{ng, =0} + —; Z sk ak bbbVt — nk ZPSE:% Ay

h>

h =1 h =1
1 hﬁ . nh
—; —ref l; tz ref Z; o k
Tk ZPS’“ ab o n(Vier = Viaga') = W ZP’“ s (Vi = V') + 26, + 26,
h =1 L —
(10)
s
.k k —ref,l; ref,0;
=Gy + Hl{nj = 0} + P 4x 5 1 TthH th-u
nh i=1 h i=1
s R
ref,4; ref,¢;
- PS}wa;wb h ﬁ Kthl - nk ZKthl + PS’L’a}L bh’h k Z (VhJFl h+1>
h =1 h =1
+2B), +28%
ref,f; —REF
< (i +H1l{nj =0} +P, sk al bk k th-i-l Vi

k k
ny 'n

1 £,6; REF 1 i 2 =k k
= P at vfon nk Z Vi =V | + Porais bih ok Z Vi =Vl | 26, +28,
o h i=1

) (11)

3

”h

—Ch+H1{nh—0}—|— ZA AN (12)
where we define
—k
Ah+1 1/’i§+1 Jrffk{-s-l +25h+2§2,

koo ref,¢; ref,0; REF REF
¢h+1 = Psﬁa;;bﬁ,h nk § : (Vh+1 - Vh+1 ) (Vh+1 Khﬂ )
h 1=1

"}

3 i ‘.
€h+1 = vk Z <Ps’}f af bk h T 15%}1) <Vh+1 Vh+1) .

hzl
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Here, (I0) follows from the successful event of martingale concentration (29) and {@3)) in Lemmal[E.T]

follows from the fact that V;ifr’l (s) (or V’,ﬁfrl“( )) is non-increasing (or non-decreasing) in u,

because V;ef(s) (or V' (s)) for a pair (s, h) can only be updated once and the updated value is
obviously greater (or less) than the initial value, and ll follows from the definition of AZ 1 defined
above.

Taking the summation over k € [K| gives
K K K K 1 o s K
D ARSD G HUnk =01+ o) A+ Al a3
k=1 k=1 k=1 k=1""h i=1 k=1

Note that nf > H if NJ¥(s¥, a¥ bY) > H. Therefore Zk L 1{n¥ =0} < SABH, and

K
> Hi1{nj =0} < SABH”. (14)
k=1

Now we focus on the term >+ P ,€ Enh A h}ifll The following lemma is useful.

Lemma E.4. Forany j € [K], we have 31, nk Zn” 1{j = E,”} <144

Proof. Fix an episode j. Note that Z"h 1{j = lﬁfb’i} = 1 if and only if (si, a{l, biL) = (sk,af,bf)

and (j, h) falls in the previous stage that (k, h) falls in with respect to (s¥,a¥,b% h). Define
-k -

K ={ke[K]:>" 1{j = £} ;} = 1}. Then every element k € K has the same value of 7y,

i.e., there exists an integer N; > 0 such that 1f = N; for all k € K. By the definition of stages,

K| < (14 & )N;. Therefore, for any j, we have s, nk Z V1 =0 < (14 ). O
By Lemma [E.4] we have

§<

K i K | K
Z ZAth_ZHEZA +121{J_£
k=1 i=1

"h

Zl{j—€

j=1 k: i=1
| K
U+ Ak (1s)
k=1
Combining (13), (T4) and (I3)), we have
K
> A < SABH? + ZA o +ZAh+1.
k=1

Iterating over h = H, H — 1,...,1 gives

H K
ZM<0<SABH3+ZZ (1+ )" 1(,’§+ZZ(1+I;)“A§H>.

h=1k=1 h=1k=1
By Azuma’s 1nequa11ty, it holds that with probability at least 1 — T°9,

ZM <0 <SABH3 +VH2T. + ZZ (1+ )" 1Ah+1> : (16)

h=1k=1

Step IV: We bound Zh 1 Zk 1(1+ F)PLAL | in the following lemma.
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Lemma E.5 (Restatement of Lemmal4.6). With probability at least 1 — O(H?T*)6, it holds that
1 C P s
(1+ )" "'Afyy = O (VSABH T+ HVTilogT + S*(AB) HYATH).
h=1 k=1

The proof of Lemma [E.53|is provided in Appendix [H]

Final step: We show the value difference induced by the certified policies is bounded, as summarized
in the next lemma.

Lemma E.6 (Restatement of Lemma.2). Conditioned on the successful event of Lemma let
(1°U v°U) be the output policy induced by the certified policy algorithm (Algorithm . Then we
have

The proof of Lemma [E.6]is provided in Appendix [I}

Combining (T6), Lemma[E.5and Lemma [E.6] and taking the union bound over all probability events,
we conclude that with probability at least 1 — O(H?T*)d, it holds that

out

out 1 3 3 1
Vi (s1) = VI (s) < 70 (\/SABH2TL + HVTulog T + SQ(AB)EH%TZ) , (7

which gives the desired result.

F PROOF OF LEMMA [E.T|(STEP I)

The proof is by induction on k. We establish the inequalities for the optimistic action-value and value
functions in step i, and the inequalities for the pessimistic counterparts in step ii.

Step i: We establish the inequality for the optimistic action-value and value functions in the following.

It is clear that the conclusion holds for the based case with k = 1. For k > 2, assume Q;‘L(s7 a,b) <
Q;,(s,a,b) and V;*(s) <V, (s) forany (s,a,h) € S x A x [H] and u € [1, k]. Fix tuple (s, a, b, h).
We next show that the conclusion holds for k + 1.

First, we show the inequality with respect to the action-value function. If Q,, (s, a,b), V(s) are not
updated in the k-th episode, then
. —k —k+1
Qh(sva’ab) SQh(s7a’ab) :Qh (s,a,b),
« —k —k+1
‘/h (5) < V}L(S) = Vh (5)

Otherwise, we have

5 ﬁref

Q:H(s, a,b) < min {rh(s,a, b) +
7

+’V,’f’h(87(l,b) + +

S =I

— —k
+ 57 Qh(87 a, b)} .
Besides the last term, there are two non-trivial cases.

For the first case, by Hoeffding’s inequality, with probability at least 1 — ¢ it holds that

@:H(S,a,b) =ru(s,a,b) + % v
LN~oh H?
= b) + — V i 9
Th(saaa )+fLZ=Zl h+1(8h+1)+ = L
Ly 2 H?
2 B+ =N v ; 9 s
_T‘h(saaa )+’hl:zl h+1(8h+1>+ = L ( )
Z Th(s,a, b) + (Ph‘/i;k-‘rl)(& a, b) (19)

18



Under review as a conference paper at ICLR 2024

= Q;(S,qu),

where follows from the induction hypothesis V. 4+1(8) > V*(s) forall u € [k], and follows
from Azuma-Hoeffding’s inequality.

For the second case, we have

ref

Q' (s,a,0) = (s, ab) + E— + L 1B
n n
ref,l; , o, 1 & —; —ref,l; . —
=rp(s,a,b) + thﬂ SHL+1 nZ<Vh+1 Vh+1)(sff+1)+ﬂ
=1
—ref,l; 1 n —7, —ref,l;
= 7r4(s,a,b) + ( ( thH)) sa,b)+<Ph (ﬁ;(vhﬂ Vh+1>>)(s,a,b)
+x1+x2+8
> rp(s, a,b) + ( ( th+1>> (s,a,b) +x1+x2+ 8 (20)
> ru(s,a,0) + (PaVit) (s,a,0) +xa +x2 + 8 1)
:@Z(S7a7b)+X1 +X2+Ba

where

1 [oref bi, o, —vef b
Xl(ka h) = ﬁ Z (Vh ( iL+1) (Pth+1 ) (Svavb)> ’
i=1
—ref ¢
Wi = Vi - Vit
Lo (b -
x2(k, h) = 7 Z Wh+1(shﬁg-1) — | PaWiiy (s,a,b) ).
i=1
Here, follows from the fact that Vzefr’f (s) is non-increasing in u (since V;Lef(s) for a pair (s, h)
can only be updated once and the updated value is obviously smaller than the initial value H), and
follows from the the induction hypothesis V’Z 11(8) = Vi i (s).

By LemmalJ.2|with € = -, with probability at least 1 — 2(H?7 + 1)d it holds

—ref,l;
V(P ,V 2 2H
lekh<2\/21 IPoapm Fuws o 20 200 22)
n Tn n
—ref,l;
V(Psabn Vi 2 2H
Ix2(k, h)| < 2\/21 1 2bh ht1 )L \f i L 23)
n Tn n
Lemma F.1. With probability at least 1 — 26, it holds that
ZV s Vrr ) < no™f + 3H2 /. (24)
Proof: Note that
- £.0; - £.0; £.0;
ZV(PS,a,b,h’ Vh+1 ) = Z (Ps a,b h(Vh+1 ) - (Ps a,b,hvh-&-l ) )
= i=1
2
wref. b g, —ref,l;
= Z Vit (8344))° — Z Vi ( 5h+1 +X3+ X4+ X5
= numf + X3+ X4 + X5, (25)
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where
" —ref,l; —ref,l; )
xo = ((Prawn Vit = (Vi (s140))°)

=1
1 ? 1 ?
ref,f; ) ref,4;
X4n<zvh+1 h+1> n(ZPsabhvh.H) s

2
1 - —ref,0; " —ref,0;
XSZﬁ (ZpsabhvheJrl) _Z(Psabhvhe+1 ) .
i=1

i=1
By Azuma’s inequality, with probability at least 1 — 4 it holds that |y3| < H?v/2n..
By Azuma’s inequality, with probability at least 1 — 4, it holds that

2 n 2
wref.l o g, —ref,l;
[Xa| = <Z Vi1 (syiq > - <Z Psap Vi1 )
=1
ref,l; i ref,l;
<2H th+1 h+1 Zpsabhvhﬂ
< 2H2\/ 2ne.

Moreover, x5 < 0 by Cauchy-Schwartz inequality. Plugging the above inequalities gives the desired
result. W

Combining (22) with (24) gives

vrefy,  5HiE 2 2H.
| <2/ 7 vy BH | 2V 2 (26)
n ni Tn n

Similar to Lemma[FI] we have the following lemma.
Lemma F.2. With probability at least 1 — 26, it holds that

N V(P Wisr') < it + 3H? Vi, 27)

Combining (23) with gives
l/L 5H. 2 2H.
X2l <24/ — 5 \[ — - (28)

ni Tn n

Finally, combining (26) and (28), noting the definition of B with (c1, ¢z, c3) = (2,2, 5), and taking a
union bound over all probability events, we have that with probability at least 1 — 2(H 273 + 3)0, it
holds that

B> Ixa1l + |xal- (29)

which means @ZH (s,a,b) > Q7(s,a,b).

Combining the two cases and taking the union bound over all steps, we have with probability at least
— T(2H?T? + 7)6, it holds that Q) (s, a,b) > Q% (s, a,b).

Next, we show that V;*(s) < Vﬁ“(s). Note that

—k+1

Vh ( ) —k+1

(D x+1Qy " )(s)
> sup (D, 1@, )(5) (30)



Under review as a conference paper at ICLR 2024

> sup (D, k1Qp)(s) 31)
HEA A h

> sup inf (D,x,Q%)(s)
UEA 4 vEAR

= Vi (),
where follows from the property of the CCE oracle, follows because @ﬁ“(s, a,b) >
@Z(s, a, b), which has just been proved.
Step ii: We show the inequalities for the pessimistic action-value function and value function below.

The two inequalities with respect to pessimistic (action-)value functions clearly hold for k£ = 1. For
k > 2, suppose Q},(s,a,b) > Q'(s,a,b) and V;*(s) = V},(s) for any (s,a,h) € S x A x [H] and
u € [1,k]. Now we fix tuple (s, a, b, h) and we only need to consider the case when @, (s, @, b) and
V,,(s) are updated.

We show Q7 (s,a,b) > Qi“(s, a, b). Note that

ref

12
+’7,7’h(87a,b) + T +

SAISY
S| I=¢

Q:—s-l(&a, b) < min {Th(s,a7 b) + +é7QZ(5, a, b)} ’

and we have two non-trivial cases.

For the first case, by Hoeffding’s inequality, with probability at least 1 — §, it holds that

Q:H(s,a, b) =rn(s,a,b) + % —

; 2
(s,a,b) + thﬂ 3h+1 P
2
<rp(s,a,b) + ZVh+1 sh+1 Pl (32)
<rp(s,a,b)+ (Pth_H)(s7 a,b) (33)
= Q;ﬁl(s7a7 b)7

where (32) follows from the induction hypothesis Vi ; (s) > V*(s) for all u € [k], and (33) follows
from Azuma-Hoeffding’s inequality.

For the second case, we have

ref

Q1 (5,0,) = ra(s.a,b) +

Se|I=¢

+

ref.f 1 7 vef,0;\ ; 4,
(s,a,b) + Z Vhe+1 5h+1 7 Z (Vh+1 - Vhe+1 ) (3h+1) -B

+
=rp(s,a,b) + <Ph ( Zefrf >) s,a,b) + ( (;Z( . _Vzeiléi)>> (s,a,b)

+x,tx,— 8
<rp(s,a,b) + ( ( ZVthl)) sa,b)—l—xlﬁ-gz—ﬁ (34)
<rp(s,a,b) + (PthH)(s,a,b) X1+X2_ﬁ (35)
=Q;(s,a,0) + x, +x, — B,

where

x () = = 57 (V4 sh) = (PEE) (s,0.0)
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14 ref,l
Wh+1 Kthl Vh+1
n

1 7, 0.
Xg(k7h) = 7 Z (Wh+1(3h+1) (Phwhll) (s,a,b)) .
i=1
Here, l) follows from the fact that Vzefrf (s) is non-decreasing in u (since V3% () for a pair (s, k)
can only be updated once and the updated value is obviously greater than the 1n1t1a1 value 0), and (35)

follows from the induction hypothesis Vi 1 (s) < V;* 1 (8).

By Lemman with e = &, with probability at least 1 — 2(H>T® + 1)4 it holds

V(P
Ix kh<2\/z“

ab,hs Vl;i’fi)b Q\f
2

36
n Tn n ' (36)
V .\ Vrcf £; . 2 9H
|X kh‘<2 211 s,a,b,h h+1) \/> VL. (37)
=2 M2 Tn 7
Lemma F.3. With probability at least 1 — 26, it holds that
ZV by Vieor') < nu™f 4+ 3H /e (38)
Proof: Note that
ref l; ref l; ref,4;
ZV s,a,b,h>y h+1)—z<sabh Y ht1 )2_(Psabhvh+1))
n n 2
ref,l; 1 4; ref, Z £;
= Z(Zh+1 (5h+1 - <Z Vit (84 > +Xs T Xy T X5
i=1 -1
=" X X, X (39)

where

n
Xy = Z ( s a,b,h reié )? — (Kﬁf (Sffﬂ))Q) )
= 2 " 2
wed (Swtret) - 5 (S ranit)
n 2 n -
(Z Psabhvﬁf ) - Z(Psabhvl;;f_f )2
=1

i=1

3|~

\
S|

By Azuma’s inequality, with probability at least 1 — § it holds that |x,| < H 2V2ne.

By Azuma’s inequality, with probability at least 1 — §, it holds that
2 2
ref Z ref,l;
~(Suste) - (S net )

ref,l; /1 0; ref 4;
E :Vh+1 h+1 E :Ps a.b,n V0"
< 2H2\/ 2ne.

Moreover, x5 < 0 by Cauchy-Schwartz inequality. Substituting the above inequalities gives the
desired result. W

<2H
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Combining (36) with (38) gives
vrefy  5HE 2 2H.
x| <2/ =+ 2y 2H (40)
n ni Tn n

Similar to Lemma[F.3] we have the following lemma.
Lemma F.4. With probability at least 1 — 26, it holds that

> V(Puapn Wittt') < A+ 3H?Vnu. (41)
Combining (37) with @T) gives
e 5HLE 2 2H.
Il <24/5 + 2 + Ve 20 (42)
n na Tn n

Finally, combining and , noting the definition of 5 with (c1, c2, ¢3) = (2,2, 5), and taking a
union bound over all probability events, we have that with probability at least 1 — 2(H2T? + 3)4, it
holds that

B2 x|+ 1 (43)
which gives Q:H(s, a,b) < Q7 (s,a,b).

Combining the two cases and taking union bound over all steps, we have with probability at least
1 — T(2H?T® 4 7)4, it holds that Q' (s, a,b) < Q; (s, a,b).

We show that V;*(s) < V¥ (s). Note that

VitH(s) = D Q1) (s)
< lenf (D WXVQ’;“)(S) (44)
SulenAf (D514, Q1) (5) (45)
< VlenAfB Hsél?A( uxv@)(s)
= Vh ( )7

where follows from the property of the CCE oracle, follows because QZH(& a,b) <
Q; (s, a,b), which has just been proved.

The entire proof is completed by combining step i and step ii, and taking a union bound over all
probability events.

G PRrROOF OF LEMMA [E.2]| (STEP II)

First, by Hoeffing’s inequality, for any (k, h) € [K] x [H], with probability at least 1 — 27°§ it holds
that

nk
1 i Rk k ok Zh k(k k pk k
Vh (sh+1) Qh(sha Qap, bh) < ’yiljv vk Vh+1 5h+1 Qh(shv Qp,, bh) S Th-

IL11

¢

R~
H e

k
h
The entire proof will be conditioned on the above event.

For any weight sequence {wy}/_; where wy, > 0, let ||w|, = maxij<p<x wi and ||w||, =
K
2 k1 Wh-

By the update rule of the action-value function, we have

—k
Al = (Vi = V3)(sh)
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= ¢+ (@, — QF)(sh, af, b))

lc

< Ch + 2’7h + Wk Z Vh+1 V%+1)(5f;+1) + Hl{ni =0}

hz 1
=P o+ kaA 1+ H1{n} = 0}. (46)
hz 1
Note that
K iy K
A=Y ZAh+1
k=1 "h i=1 j=1 hz 1

7,

K
Z h+121{k’_£?”

I
Mw HMN

¢
;-m

h+12 Zl{k—%z}

h7,1

K
= @AY, (47)

where we define @, = Y5 | %4 2‘1 1{k = lzfl’ ;}. Similar to the proof of Lemma we have

i=1 0
. ~ 1
[0l = maxwy, < (1+ ) |lwll - (48)
Moreover,
7, K K,
lwll, = ZZ ) IN k=0 =) = ) LY D k=6, = ng = [lwlly - 49)
k=1j=1 i=1 j=1 k=11i=1

Combining (#6), @7), @8) and #9), we have

K
Zkah < Zwkgh + ZZwkfyh + Zw’“AhH + HZwkl{nh =0}
k=1 k=1 k=1
K
Z wiCF + 2wah + Zka ko +SABH? |w|, (50)

k=1 k=1
By Azuma-Hoeffding’s inequality, with probability at least 1 — H 9, it holds that for any h € [H]

K K
Zwkglﬁ <V2H: Zwk <V2Hu||w|,, . (51)

k=1 k=1

We now bound the second term of . Define =(s, a, b: Z wiL{nk = e;, (sF,ak,bk)
| |

s,a,b)} and =(s,a,b) = > .o, =(s,a, b, ). Similar to (48) and (49), we then have =(s, a,b,j) <
j>1
w]l (1+ %)e; and > s =(8:a,b) =37 wy. Then

3‘??‘

wah Z 2V H? 1wy,
k
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K
1 .
=2VH?% g = E wpl{nf = e;, (s§,af,bf) = (s,a,b)}

J

s,a,b,j Jj=1
I Y Y sy
s,a,bj>1

Fix (s,a,b) and consider }_ .-, =(s,a,b,j) L. Note that 1/ is decreasing in j. Given
€j
> j>1 2(8,a,b, j) = E(s, a,b) is fixed, rearranging the inequality glves

j—1
Zas,am\f >/ Il (4 5)es {Z|w||m<1+;>eigz<s7a7b>}

i>1 i>1 i=1

= l[wllo, fol{ZIIw ei <E sab>}

<10(1+ — \/||w|| H=(s,a,b).

Therefore, by Cauchy-Schwartz 1nequa11ty, we have

Zwk'}’h <2VH ZIO 1+ 1/Hw||OOH\/E(s,a,b)

s,a,b

< 20VHZ(1 + — \/||w|\ SABH |[uwl],. (52)

Combining (50), (51 and (52)), we have

K K
> wiAf <> @Ay + (V2He+ SABH?) |wl|, + SOH\/HwHOO SABH ||lw|, . (53)
k=1 k=1

We expand the expression by iterating over step h + 1,--- | H,

K
1
ZkaZ <1+ ﬁ)H -H - ((\@HL + SABH?) ||wl|, + 80H\/||w||Oo SABH ||wl|, L)

< 6(H% + SABH?) || + 240Hg\/\|w||oo SAB [|wl|, ..

Now we set wy, = 1{AF > ¢}, and obtain

K K
STUAS > A} < 6(H 1+ SABH?) ||wl|, +240H% | |w]|,, SAB Y 1{Af > ¢}.
k=1 k=1

Note that ||w]|  is either 0 or 1. If ||w||,, = 0, the claim obviously holds. In the case when
|lw||, = 1, solving the following quadratic equation (ignoring coefficients) with respect to

x 1/2
(Zk:l 1{AF > e}) gives the desired result
K K 1/2
€ (Z 1{Af > e}) — H%*(SABuW)'/? (Z 1{Af > e}> — (SABH?® + H*)) <0.
k=1 k=1

H PROOF OF LEMMA [E.5|(STEP IV)

The entire proof is conditioned on the successful events of Lemma [E.T|and Lemma[E.2] which occur
with probability at least 1 — O(H?T*)3J.

25



Under review as a conference paper at ICLR 2024

By the definition of A}, |, we have

H K 1 H K
(1+ ) 1Ah+1 ZZ 1+ )= 1¢Z+1+ZZ )= 1§h+1
h=1k=1 h=1 k=1 h=1k=1
T Ts
H K 1 i H K 1
+QZZ(1+E)HﬁﬁQZZ(HE)HgZ. (54)
h=1 k=1 h=1k=1
T3 T4

We next bound each of the above four terms in one subsection, and summarize the final result in
Appendix [H.5

H.1 BOUND T}

Recall the definition \f (s) = 1 {n r(s) < NO} Since 1) is always non-negative, we have
H K 1
h—1, k
S+ Ly,
h=1k=1

k
h=1k=1 =
H K 1 g
Y
SBHY D Paabopn | -5 2 A
h=1k=1 h =1

1j=1k=1 "h 21

H K
SBHY Y Py uyin hﬂz 21{]—5 (55)

h=1j=1 h i=1
H K
< Bo8T - VY3 P gt £
h=1k=1
H K H K
< 6(logT+1)H (Z Z )\h+1 Sh+1 + Z Z (P"Ifiv“hvbk 1924—1) A];H_l)
h=1k=1 h=1k=1
H K
< 6(logT + 1)H (HSNO +Y > ( Sk ak b 1S}k+1) )\’;H)
h=1k=1
<6(logT + 1)H (HSNO n 2\/TL) (57)
where follows from the fact that % Z V1{j = €5 ;3 # Oonlyif (sf,af, by) = (sh,al,b]),
(56) follows because
o
1 z
721{]2[ Z %SQ(logT—i—l),
k=1 i z.jSZf;f o 2= ©

and holds with probability at least 1 — § by Azuma’s inequality.

26



Under review as a conference paper at ICLR 2024

To conclude, with probability at least 1 — 4, it holds that

Z Yty < O(logT) - (HSNy + HVT). (58)

h=1k=1

H.2 TERM T3

We first derive

=k

H K A _
=> 2 = 2 Poarapan =L ) (Vasa = Vil
h=1k=1"'"h i=1 Rt
K

St LS (B 1y ) (Vi - Vi) 18 = i1

h=1k=1j=1 [

Note that Ek = j if and only if (s}, af,bF) = (sh, ah, b]) Therefore,

H K 1
Z Z(l + E)MIEIEH

h=1 k=1
nk

H K 1 - ) K4 7 '
<30+ " (Pyagagn — 1) (Vi — Y)Y EONICIE

h=1j=1 k=1 'h i=1

H K )

_ )

=D O (Ps; ol bin ~ Lsl ) (Vh+1 - Kﬁﬂ) ;

h=1k=1

Lk .
where in the last equation we define 9h+1 (1+ %)h—l Zle nik Sk k=)
E ,

For (j, h) € [K]x [H], let =} be the number of elements in current state with respect to (s, al , b} | )
and 6/ (1+ )" 1% < 3. Define K = {(k,h) : 0}, = éfL_H}. Note that if k

h
is before the second last stage of the tuple (s),af, b, h), then we have that 65, = 6}, and

(k,h) € K. Given (k, h) € K, s§ ., follows the transition P, b5 b

é (Lh

htl T

Let Ki-(s,a,b) = {k : (sF,aF,bf) = (s,a,b), where k is in the second last stage of (s, a, b, h)}.
Note that for different 7, k, if (sh,ah,bh) = (sh,ah,b{z) and j, k are in the same stage of
(sh,ah,bi, h), then 9h+1 = 9h+1 and 0h+1 = 9h+1 Denote 01 and 0h+1 as 0p41(s,a,b) and
O1+1(s, a, b) respectively for some k € K (s, a, b).

We have

H K 1

S0 e,

h=1 k=1

Y (1) ()

Sh ah bJ h siJrl h+1 ~h+1
(k,h)
+ Z (651 — 05 41) ( s ad bl h T 18%}1) (Vh+1 _Zgz+1>
(k,h)

= Oin (Ps; al bl T 1s;l+1) (Vh+1 *ﬂm)

(k,h)
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k il 7 j
+ Z (T 9£+1) (Ps{;’,afl,b{;,h - ls{w) (Vh+1 - Kﬁﬂ) . (59)
(k,h)EK

Since GNZ 1 is independent of s’fL 41 by Azuma’s inequality, with probability at least 1 — 4, it holds
that

> 0 (Psﬁ,a’;,bﬁ7h - 1sﬁ+1) (V:H - K’ZH) < 6VTH?. (60)
(k,h)

Moreover, we have

. ~ —k k
Y (O =0 (Psﬁ,aﬁ,b,’i,h - 1s§+1) (Vthl - Kh+1)
(k,h)EX

~ —k
= Z Z 1{(8270’;37[)]}3) = (saaab)}(GZ—&-l - eili-&-l) (Psﬁ,a’fb,b’;;,h - ls’fLJrl) (Vh+1 7Kﬁ+1>
s,a,b,h(k7h)ef

- Z (9h+1(s7a" b) - éh+1(sa a)) Z (eili-&-l - éf]i-i-l) (Psf;,ak b;i,h — 1. ) (V:-l-l - KZJrl)

h> Sh+1
s,a,b,h (k,h)EK;E (s,a)
< Z O(H)\/|IKi-(s,a,b)|e (61)
s,a,b,h
< > O(H)\NEF (s,a,b)
s,a,b,h
< O(H) \/SABHL > NS (s a,b) (62)
s,a,b,h

< O(H)\/SABH.(T/H), (63)

where holds with probability at least 1 — 7T'§ by Azuma’s inequality and a union bound over all
steps in /C, follows from Cauchy-Schwartz inequality, and follows from the fact that the
length of the last two stages for each (s, a, b, h) tuple is only O(1/H) fraction of the total number of
visits.

Combining (59), and (63), we obtain that with probability at least 1 — (7" + 1)4, it holds that

H K
1 )
>+ )"k < O(VH?SABT), (64)
h=1k=1
H.3 TERM T3
Note that
H

3

H K _ref.k ~k 3 3
v, ’ U H. H. H.3 H.x
<3§:§:(01 Lt ﬁZHCS(wL +k3+vk'>
h

hel he1 "2 N, ﬁﬁ (np)7 (”h)%
H K prefk ~k P
<o(>Y Y byt || | + O(SABH? log T + (SABL)THETT),  (65)
n
h=1k=1 h h

where 1) follows from Lemmawith o= % and o = 1.

—ref ,k
Step i: We bound Zthl Zszl v/ V*;l—ku We begin with the following technical lemmas.
h
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Lemma H.1. With probability at least 1 — 2T°6, it holds that for all s,a,b, h, k,

@i, 0.t) < Q)+ (11— 1) (54 T2,
h

Q5.0 2 QF (sat) — (11 -1 (54 50,
h
VH@swf@HwH—m(ﬁ+

~k

HSN,
nh ’

vﬂ@zwfwwwH—m(ﬁ+H§%)-

h

The proof is provided in Appendix [H.3.1]

Lemma H.2. Conditioned on the successful event of LemmalH.1| with probability at least 1 — 49, it
holds that

—re T 12H25+ 18HSSN L
A £,k = V(P qb p s Vity) < 4HB + — 9 4 20H?2 /ﬁ'
h h

The proof is provided in Appendix [H.3.2]
Lemma H.3 (Lemma C.5 in [17]). With probability at least 1 — 6, it holds that

V(Pyt gt s Viter) < O(HT + H3).

B

Combining Lemma Lemma[H.3|and Lemma[J.3| (see Appendix [, we have

H K _ref k
h

Iz
h=1k=1 "

H K V(P gk b 1y Vi)
< ShoOpo 0,0 A1
-§§¢ T

4HB 12H?2j + 18H3SN, 3
kﬂ ﬂ+k2 © -+ 20H? L:; L
h=1k=1 T (n7;) (nj)?

< o N}{(+1(S’ a, b)V(PS,a,b,hv Vhﬂ_t]_)L
s,a,b,h
0]

> \/N;(“(s, a,b)Hp + (ST ABHIN? + SABH?B%)i% log T + (SAB) HITH
s,a,b,h

< O (VSABH?Tu+/SABH?BT. + (S2ABHENZ + SABH2B)} log T + (SAB)THATY)
(66)

. H K vy
Step ii: We bound > ;7 >, 4/ ke
h

By Lemma [E-T] Lemma|E.2]and Corollary [E3] we have

k

P R A AN,
=~ s —ref,f; 7
v, < —& E <Vh+1 — Vit > (Shy1)
Ny, 2
i=1
LA -\ ; P iy i\2 . ;
—0; 7 7. —ref,{; ref,?; 12
< AE (Vh+1 —V;Z+1) ($p1) + = (VhH Vi ) (sp41)
=1 L 4=1
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2
< —H?SN, +25°.
nh

Combining the above inequality with Lemma[J.3] we obtain

Z Z ”hL <0 (\/SABH%?TL + SABH®\/SNyilog T) 67)

h=1k=1

Combining (63), and (67), we obtain that with probability at least 1 — O(T))é, it holds that

H K
S a+ %)’Hﬁﬁ < O(VSABH?Tv+ \/SABH?BT. + \/SABH332T:
h=1k=1

+ SEABHPNZ 1log T + SABH?B% 4 log T + (SABu) HET?). (68)
H.3.1 PrRoOF oF LEMMA [H. ]l

Fix an episode k. The proof is based on induction over h = H, H — 1,...,1. Note first that the
claim clearly holds for h = H. Assume the inequalities hold at step h + 1.

By the update rule of the action-value function, we have

Qh(sab)<rhsab th+1 5h+1
—k 0.
=rp(s,a,b) + th+1 Sh+1) +y+ < Z <Vh+1(3h+1) Vh+1(3%+1)>

—k 1 =4 i —k J.
<rp(s,a,0) + PoapnVipyr + 5 Z (Vh+1(5f;+1) - Vh+1(5f;+1)> (69)
i=1

HSN
< ru(8,,0) + PoapnVimy + (H —h+1) <B + °>

n

1 i
+ % Z (Vf;H(S%Jrl) Vh+1(5h+1)> (70)

i=1

L HSN T (ol 4 ;
<QF +(H-h+1) (5 + o> + = > (Vhﬂ(sfgﬂ) Vﬁﬂ(shﬂ))

i=1

(71)

=1

(72)

< Q7 (s,a,b) + (H — h) (54—

where holds with probability at least 1 — & by Azuma’s inequality, follows from the induction
hypothesis, and (71) follows from Lemma [ET}

HSN0>

Moreover, by the update rule of the value function, we have
V(5) = E()om, @n(5.,0)
< Blanyer, @F (sc0ut) 4 (1 -1 (5
HSNO>

HSNO )

<V (s) +(H >(5+

The other direction for the pessimistic (action-)value function can be proved similarly. Finally, taking
the union bound over all steps gives the desired result.
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H.3.2 PROOF oF LEMMA [H.2]

We first provide bound on 7" = V(Pgr ok bk hs Vzeif ). Recall that

k

r 1 —ref 0 1
et — TZV(P’“ bi b Vgl ) = —nfk(X(s + x7 + X8),

spaf,
Ny, i=1 h

where

ref,4; ref,¢; )
((Pug g o (Viid )2 = (Vi (51102

=
>

X6 =
=1
2 b 2
1 —ref,l; . 1 —ref,l;
X7 = —"F% § Vh+1 h+1) - E Ps;v,ah,b, ,th+1 )
ny ny —1 v v
2
N 1 Z Vref/ Zh P Vref L )
X8 = ng sh,aﬁ, nohV h+1 ‘ s’fl,ah,bh,h h+1 .

By Azuma’s inequality, with probability at least 1 — 24, it holds that

Ixe| < H*\/2nke, |x7| < 2H?\/2nk..

Moreover, we have

nk L[ 2
—ref,l; —ref,l;
—X8 = (Ps’;,ah,bk WY et ) — Ps’; al bk, WVt
' h \i=1
nk L[ ?
—ref ¢ —REF
< Por ok vk Vst ) o P at vk n Vg1 (73)
i=1 h \i=1
ny,
—ref,l; —REF
= Z ((Psﬁ,awbk th+1 ) (Ps;“l,aﬁ,bththl) )
i=1
nh
2
< 2H P ;cl ah,bk h>\h+1
n,
_ 2 l;
=2H Z/\h+1 Sht1) Z(P’,;,ah,b* n—1 sy ))‘h+1
=1
< 2H?SNy + 2H?\/2n}, (74)
£,k . .-
where lb follows from the fact that V:LeH > vy h +1 ! for any k, h, and holds with probability at
least 1 — 0 by Azuma’s inequality.
We have
k
np 2
_ref,k 1 —ref,l; 2H SNO 9 L
Tt — =3 V(P gr g Vi ) < ——— +8H [ (75)
ny 4= - ny ny
=1
Therefore,
fref k k
Vy - V(P sk ,ak bk h> Vhﬂ-i-l)
n
—ref,l; _ref,k 1 i —ref,l;
= nﬁ Z ( s’fb,ah,bh,h7 Vthl ) - V(Psﬁ,ah,bh,fw Vh+1)> + vy - ;ﬁ ZV(Psﬁ,a}L,bk h> Vthl )
i=1 i=1
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k

1 n —ref,l; 2H2SN0 L
S % Z (V(Psi‘ ag b hvvh+1 ) - V(Ps;j,ah bk h’Vthl)) Ry 8H2\/ nk (76)
ny 3 np, np,
AH —refli ok 2H2SN, 7
< S P a (Vi = Vi) |+ =2 82, [
L ) N M
k
4H & —ref,l Lk . i} HSNO HSN0
=% Z Por ar vt n (Vi1 = Vi + Vi = Vi) — (5 + ) (5 + )
L y; ny,
2H?S N,
+ =L 8H? [ —
np, np,
4H —reff 4H ok HSN()
S F Zps;;,ah,b Vg1 = Vi) + Zpég,ah,bk (Vh+1 Vipan +H <5+ ))
h
4H? HSN, 2H?S N,
+k<ﬂ+ Vk°)+ >0 1 8H | (77)
np, np, np, ny,
AH O et L, AH O HSN0
<—= (Vg Vh+1)(5h1+1) +— ((Vh+1 Vh+1)(5h+1) +H (ﬁ +
[ [ - h
4H2 HSN, 2H?S N,
<6+ — O)+ 20 4 o0m?, [ (78)
np, np, ny,
4H?SN, 8H? HSN,
§<4H6+ - °>+ - <5+ vk°>
np, np, Ny
4H2 HSN, 2H2SN,
(5+ Vk0)+ 0y 20H?, [ (79)
h np, np, ny,
12H? 6H2SN, 12H3S N,
—amp+ 2D gz [ SN 12HT5 N
”h "h np, npny,
12H? 18H3SN,
< app BIOESITONo ooz [ 2
n n
h h

where (76) follows from (73), (77) follows from Lemma [E.I] and Lemma [H.T] (78) holds with
probability at least 1 — 26 by Azuma’s inequality, and (79) follows from Lemma [E.T|and Lemma [H.T]

H.4 TERM Ty

The proof is similar to that for the term S S°% (14 L )h=1B 6 »- In the following, we will present
the key steps, and provide the proof whenever necessary.

By Lemma([J.3] we have

1 —k
(1+ H)h "B
h=1k=1
H K —ref.k ~k 3 3
v, U H. H. H. H.x
<3 e[ it e it | s s
gg ( nh L o ()i (@)t
H K yref,k ﬁk
<o(> > by [20 | | + O(SABH? log T + (SAB)THETT).  (80)
h=1k=1 ", np,
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Lemma H4. Conditioned on the successful event of LemmalH.1| with probability at least 1 — 49, it
holds that

12H28 + 18H3S N,
U = V(P e e o Viky) < AHB + ot . % 4 20H? /n :
h

Sh’
T,

The proof is provided in Appendix [H.4.1]
Combining Lemma[H.3] Lemma|[H.4land Lemma([J.3] we have

H K ref,k
Yy,
Z nk !
h=1k=1 h
<0 (\/SABH2TL + \/SABH2BT. + (S ABHSN? + SABH?B%)i} log T + (SABL)4H4T4)

(81)

Step ii: Bound Z he1 Z et A /£ nk t. By Lemma Lemmaﬂand Corollary L we have

0; r f@ 7
(Vh+1 - Vhe+1 ) (sp41)

I
I
3|~

*MM

k
h =1
nk iy,
1 O (= o\ " (retdn e\
< ﬁiﬁ Vi — Vil (3h+1)+ Z Vi = Vi) (siq)
=1 i=1
2
< —H?SN, + 282
np,

Combining the above inequality with Lemma [J.3] we obtain
h: :

Therefore, combining (30), and gives that with probability at least 1 — O(T')6, it holds that

L<o (\/SABH?’BQTL + SABH?\/SNyilog T) (82)

Y a+ %)h—lﬁﬁ < O(VSABH?Tv+ \/SABH?BT. + \/SABH3B?T:

h=1k=1
+ SEABHPNZ 1log T + SABH?B% 3 log T + (SAB) H H3T1). (83)
H.4.1 PRrOOF oF LEMMA [HA4
Recall (39) that
w1 ref £ 1
vo- nTgL ;V(Ps’;,ah o ho Vy1') = _;z(lﬁ + X T Xe)s
where

k
T,
f,0; £,0; 0 4
Xo = D (P ap e a (Vi) = (V3L (s1500)?)

=1
2 2
1 nﬁ ref, ;s (; ref,¢;
X, = nk th+1 (s h1+1) Z sk .ak bl h Vh+1 )
h \i=1
2 k
1 ref,l; QU ref,l;
72 Z sh,ah, Vh+1 Z(Ps’fb,ah,bh,hvh+l ) .

i=1
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By Azuma’s inequality, with probability at least 1 — 24, it holds that

IXgl < H?\/2nk, X, < 2H?\/2nk..

The term Xq is bounded slightly differently from xg as follows:

k
”h h
£,0; 1 £,0;
=Y (Psk TN i ) - N P e hViEE
i=1 i=1
”;CL 2 1 "h ?
REF £,0;
< (Psg,ag,bg,hKhH) — Z Py ak o n Vo0 (84)
=1 )
2 2
1 a REF 1 & £,0;
re
= ok | 2 PV | — o ZPsz Ay
v \i=1
k
<2H? ZP %ah,bmh)‘hﬂ
i=1
_o9p2 A
=2H ZAh+1 Spy1) Z skoak bk b~ 13f+1))‘h+1
< 2H?SNy + 2H?\/2nf, (85)
where (84]) follows from the fact that V’;ﬁfrf < V%Ef for any k, h, and holds with probability at
least 1 — 0 due to Azuma’s inequality. Therefore,
o 2H%S N,
etk ref,{; 0 2 [t
" 72 (Pae a0 Vig1') < —F T8 % (86)
L —t h h

By a similar argument as in Appendix we can obtain the desired result

ref,k
v, " = V(P bkh7Vh+1>

sy ,a,,

nk h nh

ref,l; rcf k ref,l;
= nk: Z ( PS’; ak bk, hvvh+1 ) *V(Ps’,j ak bk, hvVh+1)) + nk ZV s¥.alk b havh+1 )
h j—1 h =1
nk )
1 / ref,0; 2H SNO L
< Tk Z (V(Psf,ah,bk hs Vh+1 ) - V(Ps} ,ak bk b Vh+1)) + T + 8H2 — 87)
[0y np, V 7
4H O 2H2SN,
ref,4; ok 0
<% Z P gy n (V0" — Vh+1)’ +—F 8H? —
L - np, ny,
k
4H & refty ook . i HSNO HSNO
=z Z Ps’;,ah,bk RV = Vi + Vi = Vi) — B+ B+
h =1 h h
2H2SN,
ny ny
4H refﬂ 4H * xk HSNO
S Z sk ak ok (Vi — Vo i0") Z kak b (Vh+1 —Vipa+H (5 + oK
h
4H? HSN 2H2SN, )
+(ﬁ+ Vk°)+ 20 1 8H? [ — (88)
nj; Ty, ny, np,
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k k
4H < * ref,¢; ; 4H - * s ) HSN()
S F Z(Vhﬂ Vi) s + — ((Vthl — Vi) (siiy) + H B+ —;
"h i3 "h i3 "h
4H2 HSN 2H2SN,
<&+vkg+ o+ 207, | (89)
np, ny, np,
4H2SN, S8H? HSN,
<o ), 150
np, ny, np,
4H? HSN, 2H?S N,
+k<ﬂ+ vk°)+ 0 1 20H?, [ (90)
np, np, np, ny,
12H? 6H2SNy, 12H3SN,
=4HpB + 3+20H2/b+ 0
ny; ny, np, np My,
12H? 18H3SN,
< app BIEOE BN | ogpe [ —
ny, Ny

where (87) follows from (86), (88) follows from Lemma [E-T] and Lemma [H.T} (89) holds with
probability at least 1 — 26 by Azuma’s inequality, and (90) follows from Lemma [E.T|and Lemma [H.T]

H.5 SUMMARIZING TERMS T;-T4 TOGETHER

Recall that 5 = ﬁ, and Ny = C4SABHO = O(SABHS.). By COIl’lblIlll’lg and
(83), we conclude that with probablhty atleast 1 — O(H?T*)d, the follow1ng bound holds

H
h=1k

< O(logT) - (H*SNy + HVTt) + O(HVSABT)
+O(VSABH2T '+ \/SABH?BT. + \/SABH332T:

4 SEABHPNZ 1 log T + SABH?B% 4 log T + (SAB.) HET?)
) (\/SABHQTL + HVTlog T + (SABL)ZHETZ)

+0 (x/SABHQBTL +/SABH3BT: + SABH?3%.% log T)

K
1

+0 ((H25N0 + SEABHPNZ ) log T)

-0 (\/SABHQTL + HVTlog T + SZ(AB)%HSL%T%) : 1)

I PROOF OF LEMMA [E.6| (FINAL STEP)

Our construction of the correlated policy is inspired by the “certified policies” in [5]].

Based on the trajectory of the distributions {m’f}he[ 1, ke[K] Specified by Algorithm 3} we construct
a correlated policy 7 = [iff x DF for each (h,k) € [H] x [K]. The max-player’s policies fif
and ﬁ’,?b 418, a,b] are defined in Algorithm and the min-player’s policies can be defined similarly.

Further, we define the final output pohcy 7% in Algorlthrn' 2l which first uniformly samples an index
k from [K ], and then proceeds with 7F. We remark that based on Algor1thmE| and Algonthm the
policies 7if:, vy, 11k 1 [s, a,b], U1 [s, a, b] do not depend on the history before step h. Therefore, the
action-value functions are well-defined for the corresponding steps.

In order to show Lemma[E.€] it suffices to show the following inequalities
— ok . o
Qn(s8) > Q7 s, .0), Vi) 2 V(o)
~k ~,
Qh(s.a.0) = QM (s ah), Vhs) 2 VI (s).
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Algorithm 4 Certified policy 7if’ (max-player version)

1: Initialize k' + k.

2: forstep b/ < h,h+1,...,H do

3:  Receive s/, and take action ay/ ~ u,;,( |sh/)

Observe by, and sample j < Unif ([N} (sh/,ah ,br)])
Set k'« (%, ..

AN

Algorithm 5 Policy /i 4118, @, b] (max-player version)
1: Sample j < Unif([N}(s,a,b)])
2: kK Eﬁ’j.
3: forsteph’ < h+1,...,H do

4:  Receive sy, and take action aps ~ uﬁ/( |sh/)

5

6

Observe by, and sample j < Unif ([N} (sn:, ans, b))
Set k'« (%, ..

due to the definition of output policy in Algorithm[2]

Consider a fixed tuple (s, a, b, h, k). Note that the result clearly holds for any s, a, b that is in its first
stage, due to our initialization of @Z(s, a,b), Q:(s, a,b) and V:(s), V¥ (s). In the following, we
focus on the case where those values have been updated at least once before the k-th episode.

Our proof is based on induction on k. Note first that the claim clearly holds for £ = 1. For k > 2,
assume the claim holds for all u € [1 : k& — 1]. If those values are not updated in the k-th episode,

then the claim clearly holds.In the following, we consider the case where those values has just been
updated.

(I) We show Qh(s a,b) > QT Prpalsa b]( s,a,b).
Recall the update rule of the optimistic action-value function
—ref

+77rh(5aaab) + ’un + % —|—B,Qﬁ(s,a,b)}.

=l

S| 2

Q,(s,a,b) < min {7'h(s, a,b) +
Besides the last term, there are two non-trivial cases and we will show both of the first two terms are
~k
lower-bounded by QL’V“l [5:0.0] (s,a,b).

For the first case, we have

k

—k
Q(s,a,0) =rp(s,a,b) + ﬁk th+1 5h+1) +
h =1
Tz/
> ru(s,a,b) + k th—k’iﬂ Sh+1 +7]§ (92)
-k
1 T 7T’DZ7¢
2 ’hfk ZQh e (S7aab) (93)
h =1
-k
1 - *l‘*’ﬁ}zl}l
ZsupﬁZQh "+ (s,a,b) (94)
mohoj—=1
—,0F s,a
> Q;flv h1ls) 7b](8,a7b), 95)

where (92) follows from the induction hypothesis, (93)) follows from the Azuma’s inequality, (94)
follows from the fact that taking the maximum out of the summation does not increase the sum, and

36



Under review as a conference paper at ICLR 2024

follows from the construction of policy 7 I/h 415, @, b] (obtained via the min-player’s counterpart
lgorlthm B).

For the second case,

-k

ref,l; , g, 1 O (i, —ref, 0\ , 7 —k

Qh(s a,b) =rn(s,a,b) + k ZV}LH 3h+1 ak Z (Vh+1 Vit ) (sp1) + B
h =1

1o —0, —k
ZTh(S,CL,b)—f—Ph Wzvthl (S7a?b)+X1 +X2+5h
h =1
-k
1 Ot ol
> 7(s,0,b) + Ph | — S VI (s.a,0) (96)
h =1
~k ZQT Vh+1 S a, b)
nh =1
> sup — ZQ“ ”h+1 (s,a,b) (97)
H h =1
> Qi (s 0,1, (98)

where

1 —ref,l; , . ref,{;
xalk,h) = = LS (T st - (BT (s0)
i=1
_— = —ref,l
Wit1 =Vha — Vh+1
1SN [t 7 i
x2(k, h) = 5 Z <Wh+1(3h"+1) - <PhWh+1> (Saavb)> :
i=1
Here, follows from the concentration result 3 > y1 + X2 (see ), follows from the fact
that taking the maximum out of summation does not increase the sum, and @) follows from the
construction of policy ﬁ}]f 4118, a, b] (obtained via the min-player’s counterpart of Algorithm .

() We show V" (s) > V,"7 (s),

Note that
k

Vi(s) = (Da@n)(s) sup(DW;@b(s)

>supE RQT Vh“[éab]( ,a,b) :VJ’DE(S),

arvp,bvy

where the first inequality follows from the property of the CCE oracle and the second inequality
follows from the induction hypothesis.

~ Kk
The other side of bounds can be proved similarly for Q]Z (s,a,b), Q""" Sl (s,a,b), V¥(s), and

<k
Z}wlvT(s)‘

J SUPPORTING LEMMAS

Lemma J.1 (Azuma-Hoefdding’s inequality). Suppose { X}, }i>o is a martingale and | X, — Xj,_1| <
ci, almost surely. Then, for all positive integers N and all positive ¢, it holds that

2
BlIXn — Xol > d < 20x () |
2> k=1 Ci
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Lemma J.2 (Lemma 10 in [40]). Let {M,, },,>0 be martingale such that My = 0 and |M,,—M,,_1| <
c for some ¢ > 0 and any n > 1. Let Var,, = Y ;_ E[(My — My_1)?|Fj_1] for n > 0, where
Fi = o(My, M, ..., My). Then for any positive integer n, and any €,p > 0, we have

1 1 1 2nc?
P [|Mn| > 2\/Varn log — + 2\/elog + 2clog } < < e 2) .
p p p €

Lemma J.3 (Variant of Lemma 11 in [40]). For any a € (0,1) and non-negative weights
{wn(s,0)}ses,aeapeB,he[m) it holds that

K k k a
w, sh,ah,b ) 2 K+1 1-a
E E < T E wp(s,a,b)(N, " (s,a,b)) 7,

k=1h=1 s,a,b,h
K H k 2a0 [T

wp(s¥ ak b 2°*H -
ZZ h> h7 ) < - Z wh(87a7b)(N}{(+1(s,a,b))l
=1 h—=1 s,a,b,h

In the case o« = 1, it holds that

K H k ok
3 o @ 0h) Z (5, a,b) log(N*1(s, a, b)),
k=1h=1 nh a,b,h
K H E gk bk
wp (87, a ,b
33 ) <t 5 1N 0,
k=1h=1 "h a,b.}
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