
A More Details of Motivating Observations505

Experiment Setup. We conduct experiments on the Newman artificial networks [10] with different506

properties. The network consists of 128 nodes divided into 4 classes, where each node has on average507

zin edges (i.e., intra-class edges) connecting to nodes of the same class and zout edges (i.e., inter-class508

edges) to nodes of other classes, and zin + zout = 16. Here two indicators are used: ρin = zin/32509

and ρout = zout/96, to indicate the graph property, i.e., ρin > ρout, ρin = ρout and ρin < ρout510

means the graph with homophily, randomness and heterophily, respectively. In Figure 5, we show the511

visualization of the adjacency matrix with strong homophily, randomness and strong heterophily.512

For the node attributes, we generate 4h-dimensional binary attributes (i.e., xi) for each node to form513

4 attribute clusters, corresponding to the 4 classes [13]. To be specific, for every node in the i-th514

class, we use a binomial distribution with mean pin = hin/h to generate a h-dimensional binary515

vector as its ((i − 1) × h + 1)-th to (i × h)-th attributes, and generated the rest attributes using516

a binomial distribution with mean pout = hout/(3h). In our experiments, we set 4h = 200 and517

hout = 4(hin + hout = 16), so that pin > pout, the h-dimensional attributes are associated with518

the i-th class with a higher probability, whereas the rest 3h attributes are irrelevant. For the model519

implementation, we use the Gophormer [43] with the default setting for the demonstration. For each520

center node, we sample 10 nodes with 1-hop, 2-hop, KNN and PPR strategies 16 times for data521

augmentation.522
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(a) α = 0.75
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(b) α = 0.25
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(c) α = 0.05

Figure 5: The adjacency matrix of the Newman network with strong homophily, randomness and
strong heterophily respectively. (The yellow dots indicate connected edges and the purple dots
indicate no edges.)

B Dataset Statistics523

In Table 3, we show the detailed statistics of 9 datasets.

Table 3: The statistics of the datasets.

Dataset #Nodes #Edges #Classes #Features Type α

Cora 2,708 5,278 7 1,433 Citation network 0.83
Citeseer 3,327 4,522 6 3,703 Citation network 0.71
Pubmed 19,717 44,324 3 500 Citation network 0.79

Chameleon 2,277 31,371 5 2,325 Wiki pages 0.23
Actor 7,600 26,659 5 932 Actors in movies 0.22

Squirrel 5,201 198,353 5 2,089 Wiki pages 0.22
Texas 183 279 5 1703 Web pages 0.11

Cornell 183 277 5 1703 Web pages 0.30
Wisconsin 251 499 5 1703 Web pages 0.21

524
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Figure 6: Parameter sensitivity analysis on Cora. We show (a) the influence of the number of layers;
(b) the number of super-nodes; (c) the number of global nodes; (d) and the number of augmentation.
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Figure 7: Parameter sensitivity analysis on Citeseer.

C Additional Results and Analysis525

Table 4: Time consumption for graph coarsening (s). The coarsening rate c is defined as |V ′|
|V |

Dataset Method c=0.01 c=0.10 c=0.50

Cora
VN 3.792 3.536 2.215
VE 1.540 1.516 0.851
JC 1.454 1.271 0.665

Actor
VN 11.868 11.53 7.000
VE 7.535 6.911 3.154
JC 11.785 11.624 3.651

C.1 Hyper-parameter Analysis526

In Figure 6, we study the sensitivity of ANS-GT on four important hyper-parameters: the number of527

transformer layers, the number of super-nodes ns, the number of global nodes ng , and the number of528

data augmentation S . In Figure 6 (a), we observe that the performance increases at the beginning with529

the increase of transformer layers. The reason is that stacking more transformer layers improves the530

model’s capability. However, we witness a slight performance decrease when the number of layers531

exceeds 6, possibly suffering from over-fitting. Figure 6 (b) and (c) presents the node classification532

performance with ns varying from 0 to 9 and ng from 0 to 4 respectively. With the increase of533

ns and ng, the performance increases until reaches a peak and then decreases. This is expected as534

the optimal number of super-nodes and global nodes help incorporate long-range dependencies and535

global context in the graph while too large ns and ng lead to redundant noise. Hence, the number of536

super-nodes and global nodes should be carefully chosen to achieve optimal performance. Finally,537

we show the influence of the number of data augmentation in Figure 6 (d). With the increase of538

S, the node classification performance improves steadily until stabilizes. The results indicate data539

augmentation in the training and the bagging aggregation in the inference can effectively improve the540

classification accuracy. In conclusion, we recommend 5 transformer layers, 3 super-nodes, 2 global541

nodes, and an augmentation number of 16 for Cora.542

C.2 Efficiency Analysis of ANS-GT543

Here we show more experiment results and analysis on the efficiency of ANS-GT.544
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Figure 8: Parameter sensitivity analysis on Actor.

Table 5: Time consumption for adaptive node sampling per epoch (s).

Dataset Cora Citeseer Pubmed Chameleon Actor Squirrel

Time 0.838 0.926 1.717 0.855 1.026 0.977

In Table 4, we present the time consumption of executing the graph coarsening algorithm on Cora545

and Actor with different coarsening rates and methods. Since graph coarsening only needs to be done546

once at the pre-processing stage, the time consumption is acceptable.547

In Table 5, we show the time consumption for adaptive sampling in one epoch. In our algorithm, we548

update the sampling weights every T epochs (T = 100 in experiments). Hence, the time cost of the549

adaptive node sampling module is trivial.550

In Table 6, we present the training efficiency comparisons with other Graph Transformer baselines.551

Specifically, we show the average training time per epoch. As can be observed in Table 6, ANS-GT552

has comparable training time with Gophormer and its efficiency is much better than Graphormer.553

C.3 Limitations and Potential Negative Social Impacts554

One limitation of our work is that it introduces more hyper-parameters for finetuning. Since our work555

utilizes adaptive node sampling, it may lead to potential biases in sampling nodes for training.556

C.4 Additional Results on OGB Datasets557

We additionally try ANS-GT on ogbn-arxiv and ogbn-products datasets from OGB [15], which558

contains 169,343 and 2,449,029 nodes respectively. We use the official train/valid/test split and data559

pre-processing details can be found in [15]. The model setup of ANS-GT follows Section 6.1. Three560

competitive baselines including GCN, GraphSAGE, and GPRGNN are selected. We present average561

accuracies and standard deviations over 5 runs in Table 7. Our results overperform the baselines and562

demonstrate the effectiveness of ANS-GT on large-scale graphs.563

D Supplementary Information of Graph Coarsening564

In this paper, we use 3 popular graph coarsening algorithms: Variation Neighborhoods (VN) [26],565

Variation Edges (VE) [26], and Algebraic JC (JC) [30]. VN and VE belong to the local variation566

algorithms which coarsen graphs by preserving the spectral properties of adjacency matrix. Local567

variation algorithms differ only in the type of contraction sets that they consider: Variation Edges568

only contracts edges, whereas contraction sets in Variation Neighborhoods are subsets of nodes’569

neighborhood. In Algebraic JC, the algebraic distances between neighboring nodes are calculated570

and close nodes are contracted to form clusters. More information of the coarsening algorithms can571

be found in their original papers.572

E Further Discussions of ANS-GT573

In ANS-GT, we formulate the optimization strategy of node sampling in Graph Transformer as an574

adversary bandit problem. Specifically, ANS-GT optimizes the weights of chosen sampling heuristics575

instead of directly predicting the adjacent nodes to attend. Then, ANS-GT combines the weighted576
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Table 6: Efficiency comparisons with Graph Transfomer baselines. The average training time per
epoch (s)

Dataset Cora Citeseer Pubmed Chameleon Actor Squirrel

Graphormer 25.670 37.899 26.436 26.343 30.105 29.771
Gophormer 11.210 12.121 16.116 10.305 12.243 12.579
ANS-GT 11.495 12.143 16.270 10.311 12.240 12.571

Table 7: The performance of ANS-GT and selected baselines on OGB datasets

Methods GCN GraphSAGE GPRGNN ANS-GT

ogbn-arxiv 71.72±0.45 71.46±0.26 70.90±0.23 72.84±0.34
ogbn-products 75.57±0.28 78.61±0.31 79.76±0.59 82.15±0.30

sampling heuristics to sample informative nodes. We did not incorporate hierarchical attention577

as part of the bandit learning because it samples supernodes from the coarsened graph instead of578

sampling nodes like the 4 strategies (1-/2- hops, KNN, and PPR). We do not directly predict nodes to579

attend (e.g., using linear layers to predict informative nodes). Directly predicting informative nodes580

for attention requires too much computational overhead and is hard to optimize. Comparatively,581

the pre-defined node sampling heuristics in our strategy help narrow the search space with prior582

knowledge. Moreover, the sampling strategy in ANS-GT can generalize to all nodes in the graph583

efficiently. Experiment results show that our strategy is effective and efficient.584

17


